Under Control: Compositionally Correct Closure Conversion
with Mutable State

Phillip Mates

Northeastern University

ABSTRACT

Compositional compiler verification aims to ensure correct compila-
tion of components, not just whole programs. Perconti and Ahmed
[2014] propose a methodology for compositional compiler correct-
ness that supports linking with code of arbitrary provenance. In
particular, they allow compiled components to be linked with code
whose functionality cannot even be expressed in the compiler’s
own source language. The essence of their approach is to define
a multi-language system that formalizes interoperability between
the source and target languages so that compiler correctness can
be stated as contextual equivalence in the multi-language. They
illustrate this methodology on a two-pass type-preserving compiler
for a polymorphic language with recursive types.

We show how to extend this multi-language compiler-verification
approach to a source language with ML-style mutable references.
We present the first compositional correctness proof of typed clo-
sure conversion for a language with mutable state. More impor-
tantly, we show we can extend our target language with first-class
control (call/cc) yielding a compiler correctness theorem that allows
components compiled from the source language (without call/cc)
to be linked with target-language components (with call/cc) whose
extensional behavior cannot be expressed in the source. A non-
trivial technical contribution is the design of the multi-language
logical relation used to carry out the proof of compiler correct-
ness. This is semantically challenging due to the mix of parametric
polymorphism and mutable state in both interoperating languages.

CCS CONCEPTS

- Software and its engineering — Correctness; Functional
languages; Compilers; Interoperability.

KEYWORDS

Compiler correctness, typed closure conversion, multi-language
semantics, mutable state, first-class continuations, logical relations

ACM Reference Format:

Phillip Mates, Jamie Perconti, and Amal Ahmed. 2019. Under Control: Com-
positionally Correct Closure Conversion with Mutable State. In Principles
and Practice of Programming Languages 2019 (PPDP ’19), October 7-9, 2019,
Porto, Portugal. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3354166.3354181

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPDP 19, October 7-9, 2019, Porto, Portugal

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7249-7/19/10...$15.00
https://doi.org/10.1145/3354166.3354181

Jamie Perconti
Northeastern University

Amal Ahmed

Northeastern University

1 INTRODUCTION

Compositional compiler verification aims to formally verify cor-
rect compilation of components, not just whole programs. It has
been the focus of much recent work, with researchers proposing
several different approaches to specifying and proving such theo-
rems [Perconti and Ahmed 2014; Stewart et al. 2015; Neis et al. 2015;
Kang et al. 2016; Wang et al. 2014, 2019]. Still, it remains a difficult
problem, and harder still if we want to accommodate linking with
components compiled from a different language.

In 2014, Perconti and Ahmed proposed a methodology for com-
positional compiler correctness that supports linking with code of
arbitrary provenance, (e.g., compiled from a different source lan-
guage). To date, theirs is the only approach that (1) allows compiled
components to be linked with code whose functionality cannot
even be expressed in the compiler’s own source language; and (2)
does not require that the source, target, and intermediate languages
of the compiler have the same memory model. The essence of their
approach is to define a multi-language system that formalizes in-
teroperability between the source and target languages so that
compiler correctness can be stated as contextual equivalence in the
multi-language. They illustrate this methodology on a two-pass
type-preserving compiler for a polymorphic language with recur-
sive types, performing closure conversion and allocation to make
data layout explicit. To demonstrate that their framework supports
linking with code that cannot be expressed in the source, they add
mutable references only to their target language and show an ex-
ample of linking with code that internally uses a mutable reference
as a counter. In comparison, SepCompCert [Kang et al. 2016], Pil-
sner [Neis et al. 2015], and CompCertX [Wang et al. 2019] don’t
support linking with code inexpressible in the compiler’s source
language and Compositional CompCert [Stewart et al. 2015] only al-
lows linking with code that satisfies the CompCert memory model.
Meanwhile, SepCompCert and Compositional CompCert also rely
on a uniform memory model across all the compiler’s languages.

In this paper, we show how to extend the Perconti-Ahmed multi-
language approach to a source language with ML-style mutable
references. We present the first compositional correctness proof of
typed closure conversion for a language with mutable state. More
significantly, we show we can extend our target language with first-
class control (call/cc) yielding a compiler correctness theorem that
allows components compiled from the source language (without
call/cc) to be linked with target-language components (with call/cc)
whose extensional behavior cannot be expressed in the source. Our
source language M is essentially an idealized ML with polymor-
phism and mutable state while our closure-conversion target C
adds call/cc and the restriction that functions must not have any
free type or term variables.

PPDP ’19, October 7-9, 2019, Porto, Portugal

signature THREAD = sig
type thread

val fork : (unit -> unit) -> unit
val yield : unit -> unit
val exit : unit -> unit

end

functor Thread () : THREAD = struct
type thread = unit cont
val readyQueue : thread Queue.queue = Queue.mkQueue ();
fun dispatch () = let val t = Queue.dequeue readyQueue
in throw t
end
fun enqueue t = Queue.enqueue (readyQueue, t)

fun fork f = callcc (fn parent =>
(enqueue parent; f (); exit ()))
fun yield () = callcc (fn parent =>
(enqueue parent; dispatch ()))
fun exit () = dispatch ()
end

Figure 1: A Simple Threads Library

The goal of our work is to allow linking a component compiled
from M with code that uses first-class control in a way that fruit-
fully disrupts the control flow of the M component. Consider, for
example, a scenario where we write a component Pys in M and want
to link it with a green threads library (which can be implemented
in language C). Figure 1 presents such a simple threads library.

As another example, consider a continuation-based web server
that provides call/cc-based primitives that a web programmer can
use for creating client-server interaction points [Krishnamurthi et al.
2007; Queinnec 2003]. The programmer, meanwhile, might use our
language M (without first-class control) to develop her web appli-
cation, making use of the aforementioned primitives which allow
her to write her program in a more readable direct style. In both of
these situations, the programmer wishes to link with code compiled
from a language with call/cc and benefit from call/cc disrupting the
control flow of the compiled M component. Our verified compilers
should be able to formally support such linking scenarios.

We develop a multi-language semantics between our source and
target languages that is the first to support both mutable references
as well as polymorphism in both interoperating languages. We then
use contextual equivalence in the multi-language to state our com-
positional compiler correctness theorem. A nontrivial technical
contribution of our work is the design of the multi-language logical
relation used to carry out the proof of compiler correctness. This
is semantically challenging due to the mix of parametric polymor-
phism and mutable state in both of the interoperating languages.

2 THE SOURCE AND TARGET LANGUAGES

The source and target languages are both call-by-value. They are
both in monadic normal form—a choice common for compiler inter-
mediate languages—which means that constructors and eliminators
are only applied to syntactic values [Benton et al. 1998]. Note that
we will often refer to the terms of each language as components: this
is meant to emphasize that individual terms are the level of granu-
larity at which we ensure correct compilation of source components
and linking with target components.

Phillip Mates, Jamie Perconti, and Amal Ahmed

T =« | unit | int | Y[al.(t)—> 7 | Ja.t | pa.t | refr | (T)

pou= 4| =[x

vie=x | (| n| Alalxit).e | pack(zr,v)as3a.7 | fold,n.r v
] &)

e u=v | vpv | ifovee | v[7T]V | unpack(a,x) =vine | unfoldv
| newv | vi=v | v | mi(v) | letx=eine

E =[]]| letx=Eine

Hu= | H{—v

(Hle)— (H|¢e)

(H | E[(A[@]x:7)-e) [/]V]) +— (H | E[e[7"/@][v/x]])
(H | E[newv]) — (H[¢ — v] | E[£]) t¢H
(H | E[£:=V]) > (H[£~ v]]|E[O]) ¢ eH

(HE[*L]) — (H | E[v]) H(() =v
dom(") N dom(™) = 0 [
o kv () oo)ik vn 7 (6n)
F{ti> v, ba vy
where’:::~|’,€:rand':::~|',aand‘:::~ UXiT
X:T € W= S,a,xit ket
S kxR lirefr R Aa](xi) e V[al.(T)— T
55 Fvo:Val(t) - o "+ 55 rvit[n/a]
5 kv Tl Vit [/ a)
S RveiT S kviirefT T RvoiTr o T T Rveref T
5 Fnewviref T T B vy = voiunit ST Rlver

Figure 2: Source Language M: Syntax & Semantics (excerpt)

We start with some notes about typesetting and notational con-
ventions. We typeset the source language M in blue, the target
language C in red bold, and later in the paper, the multi-language
M+C in black. For each of our languages, we use the metavariable
7 for types, e for terms or components, v for values, ¢ for locations,
H for heaps, E for evaluation contexts, and C for general contexts.
We write fv(e) to denote the free term variables of e and ftv(e)
(or ftv(7)) to denote the free type variables of e (or of type 7). We
use a line above a syntactic element to indicate a list of repeated
instances of this element, e.g., @ = a1,...,a, for n > 0. When
the arities of different lists are required to match up in a definition
or inference rule, these constraints will usually be obvious from
context. Whenever two environments (e.g. ¥ or A or I') are joined
by a comma, this should be interpreted as a disjoint union.

Source Language: M. The source language M is call-by-value
System F with dynamically allocated, ML-style mutable references,
existential types, recursive types, and tuples. Figure 2 presents the
complete syntax along with excerpts of the static and dynamic
semantics. We combine type- and term-level abstractions of arbi-
trary arity into a single binding form V[a].(7) — 7’, abbreviating
V[].(t)—> 1’ as (r) > 7’. A program configuration in M, written
(H | e) is a pair of a heap H and a closed term e. A heap H is a

mapping from locations ¢ to their contents v. We define a small-
step operational semantics as a relation on program configurations,
using evaluation contexts E to lift the primitive reductions to a
standard left-to-right call-by-value semantics. The reduction rules
are standard; we only show the application rule and the rules for
creating a new initialized reference (new v), assignment (v := v’),
and dereferencing (! v).

The typing judgment for M has the form 7;"; " + e: 7. The heap
type ~ tracks the types 7 of the contents of heap locations ¢ in scope,
where 7 must be a closed type. The type environment ~ tracks the
type variables « in scope. The value environment ° tracks the term
variables x in scope along with their types 7, which must be well
formed under * (written * + 7 and defined as ftv(r) C). The typing
rules are standard and we omit most of them; they appear later as
part of the extended judgment for type-directed closure conversion
presented in Figure 5.

The typing judgment for heap fragments has the form ~ + H: ™/,
which says that the heap fragment H is assigned the heap type ™’/
under the assumption that there is some (external) heap type ~ with
locations that may be referenced by values stored in H. Here ™/
must provide types for exactly the locations in H and the values
stored in H must typecheck under the disjoint union of the two
heap types (7, 7).

