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ABSTRACT

Algorithms for computing All-Pairs Shortest-Paths (APSP) are crit-
ical building blocks underlying many practical applications. The
standard sequential algorithms, such as Floyd-Warshall and John-
son, quickly become infeasible for large input graphs, necessitat-
ing parallel approaches. In this work, we propose, implement and
thoroughly analyse different strategies for APSP on distributed
memory clusters with Apache Spark. Our solvers are designed for
large undirected weighted graphs, and differ in complexity and
degree of reliance on techniques outside of pure Spark API. We
demonstrate that the best performing solver is able to handle APSP
problems with over 200,000 vertices on a 1024-core cluster. How-
ever, it requires auxiliary shared persistent storage to compensate
for missing Spark functionality.
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1 INTRODUCTION

All-Pairs Shortest-Paths is a classic problem in graph theory. The
problem is both compute and memory intensive, owing to O(n%)
computational and O(n?) space complexity for graphs with n nodes.
Over the years, many parallel APSP solvers have been proposed, in-
cluding for distributed memory clusters, multi-core processors, and
accelerators. However, to the best of our knowledge, currently no
dedicated APSP approach is available for the Apache Spark model
(see Section 2). This is somewhat surprising: many problems in Big
Data analytics and Machine Learning (ML) — domains in which
Spark holds dominating position — involve APSP as a critical kernel.
For example, shortest paths in a neighborhood graph over high-
dimensional points are known to be very robust approximation of
geodesic distances on the underlying manifold [3]. Spectral dimen-
sionality reduction methods, such as Multidimensional Scaling or
Isomap [21], directly involve APSP solver in their workflows. The
same holds true for many other techniques, like networks classifica-
tion [4] or information retrieval [15]. In all these applications, data
sets with hundreds of thousands and even millions of points/ver-
tices are not uncommon [16, 20]. At the same time Spark is known
and praised for its focus on programmer productivity and ease-of-
use, including equally convenient deployments in HPC centers as
in computational clouds. This makes Spark the frequent platform of
choice for non-experts in parallel computing, who want to combine
pure data analytics with processing of large graph instances.
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In this paper, we ask the question of how efficient and scalable of
a parallel APSP solver can we achieve with Apache Spark. We pro-
pose, implement and investigate four different APSP Spark-based
solvers, which vary in how far they depart from what would be a
pure Spark implementation. To facilitate the design, we identify and
describe basic functional building blocks that when combined with
Spark transformations and actions deliver a complete APSP solver
in just a few lines of code, promoting programmer productivity.
Then, we perform extensive experimental analysis of the solvers to
assess efficiency and scalability of the resulting implementations on
problems with up to n = 262144 vertices using a 1,024-core cluster,
and we demonstrate how proper choice of data partitioner and
level of decomposition of graph adjacency matrix can be used to
tune Spark performance. Our results show that using a pure Spark
implementation, that does not involve auxiliary mechanisms and
is fault-tolerant, is impractical for large problems due to the high
cost of data shuffling. However, by leveraging collect and broadcast
operations performed via auxiliary storage we are able to push the
size of the problems we can solve, achieving good scalability.

We also contrast performance of Apache Spark with naive and
highly optimized APSP implementations in MPL. Here our results
show that although Spark is certainly able to handle large APSP
problems, and can compete with naive MPI-based approach, it is
clearly outperformed by MPI solvers with comparable level of opti-
mization. This confirms a common wisdom that end-users should
be aware of the trade off between programmer’s productivity (and
the ease of use), and the achievable scalability.

The paper is organized following the common convention. In Sec-
tion 2, we briefly review related parallel APSP solutions. In Sec-
tion 3, we state basic assumptions and definitions we use in the
work. In Section 4, we propose different strategies to implement
APSP with Apache Spark and discuss their pros and cons taking
into account implementation complexity and workarounds to miss-
ing Spark functionality. We describe detailed experimental analysis
of the methods in Section 5, and conclude the paper with brief
discussion and takeaway points in Section 6.

2 RELATED WORK

APSP remains a very actively researched problem in parallel com-
puting, and hence we necessarily limit our review to projects that
directly relate to our work.

In [19], Solomonik et al. propose recursive 2D block-cyclic algo-
rithm that achieves lower-bound on communication latency and
bandwidth, which they next extend to 2.5D communication avoid-
ing formulation. On a machine with 24,576 cores, the algorithms



maintain strong scaling for problems with n = 32768 nodes, and
weak scaling for up to n = 131072 nodes. The paper is also notewor-
thy for its extensive review of distributed memory APSP solvers.
The advantage of the recursive formulation is induced data locality,
which directly contributes to improved performance [19]. How-
ever, in Spark, the concept of data locality is much weaker, since
Spark’s runtime system has a significant freedom in scheduling
where to materialize or move data for computations. Even though
the programmer has some control over the data placement (e.g., via
partitioning functions), they do not have direct control over where
computations will be executed. In this work, we propose a solution
akin to the iterative formulation of the 2D block-cyclic algorithm,
which can be found in [23], and is one of several methods tracing
their origin to transitive closure [22].

In [10], Katz et al. give a solution of the transitive closure prob-
lem, and apply it to solving APSP on a GPU. They demonstrate
2-4x speedup over a highly tuned CPU implementation, and report
problems for up to n < 10000. Another efficient GPU-based solution
is given by Djidjev et al. in [7]. However, the method applies only
to planar graphs. Djidjev solves APSP on sparse graphs with up
to one million nodes, using a combination of multi-core CPUs and
two GPUs. While we could combine GPU acceleration with Spark,
e.g., by using Python and Numba Just-in-Time (JIT) compiler [13],
it is not entirely clear how advantageous such approach would be.

