IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 2, APRIL 2019

1287

Learning a State Transition Model of an
Underactuated Adaptive Hand

Avishai Sintov ', Andrew S. Morgan

, Andrew Kimmel, Aaron M. Dollar

, Kostas E. Bekris ¥,

and Abdeslam Boularias

Abstract—Fully actuated multifingered robotic hands are often
expensive and fragile. Low-cost underactuated hands are appealing
but present challenges due to the lack of analytical models. This let-
ter aims to learn a stochastic version of such models automatically
from data with minimum user effort. The focus is on identifying the
dominant, sensible features required to express hand state transi-
tions given quasi-static motions, thereby enabling the learning of
a probabilistic transition model from recorded trajectories. Ex-
periments both with Gaussian processes (GP) and neural etwork
models are included for analysis and evaluation. The metric for
local GP regression is obtained with a manifold learning approach,
known as Diffusion Maps, to uncover the lower-dimensional sub-
space in which the data lies and provide a geodesic metric. Results
show that using Diffusion Maps with a feature space composed of
the object position, actuator angles, and actuator loads, sufficiently
expresses the hand-object system configuration and can provide
accurate enough predictions for a relatively long horizon. To the
best of the authors’ knowledge, this is the first learned transition
model for such underactuated hands that achieves this level of pre-
dictability. Notably, the same feature space implicitly embeds the
size of the manipulated object and can generalize to new objects of
varying sizes. Furthermore, the learned model can identify states
that are on the verge of failure and which should be avoided during
manipulation. The usefulness of the model is also demonstrated by
integrating it with closed-loop control to successfully and safely
complete manipulation tasks.

Index Terms—Tendon/Wire
Robots, Dexterous Manipulation.

Mechanism, Underactuated

I. INTRODUCTION

RADITIONAL robotic hands, such as the Shadow and the
Allegro hands [1], have achieved significant accuracy and
performance. Nevertheless, they have a complex structure with
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Fig. 1. Traversed paths (in yellow) using manipulation primitives: (a) Primi-
tive of rotating the actuators in the same direction with equal velocities. Circular
arrows show the counter-clockwise direction of the actuators’ rotation. (b) Ro-
tating the actuators in the opposite direction. The actuators’ rotation is switched
twice here from clockwise to counter-clockwise. With both primitives, resulting
trajectories are clearly non-linear.

many degrees-of-freedom, while they can be large, fragile and
costly. They also rely on exact hand-object models, high-fidelity
sensors, and sophisticated control and planning to achieve robust
manipulation [2], [3]. Previous efforts have depended on tactile
sensing to learn, estimate and achieve grasp stability [4]-[6].
On the other hand, underactuated hands with compliant fin-
gers are appealing due to their ability to passively adapt to ob-
jects of uncertain size and shape. Therefore, they can provide a
stable and robust grasp without tactile sensing or prior planning,
and with open-loop control [7]-[10]. In addition, due to the low
number of actuators, they enable a low cost and compact design.
It has already been demonstrated that such hands can perform
precise in-hand manipulations along with stable grasps [11].
An advantageous approach to robotic manipulation is through
the use of open source hardware, which is easily altered, fab-
ricated, and distributed for scientific contribution [12]. Due to
uncertainties in the manufacturing process, however, fabricated
models of the hands differ in size, weight and inertia according
to the manufacturing technique. The hand used in this letter, as in
Figure 1, is a compliant and underactuated hand that exhibits this
property. Due to this uncertainty, hand-crafting precise models
for these hands is a significant challenge on top of the difficulty
in modeling passively elastic joints in underactuated hands [13].
Some approaches [14], [15] rely on specific contact locations,
contact forces, and assumptions in the Coulomb (uniform) fric-
tion model to account for reconfiguration of the hand. These
parameters are typically not easy to accurately identify, how-
ever, in a physical system. Consequently, precise models for
such hands are usually unavailable as they are hard to derive
analytically or to fine-tune. Along with this, analytical control
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schemes [16], [17] also require joint position sensing, which
is often not available to keep costs low. The absence of joint
positions is also an obstacle for model identification, which is
required to implement analytical control. These challenges, in
turn, complicate the control and manipulation planning prob-
lems. Given this desire for precision and to cope with the lack
of a good model, this work aims to learn this transition model
from data under assumptions of quasi-static motion. Thus, this
letter provides a data-driven modeling approach, which best fits
low-cost 3D printed hands. While it can be time consuming
to generate offline, it is easy to implement and provides good
results.