The reader may wonder why we need to typecheck heap frag-
ments instead of whole heaps. In fact, in the language M, a judgment
for typechecking whole heaps is sufficient for proving type sound-
ness since we only appeal to this judgment when typechecking
the (whole) heap in a program configuration. However, we adopt
the more general judgment for typing heap fragments because we
will need this ability in §4 when we combine our source and target
languages into a multi-language system whose heap H is a pair
(H, H) of source and target heaps, each of whose contents may refer
to locations in the other.

Target Language: C. Our closure-conversion target language C
is shown in Figure 3. The non-shaded parts of the figure show the
language without first-class control (call/cc), which we will refer
to as the base language below. This subset of C is nearly identical
to M, with two exceptions. First, since this language is the target of
closure conversion, functions are not allowed to contain free type
or term variables. This is enforced by the C function typing rule
as shown in Figure 3. Second, we allow the partial application of a
function to a type. Hence, M terms include the value form v[z].

The shaded parts of Figure 3 extend the base language with first-
class control. First-class continuations are represented by cont; E,
a value form that injects evaluation contexts E (with a hole of type
7) into the term language. The type cont 7 is the type ascribed
to first-class continuations cont; E that expect a value of type 7.
Evaluation contexts E are a subset of general contexts C, which
are terms with a single hole. The typing judgment for contexts has
the form+ C: (5" F 7) ~ (7;”/;"" + ¢’). Context typing ensures
that, given any term e that satisfies the type of the hole, ;"; " F e: 7,
we have that ~’;”/;"/ + C[e]: z”.! We extend the base language

!The grammar for general contexts is essentially standard except that, since our
language is in monadic normal form, we have to be careful about when a hole can be
plugged with an expression and when it must be plugged with a value. We discuss
this further in §5. Note that this does not matter for evaluation contexts since their
holes accept expressions.

PPDP ’19, October 7-9, 2019, Porto, Portugal

T = o |unit] int | YV[a].(t)> 7 | Ja.7 | pa.t | refr
| () | contz
+ | = | *

x| Q| n| Ala]l(x:7).e | v[r] | pack (z,v)asTa.T
| foldyo.zv | €| (V) | cont, E

e x==v |vpv | ifovee | v[]V | unpack (a,x) =vine
| unfoldv | newv | vi=v | !v | 7i(v) | letx=eine
| call/cc;(x.e) | throw,vtov

E :=[] | letx=Eine

Ha=-|H v

(Hle)r— (H|e)

(H | E[A[@](x:7).e) [t']V]) +— (H | E[e[r’/@][v/x]])
(H | E[call/cc,(x.e)]) — (H | E[e[cont, E/x]])

(H | E[throw, vtocont; E']) +— (H | E’[v])

(analogous to M rule for heap fragments)

";';‘I—e:‘r and|‘;';‘l—E+‘r|

where "u=-|,f:7 and "==-|, @ and " u=-|,x:7T
x:T € Sayxitre:t
S ExiT 55 R AMal(xiT).e: V[a].(7)— 7’
S5 eveiY[B, ald(T)- 7 “F 1o

35 vizo]: VIl (zlzo/ B1) = 7' [70/ B

S RveY[(T) > SR ViT

SRVt

S ,x:icontT ke T RN TRVEY 4 % Fvicontt’

;75 Feall/cer(x.e): T ;s Fthrow, vV tov: 7

B kEST FE:(G5 Fo)~> (55 R D)

~’; " Fconty E:contt S FE+T

Figure 3: Target Language C: Syntax & Semantics (excerpt)

with a continuation typing judgment ~;"; * + E + 7 that says that E
is an evaluation context with a hole of type 7. We need the latter
to type check first-class continuations cont; E.

We also add call/cc and throw with the standard operational
semantics and typing rules. As usual, call/cc, (x. e) captures its cur-
rent continuation E, binds it to x, and continues with E[e[cont; E/x]].
Meanwhile, throw; v to cont, E’ throws away its current contin-
uation E and continues with E’[v].

3 TYPED CLOSURE CONVERSION

Closure conversion is a standard compiler pass that transforms
functions with references to free variables—i.e., variables from the
local environment—into closed functions in which all variable refer-
ences are bound by the functions’ parameters. The transformation
collects a function’s free term variables in a tuple called the closure

PPDP ’19, October 7-9, 2019, Porto, Portugal

Compiler Type Translation

v[@.(7)— ¢ = 3A(V[@].(B, 7€) > '), B)
unit€ = unit Ja.7¢ = . 7€

int(“: =int) yrx.rc‘ = ya.‘rc)
ref 7€ = ref 7€ <T1,...,Tn>(”:(T]c,...,Tn(’>

- (')C = i (,)C =.
C,¢: T)C - —C, £:7C C, a)c _ 'C’ o
(‘,x:(r.;z‘::C,x;TC

Figure 4: Closure Conversion: Type Translation

aC:a

environment and modifies the function itself to take the environ-
ment as an additional input. The closed function is paired with its
environment to create a closure.

Typing the result of closure conversion poses a problem in that
two source functions with the same type but different free variables
may end up with differently typed closure environments. As an ex-
ample, consider two functions Ax. y + 1 and Ax. x of type int — int,
where y is a free variable of type int. The function part of their
translations would have types ({int), int) — int and (), int) — int,
respectively, where the first argument in each case is the function’s
environment. The solution to this problem was proposed by Mi-
namide et al. [1996], who used an existential type to abstract the
type of the environment, thus hiding the fact that the closures’
environments may have different types.

Function definitions in M may also have references to free type
variables, which means we must also transform functions to take
their free type variables as additional arguments. However, instead
of collecting these types in a type environment as Minamide et
al. do, we follow Morrisett et al. [1999] and directly substitute the
types into the function. Like Morrisett et al.and Perconti and Ahmed
[2014], we adopt a type-erasure interpretation, which means that
since all types are erased at run time the substitution of types into
functions has no run-time effect.

Our typed closure-conversion pass compiles M terms of type 7
to C terms of type €. Figure 4 presents the type translation 7.
The only interesting case is that for function types which are trans-
formed into an existential type where f§ represents the (abstract)
type of the closure environment. Figure 4 also presents the transla-
tion of environments ~€, ‘¢, and ‘€, which we use to typecheck a
closure-converted term.

Figure 5 presents the term translation, which is defined by induc-
tion on typing derivations. We translate an M variable x: 7 into a C
variable x: 7€, and similarly, translate an M location ¢: ref 7 into a
C location £: ref 7€. Since this is closure conversion, the interesting
cases of the translation are those that involve functions and applica-
tion. The omitted rules are defined by structural recursion on terms.
Note that even though our target language C contains call/cc,
no types or terms pertaining to first-class continuations—shown
shaded in Figure 3—appear in the output of our translation.

4 MULTI-LANGUAGE SEMANTICS

We define a multi-language semantics to specify interoperability
between M and C components along the lines of Matthews and
Findler [2007]; Ahmed and Blume [2011]; Perconti and Ahmed

Phillip Mates, Jamie Perconti, and Amal Ahmed

[2014]. Our M+C multi-language system embeds the languages M
and C so that both languages have natural access to foreign values
(i.e., values from the other language). For instance, they receive
foreign integer values as native values, and can call foreign func-
tions as native functions. We extend the original languages with
new syntax, evaluation contexts, and reduction rules that define
syntactic boundaries "MC and CM? to allow cross-language com-
munication. The term “MC e (C inside, M outside) allows a term e
of target type 7€ to be used as a term of source type 7, while the
term C M7 e (M inside, C outside) allows a term e of source type 7
to be used as a target term of translation type 7€.

Our semantics follows Perconti and Ahmed’s except that we add
mutable references. The tricky parts, which involve abstract types,
are inherited from Perconti and Ahmed so we summarize their work
before discussing mutable references. A term CM? e has type 7€ if
e has type 7 and to evaluate it we first reduce e to a value v (using
M reduction rules). Then a type-directed meta-function called the
value translation is applied to v, yielding a value v in C of type
7€ (written CM?(v) = v). The value translation is only defined for
closed values since it is used at run time: even if we write programs
with free variables under boundaries, we will have substituted
closed values for all variables since we only run closed programs.

Value translation is easy at base types, e.g., a value n of type int
is converted to the same integer n in C. Most of the other types
are translated simply by structural recursion, but functions are
the interesting case (shown below). To translate an M function of
type T — t’, we construct a closure in C. Since at runtime a source
function will be closed by substitution, the closure has the empty
environment. Additionally, the input of the function is translated to
M so it can be passed to the original function whose output is then
translated to C (as with higher-order contracts). To translate a C
closure to M, we produce an M function that unpacks the closure,
translates the input, calls the C function with the translated input
and its packed environment, and translates the output to M.

CM? ™ 7' (v) = pack (unit, (v, ())) as AB.{((B, 7€) = '), B)
where v = A(z:unit, x: TC).CMT/ (vIMC x)
= “MC(v) =
AMx:7).” MC (unpack (B, y) = v in m1(y) m2(y) CMT x)

Next, consider the type V[a].(a) — a. Since o€ = «, the trans-
lation of this type is 3B.((V[«x].(p, @) — «), B). Naively value-

translating a value v of this type, we get:

Via].(a)— aMC(V) —
Ala](x: @).“MC (unpack (B,y) = v in m1(y) [a€] m2(y) CM* x)

But note that @ = «, which means « would be unbound! Perconti
and Ahmed point out that what we want instead is that when « is
instantiated with a concrete type 7, the positions inside language
C where that type is needed receive 7€. To this end, they add a
type [a] (“a suspended in C”) that allows an M type variable to
appear in a C type. The M type variable a needs to be translated,
but the translation is delayed until « is instantiated with a con-
crete type. This is enforced in the definition of type substitution:
[a][z/e] = 7€.In addition, they define a modified type translation—
the boundary type translation 7€) —to turn M type variables into
suspended type variables instead of C type variables. Formally, the
rule for type variables in the compiler’s type translation is replaced

where ~;"; Fe:r and “C;°C;Cre:rC

PPDP ’19, October 7-9, 2019, Porto, Portugal

X:7T € =t
T EXIT A X 55T Orunit ~ () S Fntint~ n Sk lirefT ~>
Vi ym = NA@IET)) i fic = VOI@ITT).) () =71 (ym) = T Teny = (01, ey 7€)
S o xitre:t ~e v = AlB, @](z: Tenvs x: TC).lety; = 1(z) in ...lety, = 7m(z) ine
535 ARIKT) e V@] (7) = 7 ~> pack (Tenv, (VIB, (7)) as 3o’ ((V[@]-(a, 7€) - 7€), &)
55 Fve V@l (T — 1~ vo vT S RVinlr/a] v GhRviTov