APSP is one of several graph primitives that can be directly posed
as a linear algebra problem, and solved using matrix operations over
the semi-ring (min, +) [12], e.g., by employing GraphBLAS [11].
Since asymptotically efficient matrix multiplication algorithms (e.g.,
Strassen) are not applicable to the general APSP under min-plus
matrix multiplication, algorithms to improve on O(n®) complexity
have been proposed for cases when the graph of interest is directed,
undirected and unweighted, or undirected with integer weights
from a finite set [17, 18, 27]. In our work, we directly exploit the
semi-ring formulation as one possible implementation. Additionally,
as in the case of GPU acceleration, we could combine multi-core
GraphBLAS implementation with Spark backbone (see Section 4).

Apache Spark frameworks, such as GraphX [25] (no longer main-
tained) and GraphFrames [6], offer multi-source shortest-paths
algorithms. These algorithms are simple extensions of the single
source shortest paths solver in the Pregel/BSP model [14], and are
not designed with APSP in mind. Our proposed solutions break
away from the Pregel model, in favour of 2D blocked decomposi-
tions, because in the initial tests GraphX was unable to handle any
reasonable problem size, prompting us to investigate alternative
approaches.

3 PRELIMINARIES

We focus on computing length of all pairs shortest paths (i.e., no
paths themselves) in undirected weighted graphs with no negative
cycles. Let G = (V, E, w) be such an undirected graph, where V is
a set of n vertices, E is a set of edges, and w : E — R determines
edge weights. At this point we want to stress that we make no
assumption regarding graph sparsity, structure (e.g., planar), or
weights distribution. This is because many Spark-based data ana-
lytics pipelines that involve APSP are general purpose, and have to
be responsive to graphs with varying properties.

In general, and in ML or Big Data analytics in particular, each
vertex v € V might be a complex object with non-trivial memory
layout. However, we assume that some initial pre-processing of
the input graph has been performed, and each vertex is uniquely
identified by an integer index. This is inline with the common use
patterns, where APSP is invoked as a computational building block
within a larger framework. The standard approach to handle APSP
in such cases is to use a variant of classic Floyd-Warshall [5] or
Johnson algorithms [5], with complexity O(|V|?) and O(|V||E| +
[V|2log(|V])), respectively. The Johnson algorithm offers better
asymptotic behaviour for reasonably sparse graphs, but typically
Floyd-Warshall derivatives outperform it as they allow for better
computational density (see also [19]). When using Floyd-Warshall
and related algorithms, we will represent adjacency matrix of G
by A, where A;j = Aj; = wjj stores the weight of edge between
vertices with indices i and j. Furthermore, we are going to use the
following notation. We will write Aj; to describe block (I, J) of
matrix A (size of the block and indexing order will be clear from
the context), and Aj. and A.; to describe row-block I and column-
block J, respectively. Similarly, we will write A;. and A.; to describe
row i and column j of A, and Ay and Ag; to describe column k in
row-block I and row k in column-block J.

To maintain all data elements in our proposed solutions, e.g.,
matrix A, we will primarily depend on Spark’s Resilient Distributed
Datasets (RDDs) [26]. For the sake of completeness: an RDD is a
fault-tolerant abstraction over distributed memory, tailored for in-
memory iterative algorithms. RDDs are non-mutable, and are lazily
evaluated and transparently materialized either in main memory
or persistent storage. Unless explicitly specified by a programmer,
their partitioning is automatically handled by the Spark runtime
using either keys range or hash-based partitioning schemes. From
the computational point of view, objects within an RDD can be
processed in parallel by Spark executors using a set of transforma-
tions that yield new RDDs. A Spark driver node is responsible for
managing RDD lineage, and orchestrating the Spark application
execution.

When implementing APSP solvers, whenever possible we will
depend solely on Apache Spark API, benefiting from the implicit
fault-tolerance ensured by the platform. Our focus will be on
programmer-perceived productivity (e.g., minimizing boilerplate
code, using convenient high-level abstractions, etc.). We will re-
fer to such implementations as pure. To improve performance, in
some implementations we will depend on workarounds to miss-
ing Spark functionality (e.g., implementing point-to-point data
exchange through a shared file system). When such implementa-
tions will not be fault-tolerant (e.g., failed tasks depending on data
in a shared file system are not guaranteed to be able to access that
data when rescheduled), we will refer to them as impure.

4 PROPOSED APSP SPARK SOLVERS

We propose and investigate four different APSP approaches that
vary in the implementation complexity (and as we shall see, in per-
formance). In all approaches, we 2D decompose adjacency matrix A
into g X g blocks, where g = [£1, and b is a user-provided (or auto-
tuned) decomposition parameter. We store the resulting matrix
blocks as key-value tuples ((1, J), Arj) in Spark RDDs, where tuple



(1, ]) is a key we will use to reference the corresponding data block.
We will store each block Aj as a dense matrix. This is because, in
practical cases, A very quickly becomes dense matrix, and hence
potential savings from using a sparse format in early iterations are
negligible. The matrix decomposition will be different from RDD
partitioning, in that a single RDD partition will be maintaining
multiple matrix blocks. We will use different ways of assigning
RDD partitions to executors (see Section 5), which we can think
of as over-decomposition of A. Moreover, even though we will be
discussing our approaches as if the entire matrix A was stored in
an RDD (to simplify presentation), in the actual implementation
(and hence experiments) we exploit symmetricity of A and store
only its upper-triangular part. The remaining blocks are gener-
ated on-demand by transposition (with no measurable overheads).
Hence, the executor responsible for the processing of block Aj; is
also responsible for the processing of block A;;. This enables us
to reduce the total amount of data maintained by the RDD, while
increasing computational costs of processing tasks. We note that
by disregarding symmetricity of A, our algorithms can be directly
adopted for cases where G is a directed graph.