To cope with the above challenges and towards applying a
classical control method, previous work simplified the problem
by providing an approximation of the hand kinematics [18].
Manipulation primitives were introduced such that rotating the
two actuators of a planar hand in the same or opposite direction
is assumed to move the grasped object along the x- or y- di-
rections, respectively. Motion in other directions was neglected.
Nevertheless, when applying these primitives, the object tends
to move in non-linear, arc-like trajectories, as shown in Figure 1.
Thus, the kinematics derived from this assumption provide only
a rough approximation of the motion. In addition, uncertainties
such as friction and elasticity were not modeled. The resulting
prior approach can only be used in visual servoing closed-loop
control [19] with substantial tuning, and not for planning.

This letter focuses on learning a probabilistic transition model
of such hands from a captured sequence of trajectories. It is
possible to formulate the hand’s equations of motion with some
oscillating terms due to the springs. Dissipative forces in the
joints, however, overwhelm the inertial effects such that they
are negligible. In addition, manipulation actions are performed
slow enough that the inertias are negligible with lightweight
objects, while the natural compliance of the hand provides sta-
ble grasps. Thus, this work models quasi-static transitions. The
primary objective is to identify what are the dominant features
(e.g., object and links positions, actuator angles and torques) of
an adaptive hand that are sufficient to express its motion and
to provide accurate predictions. Another objective tackled here
is to train a model that can generalize to different objects and
provide accurate predictions for the manipulation of a new, un-
known object. To achieve these objectives, a probabilistic model
of motion generated by the manipulation primitives is learned.

Given a state and action, local Gaussian Process (GP) regres-
sion on the collected data was used to acquire a Gaussian distri-
bution of the next state. Such probability distributions provide a
mechanism to quantify model and state uncertainty. Knowledge
of this uncertainty can also be exploited to make more robust
predictions. In local GP regression, the function’s value at a
given test point is predicted from the values of a subset of the
training points that are in the vicinity of the test point. The Eu-
clidean distance is frequently used as a metric for choosing the
nearest neighbors. A sufficient amount of data is required for
accurate regression, which can be computationally expensive.
Nevertheless, data corresponding to trajectories of hand-object
states lie on a lower-dimensional manifold embedded in the full
state space. Therefore, this work proposes the use of a Mani-
fold Learning based Gaussian Process (MLGP) to select nearest
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neighbors according to the actual distance along the manifold,
i.e., the geodesic distance. This letter argues that this serves as
a more efficient metric in GP regression for learning transitions
of underactuated hands. Furthermore, through simple sparsity
analysis, the acquired transition data is used for identification
of failure states, i.e., object drop or actuator overload.

II. RELATED WORK

Compliance in underactuated hands makes deriving models
non-trivial due to the response of their passively elastic joints
and assumptions often made in modeling friction between the
hand and the object. Reconfiguration of the gripper is directly
dependent on the forces being applied to each of the fingers.
When tactile sensing is not available, a precise frictional model
is required in order to estimate such forces. It is not feasible
to estimate friction at every point on the contact surface in the
non-uniform physical world, so typical frictional models as-
sume uniformity [14]. For this reason, along with the inability
to control individual joint positions in an underactuated system,
feasible models that remain precise in the physical world are
difficult to derive. Modeling tools for underactuated manipu-
lation have been introduced in several works [20]-[22], which
examine joint configurations, joint torques, and energy with
the simplified frictional model. A popular modeling technique
applies a hybrid parallel/serial approach using screw theory,
which further simplifies the derivation for an accurate model
and can easily be transferred to the spatial domain [23]. Never-
theless, these proposed modeling techniques have been shown
to be sensitive to assumptions in external constraints and are
typically only suitable for simulations.

Other derived models have focused on different features of the
hand. The free swing trajectory of a 3-link underactuated finger
was modeled in accordance to the passively elastic flexure joint
[24]. This model can then be used to design fingers for specific
tasks by varying the stiffness of the joints. Kinematic models
considering synergies of the hand [8] have been considered,
as well as “soft synergies”, which account for controlling the
grasping force [25]. An approach was proposed [17] to control
an object with a pair of fully-actuated fingers without object
sensing, which required, however, the kinematics of the fingers
along with the inertia matrix. For low-cost 3D printed fingers,
this approach is not feasible as the physical properties are not
accurately available and there is no access to joint positions for
loop closure. Model-based stability control is also required [17],
while it is naturally obtained with compliant hands.