355 Fvo [T]Vim[r/a] ~ unpack (B, z) = vq in letf = 71(z) in lety = m,(z) in f[TT] (y,Vv)

5 Fnewv:iref T ~ newv

Figure 5: Closure Conversion: Term Translation (excerpt)

T ou= o | L(7) T u=1 |71

vons | efTMC e | HOMCv v u=v|v

ex= -+ | "MCe e x=¢ | e

Ew=-- | "MCE E:=E|E

7u= o | [al H == (H, H)

Vo= e |CMrefT'f| cont; E ¥ o= (7,0)

eu= - | CMTe A= | Aa | Ao
Eu=--- | CM'E I == - | I,xit | T,x:7

Boundary Type Translation

) =Ta] L(z){O =7

unit{€) = unit Fa. (O = 3.7/ [a]]
int{C) =int pa.‘r(C) = ua.(r<c>[a/[a'|])
ref 7¢C) = ref 7(C) (t1s e T O = (0 (O L 1, (O

v[a].(t)— (& = aﬂ.<(vm(/5,r<C>[a/ra11)—>r'<C>[a/ra11),ﬂ>

Type Substitution: [a][r/a] = (O

Include M and C rules, replacing environments with ¥; A; T

\I’;A;Fl—e:r(c)
¥Y:A; T MCe: 1T

Y;A;Tre:t
¥, AT+ CMTe:T<C>

FE:(Y;ATHT)~ (AT T
Y;\sTHE +1

¥Y:A;THE =7

¥Y;A;T + cont; E:contz
Figure 6: M+C: Syntax & Static Semantics (extends Figs 2, 3)

by the rule a{©> = [a] in the boundary type translation. Since
we only want to suspend free type variables, when translating a
type that contains bound variables we must restore the behavior
of the compiler’s type translation when translating the binding
position: e.g., (Fa.7){¢) = Ja.(r{[@/[]]). Thus the boundary
type translation preserves the binding structure of the original type.

An additional issue arises if we naively translate values of type
V[a].(a) = a from M into C:

cMYlal-@= a(yy = pack (unit, (v, ())) as (V[a].(a)—> a)(©)
where v = A[a](z: unit, x: &).CM?* (v[a] * MC x)

Translating the binder for « into a C binder for « leaves free oc-
currences of « in the result, which is a problem since we must

produce a closed value. Moreover, the boundary terms in the body
of v expect to be annotated with a type that translates to . To fix
this, Perconti and Ahmed introduce a lump type L(z) that allows
passing C values to M terms as opaque lumps. The introduction
form for the lump type is the boundary term “")MC e, and the
elimination form is CM"(*) e. Opposite boundaries at lump type
cancel to yield the underlying C value. Thus, our boundary type
translation defines L{z){®? = 7. Now, each « in the above example
can be changed to L{«).

Consider translating a value ¢ to the other language. We can’t
generate a new C location {—how would we keep these mutable
references in sync? The only option is to require CM"™ 7 £ (and
similarly "f“MC £) to be a value form that can be accessed (up-
dated and dereferenced) from the other language. Figure 6 and 7
present the details, including the typing rules and complete value
translations. Note that call/cc captures the entire continuation (not
just the part that is red code, until the first boundary).

Our multi-language semantics for mutable references resembles
the treatment of references in Dimoulas et al. [2012]’s imperative
Contract PCF (CPCF). Our value forms CM™ 7 £ and " *MC ¢
are analogous to theirs where a guard attaches itself permanently
around locations when locations cross component boundaries.

Like Perconti-Ahmed, our goal is to define a multi-language for
stating compositional compiler correctness. Thus, an important
property our multi-language must satisfy is boundary cancellation,
which says that wrapping a term in opposing boundaries is contex-
tually equivalent to the underlying term (discussed further in §7).

5 COMPOSITIONAL CORRECTNESS OF
CLOSURE CONVERSION

We specify correctness of our closure-conversion pass from M to C
in terms of contextual equivalence in the multi-language M+C. In
this section, we formally define contextual equivalence for M+C
components and present the compiler correctness theorem. Later,
in §7, we will show to prove the compiler correctness theorem using
a logical relation that gives us a sound and complete proof method
for M+C contextual equivalence.

Multi-language Contextual Equivalence. As usual, a general con-
text C is an M+C expression with a single hole in it. However, there
are two ways in which M+C contexts are not entirely standard.
First, since this a multi-language, we can only plug a hole in the
context with a term that is of the right outermost color—i.e., a term

PPDP ’19, October 7-9, 2019, Porto, Portugal

CM7(v) = v | Value Translation

CMUMit()) = () CM™M(n) = n
cMY@-@= 7" () = pack (unit, (v, ())) as (V[@].(F)—){O
CMH“'T(pack (', v)yas da.7) {C)
CMH*T(fold .z V) =

pack (7
fold‘ua.,[(c)v

CMref‘[(f) — CMref‘r ¢

CMreff(ref TMCv) = v

CMT ™) (v, ovn)) = (Visee,Va)
Value Translation

miMC(() = () MMC(n) =

V[al.(7)— T/MC(V) —

Ja.TMC(pack (z’, v) as Fa.7 () pack (L(z"),v)as Ja.T

#“'TMC(foIde('T(C) V) = foldyq.z v
ref T™MC(¢) — ref TMCE
ref TMC(CMref Tv) = v

(IEREE MC((V1s -+ 25 Vn)) = (Vi,.--.Vn)

(H|e)— (H' | €)

CM"(v) =v CM?T v not a value
(H | E[CMT™ v]) — (H' | E[v])

Phillip Mates, Jamie Perconti, and Amal Ahmed

CM- O (HOMEev) = v
where v = A[a](z: unit, x: 7¢O [/ Ta]).C M7 &) al (v [L{ay] TIH@) /@l pMC x)
,v)as Ja.7{€) where CMT[T//D{J(V) =v

where CMT[“""T/“](V) =v

where CMTi(v;) = v;

LOMC(v) = HOMev
M@](7)."MC (unpack (B, y) = vin m;(y) [T1] 72(y), CMT x)

where T“'(T/W“JMC(V) =v
where T[‘w"f/“]MC(v) =v

where TMC(v;) = v;

Lift the M and C reduction rules to the new configuration—with heaps (H, H)—and replace evaluation contexts E and E with E

™MC(v) =v " MC v not a value T # L(r)

(H | E["MCv]) — (H' | E[v])

CM™ 7y avalue
ef T A(C v a value
CM™ 7y avalue
ef T ALC v a value

(H | E[l(CM™ T)]y — (H|E[CM"!V])
(H | E['(fF"MCV)]) — (H|E[*MC!v])
(H|E[(CM™Tv):=v]) +— (H|E[CM"t(v:="MCV)])
(H|E[("f"MCV):=v]) +— (H]|E[M"TMC(v:i=CM"V)])
(H | E[call/cc.(x.e)]) +— (H | E[e[cont, E/x]])
(H | E[throw, vtocont,s E']) +— (H | E’'[v])

Figure 7: M+C: Dynamic Semantics (extends Figs 2 and 3)

CY u= []Y | Ala]x:i7).C | pack(r,C¥)as3Ja.7 | ...

Cu=[]|C|...|C[7IV | v[T]vC'V
| unpack (@, x) =C"ine | unpack (a,x)=vinC | ...
| letx=Cine | letx=einC | TMCC
CY u= [-]Y | Ale](x:7).C | pack(z,CV)asTa.T | ...
| throw,;CYtov | throw,vtoCY
C u=[]]CY|CY[IVv]|vVv[IVCYV | unpack (a,x) =CVine
| unpack (a¢,x) =vinC | ... | letx=Cine
| letx=einC | CMTC
C ==C|C

FC:(Y; 0T F7)~ (P;A;T F 77) | Context Typing

vcy AcChN rcr’

FC:(¥ATHT)~ (P5AT + T<C>)

FL:(ATRT) ~ (P5A T - 1)

Figure 8: M+C General Contexts (excerpt)

whose outermost layer is the same language as the hole. Hence,
we have both blue and red holes. Second, since our languages are
in monadic normal form, certain holes can only be plugged with
value forms, not with arbitrary terms. Hence, we have holes [-]¥

FIMCC:(¥;AT 1)~ (VAT F7)

and [-]V which accept only values. Figure 8 presents an excerpt of
the syntax of general contexts, along with the typing judgment
for contexts and typing rules for a hole and a boundary form. The
remaining syntax and typing rules are entirely standard and given
in the supplementary material.

Contextual equivalence for M+C (written ¥; A;T + eq zfvt\’i cez: 7)
is defined below in the standard way. It says that two components
e1 and ey are contextually equivalent if (1) they both have type 7
under environments ¥, A, T, and (2) for any well typed context
C—with a hole that accepts components typed 7 under ¥, A, T
yielding a closed program that may be run with a heap of type
¥’—the programs Cle;] and Clez] co-terminate when run in any
initial heap H of type ¥’.

Definition 5.1 (M+C Contextual Equivalence).

def
WAT e x0c et £ W ATrer:r A ATFey:T A

VC, ¥V, 7. r C:(V;ATHT) ~> (V55 FT)A FH: W
= ((H|Clea]) | &= (H|Clez]) 1)

In the above definition, notice that the hole in the context C
may be any one of: [-]Y, [-], [-]Y, or [-]. An implicit requirement in
the above definition is that the context C and expressions e; and

ey are such that the expressions can be legally plugged into the
context’s hole. In other words, we assume that C[e;] and C[e;] are
syntactically valid expressions such that ¥’;-;- + C[e;]: 7’.

Compositional Compiler Correctness. We can now state our main
result, that closure conversion of M components into C components
is semantics preserving.

THEOREM 5.2 (CLOSURE CONVERSION IS SEMANTICS PRESERVING).
Ift:7;a;x: 1" Fe:T ~> e, then

Ot @ix 7 FenSE TMC (e[CM T ¢/e)[Tal/allcM™ (x)/x]): 7.

The formal theorem essentially says that if e compiles to e then
ﬁf"i ¢ © but we need to perform a substitution so that the free lo-
cations, term variables and type variables of the source component
match those of the compiled component. The source component
e may contain free locations ¢ : 7/, free type variables @, and free
term variables x : 7/, which the compiler translates into £ : '€, «,
and x : 7”/C, respectively, in the output term e. But the contextual
equivalence in the above theorem uses the blue M environments, so
the compiled component e may only refer to variables and locations
from those environments. Since we are in M+C, we can get the
free locations and variables of the two components back in sync by
substituting wrapped locations C M ¢ for translated locations,
suspended type variables [« for translated type variables, and the
wrapped term CM? (x) for translated term variables. Note that since
we are in a call-by-value language, we are careful to substitute value
forms for term variables.