To implement our proposed algorithms we use pySpark. The
choice is motivated by practical considerations. First, the use of
Python makes it convenient and efficient to store and communi-
cate data blocks maintaining C/C++ compatible row-major matrix
representation (e.g., via NumPy arrays). This in turn enables us
to easily offload computationally intensive operations to a bare-
metal runtime, either using direct C/C++ bindings (e.g., CPython,
Boost.Python [2], implicitly SciPy [9]), or through the excellent
Numba JIT compiler [13] (see next subsection). Second, serializa-
tion and deserialization of Python objects, which plays a role in
our implementations (e.g., when exchanging data via persistent
storage), is supported out-of-the-box, further contributing to the
ease of implementation and programmer’s productivity. We recog-
nize the fact that pySpark tends to incur overheads due to object
conversions between Python and Spark’s native Scala/JVM run-
time [24]. However, as we mentioned earlier, in this work we opt for
productivity and compactness of the Python code while leveraging
bare-metal execution whenever possible.

4.1 APSP Functional Building Blocks

To separate computational parts of an APSP solver from the pure
Spark mechanics, we first identify functional blocks that will be
shared between different implementations and will facilitate algo-
rithms design. These building blocks can be thought of as fundamen-
tal operations performed by APSP algorithms, and ideally should
be highly optimized and delegated to bare-metal hardware for ex-
ecution. Such semantic separation is advantageous not only from
the programmer’s point of view (delivering reusable and compact
abstractions), but also from the algorithms design and specifica-
tion point of view (e.g., simplifying reasoning about correctness,
computational complexity and space complexity).

We present each identified element as a function (we use term
function somewhat liberally, since in our case a function may re-
turn/yield multiple elements for the same argument). The functions
will be passed to Spark transformations to act directly on matrix
blocks stored by an RDD, in which case their first argument, omitted

1 for i in range(0, log(n)):

2 for J in range(0, q):

3 col = A.filter(InColumn(J)).collect()

4 for block in col: block.tofile()

5 T[J] = A.map(MatProd) . reduceByKey(MatMin)
6 A = sc.union(T)

Algorithm 1: Repeated squaring with column-blocks.

from invocation, will always be a single record stored in the RDD
for which transformation is invoked. Table 1 summarizes all the
functions (including their syntax and short description). How they
are used will become clear in the following subsections. We note
that our functional blocks are different from the concept of graph
building blocks [11], that are tailored to express much broader spec-
trum of graph algorithms (compared to our explicit focus on APSP).

4.2 Repeated Squaring

In the first approach, we exploit APSP min-plus product formu-
lation, and we essentially compute A" using the classic repeated
squaring method. While asymptotically this method is clearly in-
efficient, it is very fast to implement and highlights programmer
productivity when using Spark. It also introduces how functional
blocks are combined with Spark API.

Given an RDD with block decomposed A, repeated squaring
becomes a sequence of three steps over the RDD: cartesian fol-
lowed by filter to group blocks that should be multiplied in the
current iteration, map applying min-plus product (function Mat -
Prod), and finally reduceByKey with function MatMin to finalize
the product. All blocks of A can be persisted in the total main mem-
ory of the executing cluster, hence directly leveraging support for
iterative algorithms in Spark (this will be the case for the remain-
ing algorithms as well). However, the problem with this approach
is reliance on cartesian that involves extensive all-to-all data
shuffle. In our tests, we found that cartesian was easily stalling
even on small problems. Hence, to bypass this bottleneck of pure
implementation, we replaced cartesian with iteration over the
column-blocks of A, effectively rewriting matrix-matrix product
into a series of matrix-vector products. This allows us to reduce data
movement, at the cost of increased Spark overheads (like scheduling
delays or tasks deserialization costs).

The core of the resulting implementation is outlined in Algo-
rithm 1. In line 3, we identify blocks of column-block J to multiply,
and group them on the Spark driver node, which next distributes
the entire column to executors (line 4). Note that we do not broad-
cast the column, but rather store its blocks in a shared file system
available to driver and executor nodes (e.g., HDFS, GPFS, etc.). As a
result, the appropriate blocks can be selected and used by execu-
tors only when needed (most of the executors will not be using
all blocks). In line 5, we perform the actual matrix-vector prod-
uct. Here, MatProd takes its first argument, block Ajg, directly
from the RDD, and the second argument is the K-th block of the
column-block J deserialized from the shared secondary storage.
Both MatProd and MatMin are delegated for bare-metal execution
using Numba and NumPy, respectively. The results of ¢ individual



Table 1: Summary of our functional elements.

InColumn[((LJ),Ary),x] : return J = x;
Predicate testing whether given block is in column-block x.

OnDiagonal[((Z,J]),Ary),x] : return (I=]) & (I = x);
Predicate testing if given block is x-th block on diagonal.

ExtractCol[((L, ), Ary), k] : return (I, Ar(j.p+k))s
Return a new record with k-th column of given block (the col-
umn is stored as a vector). Within a block rows and columns
are zero-indexed.

Copybiag[((1,1),Arp)] : forall Jyield ((1,]), Am);
Create (g — 1) copies of a diagonal block, each identified by
different column-block index.

CopyCol[((LJ), Arp)] :

forall K yield ((IK),Ajj) and yield ((K, I),AIT]);
Create (g — 1) copies of a given block, each identified by dif-
ferent column-block index, and (g—1) copies of its transpose,
each identified by different row-block index.

MatMin[((L,]),Ary), B] : return ((I,J), min(Azy, B));
Return element-wise minimum between block Ajy and B.

MatProd([((L ]),Arj),B] : return ((I,]),A;; ® B);
Return min-plus product between block Ay and B.

MinPlus([((L J),Arj),B] :
return ((1,]), (min((Ar; ® B), B);
Returns MatProd followed by MatMin for block A7y and B.