Different machine learning approaches have been followed
to control robotic hands. For example, a model-free approach
was proposed which applies tactile sensing with Reinforce-
ment Learning (RL) to learn manipulation motions [13]. The
Enhanced Kinematic Model (E-KM) [26] uses a Sparse On-
line Gaussian Process (SPOG) to iteratively adapt the estimated
kinematic model to describe hand motions. This approach was
evaluated on a rigid hand, which has high repeatability and pre-
cision compared to the soft-material hand studied here. Other
work [27], [28] uses RL to learn time varying local linear models
to control dexterous hand manipulations. The method is consid-
ered partly model-based as it applies a linear regression with a
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Gaussian Mixture model prior based on local trajectory samples.
It does not provide, however, global learning of the system.

A transition model is a mapping from a given state and ac-
tion to the next state. Such models are a key component in
model-based RL and are often obtained through non-linear re-
gression in a high-dimensional space. Transition modeling can
be divided into two classes, deterministic and stochastic. Deter-
ministic models provide the same prediction for a given state
and action [29]. As such, a deep neural network was applied
to model the dynamics of helicopters [30]. Stochastic models
provide a probability distribution over predictions. Tools which
generate such models are Dynamic Bayesian Networks (DBN)
[31] and the Locally Weighted Bayesian Regression (LWBR)
[32], which was applied to helicopter control. The most common
approach for stochastic modeling of dynamical systems is the
Gaussian Process (GP) [33]. GP has been employed on a range
of real-world tasks [34], [35] and has shown efficient learning,
but relies on good coverage of the underlying space in the train-
ing data. This work uses a GP to learn the transition model of
a low-cost, adaptive, 3D-printed hand made with elastic mate-
rials. The letter shows that Diffusion Maps [36] can provide an
efficient similarity function for the proposed GP model. This
work demonstrates long-horizon predictions of the GP that can
be helpful for belief space planning of in-hand manipulation, as
well as the model’s capacity to generalize across objects.

III. PROBLEM DEFINITION

This work considers a two-finger adaptive hand, shown in
Figure 1. The fingers are opposed to each other such that the hand
achieves planar manipulation. Each finger has two compliant
joints with springs. In addition, two actuators provide flexion
to the fingers through tendons running along the length of each
finger. The gripper also has high friction pads to avoid slipping.
This work considers cylindrical objects and leaves other shapes
for future work. Based on this design, a model learning problem
is defined accordingly.

Let x € R" be an observable state vector of the hand-object
system and a € 7/ be an action taken from a set % of possible
actions. An action is, in practice, unit changes to the angles of the
actuators at each time step. That is, an action moves the two ac-
tuators with an angle vector of 6(y;, 2 ) where § is a predefined
unit angle and ~; is equal to either 1, —1 or 0. The observable
state of the system can correspond to different measurable fea-
tures, such as object position, gripper link positions, actuator
positions and torque. At each time-step ¢, the system is at an ob-
servable state x; and executes action a;, resulting in transition
to the next state x; . accordingto f : R" x % — R"™. The ob-
jective is to learn probability distributions over f from example
trajectories. Uncertainty over f is due to hidden state variables
that play a role in the transition but cannot be easily measured,
as well as a limited amount of data. The task is therefore to
find the set of features from the data, which best represents the
system and allows to train a low variance transition model that
returns p(X;+1|X¢, a;). Such a model can then be used for pre-
dictions defined by the probability distribution over the future
states given current states and actions. Since quasi-static motion
is considered, the state of the hand is defined directly by the
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proposed set of features. Terms related to object velocity are
negligible, and thus, not included.

IV. LEARNING THE MODEL

This section presents the manipulation primitives used to gen-
erate motions. This is followed by a brief presentation of the
proposed MLGP approach for learning a model for the hand.
Then, the learning procedure and sparsity analysis for avoiding
failure states is discussed.

A. Manipulation Primitives

The Precision Manipulation Primitives presented in earlier
work [18] define the following operations. The first primitive
moves the actuators in the same direction with the same veloci-
ties so as to move the object along the xz-axis, while rotating it.
Similarly, the second primitive moves the actuators in the op-
posite direction with the same velocity so as to move the object
along the y-axis. In both primitives, motion in the second axis
is neglected. Under this assumption, a linear approximation of
the kinematic model, which maps the object velocity v, to the
required actuator velocity ¢, was proposed:

1 1
. K, K,
a=1 1
K, K,

Vo, ey

where K, and K, are constant scalars related to the hand.