The above compiler correctness theorem can equivalently be
stated using the translated C environments and with the substitu-
tion on the other side, as follows:

ex

07w x t"C ke[T MC €/ C[L{@) /al[T'MC(x)/x] %X . TMCe: T

where 7 = 7[L{«)/«], and similarly, 7/ = 7’[L{@)/a] and T/ =
W)/ a].

Moreover, it does not matter which side the boundary term is
placed on, since boundary cancellation lemmas (discussed in §7)
allow us to prove, for instance, the following as a corollary:

(e @ix 0 F CMT e _e[CM T ¢/€][TaT/a][CM™" (x)/x]: 7¢C).

Note that this version of the theorem uses the boundary type
translation 7¢€’ for the result type (instead of the compiler’s type
translation 7€) since we need to ensure that (blue) type variables
in the environment remain connected to their free occurrences in
the result type.

6 EXAMPLES: LINKING WITH TARGET CODE
THAT USES CALL/CC

In this section, we show that we can link components compiled from
M with C components that make use of call/cc whose extensional
behavior cannot be expressed in M.% As discussed in §1, such linking

2Technically speaking, our compiler correctness statement allows us to model linking
as substitution for free variables in a component. For instance, if e is compiled code
with a free variable x : 7, then we can link it with some e’ : 7 by substituting for x,
as in e[e’/x]). However, in the interest of readability, here we will show linking as
context plugging: for instance, we can link appropriately typed C and e to get C[e].
Hence, we are loosely treating a context C as a component—which is justified since it
can easily be turned into a component A(x : _).C[x]—which lets us eliminate extra
clutter in our examples.

PPDP ’19, October 7-9, 2019, Porto, Portugal

is useful to programmers when they want to link with a library
written in a different language that provides some functionality they
cannot implement in their own source language. We also discuss
when our compiler correctness theorem lets us use single-language
reasoning instead of mixed-language reasoning.

6.1 A Simple Example with Callbacks

We have claimed that we can link with target code inexpressible in
the source; we now make that claim precise. We will demonstrate
two programs e and e; that are contextually equivalent in the
source language M and then show a target context C that can
distinguish between the compiled versions of e and e;. This means
that the context C has behavior that cannot be expressed by any
well typed source context C that e; and e, may be linked with.
Consider the following two M components of type 7. (This is
the “awkward” example taken from Ahmed et al. [2009]; Dreyer
et al. [2012].)
7 = ((unit) = unit)— int
e1=letx =new0in A(f:_).x:=0;f ();x := 1;f();! x
ez = Af:). fO: £ 031
The components e; and e, are contextually equivalent in the
source language M (see Dreyer et al. [2012] for a proof); that is,
there is no M context C that can distinguish between them. Intu-
itively, this is because the reference x is kept private to the function
returned by e (and cannot be modified by the callbacks to f), so
every time this function is called, x is set to 0 but will eventually
be set to 1. Hence, the functions returned by both e and e, will
always return 1 when applied to any M function of the appropri-
ate type. The terms e and e, below, of translation type 7€ (ie.,
((unit) — unit) — int®), are the compiled versions of e; and e;:
7€ = 3B.(((B, . (((«, unit) = unit),,)) - int), f)
e; = letx = newO0in
pack ((ref int), (A(env: (ref int), f: (unit) - unitc).e’v (x)))
where e = letx’ = ry(env) in x" := 0;unpack (B, fp) =f in

let (f’, fenv) = (71 (fp), 72(fp)) in £ (fenvs)); X" = ;" (fenv, ()); !X’

ez = pack ({), (A(env: (), f: (unit)— unitc).e’z, O
where e}, = unpack (B, fp) =fin
let (fv, fenv) = (”l (fP), ﬂz(fP)) inf’ (fenv’ ());f, (fenw ())s 1

While e and e; are contextually equivalent in the source lan-
guage, their compiled versions e and e may be linked with the
target-language context C that we present below, which is able to
distinguish between them. First, we show a version of C written in
a non-closure-converted (hence, more readable) form, as written,
say, in an M-like language with call/cc:

C = letg=[]inletb=new1in
letf=A().letbv="bin
if0 bv (call/ccynit(k. g (A(L).throwynit () to k)))
(b:=0)in

gf

Note that if we could link C with the source components e and
ey, the program C[eq] would reduce to 0, while C[e;] would reduce
to 1. The context C can distinguish between e; and e, by using
call/cc to capture the continuation k of the second call to f, after
which it sets x back to 0 and then throws control back to k.

The above context C can be expressed in our target language as
C below, which has a hole of type (.

PPDP ’19, October 7-9, 2019, Porto, Portugal

C=letg = [-]in
unpack (f,gp) = g in
let (g’, genv) = (71(gp), 7r2(gp)) in
letb = new1in
let f = pack ((refint), ((A(feny: (refint), :unit).
letb’ = m1(feny) in
letbv = !'b’in
if0 bv (call/ccynit(k- g (genvs> P)))
' =0)),
(b))) as ((unit)— unit)€ in
g (genv, f)
where p = pack ((contunit),
((A(penvy : {(contunit), _:unit). throwynit () to 71 (penv)), (k))

Note that C[e1] —* 0 and C[e;] —>* 1.

Reasoning about Source, Target, and Mixed-Language Programs.
As in Perconti and Ahmed [2014], having formalized and verified
compiler correctness using a multi-language semantics, we can
leverage certain ways of reasoning about programs after compila-
tion and linking.

Consider our earlier component e;. By compiler correctness, we

know ;- F eq zf\f"ic "TMC eq: 7. Using boundary cancellation, we
equivalently have -;-;- F CMT eq zf\f\’ic eq: 7% where (€ = 7€,

Now if we link with the target context C from above, we have:

-k C[CMT eq] :Ic\/t\)ic Cleq]:int,
The right-hand side of this equivalence is exactly the purely C
program that we would ultimately run, while the left-hand side is
an M+C program that models it.
If we instead want to link with a different C context C (of the

same type as C) that was compiled from an M context C, we have:

5k CICMT eq] 26 . Cleq]:int
but we can also simplify this statement since we have the source
code C that we compiled to C. Since our compiler correctness

theorem tells us (roughly) that CM C zﬁf"i ¢ C, we can infer that
55 F(CMO)[CMT eq] =i - Cleq]:int
We can push the context plugging under the boundary to get:
51k CMMC[TMC CMT eq] x5 . Cleq]:int
Applying boundary cancellation, we have:

1 F CMM™ Cleq] ~8 . Cleq]: 7€

Thus, we are now essentially equating a purely M program with a
purely C program, since the only multi-language element in this
statement is the integer boundary at the outermost level which will
merely convert a source n to a target n. This illustrates that when
we do have source-language equivalents for all our target-level
components, our multi-language framework allows us to model
target-level linking with source-level linking.

6.2 Linking with a Threads Library

We return to our motivating example from §1 of linking with a
simple threads package. It should be clear that the simple threads
package shown in Figure 1 can easily be implemented in our source
language M extended with call/cc, essentially as a package of exis-
tential type that exports three functions: fork, yield, and exit. Such
a threads package can be closure converted to our target language

Phillip Mates, Jamie Perconti, and Amal Ahmed

structure T = Thread() < somel work start >
fun somel () = < some2 work start >
(< somel work start > < somel work continue >
T.yield (); < some2 work continue >
< somel work continue > < somel work finish >
T.yield (); < some2 work finish >
< somel work finish >
T.exit ()

fun some2 () =
(< some2 work start >
.yield ();
some2 work continue >
.yield ();
some2 work finish >
T.exit ())
T.fork (somel);
T.fork (some2);
T.yield ();
T.yield ;

Figure 9: Code that uses threads package from Figure 1 (left),
and effect of running linked program (right)

AN = AN A

C, yielding eip eads- (We do not show the closure-converted im-
plementation of the threads package as it is simply a less readable
version of the SML implementation in Figure 1.)

Now consider the SML code in Figure 9 (left), which uses fork,
yield, and exit from the threads package to interleave the work
being done by two functions (some1 and some2). This code can easily
be written in our source language M, then compiled to C and linked
with the aforementioned threads package e eads- If we run the
resulting C program we would have the interleaving effect shown
on the right in Figure 9.

7 LOGICAL RELATION FOR M+C

The compiler correctness theorem we presented in §5 is stated in
terms of M+C contextual equivalence, but it is well known that
direct proofs of contextual equivalence are difficult. The problem is
the quantification over all contexts C in the definition of contex-
tual equivalence (zf\f"i ¢) which makes direct proofs intractable.
Rather than prove contextual equivalences directly, we devise a
logical relation for our multi-language M+C, and use it to prove
our compiler correctness theorem.

We design a step-indexed, biorthogonal, Kripke logical relation
that inherits elements from the multi-language logical relation
devised by Perconti and Ahmed [2014]. The latter extended the
standard Kripke logical relations design by Dreyer et al. [2012] with
the ability to handle multi-language type abstraction. Our main
challenge was figuring out how to extend Perconti and Ahmed’s
logical relation to accommodate wrapped mutable references since
in our multi-language these take the form of wrapped locations
ef TAC ¢ and CM'™ 7 ¢ that are value forms. In a nutshell, we
needed to devise a more general form of logical relation that not
only allows us to relate two values from the same language but
also values across languages, as we shall explain. This in turn led us
to revisit the relational interpretations for types « that the logical
relation is normally parametrized with: our relational interpretation
allows values to be related across languages.

Below we start with an overview of the basic structure of the
logical relation and then discuss novel aspects of the relation and
the major steps required to prove the logical relation sound and
complete for M+C contextual equivalence, We elide details of how
we prove many basic properties of the construction and also elide
proofs of the Fundamental Property of the logical relation, and the
proof of compiler correctness. Complete definitions and proofs are
given in the technical appendix [Mates et al. 2019].

Overview of the Logical Relation. The basic idea of logical re-
lations is to define an equivalence relation on program terms by
induction on the structure of their types. For instance, two func-
tions are related at the type 71 — 1 if, given related arguments at
type 71, the functions yield related results at type 5. Two tuples
of length n are related at type (zy, . . ., 7,) if their i-th components
(for all 1 < i < n) are related at type 7;.