FloydWarshallUpdate[((L J), Ary), Brx, Bji] :
C=Bp-1T+1 .B]Tk; return MatMin(((L,]), Ar), C);
FloydwWarshall[((LI),Ary)] : return ((I, I),A}I);
Execute Floyd-Warshall, or any other APSP solver, over di-
agonal block Ay 1, and return the resulting distance matrix

(L), A7 ).

ListAppend([List, ((1,]),Arp)] :

return List.append(((L, ), Ary));

Append block Aj; to list of blocks List. This function is a
simplified representation of the actual Spark combiner.

ListUnpack[((L]), List)] :

(AI],BlaBZ) = List;

if undefined(B;) : return (((1,)),Arj), Ary ® B1);
else: return (((1J),Arj), B1 ® Bz);

Process list of blocks to return block that will be second
argument of min-plus product with Ay;.

We use yield to indicate that multiple elements are returned.

matrix-vector products are brought together via union (line 6) to
form the RDD ready for the next iteration of the algorithm.

for k in range(0, n):
K=k /b
kloc = k % b

D = A.filter(InColumn(K)).map(ExtractCol(kloc)) \
.collect()

colk = sc.broadcast(D)

O B N A W N =

10 A = A.map(FloydWarshallUpdate)

Algorithm 2: Floyd-Warshall with 2D decomposition.

Our implementation of repeated squaring does not require any
particular attention to, e.g., when RDDs are materialized, delegating
the entire execution to Spark. However, utilizing persistent stor-
age for broadcast introduces side-effects, which go against Spark’s
fault-tolerance mechanisms, making the implementation impure.
We note that one could consider using shared file system directly
at the filtering stage, eliminating the need for collect on the dri-
ver. However, this approach is problematic considering the Spark
scheduler, e.g., files written in one RDD may not be materialized
on time to be used by a subsequent RDD.

The computational cost of repeated squaring is bounded by
%log(n) iterations, where each iteration involves map transfor-
mation with O(b%) operation, followed by reduction.

4.3 2D Floyd-Warshall

In our second approach, we adopt the textbook parallel Floyd-
Warshall algorithm based on 2D block decomposition [8]. In this
approach, parallelism is due to the two innermost loops of Floyd-
Warshall, which can be partitioned once row/column indexed by the
outermost loop is block-wise broadcast, and locally available to the
processors. Since Spark provides collect and broadcast that
combined can emulate standard broadcast initiated at any processor,
we can easily express the entire algorithm in Spark.

Our Spark implementation is outlined in Algorithm 2. The algo-
rithm proceeds in n steps. In iteration k, we first identify column
blocks storing column k, and then we extract the actual column
using function ExtractCol (lines 2-5). The column is aggregated
on the driver node (line 6) and broadcast to all executors (line 8).
Because the memory footprint of a column is very small, the op-
eration can be easily performed without the need for persistent
storage. This step is an explicit synchronization point. Once col-
umn k is available to every executor, we proceed with the update
phase of Floyd-Warshall algorithm, as implemented in FloydWar -
shallUpdate function. In this case, the first argument is block Ay
taken directly from the RDD, and the two remaining arguments are
vectors extracted from the column k (exploiting the fact that A is
symmetric). As in earlier algorithm, the actual computations are
delegated for bare-metal execution using Numba JIT compilation.

The 2D Floyd-Warshall is interesting in the sense that it is
amenable to pure Spark implementation, supporting fault-tolerance,
and involving no side-effects. Moreover, it does not require any so
called Spark wide transformations, which trigger data shuffling and
movement. Consequently, it plays into Spark strengths. However, its
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Figure 1: Processing phases in the blocked Floyd-Warshall
algorithm. Diagonal blocks form critical path.

for i in range(0, q):

1

2 diag = A.filter(OnDiagonal(i))

3 d = diag.map(FloydWarshall).flatMap(CopyDiag) \

4 .partitionBy(partitioner, p)

5

6 rowcol = A.filter(InColumn(i))

7 d = sc.union([d, rowcol]) \

8 .combineByKey (ListAppend).map(ListUnpack) \
9 .map (MatMin) . flatMap (CopyCol) \

10 .partitionBy(partitioner, p)

12 A = A.filter(not InColumn(i)).union(d) \

13 .combineByKey (ListAppend) \
14 .map(ListUnpack) .map(MatMin) \
15 .partitionBy(partitioner, p)

Algorithm 3: Blocked In-Memory.

computational cost is bounded by n iterations, where each iteration
involves building blocks with cost O(b?). Since synchronization
overheads in Spark are significant, we anticipate poor scalability.

4.4 Blocked In-Memory

In the third approach, we use ideas from the blocked APSP from
Venkataraman et al. [23]. Originally, the algorithm was designed
to improve cache utilization of the standard Floyd-Warshall. It
is an iterative algorithm, where each iteration consist of three
phases, as depicted in Figure 1. In Phase 1, diagonal block Ajy is
processed using any efficient APSP solver (in our case sequential
Floyd-Warshall). In Phase 2, the result is passed to update shortest
paths in all blocks of block row Aj. and block column A ;. Then,
in Phase 3, iteration is completed by performing update on the
remaining blocks.

