Optimizing the Cost of Executing Mixed Interactive and Batch
Workloads on Transient VMs

Pradeep Ambati
University of Massachusetts Amherst
lambati@umass.edu

ABSTRACT

Container Orchestration Platforms (COPs), such as Kubernetes, are
increasingly used to manage large-scale clusters by automating
resource allocation between applications encapsulated in contain-
ers. Increasingly, the resources underlying COPs are virtual ma-
chines (VMs) dynamically acquired from cloud platforms. COPs
may choose from many different types of VMs offered by cloud
platforms, which differ in their cost, performance, and availability.
While transient VMs cost significantly less than on-demand VMs,
platforms may revoke them at any time, causing them to become
unavailable. While transient VMs’ price is attractive, their unrelia-
bility is a problem for COPs designed to support mixed workloads
composed of, not only delay-tolerant batch jobs, but also long-lived
interactive services with high availability requirements.

To address the problem, we design TR-Kubernetes, a COP that op-
timizes the cost of executing mixed interactive and batch workloads
on cloud platforms using transient VMs. To do so, TR-Kubernetes
enforces arbitrary availability requirements specified by interactive
services despite transient VM unavailability by acquiring many
more transient VMs than necessary most of the time, which it then
leverages to opportunistically execute batch jobs when excess re-
sources are available. When cloud platforms revoke transient VMs,
TR-Kubernetes relies on existing Kubernetes functions to internally
revoke resources from batch jobs to maintain interactive services’
availability requirements. We show that TR-Kubernetes requires
minimal extensions to Kubernetes, and is capable of lowering the
cost (by 53%) and improving the availability (99.999%) of a repre-
sentative interactive/batch workload on Amazon EC2 when using
transient compared to on-demand VMs.

CCS CONCEPTS

« Software and its engineering — Cloud computing.

ACM Reference Format:

Pradeep Ambati and David Irwin. 2019. Optimizing the Cost of Executing
Mixed Interactive and Batch Workloads on Transient VMs. In ACM SIGMET-
RICS / International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’19 Abstracts), June 24-28, 2019, Phoenix, AZ, USA.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3309697.3331489

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMETRICS °19 Abstracts, June 24-28, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6678-6/19/06.

https://doi.org/10.1145/3309697.3331489

Performance Evaluation Review, Vol. 47, No. 1, June 2019

David Irwin
University of Massachusetts Amherst
irwin@ecs.umass.edu

1 INTRODUCTION

Container Orchestration Platforms (COPs), such as Kubernetes [2],
Mesos, and others, have evolved into de facto cluster “operating
systems” by automating the deployment of distributed applica-
tions encapsulated in containers, and managing the allocation of
resources between them. COPs manage clusters of tens of thousands
of machines, and serve as the primary interface users interact with
to harness cluster resources. Thus, COPs must support the availabil-
ity and performance requirements of a wide range of applications,
including long-lived interactive services and non-interactive batch
jobs, while also maintaining high cluster utilization.

COPs were originally developed for managing a mostly static
set of dedicated physical machines in data centers. However, in-
creasingly, the resources that underly COPs are virtual machines
(VMs) dynamically acquired from cloud platforms. These platforms
offer many types of VMs under a variety of different contracts,
which differ in their cost, performance, and availability. In particu-
lar, transient VMs are an increasingly popular VM type, since they
typically cost 50-90% less than on-demand VMs. However cloud
platforms reserve the right to reclaim transient VMs at any time
to satisfy higher priority tasks. Thus, while transient VMs’ low
price is attractive, their unreliability makes them unsuitable for
COPs that must support long-lived interactive services with high
availability requirements. As a result, prior work focuses primarily
on optimizing only batch workloads for transient VMs.

To address the problem, we design TR-Kubernetes, a transient-
aware COP that supports both batch jobs and interactive services
with high availability requirements at low cost using transient VMs.
To do so, TR-Kubernetes enables interactive services to explicitly
specify their capacity availability requirements. TR-Kubernetes’s
provisioning policy then selects a mix of different transient VMs,
from among the hundreds offered by cloud platforms, that satisfies
the capacity availability requirement with high probability. As we
discuss, to enforce high availability using unrealiable transient
VMs, TR-Kubernetes must acquire many more transient VMs than
necessary most of the time. TR-Kubernetes automatically leverages
the excess capacity to run batch jobs.

2 BACKGROUND

Container Orchestration Platforms. There are many publicly-
available COPs that offer similar functionality and support diverse
workloads on large, mixed-use clusters, including Kubernetes [2],
Mesos (with Marathon), and Docker Swarm. These platforms not
only manage the allocation of cluster resources, but also provide
a rich set of functions for supporting distributed applications and
tightly integrate with cloud platforms. A key assumption COPs
make is that distributed applications that run on them can handle i)
the failure or revocation of containers, and ii) the allocation of new

45

replacement containers. Since TR-Kubernetes extends an existing
COP in Kubernetes, it makes the same assumptions as above.
Transient Cloud VMs. Transient VMs are available temporarily
for an uncertain amount time, as platforms may revoke them at
any time with little warning. As discussed above, since COPs sup-
port revocations, they implicitly allocate transient VMs to lower-
priority jobs, which are generally batch jobs. Each of the major
cloud platforms—Google Cloud Platform, Microsoft Azure, and
Amazon EC2—now offer a variant of transient VMs.