In the presence of state, we have to use Kripke logical relations,
which are relations indexed by possible worlds W. Kripke logical
relations are needed when relatedness only holds under certain
conditions; possible worlds allow us to capture these conditions
and specify constraints on how the conditions may evolve over
time. Our worlds W will specify constraints on heaps. We write
(H1, Hz) : W when the heaps H; and H; satisfy W. For instance,
two locations £1 and £, should only be related at type ref 7 if: they
actually exist in some heaps that satisfy the current world W if they
contain heap values related at type 7; and if they continue to exist
and contain related values in all future worlds W’ that are accessible
from W (written W/ 3 W, where J is pronounced “extends”).
An important property of Kripke logical relations is monotonicity,
which says that if two values are related in world W, then they
must be related in all future possible worlds W’ that extend W.

Finally, step-indexed logical relations allow one to easily deal
with semantic features that lead to “circularities” in the construc-
tion of semantic models, e.g., recursive types [Ahmed 2006] and
mutable references that store functions [Ahmed 2004; Ahmed et al.
2009]. While standard logical relations are usually defined by in-
duction on the structure of types, in the presence of contravariant
recursive types and higher-order store, this scheme is no longer
well founded. The idea behind step-indexing is to define the logical
relation by outer induction on a natural number that, intuitively,
corresponds to the number of steps of computation for which two
programs behave in a related manner, and then nested induction on
the structure of types. The reason why step-indexing helps break
the aforementioned circularities is, intuitively, that unfolding a
recursive type and dereferencing a location each consume a step,
which justifies lowering the step index in appropriate places so we
can give an inductively defined logical relation.

Figures 10 and 11 present the important pieces of our logical
relation. The high-level idea is that we define a value relation V[z]
that relates closed values at type 7, a continuation relation K| z] that
relates closed continuations (evaluation contexts) that have a hole
of type 7, and a term relation [r] that relates closed terms at type 7.
Each of these relations is indexed by a world W. These relations are
built from well-formed worlds (which we discuss below) and well-
typed values, continuations, and terms, requirements captured by
the TermAtom/ValAtom/ContAtom definitions at the top section
of Figure 10. (We will explain the value/term/continuation relations

PPDP ’19, October 7-9, 2019, Porto, Portugal

in Figures 10 and 11 in detail a little later.) We then generalize the

definition to open terms (written ¥; A;T F e; z/l\?\{ c e

Worlds and World Extension. Our worlds W are 4-tuples of the
form (k, ¥, ¥3, ©), where k is the number of computation steps
we have left, ¥; and ¥, are the heap types that any heaps H; and
Hy, respectively, must have if they are to satisfy W, and © is a
sequence of islands that specify invariants on disjoint parts of the
heap. Figure 10 (top) presents the requirements on the structure
of worlds and islands, which are entirely standard (so we refer the
reader to Dreyer et al. [2012] for details). Briefly, islands can encode
state-transition systems (STS), where s denotes the current state of
the STS; S denotes the set of all states; § are all possible transitions;
7 is the subset of § that are marked as “public” transitions®; HR are
heap relations that, given the current state s of the STS, tell us what
heap fragments are related; and bij keeps track of the correspon-
dence (bijection) between “global” locations in the island’s heaps
for the two programs.

Figure 10 (top) also defines k-approximation (| -]z) which drops
information at level k and higher from the islands, heap relations,
etc., as well as the “later” operator (>) which moves us to a world
with one fewer step—we use the later operator in parts of the
definition where we must decrement the step index to ensure a
well founded relation. It also defines world extension (Z), which
essentially says that in a future world there may be fewer steps
available, all current locations and their types must be unchanged,
there may be additional locations, and the island’s STS may have
made valid transitions to a future state. We omit the definition of
Jpub, which is identical to 3 except that 3, for islands requires
(s,s”) € m instead of (s,s”) € §.

Value Relation: Standard Parts. The standard practice is for each
of the above relations, ‘V[z], K[z], and E[r], to be parametrized
by a mapping p that provides relational interpretations for the free
type variables in 7. For now, assume that p maps type variables
«a to triples VR ::= (11, 72, R), where 71 and 7y are the types used
to instantiate a on the left and right sides, respectively, and R is
a relation between values of those types, or more precisely some
¢ C ValAtom|[r1, 72]. We will explain shortly why this structure is
not quite what we need—that is, why our R is not simply a ¢ and
what R[M, M] and R[C, C] signify— but the above suffices to explain
the general principles of the logical relation. We write p; for the
substitution that instantiates each & € dom(p) with the correspond-
ing 71, and py for the substitution that instantiates each « with the
corresponding 72. We use dot notation to extract the components
of the triple VR = (zy, 72, R) via VR.7y, VR.73, and VR.R.

We briefly explain the M cases of the value relation, "V[[T]] which
are shown in the bottom section of Figure 10. (For now, ignore the
middle section of Figure 10, which we return to when we discuss
the value relation for mutable references.) Values of base type are
related if they are the same value. Values are related at type « if
they are in the relational interpretation of «, namely p(«).R. (For
now, ignore the [M, M] that follows R in the figure).

3Dreyer et al. [2012] use private transitions to reason about well-bracketed control flow
in the absence of call/cc. Note the shaded part in the definition of Island (7 = &), which
we add in to our definition in the presence of call/cc: it says that public transitions
are the same as all transitions, which means there are no private transitions in the
presence of call/cc.

PPDP ’19, October 7-9, 2019, Porto, Portugal Phillip Mates, Jamie Perconti, and Amal Ahmed

HeapAtom,, = {(W,H,H;)| W € World, }
HeapRel,, = {¢u C HeapAtom,, | Y(W, Hy, Hz) € og. YW’ I W. (W', Hi, Hy) € o }
TermAtomy[71, 2] = {(W,e1,e2)| W eWorldy, A W. ¥ Fep:itg A W W5 Fexitp}
ValAtomy[7, 72] def {(W, v1, v3) € TermAtomy[71, 72]}

def

Island,, {0=C(s,S,0,7,HR,bij) | s€eS ASeSet ANSCSXSATCI AN m=06A

6, mwreflexive A &, m transitive A HR € S — HeapRel,, A bij € S — P(Val x Val) }
World,, C W=k ¥, %,0)] k<n A Fm. 0 elsland” }
ValAtom[7]p def ValAtom|[p1(7), p2(7)]

ContAtom[z1, 7] ~ [}, 7] € (W, E1, Ey) | W e World A 39, % . Ey:(W. W55+ k1)~ (g3 F 7)) A F Eyi (W% 5+ F 1) ~o (Y5 5+ 7))}
7 ’ / d f / ’ / ’
ContAtom[7y, 72]p ~ [7], 7;]p" = ContAtom[pi(71), pa(z2)] ~ [p} (7)), py(73)]

LO1, ..., 0m)]k = (Oilks---5 LOmlr) >(k+1,%,%,0) = (k, ¥1,¥, 0])

I(s,S, 8, T, HR, bij) [y~ € (5,5, 8, 7, [HR ., bij) >g © o W,ene) | Wk>0 = W, e, e))

[HR] © Js. [HR(s))k on ® ¢y (W, Hy @ H], Hy w H)) | (W, Hy, Hy) € o A (W, H], H}) € ¢} }
Lom Jx © (W, Hi, Hy) € op | Wk <k}

(K, ¥}, %}, 0') 3 (k, %1, ¥, ©) «

0f,....0,,)3(01,...,0m)
(s',8,8, ~’,HR', bij’) 2 (s, S, &, , HR, bij)

K<kAN¥ 29 AV 2¥ AO 2|0k
m >m A Vje{l,...,m}.Qj'.QGj
(8", 8, ', HR, bij’) = (S, 8, , HR, bij) A (s,s’) €8

def

def

V[, =]p {(W.v1, v2) € ValAtom[py(7), pa(r ()] | (W, v1, P2TMC(v2)) € V[r]p A (W, CMP{D(vy), v2) € V[r{D]p}
VIO <lp {(W, v, v2) € ValAtomlpi (7 (D), p2(2)] | (W, P{EMC(v1), v2) € V[z]p A (W, vi, CMP2O(v2)) € V[(O] p}
Vlz.z]p = V[p

V]a]p = p(a).RIM, M] V]unitlp = {(W, (), () € ValAtom[unit]p } Vintlp = {(W,n, n) € ValAtom[int]p }
VIV[a].(T)— ']p = {(W,v1,v2) € ValAtom[V[@].(7)— 7']p | VW’ 3 W. YVR € MMValRel . W/, V} . (W",V},V}) € V[c]p[a > VR] =
(W', v1 [VR.T1] V), v2 [VR.12] V}) € 8[7’, 7'] pl — VR] }

V[3ex.7]p = {(W, pack (71, v1) as p1(Ja.7), pack (12, v2) as p2(Ja.7)) € ValAtom[Ta.7]p |

JVR € MMValRel AVR.7y =71 A VR.p =12 A (W, vi,v2) € V]z]pla — VR] }
Vipa.]p = {(W, fOIdpl(yoc.‘r) V1, fo{dpz(,ua.f) vp) € ValAtom[ua.z]p | (W, vi,v2) € >V[rlpa.t/al]p }
Vref t]p = {(W, vq,vy) € ValAtom[ref r]p | Fi. YW’ 2 W. (loc(v1), loc(va)) € W’(i).bij(W’(i).s) A

Jem. W (i) HR(W'(i).s) = ¢g ® {(W, Hi, H,) € HeapAtom | V11, 72, v7, vj.
lookup? (v, Hy) < (v, 1) A lookup? (v, Hp) — (v, 12) = W, v, vy) € V[r, z2]p} }
Vr, ool = {(W, (vir, - oo, van), (Vai, - - -, van)) € ValAtom[(zy, ...,)]p [Vj € {1,...,n}. (W, vy, vy) € V]g]p }

VIL(T)]p ©w, AEEIMC vy, PEEOIMC v,) € ValAtom[L(z)]p | (W, v1,v2) € V[]p}
lookup? (¢, {t—v})—>(v,1) lookup? (CM™ T £, { £ v}) <> (v, #) where 3¢ . #(C) = ¢
lookup? ("F ' MC €, (£ v}) = (v, r{O) lookup? (¢, (L v)) = (v, 7)

V]e]p = p(x).R[C, C] V{unit]p = {(W, (), () € ValAtom[unit]p } Vint]p = {(W,n, n) € ValAtoml[int]p }

VIVI@].(7) = ']p = { (W, v1,v2) € ValAtom[V[@].(T)— ']p | YW’ I W. YVR € CCValRel . W/, v}, . (W', V], V}) € V[r]p[e = VR] =
(W', v [VR.71] V), v2 [VR.72]V}) € &', '] pler — VR] }