Our take on the algorithm, which we call Blocked In-Memory, is
outlined in Algorithm 3. In q iterations, we start by processing a
diagonal block (lines 2-4) using FloydWarshall function executed
on bare-metal via a call to an optimized SciPy routine. The diago-
nal block is extracted from RDD via filtering, and once processed
we explicitly create its ¢ — 1 copies (function CopyDiag) that are
distributed to executors via a custom partitioner (line 4). Here our
goal is to place these copies in the RDD partitions that store blocks
from the corresponding column/row block (extracted in line 6), thus
maximizing data locality and mitigating partition blowup due to
RDDs merging in line 7 (we provide details of partitioning schemes

in the next section). We can think about this step as using data shuf-
fling to simulate general broadcast. This workaround is necessary
because Spark API does not expose broadcast to executors. Overall,
this phase of the algorithm stresses Spark’s ability to optimize data
distribution and corresponding tasks scheduling. To complete pair-
ing of diagonal and column/row blocks we use a combination of
combineByKey and map (line 8), by first aggregating a list of blocks
to pair (ListAppend), and then enumerating the actual block pairs
(ListUnpack). The resulting pairs are processed to compute the
update (line 9), and as previously we use block copying and custom
partitioning to bring together blocks that will be operated on in
Phase 3 (lines 9-10). To finalize iteration, we implement Phase 3
computations (lines 12-15) following exactly the same pattern (with
blocks pairing) as in case of Phase 2.

The above implementation of our blocked algorithm depends
entirely on fault-tolerant Spark functionality, and hence we consider
it pure. While it operates in q iterations, it is data intensive due to
data copying and shuffling involved. However, the method should
be able to leverage significant data locality, hence it is a good test
for the Spark runtime system.

The computational cost of the algorithm is bounded by O(%)
iterations, with each iteration bounded by O(b?). While asymptot-
ically this is similar to 2D Floyd-Warshall, the blocked algorithm
allows us to control (through the parameter b) the trade-off between
the the cost of single iteration and the number of iterations (which
is not the case in the previous methods).

4.5 Blocked Collect/Broadcast

Our last solver, given in Algorithm 4, is a redesign of the Blocked
In-Memory APSP to bypass explicit data shuffling. Specifically, in-
stead of pairing a diagonal block with column/row blocks, we bring
it to the driver node via collect, which then redistributes it to the
executors via shared persistent storage (lines 2-3). Hence, we elimi-
nate costly all-to-all data exchange with a communication through
the Spark driver node (which should be faster at the expense of
using persistent storage). We note that here, similar to the repeated
squaring algorithm, we do not use broadcast because in pySpark
each task created by an executor maintains its local copy of the
broadcast variables. This usually means exceeding the executor’s
memory, since the number of running tasks may be the same as the
number of cores in a node running the executor. To realize Phase 2,
we apply MinPlus function on the column blocks such that the
first argument comes from the RDD, and the second argument is
taken from Spark storage (line 5). As in earlier phase, we aggregate
the entire column on the driver node and then redistribute it via
shared persistent storage (lines 6-7). Finally, in line 9, we perform
Phase 3 computations updating the remaining blocks of A with
the column blocks from persistent storage. All updated blocks are
brought into a single RDD via union, and repartitioned to match
intended partitioning of A (lines 11-12).

The collect and broadcast implementation of the blocked algo-
rithm involves secondary storage to handle communication, and
hence we consider it impure. Except of custom partitioning of ma-
trix A, we do not repartition RDD that stores column/row blocks
(line 5). Instead we depend on the partitioning scheme of A from



for i in range(0, q):
diag = A.filter(OnDiagonal(i)).map(FloydwWarshall)
diag.collect().tofile()

1
2
3
4
5 rowcol = A.filter(InColumn(i)).map(MinPlus)
6 rowcol coll = rowcol.collect()

7 for b in rowcol coll: b.tofile()

8

9 offcol = A.filter(not InColumn(i)).map(MinPlus)

1 A = sc.union([diag, rowcol, offcol]) \
12 .partitionBy(partitioner, p)

Algorithm 4: Blocked Collect/Broadcast.

which we extract blocks. This means that Spark runtime will most
likely trigger data movement to utilize all executors.

Asymptotically, the cost of the algorithm is the same as Blocked
In-Memory. However, in single iteration we substitute data shuffling
with writing to auxiliary storage.

5 EXPERIMENTAL ANALYSIS

To benchmark all four algorithms and their implementations, we
performed a set of experiments on a standalone Apache Spark
cluster with 32 nodes and GbE interconnect. Each node in the
cluster is equipped with two 16-core Intel Skylake (Intel Xeon
Gold 6130 2.10GHz) processors with 32KB L1 and 1024KB L2 cache,
and 192GB of RAM (thus the cluster provides total of 1,024 cores
and 6TB of RAM). Moreover, each node has standard SSD drive
available, which Spark uses for local data staging (available local
storage is 1TB). We note that the use of SSDs is essential for Spark
performance, since all data movement in Spark involves staging
in the local storage. The local storage is complemented by shared
GPFS storage that executors can use for additional communication
(e.g., as in case of Blocked Collect/Broadcast algorithm).

In all tests, the Spark driver was run with 180GB of memory,
to allow efficient management of complex RDD lineages. For the
same reason, we run the driver on a dedicated node separately
and in addition to Spark executors. We allocated one executor per
node using the default configuration for the number of cores, i.e.,
each executor was using all available cores in a node. All executors
were configured to use 180GB out of the available 192GB, with the
remaining memory available to the operating system and Python
interpreter. While large memory available to Spark runtime could
potentially lead to overheads in garbage collection, we did not
observe this in practice. We note that we tested different Spark
runtime configurations, including executor-to-core ratio, memory
use fractions, etc. [1], without noticeable difference in performance.

Our entire software is implemented in Apache Spark 2.2 pySpark,
and Python 2.7. Compute intensive linear algebra operations and
sequential Floyd-Warshall algorithm are offloaded to bare-metal
via NumPy and SciPy that are configured to work with the In-
tel MKL 2017 BLAS library. Finally, we use Numba 0.35 for just-
in-time compilation whenever required. Our entire software is
open source and available from https://gitlab.com/SCoRe-Group/
APSPark together with all benchmark data (see below).