3 DESIGN

TR-Kubernetes’s design relies heavily on existing functions built
into Kubernetes, as well as other COPs. The primary difference is
that TR-Kubernetes enables users to specify a capacity availability
requirement for an aggregate amount of computational capacity
for an interactive service. These include an offline tool that runs
TR-Kubernetes’s provisioning algorithm to generate service descrip-
tions, which specify the transient VMs necessary to satisfy the
capacity availability requirement. This service description is then
submitted via the Kubernetes command-line tool.

Provisioning Algorithm. TR-Kubernetes enables users to specify
an availability requirement for a specified capacity in their service
description for an interactive task. In this work, we assume interac-
tive services are stateless and leverage Kubernetes’s built-in load
balancer to distribute requests across VMs. Our provisioning policy
addresses the problem of selecting transient VMs by jointly opti-
mizing both cost and availability subject to the availability target.
To do so, TR-Kubernetes maintains a table of price and availability
estimates for each transient VM. Given the table, computing the
aggregate availability of different capacities for a pool of transient
VMs is non-trivial, especially if transient VM availability is highly
correlated. Fortunately, our analysis on EC2 spot VMs showed that
availability for spot VMs is not highly correlated.

Computing the Availability of a Target Capacity. Since tran-
sient VMs of a given type are either available or unavailable, our
approach, described below, essentially computes the probability of
all possible available/unavailable combinations, and then sums the
probabilities of all combinations that yield a capacity > C. To do so,
we first denote each transient VM’s availability as p; and its capac-
ity as c;. We can then represent a transient VM i as a polynomial
Qi(x) of degree n; X c;, where we have n; for each transient VM i.

Qi(x) = (1 = pi)x® + pxici (1)

Here, the exponents of x represent the capacity of transient VMs
of type i, while their coefficients represent the probability that a
certain capacity is available (either zero or n; X c;). This polynomial
representation indirectly represents the probability mass function
(PMF) of transient VMs of type i.

To compute availability of a capacity C for a pool of N different
transient VM types, with n; of each type, we derive our represen-
tation of the PMF of the transient VM pool by simply multiplying
the polynomials of each transient VM, as they are independent.

N
Qpoot(x) = [| Qit) @
i=1

From this equation, we can compute the availability at a target ca-
pacity m (m < C) by simply adding the coefficients of x’s exponents,

46

where the respective exponent is > m, as these are the combinations
of transient VMs that satisfy the capacity requirement.

Greedy Algorithm. We next outline how TR-Kubernetes selects
transient VMs for the pool to minimize cost, while satisfying the
target level of availability for the specified capacity. The problem
is complex, since there are hundreds of transient VM types within
each cloud region, and we may select multiple instances of any
one transient VM. As a result, there are an exponential number of
possible pools that satisfy the capacity availability requirement.

Our problem appears similar to a multi-dimensional unbounded
knapsack problem, where the VMs are akin to items, ECUs and
availabilities are akin to weight dimensions, VM pools are akin to
knapsacks, and costs are akin to item value. However, there are
two primary differences that prevent applying common techniques,
such as dynamic programming, to the problem. First, in our problem
we do not know know the final number of ECUs (knapsack size)
required for a given target availability and secondly, availability
dimension in our problem is not strictly additive.

Thus we employ a greedy approach, which greedily selects
transient VMs one by one until the pool satisfies the specified
capacity availability requirement, or its cost exceeds the cost of
using on-demand VMs to satisfy the requirement, in which case
TR-Kubernetes requests on-demand VMs.

4 EVALUATION SUMMARY

We evaluate TR-Kubernetes at small scale on EC2 using our proto-
type, and at large scale over a long period using publicly-available
spot price traces and a month-long production job trace from
Google [3]. We run all simulation experiments using spot price
data from all 14 EC2 AZs in the U.S. Please see the full paper for
detailed results [1].

Prototype Results. Our prototype results focus on the application
performance and reliability impact of revocations. For these experi-
ments, we use a distributed web server that serves static content
as a representative application. Our results show that even in the
extreme case of three revocations per minute (which translates to
replacing 30% of the server replicas each minute), TR-Kubernetes
results in only 0.002% requests failing and its throughput degrades
by 17% only when using a single tier interactive service.
Simulation Results. Our simulation experiments analyze the po-
tential cost and availability of an interactive service using TR-
Kubernetes over 3 months using spot price data to infer realistic
cost characteristics. Experiment results shows that TR-Kubernetes
can achieve higher availabilities than using on-demand VMs at
a lower cost, ranging from 20% to 80% of the on-demand price
depending on the availability requirement.

Acknowledgements. This work is supported by NSF grant
#1802523 and Amazon’s AWS Cloud Credits for Research program.

REFERENCES

[1] Pradeep Ambati and David Irwin. 2019. Optimizing the Cost of Executing Mixed
Interactive and Batch Workloads on Transient VMs. Proc. ACM Meas. Anal.
Comput. Syst. 3, 2, Article 28 (June 2019). https://doi.org/10.1145/3326143

[2] B.Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. 2016. Borg, Omega,
and Kubernetes. ACM Queue - Containers 14, 1 (January-February 2016).

[3] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. 2011. Google cluster-usage
traces: format + schema. Technical Report. Google Inc.

Performance Evaluation Review, Vol. 47, No. 1, June 2019