As can be seen in Figure 1, the primitives cannot be distinc-
tively associated to any of the axes, and in practice, different
non-linear motion patterns can be observed in different states
of the system. In addition, motion is not repetitive. Applying a
primitive in one direction for some time and switching to the
other direction does not ensure backtracking along the same path
(as shown in Figure 1b). The hand kinematics, as well as uncer-
tainty due to elasticity and friction, define a non-linear pattern
of motion, which should be taken into account. Thus, a model
of this non-linear behavior is required to capture the motion that
results from applying these manipulation primitives.

B. Training Data

Training and test data sets comprise of observable state-action
trajectories, with no additional labeling required. The training
setis acquired automatically by executing random actions, while
recording the observable states. Thus, the resulting data is a set
of state-action trajectories & = {(X¢,a0), ..., (Xi,ax)}. The
trajectories in & are pre-processed to a set of training inputs
(xi,a;) and corresponding output labels of the next state x; 1
to define 7 = {(x;,a;), (x;41)} ;. The data points are then
normalized by the minimum and maximum values in the set,
such that each feature is in the interval [0, 1].

C. Gaussian Processes Model

The transition model is learned by using a GP [33], which is
a non-parametric regression method. The model is briefly pre-
sented here. Let k£ be a kernel function, k : R"” x R" — R, for
measuring the similarity between two states in R”. Let Xy =
(x1,29 ...,2x) be a set of observable hand-object states, and
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let Yy = (y1,%2 --.,yn ) be the set of observable hand-object
states resulting from applying a given action in the states in
Xx,wherey; = f(x;) +¢; ande; ~ A (0,07) is independent
white noise. The kernel Gram matrix Ky, x, is an N x N
positive-definite matrix, defined as Kx, x, (i,7) = k(z;, z;),
fori,j € {1,..., N}.Given X and Yy, the posterior distribu-

tion on the values of f in any set of states X = (1, &g ..., &)
is a Gaussian with mean vector p1  and covariance matrix ¥ ¢ ¢.
A vector of values of f at states X can be sampled by draw-
ing a vector ¢ ~ [ -4#7(0, 1) of independent, one-dimensional,
standard Gaussian random values. Then, the sampled vector of
observable state transitions is:

YZ/J,X +C(ZX,X)¢T7 (2)

where C(Xy ¢ ) is the Cholesky upper matrix of X ¢:
Kernel k is given by the Squared Exponential Kernel,

—llzi =2l
k(zi,z;) = exp <272} ) 3)
where 7 is the bandwidth of the kernel, and ||.||,, is a weighted

Euclidean distance with weight vector w € R". Bandwidth 7
and noise variance o2 are optimized by maximizing the likeli-
hood of the training data [33].

D. Gaussian Process with Manifold Learning

The computational bottleneck in evaluating the GP is com-
puting the Cholesky decomposition of the covariance function.
Thus, the computational complexity scales cubically O(N?)
with the size of the dataset /N, making often global regression
infeasible [37]. Nearest-neighbor GP provides a scalable al-
ternative by using local information for regression [38]. Only
data points in some proximity of the query point are used to
make a prediction. Nevertheless, the question of what is the
appropriate metric to choose nearest neighbors for regression
arises. One option is to use a simple Euclidean metric for the
GP (EGP). The reachable hand-object states, however, lie on a
lower-dimensional manifold in the state space, and therefore,
samples that seem close in the state space may be far from each
other across the manifold. One method that has evolved to help
solve such problems is based on nonlinear dimensionality re-
duction of data in high-dimensional spaces. This is achieved by
sampling from the observable state space to alower dimensional
subspace and then perform nearest neighbor search in the later.

This work proposes the Manifold Learning-based GP
(MLGP), which utilizes Diffusion Maps to learn the distance
along the manifold [36]. Diffusion maps are a graph-based di-
mensionality reduction method. Specifically, a diffusion map is
an embedding in the Euclidean space R" and thus, the diffusion
distance inherits all the metric properties of R". Therefore, the
diffusion map is an efficient method for acquiring a metric sub-
space corresponding to the non-linear manifold in the Euclidean
space. The general idea is to find the underlying manifold that
the data has been sampled from.

Suppose there are N samples. For approximating the prob-
ability of transition from one sample to the next, a Gaussian
kernel function similar to (3) can be defined, where 7 is now
a decaying rate. This kernel establishes prior local geometry
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information of the samples. In order to have a probability func-
tion of taking a step from the ¢-th sample to the j-th sample, the
reversible Markov chain is calculated on the dataset as:
.. ]{? (Xz' 3 X]‘ )

connectivity(x;, x;) = p(x;, X;) ST 4)
The normalized diffusion matrix P can now be defined such that
P, ; = p(x;,%;). Each component P; ; encapsulates the local
knowledge of the connectivity between x; and x;. Dimension-
ality reduction is done by neglecting certain dimensions in the
diffusion space of the normalized diffusion matrix P. In prac-
tice, the eigenvectors of P are found, choosing only the m < N
dimensions associated with the dominant eigenvectors of P, and
map x; to R™.