V[3x.7]p = {(W, pack (71, v1) as p1(Jexr.7), pack (72, v2) as p2(J.7)) € ValAtom[Ter.7]p |
JVR € CCValRel AVR.7; = 71 A VR.7p =72 A (W, vq,v2) € V]r]pla — VR] }
Viref z]p = {(W, vq, v2) € ValAtom[ref z]p | Fi. YW’ T W. (loc(v1), loc(vz)) € W’(i).bij(W’(i).s) A

Aem. W(i).HR(W'(i).s) = og ® {(W,Hy, Hy) € HeapAtom | Y7y, 72, 0], v5.
lookup® (v, Hy) < (v1, 1) A lookup® (v, Hy) < (v, 2) = W, v, vy) € V[r, z2]lp } }
V[« = p(e).RIC, C]
V]contz]p = {(W, cont,, (7) E1, conty,, () Ez) € ValAtom[cont z]p | VW', vi,va. W I W A (W', vy, v2) € V(z]lp = (W', Ei[vi], E2[v2]) € O}

Figure 10: M+C Logical Relation: Auxiliary Definitions (top); Value Relation (middle, bottom)

Normally, functions are related if, in any future world W’, apply-
ing them to related arguments yields related results. Our functions,
however, combine type- and term-level abstraction, so we say that
two functions are related at type V[a].(t)— 7’ if the following
holds: given any admissible relation triple VR = (11, 72, R) for each
« that the function abstracts over, applying the functions in some
future world W’ to (1) the types 71 and 72, respectively, and (2) argu-
ment values related in W’ at types under a mapping p extended to
account for the new VR for each «, they yield related results. Here,
the definition in the figure says the functions yields results related
in the relation E[z’, 7’]. We will explain this “two-dimensional” &
relation later (when we discuss mutable references). For now, it
suffices to think of E[z’, 7] simply as E[7’] which specifies when
computations are related at the type 7’.

Packages are related at existential type Ja.7 if there exists some
interpretation VR of the abstract type under which their bodies are
related. Values of recursive type pa.r are related if unfolding the
folded value yields values that are related at the type r[ua.7/a]
after expending a step (denoted by the later operator). Tuples are
related if all their components are related at the appropriate types.
Finally, lumps are related if the underlying values are related at the
underlying type.

Most C cases of the value relation, V[7], are shown at the bottom
of Figure 10. The value relations for C’s base, function, existential,
recursive, and tuple types are analogous to the corresponding M
cases. The only tricky case is the case for suspended type variables
[a] which we discuss below.

Figure 11 presents the term and continuation relations. In the
term relation E[r] p, two terms are related if running them in re-
lated continuations gives related observations. Two continuations
are related in K[r]p if whenever we are given related values in
some future world (under a restricted notion of public future worlds;
see Dreyer et al. [2012]), then running the continuations with those
values gives us related observations. This technique of defining
the term relation & by appealing to a continuation relation K is
referred to as biorthogonality or T T-closure, and it yields a logical
relation that is complete with respect to contextual equivalence.

Under the relation O, two closed terms give us related observa-
tions in world W if, when we run them in two heaps that satisfy
W, either they both terminate, or they are both still running after
k steps, where k is the number of steps allowed by world W.

Value Relation: Mutable References. In a single-language Kripke
logical relation (such as Dreyer et al. [2012]), the value relation
for reference types should say that two locations {1 and ¢, are
related at type ref 7 in world W if there exists an island in W (the
ith island in W, written W (i)), such that in all future worlds W”:
(1) the island’s heap relation HR in the current STS state s requires
that the locations’ contents must be related at type 7 , and (2) the
pair of locations ({1, {) are included in the bijection on locations
(bij) tracked by that island.*

4The intuition for requirement (2) (i.e., location bijection) is that when relating two
programs with heaps, we must keep track of which pairs of locations from the two
programs should be considered related, and this bijection must be preserved as the
programs run. But note that only “global” locations—informally, those accessible to
a context—need to be part of the bijection; locations that are considered “local state”
need not correspond to any location in the other program.

PPDP ’19, October 7-9, 2019, Porto, Portugal

In our multi-language setting, the above interpretation for V[ref 7]
does not suffice. Since the multi-language treats wrapped locations
such as " *MC ¢, as a value form of type ref 7, our value rela-
tion needs to be able to specify relatedness of locations across
languages. But when should a value ¢; (a location) be related to
a value "f"MC ¢, (a wrapped location)? Our first instinct when
trying to relate such values was to instantly pull out the concrete
values stored at these locations from heaps H1, H (provided by the
island heap relations) and ensure that they are related. But since
the contents of these locations belong to different languages, we
needed to convert them into the same language so that we could
talk about their relatedness in a logical relation that only relates
same-language terms (as in Perconti and Ahmed). For instance, let
Hi(¢1) = vy and let Ha(£2) = v,. Then, we could state our require-
ment that the locations’ contents be related by requiring that the
values v and "MC(v3) be related at type 7.

Unfortunately, the above strategy of defining V' [ref 7] (and sim-
ilarly V[ref 7]) so that they translate the contents of the two loca-
tions into the same language made it impossible to prove the bridge
lemma (which we present below). We won’t show here how that
proof breaks, but the intuition is that the multi-language delays
the translation of the value that a wrapped location points to until
dereference. A semantic model of the multi-language must follow
suit, mimicking such delays.

Our solution is to generalize our value, term, and continuation
relations so that they allow us to relate values across languages
(such that one of the values has source type 7 and the other has type
7¢©)). Thus, we have V(z, T(C>]]p and (V[[T<C>, 7]lp, which we can
use to say that two locations from different languages are related if
the values they point to are related across languages. Making the
logical relation more general in this way enables us to prove the
bridge lemma.

Technically, we now have an N-by-N matrix of logical rela-
tions where N is the number of languages embedded in the multi-
language. For our multi-language M+C, N = 2. On the diagonals,
we have V[r, 7]p and V[r, 7] p. Off-diagonal, we have the cross-
language versions V[r, 7] p and V[r¢?), 7] p. Now, the astute
reader may be worried that an approach that requires an N-by-N
matrix of logical relations will not scale well. Fortunately, our actual
logical relation definition isn’t much more involved than a standard
one because we are able to define the off-diagonals in terms of
the diagonals. This can be seen in the middle section of Figure 10,
which gives the definition of V{1, 72], both the cross-language
and single-language variants.

Value Relation: Suspended Type Variables, Admissible Relations.
We now discuss what properties an interpretation VR of a type
variable a must satisfy to be considered admissible. As usual, these
requirements stem from lemmas that we need about V[z]p: Since
T = « is a base case, these properties need to hold for any interpre-
tation of @. In our multi-language setting, the two properties we
need are boundary cancellation and the bridge lemmas. We discussed
boundary cancellation in §4; here we give a statement of it in terms
of V[z]p (with cancellation on the right, see technical appendix
for details) which we need to prove admissibility:

LEmMMA 7.1 (MC/CM BoUNDARY CANCELLATION). If(W,vq,vy) €
V[]p, and P2OMC(CMP2D) (v,)) = v, then (W, vq,v5) € V[z]p’.

PPDP ’19, October 7-9, 2019, Porto, Portugal

(Hy Hy) : W =
running(k, (H | e)) def JH,e'. (H | e) —k (H' | ¢')
o ={(W,er,e2) | Y(Hi,Hz): W.({H1 | e1) | A (Hz|ez2))

\

Phillip Mates, Jamie Perconti, and Amal Ahmed

FH:W. O A FHy: WPy A (Wk >0 = (oW, Hy, Hy) € Q{60.HR(O.5) | 6 € W.O})

(running(W .k, (H; | e1)) A running(W.k, (Hy | e2)) }

Klr1, 2] p = { (W, Eq, Ez) € ContAtom[71, 2]p ~ [7], 7;]p" | YW, 01, 02. W Jpuy W A (W', 01, 02) € V[,]p = (W', Ei[v1], Ez[02]) € O}
Elr, n]p = {(W, e1, e2) € TermAtom[p1(71), p2(r2)] | VE1, E2. (W, Eq1, E3) € K[, 2]p = (W, Eqle1], Ez[e2]) € O }

Figure 11: M+C Logical Relation: Heap, Continuation, and Term Relations

ValRel[71, 73] &« { @ € ValAtom[z1, 2] | ¥Y(W, v1,02) € ¢.
YW IW. (W, 01,0) €0}
def

CMi(ti,9) = {(W,vi,02) | (W,vi,v3) €9 A CMT(vy) =vq }
MCi(r1, 0) L LW, vi,02) | (W,vi,02) € @ A TMC(v1) = vi }
CMa(2,) € {(W,01,v2) | (W, 01,v2) € p A CMZ(v2) = v }
MCy(2,9) € {(W,01,v2) | (W, 01,v2) € 9 A ZMC(v2) = v, }

MMValRel % {VR= (11,72, R) |

R[M, M] € ValRel[r;, ;] A R[C, M] € ValRel[z;{C?, 1,] A

R[M, C] € ValRel[ry, 1,{C)] A R[C, C] € ValRel[r1{}, ,{CI] A
CMi(m1, RIM, M]) € R[C, M] A MC1(t1, R[C, M]) C R[M, M] A
CM(z1,R[M, C]) € R[C,C] A MC1(r1,R[C,C]) C RIM, C] A
CMy(r2, RIM, M]) € R[M, C] A MCa(r2, R[M, C]) € R[M, M] A
C My(r2, R[C, M]) € R[C,C] A MCsy(12, R[C, C]) C R[C, M] }

ccvalRel (VR = (71, 72, R) | R[C, C] € ValRel[71, 72] }

Figure 12: Logical Relation: Admissible Value Relations

The lemma for cancellation on the left is similar. Then, we have
two more boundary cancellation lemmas (similarly, on the right
and the left) for the CM/MC boundaries.

The bridge lemmas state that if two values are related at a given
type, then their translations are related at translation type. Or, in
the other direction, if two values are related at translation type,
their backward translations are related at the corresponding source
type. These lemmas are needed to prove soundness of the logical
relation for contextual equivalence. The bridge lemma stated for
the term relation is as follows:

LEMMA 7.2 (BRIDGE LEMMA). Let A + 7 and p € D[A].

