
Optimizing the Cost of Executing Mixed Interactive and Batch
Workloads on Transient VMs

Pradeep Ambati
University of Massachusetts Amherst

lambati@umass.edu

David Irwin
University of Massachusetts Amherst

irwin@ecs.umass.edu

ABSTRACT

Container Orchestration Platforms (COPs), such as Kubernetes, are

increasingly used to manage large-scale clusters by automating

resource allocation between applications encapsulated in contain-

ers. Increasingly, the resources underlying COPs are virtual ma-

chines (VMs) dynamically acquired from cloud platforms. COPs

may choose from many different types of VMs offered by cloud

platforms, which differ in their cost, performance, and availability.

While transient VMs cost significantly less than on-demand VMs,

platforms may revoke them at any time, causing them to become

unavailable. While transient VMs’ price is attractive, their unrelia-

bility is a problem for COPs designed to support mixed workloads

composed of, not only delay-tolerant batch jobs, but also long-lived

interactive services with high availability requirements.

To address the problem, we design TR-Kubernetes, a COP that op-

timizes the cost of executing mixed interactive and batch workloads

on cloud platforms using transient VMs. To do so, TR-Kubernetes

enforces arbitrary availability requirements specified by interactive

services despite transient VM unavailability by acquiring many

more transient VMs than necessary most of the time, which it then

leverages to opportunistically execute batch jobs when excess re-

sources are available. When cloud platforms revoke transient VMs,

TR-Kubernetes relies on existing Kubernetes functions to internally

revoke resources from batch jobs to maintain interactive services’

availability requirements. We show that TR-Kubernetes requires

minimal extensions to Kubernetes, and is capable of lowering the

cost (by 53%) and improving the availability (99.999%) of a repre-

sentative interactive/batch workload on Amazon EC2 when using

transient compared to on-demand VMs.

CCS CONCEPTS

• Software and its engineering → Cloud computing.

ACM Reference Format:

Pradeep Ambati and David Irwin. 2019. Optimizing the Cost of Executing

Mixed Interactive and Batch Workloads on Transient VMs. In ACM SIGMET-

RICS / International Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS ’19 Abstracts), June 24–28, 2019, Phoenix, AZ, USA.

ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3309697.3331489

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMETRICS ’19 Abstracts, June 24–28, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6678-6/19/06.
https://doi.org/10.1145/3309697.3331489

1 INTRODUCTION

Container Orchestration Platforms (COPs), such as Kubernetes [2],

Mesos, and others, have evolved into de facto cluster “operating

systems” by automating the deployment of distributed applica-

tions encapsulated in containers, and managing the allocation of

resources between them. COPsmanage clusters of tens of thousands

of machines, and serve as the primary interface users interact with

to harness cluster resources. Thus, COPs must support the availabil-

ity and performance requirements of a wide range of applications,

including long-lived interactive services and non-interactive batch

jobs, while also maintaining high cluster utilization.

COPs were originally developed for managing a mostly static

set of dedicated physical machines in data centers. However, in-

creasingly, the resources that underly COPs are virtual machines

(VMs) dynamically acquired from cloud platforms. These platforms

offer many types of VMs under a variety of different contracts,

which differ in their cost, performance, and availability. In particu-

lar, transient VMs are an increasingly popular VM type, since they

typically cost 50-90% less than on-demand VMs. However cloud

platforms reserve the right to reclaim transient VMs at any time

to satisfy higher priority tasks. Thus, while transient VMs’ low

price is attractive, their unreliability makes them unsuitable for

COPs that must support long-lived interactive services with high

availability requirements. As a result, prior work focuses primarily

on optimizing only batch workloads for transient VMs.

To address the problem, we design TR-Kubernetes, a transient-

aware COP that supports both batch jobs and interactive services

with high availability requirements at low cost using transient VMs.

To do so, TR-Kubernetes enables interactive services to explicitly

specify their capacity availability requirements. TR-Kubernetes’s

provisioning policy then selects a mix of different transient VMs,

from among the hundreds offered by cloud platforms, that satisfies

the capacity availability requirement with high probability. As we

discuss, to enforce high availability using unrealiable transient

VMs, TR-Kubernetes must acquire many more transient VMs than

necessary most of the time. TR-Kubernetes automatically leverages

the excess capacity to run batch jobs.

2 BACKGROUND

Container Orchestration Platforms. There are many publicly-

available COPs that offer similar functionality and support diverse

workloads on large, mixed-use clusters, including Kubernetes [2],

Mesos (with Marathon), and Docker Swarm. These platforms not

only manage the allocation of cluster resources, but also provide

a rich set of functions for supporting distributed applications and

tightly integrate with cloud platforms. A key assumption COPs

make is that distributed applications that run on them can handle i)

the failure or revocation of containers, and ii) the allocation of new

�✁✂✄☎✆✝✞✟✠✡ ☛☞✌✍✎✏✑✒✓✔ ✕✖✗✘✙✚✛ ✜✢✣✤ ✥✦✧ ★✩✪ ✫✬ ✭✮✯✰ ✱✲✳✴ ✵✶



replacement containers. Since TR-Kubernetes extends an existing

COP in Kubernetes, it makes the same assumptions as above.

Transient Cloud VMs. Transient VMs are available temporarily

for an uncertain amount time, as platforms may revoke them at

any time with little warning. As discussed above, since COPs sup-

port revocations, they implicitly allocate transient VMs to lower-

priority jobs, which are generally batch jobs. Each of the major

cloud platforms—Google Cloud Platform, Microsoft Azure, and

Amazon EC2—now offer a variant of transient VMs.