Since a diffusion map cannot be generated for the large train-
ing data, local maps are built instead. Given a query state-action
pair (x,a), the Kj-nearest neighbors in training data 7 are
found. The pair (x5, ay,) is also found in .7 that is the closest
to (x, a) and included in the K samples. Next, a diffusion map
for the K samples is built, acquiring a reduced representation
& C R" x % of the data in the lower-dimensional subspace.
Finally, the Ky (K5 << K7) closest points in & to the reduced
representation of (x;,, ay, ) are chosen and GP regression is per-
formed on these K points.

E. Failure Avoidance

With the same collected dataset, classification is performed
to identify failure modes in the observable state space. Voids
or low-density regions in the space are assumed to be not well
explored due to failures on their boundaries. Failure is defined
as the occurrence of either losing contact with the object, i.e.,
dropping it, or reaching actuator torque overload (OL). It is
important to note that an observable state itself is not sufficient
to determine failure since at a certain state, not all actions lead
to failure. Thus, observable state-action pairs are examined for
failure.

Failure state-actions can be considered as obstacles for plan-
ning and control purposes, and observable states on the verge
of failure can be identified by simple sparsity analysis. That is,
given a query state-action pair, nearest neighbors are found us-
ing the weighted Euclidean metric, forming an ellipsoid in the
observable state space. A lower bound threshold on the number
of nearest neighbors is then applied to reject observable states
that are close to failure. The appropriate values for the weight
matrix and the threshold can be determined using a labeled test
set as will be shown in the evaluation section.

V. EVALUATION

Training data was collected using the three-finger Model O
underactuated hand [12], modified to use only two opposing
fingers (Fig. 2). To generate the training data, trajectories were
recorded for five cylinders of different diameters. Each object
was manipulated by randomly applying the defined set of pos-
sible actions in %/ manually via keyboard. Such process takes
5-6 hours and future work will focus on automating it. The posi-
tions of the objects as well as the configuration of the hand links
were acquired using a camera mounted above the hand tracking
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TABLE I
RMSE (MM) FOR THE TEST TRAJ. PREDICTIONS WITH REFERENCE TO THE GROUND TRUTH TRAJ

Feat. conf. Traj. 1 Traj. 2 Traj. 3 1EGP 00 [tmrce
EGPiy EGPjgy MLGP NN | EGP;y EGPoy MLGP NN | EGPy EGPioy MLGP NN

1 6.49 3.95 3.87 5.72 6.36 5.98 4.94 6.24 16.04 22.28 19.57 18.76 25.41
2 17.73 9.73 16.8 4.55 6.67 14.37 8.04 5.25 11.02 110.34 17.11 23.44 32.32
3 10.52 67.31 17.0 8.62 18.28 4.18 96.3 5.56 20.6 10.82 33356 19.71 32.72
4 16.87 4.88 7.7 4.00 10.34 5.86 5.11 3.34 4.49 6.96 8.53 36.48 28.19
5 8.67 2.36 2.07 2.61 8.57 3.97 3.81 4.32 18.93 2.53 1.71 8.74 27.0
6 7.72 3.12 2.98 2.84 9.32 3.47 297 4.27 9.81 4.53 2.71 4.03 25.14
7 - 2.89 2.35 2.75 - 2.28 2.39 2.35 - 3.0 4.72 53 32.04

Path length (mm) 95.46 8291 184.45

Motion time (s) 94.9 87.8 140.9

Fig. 2. (top) Setup. (bottom) Training objects (lower row) and test objects
(upper row).

fiducial markers on the moving parts. For simplification, the
experiments first consider four actions on the planar workspace
derived from the two manipulation primitives defined in prior
work [18] to move the object up, down, right and left (i.e., vector
(v1,72)is (—=1,—1),(1,1),(—=1,1) and (1, —1), respectively).
There are also experiments presented with eight actions, which
require more data for training. Actuator step size at each time
step is 0 = 0.8°. During motion, the following aspects were
recorded at 15 Hz data streams:

e the poses of the object and four links of the arms,

e the base pose to compensate for camera movements,

® and, the angles and loads of the actuators.

The experiments analyze 7 possible feature configurations:

1) Object position (2 dim.).

2) Object position and distal links position (6 dim.).

3) Object position and all links positions (10 dim.).

4) Object position and actuators angles (4 dim.).