5.1 Test Data

All four APSP solvers are oblivious to the structure of input graph,
and in our implementations we do not include optimizations to
target any specific graph properties (recall that we represent the
graph using dense matrices). Consequently, the scalability of every
solver is a function of graph size expressed only by the number
of vertices, n. Therefore our input data is simply a set of synthetic
Erdés-Rényi graphs. In all graphs, the probability of edge, pe, is set
to pe = &nln(n) with € = 0.1. The particular choice of € is to
make graphs generation fast, and we report it only for the sake of
reproducibility. We note that taking p, larger to increase likelihood
of connectivity in no way adversely affects our performance, as
we disregard the cost of populating RDD that stores the adjacency
matrix A, and each of our approaches scales only with n. In our
tests, we consider graphs for n up to 262,144.

At this point we wish to reiterate that the performance of our
methods is in no way impacted by any properties of the graph
aside from the number of vertices n.

5.2 Block Size and Sequential Components

In the first set of experiments, we setup a baseline for subsequent
comparisons by analyzing performance of the key functional el-
ements, MatProd combined with MatMin and FloydWarshall,
depending on the block size b. These building blocks will be dis-
patched by Spark for sequential execution, and hence their perfor-
mance will be critical to the overall performance. Moreover, in all
our implementations, the block size directly affects level of avail-
able parallelism, and level of data movement. If the block size is too
large, we may be spending too much time in a sequential execution
or staging data blocks in the auxiliary storage, and we may not be
able to leverage all executors. On the other hand, if block size is
too small, overheads due to tasks scheduling and data shuffling, or
creating many small files in the auxiliary storage, may dominate
the execution. Hence, the block size should be selected carefully.

To test the sequential components, we call the corresponding
functions directly from Python, the same way as they would be
invoked by Spark, i.e., FloydWarshall via SciPy with Intel MKL,
and MatProd and MatMin via Numba. To test the actual solvers,
we use our pySpark implementations. In all tests, we look at the
observed execution times. Results of these experiments are reported
in Figures 2 and 3.

Figure 2 shows how block size, b, affects the time of processing
a single adjacency matrix block. As expected, the runtime increases
roughly as O(b?), in line with the asymptotic behavior of the un-
derlying algorithms. For b up to approximately 3,000, sequential
operations can be executed very quickly, primarily because adja-
cency matrix fits in cache memory. Given the available Intel Skylake
CPU cache, the approximate size for processing completely in L3
cache is around b = 1810. Once b is above that threshold, runtime
starts to grow rapidly, going into minutes.

Figure 3 highlights the impact of partitioning granularity on the
total execution time. Here we focus on Blocked In-Memory (IM)
and Blocked Collect/Broadcast (CB) methods, as these are the best
performing methods (see next subsection).

Irrespective of the choice of RDD partitioner (we discuss par-
titioners later), the runtime of both methods first decreases, and
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then grows with the growing block size. When the block size is
too small (b < 1024), the Blocked In-Memory solver fails. This is
because the volume of the data that has to be staged in local SSDs
due to shuffling exceeds the storage capacity of our cluster (in our
case, each node is equipped with 1TB of local storage). Specifically,
data repartitioning (call to partitionBy in Algorithm 3, line 15)
triggers data shuffling in each iteration. Because shuffled blocks
are spilled to the local storage and preserved for fault tolerance,
the storage requirement grows linearly with the number of itera-
tions. At the same time, eliminating the call to partitionBy is not
an option: without repartitioning step the number of partitions in
the RDDs created via union (Algorithm 3, line 12) would quickly
explode since in Spark each component RDD preserves its parti-
tioning when in union. The excessive number of partitions would
degrade performance of the combineByKey step, and would add
significant scheduling overheads. We note that this issue does not
affect Blocked Collect/Broadcast, because the volume of the data
we manage is smaller (recall that here we avoid creating copies of
the data blocks), and repartitioning is thus less aggressive.

The results above confirm the impact of the block size on the
performance of our APSP solvers. They suggest also that accelerat-
ing single block computations, e.g., by delegating them to GPGPU,
could further improve performance of the solvers. Specifically, since
with acceleration we should be able to process larger blocks in the
same time limit, we could reduce the number of iterations required
by the solver without significantly affecting the cost of individ-
ual iterations.

5.3 Tuning Performance of the Solvers

In the next set of experiments, we take a closer look at the per-
formance of our solvers in relation to RDD partitioning scheme
that we use to distribute RDD with matrix A. In Figure 3, we can
observe that both partitioning function as well as the number of
RDD partitions per core (parameter B) affect the runtime, and hence
tuning them may lead to better performance.

The efficiency of each of our APSP methods depends on data
locality. Ideally, to reduce the number and frequency of Spark data
shuffles, blocks that are paired for computation should be assigned
to the same partition, and partitions should be evenly distributed
between executors. We should keep in mind however, that even
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Figure 3: Example effect of block size on the execution
time of Blocked In-Memory (IM) and Blocked Collect/Broad-
cast (CB), depending on the choice of block size, partitioner
and partition size. Top: default Spark partitioner. Middle:
our multi-diagonal partitioner. Bottom: distribution of RDD
partition sizes incurred by both partitioners when B = 2.
Problem size n = 131072 run on p = 1024 cores. B indicates
the number of RDD partitions per core.

then there is no guarantee that the executor maintaining given
partition will be responsible for its processing. Thus, to provide a
room for load balancing, the ratio between the number of partitions
and the number of available cores should be more than one (per
Spark guidelines [1], the number of partitions is recommended to
be 2x-4X the total number of cores, i.e., 2 < B < 4).

In our implementation we consider two partitioners. The first
one is the default Spark partitioner, called Portable Hash (PH),
which is available in pySpark as method portable hash. This
is the partitioner that one would use ad hoc. The partitioner is
expected to distribute RDD uniformly at random by computing a
hash code for Python tuples (I, J), which are used as keys in all



Table 2: The effect of block size on execution time.