LIf(W,eq,e2) € 8[r(c>]]p then (W, P"OMC eq, 2OMC e3) € Elzlp
2.If(W,e1,e;) € &[r]p then(W,CMP D ey, CMP2D ey) € E[r(O] p

A further complication is that the admissibility criteria for value
relations and the choice of how to define V[[a]]p are intertwined.
Intuitively, the interpretation of [a] requires that we be able to
take the relation VR for « and be able to “translate” the relation
into some VR’ for [«], all while VR.R and VR'.R both satisfy the
boundary cancellation and bridge properties. Like Perconti and
Ahmed [2014], instead of trying to do all that work in ‘V[[[a]]p, we
take a different approach and define “translations” of VR.R with the
needed properties up-front. Specifically, we do this by changing the
structure of VR.R to include not just one relation ¢ on values in the
language of the type variable whose interpretation is being given,
but rather an i + 1-by-i + 1 matrix of relations where i is the number
of languages below it. Hence, as shown in Figure 12, we have a
1-by-1 matrix for the interpretation of C type variables (CCValRel)
and a 2-by-2 matrix for the interpretation of M type variables
(MMValRel). For the latter, we require that the four relations satisfy
properties between each other: translating only all the left (or the

D[] ={0}

D[A, a] ={pla— VR]| p € DJ[A] A VR € MMValRel }
DIA,] ={pla+— VR]| p € DJ[A] A VR € CCValRel }
Gllp ={(W,0)| W € World }

G, x:7]p = {(W,y[x = (v1,02)] | (W,y) € G[l]p A
(W, v1,02) € V[r]p}

H{-}] = World

H[,C:t] =H[]N{W eWorld | (W, ¢,¢) € V[refz]0}
H{-} = World

H[Ht:7] =H[]Nn{W eWorld | (W, £,¢) e V]refz]0}
HIT =HIINH]]

Y, AT+ e szjﬁc ey: T def Y;A;Trep:t A ATRe T A
YW, p,y. W e H[¥] A pe D[A] A W,y) e G[Tlp =
(W, p1(y1(e1)), pa(ya(e2))) € E[z, 7]p

WATFE ~E B+t € WATHE <7 A BATFE <7 A

YW, p,y.W e H[¥] A p e D[A] A (W,y) € G[T]p =
(W, p1(y1(E1)), p2(y2(E2))) € K[z]p

Figure 13: Logical Relation for Open Terms

right) values in one relation should preserve relatedness in the
appropriate neighboring relation.

Now, we can simply define ‘V[[«]]p = p(a).R[C, C] and define
V]a]p = p(a).RIM, M]. With our admissibility criteria, we are
able to prove the boundary cancellation and bridge lemmas (see
the technical appendix for details).

Logical Relation: Open Terms and Continuations. Figure 13 shows
how we lift the closed relations & and K to open terms and contin-
uations. Two open terms e; and ey (or open continuations E; and
Ey) are related if, given a world (which must satisfy the heap type
W), a mapping p (that maps type variables to admissible VR’s), and
a pair of substitutions y (where the values being substituted must
be related), we get related components (or related continuations)
by closing off e; and ey (respectively, E; and Ez) with p and y.

7.1 Properties of the M+C Logical Relation

We now present some of the main lemmas we prove about the
logical relation, building up to the Fundamental Property.

As mentioned above, the value relation must satisfy monotonic-
ity, which says that if two values are related in a world W, then
they must be related in all future worlds accessible from W.

LEMMA 7.3 (MoNoTONICITY). Ifp € D[A], A+ 7, A + = and
W’ 3 W, then

(1) (W,vi,v2) e V[z]p = (W', vi,v2) € V[z]p

@) W,vi,v2) e V[r]lp = (W',v1,v2) € V[r]p

(3) W,vi,v2) € V[r,7'DTp = (W',v1,v2) € V[r,7O]p

4) (W,vq,vp) € (V[[T<C), tlp = (W, vi,vp) € (V[[rw), tlp

The term relation E[r] is closed under anti-reduction, which
roughly says that if e; and ez reduce to e] and e, respectively, then
if the latter are related in &[], then the former must be as well.

LEMMA 7.4 (7] p CLOSED UNDER TYPE-PRESERVING ANTI-RE-
DUCTION). Let (W, eq,ez) € TermAtom[r]p. Given W 23 W, if
W.k < W' .k+ki, Wk < W' .k+ky, and

V(H1,Hp) : W. 3(H{, H;) : W'.

(Hy | ex) " (H | e]) A (Hy | e2) —" (Hy | e}).
then (W', e{,eé) e&r]lp = (W,e1,e2) € E[7]p.

We use the Monadic Bind lemma extensively: when proving

boundary cancellation, bridge lemmas, and compatibility lemmas.

LEmMA 7.5 (MoNADIC BIND). If(W, e1, e2) € E[r]p, (W, E1,E2) €
ContAtom|[z, t]p ~ [/, 7"]p’ and

YW’ Jpub W.(W',01,02) € V[z]p = (W', Ei[v1], E2[v2]) € E[7']p,

then (W, E1[e1], Ez2[ez]) € &[] p.

We also prove the boundary cancellation and bridge lemmas
stated earlier and then prove that the V relations are admissible.

LEMMA 7.6 (ADMISSIBILITY OF V). Let p € D[A].

(1) IfA v 7, then (p1(7), p2(7), R) € MMValRel.
Vlr.7lp VI p

VIO]p V[, Op

(2) If A+ =, then (p1(t), p2(7), [V]z]p]) € CCValRel.

where R =

The proof of admissibility follows easily from monotonicity
(Lemma 7.3), boundary cancellation for V (Lemma 7.1) and the
bridge lemma (Lemma 7.2).

Next, we prove the compatibility lemmas, from which we can
easily prove the Fundamental Property of the logical relation.

LEmMMA 7.7 (FUNDAMENTAL PROPERTY). If ¥;A;T + e: 7, then

A Jog
‘I’,A,FI—e~M+Ce.r

Soundness and Completeness with respect to Contextual Equiv-
alence. To show that the logical relation is sound for contextual
equivalence, we first prove that the logical relation is a congru-
ence (elided) and that it is adequate (see below). Then we show
soundness with respect to contextual equivalence, i.e., that logical
equivalence implies contextual equivalence.

log

LEMMA 7.8 (ADEQUACY). If¥;+ -+ e1 ~,/

(H | e1) U if and only if (H |) |l.
LEMMA 7.9 (LOGICAL RELATION SOUND FOR CONTEXTUAL EQUIV-

ALENCE). If¥;A;T F g zf\iic ep:T, then ¥; A;T F eq zﬁz’ic ey:T.

Finally, we also prove that the logical relation is complete with
respect to M+C contextual equivalence, i.e., that contextual equiva-
lence implies logical equivalence.

er:7,+ H:¥, then

Lemma 7.10 (LoGIcAL RELATION COMPLETE FOR CONTEXTUAL
A ~ct . A Jog
EQUIVALENCE). If¥;A;T F e NXA)iC er:T,then¥; A;T + ey Rpac €T

PPDP ’19, October 7-9, 2019, Porto, Portugal

7.2 Correctness of Closure Conversion

Having proved our logical relation respects contextual equivalence,
we can use it to prove the correctness of closure conversion, Theo-
rem 5.2, which is stated in terms of M+C contextual equivalence.
First, we prove boundary cancellation for open terms, which
follows easily from the lemma for closed terms. We then use that to
prove a lemma about boundary cancellation in a general context.

LEMMA 7.11 (CONTEXT BOUNDARY CANCELLATION). -

(1) Ifthe hole in C is [-] then: ¥; A;T + g zf&‘ic Clea]: 7 iff
AT+ e 78 C[TMCCMT e):t.

(2) If the hole in C is [-] and ¥; A;T + ep:7'C) then: W; A;T +
e1 z/lc“éic Cle2]: T iff ¥; A;T F g zf&‘ic C[CMT, “MC ez]:t.

(3) Ifthe hole in C is [-]V then: ¥; A;T + e zjsﬁc Clv]: 7 iff
VAT + e ~8 L C[7Mo(eM” ()] .

(4) If the hole in C is[-]¥ then: W;A;T + e ~1 8 _Clv]: 7 iff
¥;A;Tre zijg;c clem® (FMc(v))]: 7.

Next, we prove correctness of closure conversion.

THEOREM 7.12 (CLOSURE CONVERSION IS SEMANTICS PRESERV-
ING). If ;" Fe:T ~> e, then

S ke zlA‘;{C TMC (e[CM™f T £/ E1[al/a]lcM™” (x)/x]): .

The proof proceeds by induction on the compiler judgment (Fig-
ure 5). Most cases of the proof make use of Lemma 7.11 as well as
anti-reduction (Lemma 7.4). The most involved proof cases are the
ones for function and application (see technical appendix).

8 RELATED WORK AND DISCUSSION

Compositional Compiler Correctness. There have been several
recent compositional compiler correctness results, all based on very
different approaches. Most of these—unlike Perconti-Ahmed and
our result—restrict linking to target code that can be expressed in
the compiler’s source language,

Benton and Hur [2009] and Hur and Dreyer [2011] use a cross-
language logical relation to specify “semantic equivalence” between
source and target terms. They show that if a source term s compiles
to a target term ¢, then s and ¢ are related in the source-target logi-
cal relation. Benton and Hur prove correctness of a compiler from
STLC with recursion to an SECD machine, while Hur and Dreyer
do so for a compiler from an ML-like language to untyped assem-
bly. The cross-language-logical-relation approach does not scale
to multi-pass compilers, so Neis et al. [2015] devised parametric
inter-language simulations (PILS) to prove correctness of Pilsner, a
multi-pass compiler from an ML-like language to assembly [Neis
et al. 2015; Neis 2018]. However, all of these cross-language-/inter-
language-relation approaches have a significant drawback: they
only allow linking with target components that are related to some
source component by the cross-language relation or PILS. In practi-
cal terms then, code produced by a PILS-verified compiler can only
be linked with target code produced by either the same compiler,
or a different compiler from the same source language to the same
target, verified using the same PILS specification.

Stewart et al. [2015] use interaction semantics to provide an ab-
stract specification of interoperability between source and target

PPDP ’19, October 7-9, 2019, Porto, Portugal

components and use it to prove compositional correctness of the
CompCert C compiler [Stewart 2015]. Compositional CompCert
allows linking with any target component that respects restrictions
imposed by CompCert’s memory model. It’s not clear how to extend
this approach to compilers whose source and target languages have
different memory models as in Perconti-Ahmed and our work.

Kang et al. [2016] developed SepCompCert, which only allows
linking with other components produced by the same compiler—i.e.,
supports separate compilation. Their goal was to demonstrate that
supporting verified separate compilation requires much less proof
effort than verified compositional compilation which imposes fewer
restrictions on linking.