5) Object position and actuators loads (4 dim.).

6) Object position and, actuators angles and loads (6 dim.).

7) All measured features (14 dim.).

A. Predicting Trajectories of One Object

The first evaluation studies the prediction model for one cylin-
der of 20 mm diameter. The transition data for the specific

object comprised of approximately 230, 000 transition points.
An additional three test trajectories were manually collected
(via keyboard), and were not included in the training set. Given
the start state and the sequence of actions from each test trajec-
tory, the model was used in an open loop fashion. This process
first considers only the mean of the GP predictions. The val-
ues K7 = 1000 and K5 = 100 were chosen for the diffusion
maps and manual analysis found that reduction of the data to
three (m = 3) dimensions provides the best results. Regression
in EGP is performed with 100 (EGP;) and 1, 000 (EGP;0¢)
nearest neighbors. In addition and for comparison, results are
also presented for a feed-forward Rectified Linear Unit (ReLU)
Neural-Network (NN) trained with the same data. The archi-
tecture of the NN was optimized. Two hidden layers and 72
neurons each gave the best results.

Table I summarizes the root mean squared errors (RMSE)
for predictions, while considering the different feature config-
urations. The RMSE measures the accumulated error between
corresponding points along the reference and predicted trajecto-
ries. As can be seen, results are poor when considering only the
object position (feature conf. 1) as it cannot completely define
the state of the hand. In feature configurations 2-3 the position of
the hand along with positions of the links do not define the state
well. The hand and object can be at the same geometrical config-
urations but with different tensions of the tendons, which could
produce different patterns of motion. Similarly, actuator angles
in 4 by themselves do not always produce better results. On the
other hand, actuator loads in 5 sufficiently embed the geometric
configuration of the hand through the tension on the tendons.
Moreover, actuator loads along with the angles in feature config-
uration 6 provide more consistent accurate predictions. Feature
configuration 7 generally produces good results but not consis-
tently. Due to the high-dimensional nature of the space (14-D), it
requires a lot of data. Feature configuration 6 is preferred due to
its consistent accuracy. Furthermore, it is clear that using MLGP
provides much better results than EGP;y and NN, and slightly
better than using EGP; (. However, Table I also shows the av-
erage ratio of one prediction between the runtimes of EGP1gg
and MLGP (tggp,,,, and ta rcp, respectively), showing that
MLGP is substantially more efficient in runtime.

Figure 3 shows three predicted trajectories with feature con-
figuration 6. As can be seen, error is accumulated along the
path. Figure 4 shows the RMSE of the predicted mean trajec-
tory using the sequence of actions of trajectory 1, as a func-
tion of the path’s length. The figure shows that for MLGP
and feature configurations 5-6, prediction errors are low, es-
pecially for a short horizon. That is, the model can be used in
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Fig. 3. Three test trajectories when manipulating a 20 mm cylinder and for
MLGP. Actual recorded path (dashed yellow) and Predicted path (cyan).

—feature conf. 1
——feature conf. 2
feature conf. 3
—feature conf. 4
10 -—feature conf. 5
——feature conf. 6
—feature conf. 7

RMSE (mm)

—

0 10 20 30

40 50 60 70 80 920
Traversed path (mm)

Fig. 4. RMSE of predictions along test trajectory 1 in Figure 3 using the
proposed MLGP technique and seven different feature configurations.

E 180

10 20 30 40 50 60 70 80 90

ground truth std.
- MLGP pred. mean E

I
0 10 20 30 40 50 60 70 80 90
Time (sec)

Fig. 5. Distribution propagation (mean and standard deviation) for the pre-
diction of test trajectory 1 while sampling from the GP distribution.

closed-loop control or in a model predictive control scheme.
When comparing between MLGP and NN, it can be seen that
NN can generally apply better regression with different fea-
ture configurations. The NN observes global data, while MLGP
performs local regression. Nevertheless, MLGP provides lower
errors for an extended horizon in all trajectories and with feature
configuration 6.