Method Partitioner Decomposition Time
b Iterations  Single Projected
Repeated Squaring ~ MD 256 18432 45s 9d16h
512 9216 2m23s 15d8h
1024 4608 5mo6s 16d8h
2048 2304 19m45s 31d15h
4096 1152 51m47s 41d10h
PH 256 18432 44s 9d11h
512 9216 2m7s 13d13h
1024 4608 6mb5s 19d12h
2048 2304 18m39s 29d21h
4096 1152 1h15m 60d6h
2D Floyd-Warshall ~MD 256 262144 21s 64d11h
512 262144 18s 53d10h
1024 262144 17s 51d22h
2048 262144 18s 55d7h
4096 262144 20s 61doh
PH 256 262144 21s 65d8h
512 262144 18s 55d10h
1024 262144 16s 49d7h
2048 262144 20s 60d3h
4096 262144 19s 56doh
Blocked-IM MD 256 1024 51s 14h29m
512 512 1mlls 10h8m
1024 256 1m55s 8h12m
2048 128 3mdds 7h59m
4096 64 7m21s 7h51m
PH 256 1024 48s 13h32m
512 512 1m14s 10h33m
1024 256 2m12 9h23m
2048 128 4m3s 8h39m
4096 64 8m49s 9h24m
Blocked-CB MD 256 1024 48s 13h35m
512 512 1mls 8h40m
1024 256 1h40m 7h8m
2048 128 3m18s 7h4m
4096 64 8m23s 8h57m
PH 256 1024 46s 13h12m
512 512 1m3s 9h4m
1024 256 1m51s 7h54m
2048 128 3m51s 8h15m
4096 64 9m23s 10h2m

n=262144,p = 1024,B =2
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Figure 4: Data layout induced by our multi-diagonal parti-
tioner. Blocks with the same index are assigned to the same
RDD partition.

our RDDs. The resulting hash values aim at equal distribution of
RDD partitions between executors, but provide no guarantee on
achieving data locality desired by our solvers.

The second partitioner is our multi-diagonal partitioner (MD).
The assignment of matrix blocks to partitions induced by this ap-
proach is outlined in Figure 4. The idea behind MD partitioner is to
explicitly place blocks that are in the same column- and row-block
into separate partitions, while maintaining equal block distribution
between the partitions. The strategy is especially critical to Blocked
In-Memory and Blocked Collect/Broadcast methods, as it enables
us to avoid bottlenecks in Phase 2 of these algorithms. At this point
we should note that MD partitioner may seem counter-intuitive
from the perspective of matrix algorithms based on 2D decomposi-
tion. Typically, such algorithms involve some form of grid-based
partitioning to optimize communication patterns. However, as we
mentioned earlier, in Spark we have limited control over which
executors handle which partitions. Therefore, the best strategy is
to use partitioning which will give scheduling flexibility to the
Spark runtime.

In Table 2 we quantify the effect of the block size and the parti-
tioner on the performance of each solver. Here several observations
stand out. First, Repeated Squaring and 2D Floyd-Warshall both are
infeasible on large problems, with projected execution times going
into days. The poor performance is especially pronounced for 2D
Floyd-Warshall. Even though from the computational point of view
the method is asymptotically comparable to the blocked methods,
it suffers from unfavorable balance between computations and data
movement — each iteration involves O(b?) operations, the number
of iterations is linear in the problem size. Repeated Squaring on the
other hand shows very good performance in single iteration, but
this is insufficient to compensate log(n) higher number of iterations
(compared to the blocked methods).

The second observation is that the effect of partitioner depends
on the block size, and on factor B. When the block size is small,
the difference between PH and MD partitioners becomes negligible.
This is because partitions become fairly balanced just by chance, as
we have many blocks to distribute, and even when partitions are
slightly unbalanced, the difference in runtime becomes marginal
owing to the small block size. Conversely, for the large block size
the impact of the partitioner on runtime becomes critical. Figure 3
(bottom plot) explains this effect in case of blocked methods. The
PH partitioner consistently fails to evenly distribute blocks to RDDs,
which is caused by suboptimal choice of the hashing function (in-
spection of Spark code reveals that it uses XOR based mixing of
elements of the tuple, which in case of upper-triangular matrix
leads to many collisions). The resulting skew in hash distribution
translates directly into poor runtimes (Figure 3 top plot). This is
especially pronounced for the Blocked In-Memory method when
B = 1. In this case we have to deal with very large and unbalanced
partitions with no room for load balancing by dynamic schedul-
ing. Additionally, we run multiple repartitioning steps with their
shuffling operations, which ultimately result in unbalanced spills
to local storage. We note that because Blocked Collect/Broadcast
mitigates shuffling, it performs significantly better.

The last observation is with respect to the over-decomposition
factor, B. From our results it is clear that the Spark guideline of
having B > 1 is imperative. However, since in our solvers the
total number of blocks to distribute is a function of the block size,
for larger p we may easily end up with B = 1. In such situations,
it may be advantageous to scale down p to increase B without



decreasing block size b. This strategy however ultimately limits the
scalability of the method. In our tests, most of the time we were
able to maintain B = 2.

5.4 Scalability Tests

We now turn our attention to scalability of the solvers. We focus
only on Blocked In-Memory and Blocked Collect/Broadcast, since
the other two methods cannot be expected to scale to larger prob-
lems (see Table 2). We perform weak scaling analysis, as it can be
considered a typical use scenario for Spark (i.e., we increase cluster
size to solve larger problem instances).

To assess scalability we measure operations per second (ops),

n
which we express as T where T}, is the time taken to solve the

APSP problem of size n using p cores. Considering that the key
computational building blocks used by our solvers have complex-
ity O(n®), the measure is a good proxy to assess the performance.
For convenience we are reporting giga-ops (Gops) normalized with
respect to p (Gops/core). Our reference point is T — the time taken
for a proportional problem on a single core using efficient sequential
Floyd-Warshall as implemented in SciPy and tested in Section 5.2.