Wang et al. [2019] use contextual refinement to compositionally
verify Stack-Aware CompCertX, a compiler that extends the mem-
ory model of all the CompCert languages with an abstract finite
stack with uniform stack access policy. CompCertX’s final pass
compiles from CompCert’s block-based model to a flat memory
model. CompCertX does not allow linking with target code that
cannot be expressed in the source—in fact, they augment the source
language with an abstract stack.

Patterson and Ahmed [2019] present CCC, a parametrized com-
positional compiler correctness theorem that they propose is the de-
sired correctness statement for past and future compositional com-
pilation results. They show how to instantiate CCC with Perconti-
Ahmed’s multi-language compiler-correctness result so that the
latter’s correctness theorem implies CCC. The same instantiation
applies for our result; thus our Theorem 5.2 implies CCC.

Fully Abstract Closure Conversion. A translation is said to be
fully abstract if it preserves and reflects contextual equivalence—
the former is difficult to prove when the target language is more
expressive than the source, as the proof requires showing that every
target context that we can link with can be represented in the source
language (see Patrignani et al. [2019] for a survey).

Ahmed and Blume [2008] were the first to show that typed clo-
sure conversion is fully abstract. Their source and target languages
were identical: System F with recursive and existential types. New
et al. [2016] show full abstraction of typed closure conversion from
STLC with recursive types to a target that also has existential types
and exceptions (but neither language has references as we do here).
The target language has a modal type system to distinguish code
with control effects from code without, and they use it to ensure—by
choosing the right type translation—that compiled code is typed so
that it will never be linked with code that throws an unhandled ex-
ception. For the proof, they use universal embedding to embed target
types (including those inexpressible in the source language) into a
universal type (i.e., recursive sum type) and define interoperability
between source code and the universal type.

We conjecture that if we remove call/cc from our target language
C, our translation would be fully abstract. For the proof, we would
need to extend Ahmed and Blume [2008]’s technique, based on
wrapper functions ‘W* and W™, that translate components of
type 7 to 7€ and vice versa, to support mutable references: in this
case, wrapping would create proxied references.

To achieve full abstraction when the target has first-class con-
trol, we would need to restrict call/cc to delimited continuations
and adopt a target type system for delimited continuations. We

Phillip Mates, Jamie Perconti, and Amal Ahmed

would need to ensure that compiled code is only linked with code
that captures continuations up to the boundary—i.e., continuation-
capturing cannot cross into compiled code. With these changes, we
could then use universal embedding to prove full abstraction.
Finally, instead of achieving full abstraction via restrictions on
linking with target-level control features, we could explore extend-
ing the source language with linking types [Patterson and Ahmed
2017], a feature that allows a programmer to annotate her programs
to indicate where she wishes to link with features unavailable in the
source. A fully abstract compiler would ensure that linking respects
those annotations. This lets programmers control the precise source-
level contextual equivalence they want the compiler to preserve.

Additional Compiler Passes. As future work, we wish to extend
our compiler all the way down to assembly, performing heap alloca-
tion and then code generation. For the latter pass, we can leverage
the work on FunTAL, a multi-language that mixes a high-level
functional language with low-level assembly [Patterson et al. 2017]
and solves the challenge of making assembly compositional.

Extending the compiler with additional passes requires extending
our multi-language with additional languages that sit below C in
the compiler. As discussed in §7, when we have a multi-language
with N-languages, although we seem to need an N-by-N matrix
of logical relations, we are able to define the off-diagonals for the
V relation in terms of the diagonals so this approach scales to
more languages without making the V relation unmanageable.
However, the part of the logical relation that does not scale well
are the admissibility criteria (see Figure 12). As our discussion in §7
notes, we need an i+1-by-i+1 matrix for the interpretation of type
variables from each language, where i is the number of languages
below it in the compiler. Nonetheless, the admissibility criteria are
quite uniform, so we should to be able to systematically derive and
prove them even when i is large.

An alternative is to investigate a different multi-language se-
mantics that scales better. Specifically, the problem with the admis-
sibility criteria stems from the interpretation of suspended type
variables [«]: substituting 7 for « in the suspension, requires trans-
lating the type to 7€ If we could devise a compiler multi-language
that treats suspended types like the opaque lump types we employ
in the other direction, we think that could lead to a logical relation
with simple admissibility criteria (as in the work of Scherer et al.
[2018] who use lump types to pass ML values to a linear language).

A final idea for reducing proof burden when combining many
compiler languages into one is to devise a multi-language where,
instead of simply putting the languages together, we leverage com-
monalities in adjacent languages so we don’t have to deal with the
same feature twice. This seems a bit like the language-independent
interaction semantics idea from Compositional CompCert, but with
syntactic boundaries—modelled as macros—since boundaries are
needed when languages have different memory models.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation under grants CCF-1816837 and CCF-1453796. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quan-
tified Types. In European Symposium on Programming (ESOP). 69-83.

Amal Ahmed and Matthias Blume. 2008. Typed Closure Conversion Preserves Ob-
servational Equivalence. In International Conference on Functional Programming
(ICFP), Victoria, British Columbia, Canada. 157-168.

Amal Ahmed and Matthias Blume. 2011. An Equivalence-Preserving CPS Translation
via Multi-Language Semantics. In International Conference on Functional Program-
ming (ICFP), Tokyo, Japan. 431-444.

Amal Ahmed, Derek Dreyer, and Andreas Rossberg. 2009. State-Dependent Represen-
tation Independence. In ACM Symposium on Principles of Programming Languages
(POPL), Savannah, Georgia.

Amal Jamil Ahmed. 2004. Semantics of Types for Mutable State. Ph.D. Dissertation.
Princeton University.

Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, Step-Indexing and Com-
piler Correctness. In International Conference on Functional Programming (ICFP),
Edinburgh, Scotland.

Nick Benton, Andrew Kennedy, and George Russell. 1998. Compiling Standard ML
to Java Bytecodes. In International Conference on Functional Programming (ICFP),
Baltimore, Maryland, USA. 129-140. http://doi.acm.org/10.1145/289423.289435

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Complete Mon-
itors for Behavioral Contracts. In European Symposium on Programming (ESOP).

Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The Impact of Higher-Order
State and Control Effects on Local Relational Reasoning. Journal of Functional
Programming 22, 4&5 (2012), 477-528.

Chung-Kil Hur and Derek Dreyer. 2011. A Kripke logical relation between ML and
assembly. In ACM Symposium on Principles of Programming Languages (POPL),
Austin, Texas.

Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis.
2016. Lightweight Verification of Separate Compilation. In ACM Symposium on
Principles of Programming Languages (POPL), St. Petersburg, Florida. ACM, 178-190.

Shriram Krishnamurthi, Peter Walton Hopkins, Jay Mccarthy, Paul T. Graunke, Greg
Pettyjohn, and Matthias Felleisen. 2007. Implementation and use of the PLT Scheme
web server. (2007).

Phillip Mates, Jamie Perconti, and Amal Ahmed. 2019. Under Control: Compositionally
Correct Closure Conversion with Mutable State (Technical Appendix). (July 2019).
Available at http://www.ccs.neu.edu/home/amal/papers/refcc-tr.pdf.

Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-
Language Programs. In ACM Symposium on Principles of Programming Languages
(POPL), Nice, France. 3-10.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. 1996. Typed Closure Conver-
sion. In ACM Symposium on Principles of Programming Languages (POPL), St. Pe-
tersburg Beach, Florida. 271-283.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From System F to
Typed Assembly Language. ACM Transactions on Programming Languages and
Systems 21, 3 (May 1999), 527-568.

Georg Neis. 2018. Compositional Compiler Correctness via Parametric Simulations. Ph.D.
Dissertation. Saarland University.

Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and
Viktor Vafeiadis. 2015. Pilsner: A Compositionally Verified Compiler for a Higher-
Order Imperative Language. In International Conference on Functional Programming
(ICFP), Vancouver, British Columbia, Canada.

Max S. New, William J. Bowman, and Amal Ahmed. 2016. Fully Abstract Compilation
via Universal Embedding. In International Conference on Functional Programming
(ICFP), Nara, Japan.

Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal Approaches to Secure
Compilation: A Survey of Fully Abstract Compilation and Related Work. Comput.
Surveys 51, 6, Article 125 (Feb. 2019), 36 pages.

Daniel Patterson and Amal Ahmed. 2017. Linking Types for Multi-Language Software:
Have Your Cake and Eat It Too. In 2nd Summit on Advances in Programming
Languages (SNAPL 2017) (Leibniz International Proceedings in Informatics (LIPIcs)),
Benjamin S. Lerner, Rastislav Bodik, and Shriram Krishnamurthi (Eds.), Vol. 71.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 12:1-12:15.
https://doi.org/10.4230/LIPIcs.SNAPL.2017.12

Daniel Patterson and Amal Ahmed. 2019. The Next 700 Compiler Correctness Theorems
(Functional Pearl). PACMPL 3, ICFP (Aug. 2019).

Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. 2017. Fun-
TAL: Reasonably Mixing a Functional Language with Assembly. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Barcelona,
Spain.

James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Using Multi-
Language Semantics. In European Symposium on Programming (ESOP).

Christian Queinnec. 2003. Inverting Back the Inversion of Control or, Continuations
Versus Page-centric Programming. SIGPLAN Not. 38, 2 (Feb. 2003), 57-64.

Gabriel Scherer, Max S. New, Nick Rioux, and Amal Ahmed. 2018. FabULous Interop-
erability for ML and a Linear Language. In FOSSACS.

PPDP ’19, October 7-9, 2019, Porto, Portugal

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Com-
positional CompCert. In ACM Symposium on Principles of Programming Languages
(POPL), Mumbai, India.

James Gordon Stewart. 2015. Verified Separate Compilation for C. Ph.D. Dissertation.
Princeton University.

Peng Wang, Santiago Cuellar, and Adam Chlipala. 2014. Compiler Verification Meets
Cross-Language Linking via Data Abstraction. In ACM Symposium on Object Ori-
ented Programming: Systems, Languages, and Applications (OOPSLA).

Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An Abstract Stack Based Approach
to Verified Compositional Compilation to Machine Code. In ACM Symposium on
Principles of Programming Languages (POPL), Lisbon, Portugal.

	Abstract
	1 Introduction
	2 The Source and Target Languages
	3 Typed Closure Conversion
	4 Multi-Language Semantics
	5 Compositional Correctness of Closure Conversion
	6 Examples: Linking with Target Code That Uses Call/cc
	6.1 A Simple Example with Callbacks
	6.2 Linking with a Threads Library

	7 Logical Relation for M+C
	7.1 Properties of the M+C Logical Relation
	7.2 Correctness of Closure Conversion

	8 Related Work and Discussion
	Acknowledgments
	References