So far only the mean of the predicted next state provided
by the GP has been used. The GP, however, provides a Gaus-
sian distribution of the next state. Thus, the state distribution
is propagated when predicting for some horizon. The following
compares the distribution of a propagated prediction compared
to the distribution of the actual motion. For that matter, the same
set of actions of test trajectory 1 are applied from approximately
the same starting state for the actual hand. This was repeated ten
times and the paths were recorded. Next, a starting position is
sampled from the distribution of the true trajectories and EGP
and MLGP is executed with feature configuration 6 for the set of
actions. The next state is sampled from the Gaussian distribution
of the predicted next step, thereby propagating the distribution
of the predicted states rather than just the mean. The same was
performed for NN but with deterministic predictions. Figure 5
shows the mean and standard deviation of 100 predicted tra-
jectories, for EGPyy9, MLGP and NN. It is clear that MLGP
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TABLE II
RMSE (MM) OF USING MLGP, NN AND (1), AND FOR ONE STEP PREDICTIONS

Traj. 1 Traj. 2 Traj. 3
Eq. (1) (from [18]) 2.38 2.43 2.47
MLGP 0.07 0.077 0.1
NN 0.036 0.034 0.04

provides significantly more accurate propagation of the distri-
bution compared to EGP; . In addition, the actual distribution
is contained in the MLGP distribution. Uncertainty increases
along the path as expected. Nevertheless, the uncertainty is very
low for a long horizon and indicates that planning using MLGP
is feasible for a fairly long horizon with low uncertainty. For
NN, there is some deviation from the actual distribution, though
it remains relatively close.

B. Comparison to Manipulation Primitives

This section compares the predicted model with the linearized
kinematic model proposed in prior work [18] and mentioned in
(1). The training set was first used to find the optimal K, and
K, values that best match state-actions to their correspond-
ing next states. This was done by minimization (with Matlab’s
fminsearch function) of the accumulated squared error. The
optimal values are K, = 0.9757 and K, = 1.5315. Then, for
each state along the test trajectories, a prediction is made cor-
responding to the recorded action and sampling rate. Table II
shows the RMSE between predictions with MLGP, NN and (1),
and the real next state. Feature configuration 6 is used in the GP.
MLGP and NN predictions are shown to be significantly more
accurate than using (1). NN is observed to be a bit more accurate
than MLGP for single steps as it preserves the step size length
better. On the other hand, MLGP preserves the direction bet-
ter and thus accumulates less error as indicated in the previous
section.

C. Generalization to Objects of Different Size

This section examines the ability of the proposed combination
of features to generalize to unknown objects. A generic set of
objects of certain sizes is considered during training, where
160, 000 transition points were collected for each of the five
cylinders and have diameters 20, 25, 30, 35 and 40 mm. Then,
three test objects were picked: butter can, glue stick and hair-
spray, of diameters 26, 30 and 36 mm, respectively. All objects
are seen in Figure 2.

For evaluation purposes, each test object was tested using
training data, while omitting the cylinder with the closest diam-
eter to it. In addition, each training point was associated with the
distance between the markers of the distal links at its respected
initial grasp. The initial grasp distance is a real-time measure-
ment of the diameter plus some constant. The diameter of the
object can be directly taken but is, in practice, not available
on the fly given an unknown object. The initial grasp for each
object is relatively constant with a low variance. Therefore,
for any new object, the hand closes on it, measures the ini-
tial grasp distance and chooses the the data points for training
based on nearest-neighbor query of this one dimensional set, i.e.,
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TABLE III
ROOT MEAN SQUARED ERROR FOR TRAJECTORY PREDICTIONS OF UNTRAINED
TEST OBJECTS

Test obj. (dia.) Butter can (26) Glue-stick (30) Hair-spray (36)
MSE (mm)

Action seq. 1 2 1 2 1 2

F. conf. 1 9.63 6.76 11.61 7.05 7.73 14.16
F. conf. 2 28.97 27.5 244 17.7 8.64 41.6

F. conf. 3 297.08 237.53 6294 20.56 137.42
F. conf. 4 9.59 5.05 13.08 12.96 8.25 17.03
F. conf. 5 5.06 7.04 3.78 53.8 6.0 8.33

F. conf. 6 4.77 4.08 4.27 4.43 3.03 4.76

F. conf. 7 3.80 27.48 29.02 5.68 2.70 145.33
Path len. (mm) 137.9 79.19 134.15  69.09 134.87 70.55
Motion time (s) 109.2 93.0 96.53 89.6 107.0 93.8

Fig. 6.
training (left) butter can, (middle) glue stick and (c) hair-spray.

MLGP predictions for three novel objects that have not been used in

TABLE IV
CLASSIFICATION RESULTS FOR SEVERAL FEATURE CONFIGURATIONS

Feat. conf. Drop score ~ OL score ~ Normal score | Tot. score
1 100% 58.3% 100% 91.67%
5 94.4% 100% 83.33% 90%
[ 100% 100% 100% 100%

appropriate training data is automatically chosen based on the
initial grasp distance.