3 DESIGN

TR-Kubernetes’s design relies heavily on existing functions built

into Kubernetes, as well as other COPs. The primary difference is

that TR-Kubernetes enables users to specify a capacity availability

requirement for an aggregate amount of computational capacity

for an interactive service. These include an offline tool that runs

TR-Kubernetes’s provisioning algorithm to generate service descrip-

tions, which specify the transient VMs necessary to satisfy the

capacity availability requirement. This service description is then

submitted via the Kubernetes command-line tool.

Provisioning Algorithm. TR-Kubernetes enables users to specify

an availability requirement for a specified capacity in their service

description for an interactive task. In this work, we assume interac-

tive services are stateless and leverage Kubernetes’s built-in load

balancer to distribute requests across VMs. Our provisioning policy

addresses the problem of selecting transient VMs by jointly opti-

mizing both cost and availability subject to the availability target.

To do so, TR-Kubernetes maintains a table of price and availability

estimates for each transient VM. Given the table, computing the

aggregate availability of different capacities for a pool of transient

VMs is non-trivial, especially if transient VM availability is highly

correlated. Fortunately, our analysis on EC2 spot VMs showed that

availability for spot VMs is not highly correlated.

Computing the Availability of a Target Capacity. Since tran-

sient VMs of a given type are either available or unavailable, our

approach, described below, essentially computes the probability of

all possible available/unavailable combinations, and then sums the

probabilities of all combinations that yield a capacity ≥ C . To do so,

we first denote each transient VM’s availability as pi and its capac-

ity as ci . We can then represent a transient VM i as a polynomial

Qi (x) of degree ni × ci , where we have ni for each transient VM i .

Qi (x) = (1 − pi )x
0
+ pix

nici (1)

Here, the exponents of x represent the capacity of transient VMs

of type i , while their coefficients represent the probability that a

certain capacity is available (either zero or ni ×ci ). This polynomial

representation indirectly represents the probability mass function

(PMF) of transient VMs of type i .

To compute availability of a capacity C for a pool of N different

transient VM types, with ni of each type, we derive our represen-

tation of the PMF of the transient VM pool by simply multiplying

the polynomials of each transient VM, as they are independent.

Qpool (x) =

N∏

i=1

Qi (x) (2)

From this equation, we can compute the availability at a target ca-

pacitym (m ≤ C) by simply adding the coefficients of x ’s exponents,

where the respective exponent is ≥ m, as these are the combinations

of transient VMs that satisfy the capacity requirement.

Greedy Algorithm.We next outline how TR-Kubernetes selects

transient VMs for the pool to minimize cost, while satisfying the

target level of availability for the specified capacity. The problem

is complex, since there are hundreds of transient VM types within

each cloud region, and we may select multiple instances of any

one transient VM. As a result, there are an exponential number of

possible pools that satisfy the capacity availability requirement.

Our problem appears similar to a multi-dimensional unbounded

knapsack problem, where the VMs are akin to items, ECUs and

availabilities are akin to weight dimensions, VM pools are akin to

knapsacks, and costs are akin to item value. However, there are

two primary differences that prevent applying common techniques,

such as dynamic programming, to the problem. First, in our problem

we do not know know the final number of ECUs (knapsack size)

required for a given target availability and secondly, availability

dimension in our problem is not strictly additive.

Thus we employ a greedy approach, which greedily selects

transient VMs one by one until the pool satisfies the specified

capacity availability requirement, or its cost exceeds the cost of

using on-demand VMs to satisfy the requirement, in which case

TR-Kubernetes requests on-demand VMs.

4 EVALUATION SUMMARY

We evaluate TR-Kubernetes at small scale on EC2 using our proto-

type, and at large scale over a long period using publicly-available

spot price traces and a month-long production job trace from

Google [3]. We run all simulation experiments using spot price

data from all 14 EC2 AZs in the U.S. Please see the full paper for

detailed results [1].

Prototype Results. Our prototype results focus on the application

performance and reliability impact of revocations. For these experi-

ments, we use a distributed web server that serves static content

as a representative application. Our results show that even in the

extreme case of three revocations per minute (which translates to

replacing 30% of the server replicas each minute), TR-Kubernetes

results in only 0.002% requests failing and its throughput degrades

by 17% only when using a single tier interactive service.

Simulation Results. Our simulation experiments analyze the po-

tential cost and availability of an interactive service using TR-

Kubernetes over 3 months using spot price data to infer realistic

cost characteristics. Experiment results shows that TR-Kubernetes

can achieve higher availabilities than using on-demand VMs at

a lower cost, ranging from 20% to 80% of the on-demand price

depending on the availability requirement.

Acknowledgements. This work is supported by NSF grant

#1802523 and Amazon’s AWS Cloud Credits for Research program.

REFERENCES
[1] Pradeep Ambati and David Irwin. 2019. Optimizing the Cost of Executing Mixed

Interactive and Batch Workloads on Transient VMs. Proc. ACM Meas. Anal.
Comput. Syst. 3, 2, Article 28 (June 2019). https://doi.org/10.1145/3326143

[2] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. 2016. Borg, Omega,
and Kubernetes. ACM Queue - Containers 14, 1 (January-February 2016).

[3] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. 2011. Google cluster-usage
traces: format + schema. Technical Report. Google Inc.

�✁ ✂✄☎✆✝✞✟✠✡☛☞ ✌✍✎✏✑✒✓✔✕✖ ✗✘✙✚✛✜✢ ✣✤✥✦ ✧★✩ ✪✫✬ ✭✮ ✯✰✱✲ ✳✴✵✶