Results of the experiment are summarized in Table 3 and Fig-

n
ure 5. Here we maintain — = 256 to ensure that the largest resulting

problem (i.e., n = 262144) is feasible given the hardware resources
we use in the tests. Moreover, for each method and every problem
size, we use our multi-diagonal partitioner, and we select the op-
timal block size, b, following the arguments given in the previous
sections (we report block size in Table 3). Finally, for n = 256 we
record T; = 0.022s, which translates into 0.762Gops.

Our results show that as expected Blocked Collect/Broadcast
outperforms Blocked In-Memory. Moreover, for the largest prob-
lem size (p = 1024), Blocked In-Memory runs out of space in the
local storage, and is unable to finish processing. Both methods
show rather stable scaling that saturates around p = 256. For
p < 256 performance is slightly degraded, which we attribute
to Spark scheduler: for the small problem size, the number of RDD
partitions per core is one, and that limits optimal resources uti-
lization (note however, that choosing different block size does not
improve performance). For p = 1024, the Blocked Collect/Broad-
cast solver achieves 78% Gops/core with respect to the sequential
solver, which we consider quite good result taking into account
all Spark-added overheads. We should keep in mind though that
Blocked Collect/Broadcast is not fault-tolerant.

5.5 Comparison with MPI-based Solvers

In the last set of tests we contrast performance of our solvers with
the approaches based on MPI. While this may seem like “comparing
apples with oranges,” the exercise helps to provide a reference
point to judge Spark scaling. Since MPI-based optimized APSP
solvers have been around for some time, such a reference point
is of value especially to the Machine Learning community that is
predominantly using Spark.

To make the comparison, we use two MPI-based APSP solvers.
In the first solver, FW-2D-GbE, we implement the standard parallel
Floyd-Warshall algorithm based on 2D block decomposition [8]
(described in Section 4.3). The method is relatively straightforward

Table 3: Weak scaling of blocked methods.

Method / p 64 128 256 512 1024
Blocked-IM  4m2s 14m20s 35m33s 2h17m -
b 1024 1024 1536 2048 -

Blocked-CB  2m50s 11m0s 34m16s 2h11lm 8h9m

b 1024 1280 1536 2048 2560
FW-2D-GbE  2m3s - 37m2s - 11h51m
DC-GbE 1m15s - 18m54s - 2h52m

n _ -
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Figure 5: Weak scaling of blocked methods.

to implement, however, as usual for MPL, the resulting code is ob-
jectively more verbose and complex than its Spark counterpart.
The second method, abbreviated as DC-GbE, is highly optimized
divide-and-conquer solver by Solomonik et al. [19], available from
https://github.com/solomonik/APSP. The solver has been demon-
strated to scale extremely well to very large parallel machines, and
is the state-of-the-art HPC solution. From the code complexity per-
spective, this solution is the most elaborate. Both solvers are written
in C++, and we compile them with Intel MPI 2018 and g++ 7.8 for
execution. Both are run on the same cluster as Spark. Finally, since
both MPI solvers assume that processors are organized into a square
grid, in our tests we use p € [64, 256, 1024].

From Table 3 and Figure 5 we can see that Spark-based solvers
outperform naive MPI-based solution for larger problem sizes. This
poor performance of MPI-based Floyd-Warshall is explained by com-
munication overheads, specifically latency, that grow with log(p)
(due to broadcast) and n (due to n iterative steps). However, we
should not forget that for the same reasons the method is com-
pletely infeasible in Spark. On the other hand, the optimized DC
solver significantly outperforms (over 2.8x on p = 1024 cores) all
other solutions. While this result is not surprising, it clearly high-
lights that a good runtime system is required but not sufficient
to obtain good scalability — improving data locality and reducing
communication, which are the key optimizations used by the DC
solver and by our Blocked methods, are essential for scalability.
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6 CONCLUSION

In this paper, we proposed and analyzed four different implementa-
tions of APSP solver using Apache Spark. We demonstrated that
by separating core computational functionality from the data and
tasks distribution problem, we can implement APSP in pySpark in
just few compact lines of code (including usual boilerplate). Our
Blocked-CB method is able to handle large graphs in acceptable
time limits, but it requires compensating missing Spark functional-
ity (e.g., broadcasts from arbitrary source) with solutions outside
of the Spark APL Consequently, the method depends on persistent
storage for data broadcasting and thus is not fault-tolerant.

6.1 Takeaway Points

To conclude our presentation, we wish to offer several takeaway
points regarding design and implementation of APSP in Apache
Spark. First, while the Spark API makes it look easy to express a
solver and forget about volume of the data this solver must handle,
technical nuances make it equally easy to deliver an inefficient
solution. For example, disregarding how RDD lineages evolve, and
how RDD unions are realized, leads to over-partitioning that in turn
overloads Spark scheduler (we mention this issue in Section 5.2).
Hence, programmer must be constantly aware of how different
Spark transformations and actions are realized to avoid or mitigate
unnecessary overheads. Second, data partitioning and communi-
cation (or data movement) are as critical as in any HPC-oriented
platform. For example, carefully choosing block size b and using a
new multi-diagonal partitioning scheme (Section 5.3) were critical
to scale our solvers. Thus, programmer should not depend on default
options provided by Spark, which most likely will be suboptimal.
Finally, high-level problem decomposition that isolates computa-
tionally heavy elements from those responsible for computations
coordination is essential. Without that decomposition (given in
Table 1) we would not be able to achieve as compact Spark solvers
as we presented. Furthermore, this decomposition enables us now
to investigate hybrid models combining Spark with, e.g., GPGPUs.
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