For each test object, a recorded test trajectory was retraced by
MLGP predictions as performed in Section V-A. Two sequences
of actions are considered for all three tested objects resulting
in a similar trajectory pattern but, due to different object sizes,
with different feature values. Table III presents the RMSE for
predicting the test sequences of the untrained objects. Compar-
ing to the results in Table I, the prediction errors are slightly
larger than for predicting with one object but still relatively low,
mostly in the short horizon (Figure 6), when considering object
position and gripper state. By observing the results for feature
configurations 5 and 6, the load on the gripper plays an impor-
tant role in the generalization and can embed the size of the
object along with its future reaction to an action.

D. Failure Classification

The data for the 20 mm cylinder were used to evaluate the fail-
ure identification accuracy by sampling and labeling 30 normal
state-actions and 30 state-actions on the verge of failure. Within
the failure state-actions, half failed due to lose of contact, and
half due to reaching torque limit. For the classification, different
feature configurations were considered as previously. The data
suggest that there is a clear density distinction between nor-
mal and failing state-action pairs. Based on this, a lower bound
threshold can provide the best classification results. Table IV
shows the classification results for three feature configurations.
Feature configuration 6 is again the most representative of the
hand’s state, and can provide highly reliable classification. This
simple sparsity classifier is used next for closed-loop control.
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Fig. 7. Closed loop tracking with (top) visual servoing and (1) [18] and
(bottom) learned model predictions. Motion is from the bottom left corner and
going clockwise.

TABLE V
CLOSED-LOOP TRACKING RESULTS

visual servoing  learned model
Ref. path length (mm) 9.89
Rectangle RMSE (mm) 0.78 0.53
Max error (mm) 2.9 1.6
Ref. path length (mm) 26
Ellipse RMSE (mm) 0.34 0.26
Max error (mm) 0.96 0.66

VI. APPLICATION

This section utilizes the transition model in closed-loop con-
trol for tracking a reference path given a 20 mm cylinder and
trained with eight possible actions. The actions correspond to
the eight cardinal directions of the object applied through the
manipulation primitives of Eq. (1). For this purpose, 360, 000
transition points were acquired. As indicated in Figure V-B, NN
is better for one step predictions and thus, is more appropriate for
closed-loop control. So, the feed-forward ReLLU NN presented
previously is used in this process.

The model-based tracking is compared against the visual ser-
voing approach proposed in [18]. In both approaches tracking
was performed with a moving intermediate goal point, i.e., a sim-
ple “follow-the-carrot” scheme, where the intermediate point is
moved along the path as the object advances. With visual ser-
voing, Eq. (1) is directly used based on the desired direction of
the object toward the intermediate goal point. With the learned
model and in each step, feedback of the system’s configura-
tion (with feature configuration 6) was taken, and predictions
are made for each feasible action. The action with the clos-
est prediction to the intermediate point is applied. Actions that
fail the sparsity classification are declared infeasible and not
considered. The sparsity check for each action is performed
prior to predictions and therefore, computational efficiency is
achieved. Figure 7 shows tracking of both approaches along a
rectangle starting from approximately the same object position.
Table V presents the average RMSE for tracking a rectangle
and an ellipse. Tracking with the learned model along with the
sparsity classifier is shown to be more accurate. The visual ser-
voing tracking can be improved by manually adjusting some
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parameters but using the learned model predictions requires no
adjustments while providing high accuracy.

VII. CONCLUSIONS

This letter evaluates the features required to sufficiently em-
bed the state of a planar adaptive gripper. It is shown that the
position of the grasped object, along with actuator angles and
loads, provide the most accurate predictions. This observation is
valuable since it permits closed-loop control with only external
sensing of the state of the object. These features also embed
information of the size of the manipulated object, and allow
generalization to new objects of unknown size. Furthermore,
the same training data allow to classify states on the verge of
failure. Additionally, this work proposed to use manifold learn-
ing to acquire a geodesic metric for nearest-neighbors search,
which showed significant performance improvement compared
to a standard Euclidean metric. A closed-loop control appli-
cation demonstrated the importance of a learned model for an
underactuated hand.

Future work will involve applying such transition model in
policy search algorithms. Also, since GP regression provides an
uncertainty distribution over next states, belief space planning
with asymptotic optimality would be applied to plan the most
robust trajectory, i.e., the trajectory with the lowest uncertainty.
It is also interesting to consider learning a model for spatial
manipulation with an adaptive hand of more than two fingers.
In such case and where manipulation primitives are not easy
to derive, learning would be coupled with the search of an
optimal policy for feasible manipulations. Such learning would
be automated in a pick, learn until drop and repeat scheme.
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