
The Price is (Not) Right: Reflections on

Pricing for Transient Cloud Servers

David Irwin, Prashant Shenoy, Pradeep Ambati, Prateek Sharma†, Supreeth Shastri‡, Ahmed Ali-Eldin

University of Massachusetts Amherst †Indiana University ‡University of Texas at Austin

Abstract—Amazon introduced spot instances in December
2009, enabling “customers to bid on unused Amazon EC2
capacity and run those instances for as long as their bid exceeds
the current Spot Price.” Amazon’s real-time computational spot
market was novel in multiple respects. For example, it was the
first (and to date only) large-scale public implementation of
market-based resource allocation based on dynamic pricing after
decades of research, and it provided users with useful informa-
tion, control knobs, and options for optimizing the cost of running
cloud applications. Spot instances also introduced the concept of
transient cloud servers derived from variable idle capacity that
cloud platforms could revoke at any time. Transient servers have
since become central to efficient resource management of modern
clusters and clouds. As a result, Amazon’s spot market was the
motivation for substantial research over the past decade.

Yet, in November 2017, Amazon effectively ended its real-time
spot market by announcing that users no longer needed to place
bids and that spot prices will “...adjust more gradually, based on
longer-term trends in supply and demand.” The changes made
spot instances more similar to the fixed-price transient servers
offered by other cloud platforms. Unfortunately, while these
changes made spot instances less complex, they eliminated many
benefits to sophisticated users in optimizing their applications.
This paper provides a retrospective on Amazon’s real-time spot
market, including its advantages and disadvantages for allocating
transient servers compared to current fixed-price approaches.
We also discuss some fundamental problems with Amazon’s spot
market, which we identified in prior work (from 2016), that
predicted its eventual end. We then discuss potential options
for allocating transient servers that combine the advantages
of Amazon’s real-time spot market, while also addressing the
problems that likely led to its elimination.

.

I. INTRODUCTION

Amazon’s Elastic Compute Cloud (EC2) introduced spot in-

stances [1] on December 14th, 2009 [2], enabling “...customers

to bid on unused Amazon EC2 capacity and run those in-

stances for as long as their bid exceeds the current Spot Price.”

Amazon’s real-time computational spot market was novel in

multiple respects: it was the first (and to date only) large-

scale public implementation of market-based allocation of

computing resources based on dynamic pricing after decades

of research [3], [4], [5], and it provided users with useful

information, control knobs, and options for optimizing the

cost of running cloud applications. Perhaps most importantly,

spot instances also first introduced the concept of transient

servers [6], [7], which are derived from variable idle capacity,

and that platforms may revoke at any time. Transient servers

have since become central to efficient resource management

in modern clusters and clouds [8], [9], [10].

Spot instances were (and still are) highly attractive to users

due to their low spot price, which is stems from their low

reliability and is typically 50-90% lower than the fixed price

of on-demand servers. As a result, EC2’s spot market was the

motivation for substantial research in multiple areas over the

past decade, e.g., on optimizing bidding strategies [11], [12],

[13], [14], [15], [16], [17], [18], [19], [20], gracefully handling

revocations [7], [21], [22], [23], pricing in risk when selecting

cloud servers [24], [25], etc.

Yet, in November 2017, Amazon effectively ended its real-

time computational spot market by announcing that users no

longer needed to place bids and that spot prices will “...adjust

more gradually, based on longer-term trends in supply and

demand [26].” In addition, EC2 replaced the “bid price” with

a “maximum price,” and made setting it optional, such that

the default “maximum price” is equal to the instance type’s

corresponding on-demand price [27]. The changes made spot

instances more similar to the fixed-price transient servers

offered by other cloud platforms. Unfortunately, while these

changes made spot instances less complex, they eliminated

many benefits to sophisticated users in optimizing their appli-

cations. The goal of this paper is to provide a retrospective

on Amazon’s real-time computational spot market, including

its advantages and disadvantages for allocating idle cloud

server capacity compared to current fixed-price approaches by

Google and Microsoft’s cloud platforms. We first provide a

brief overview of spot instances and their intended purpose.

Spot instances were originally designed for applications

that are tolerant to delays and performance degradation due

to periodic resource unavailability, and thus can make use

of EC2’s fluctuating amount of idle capacity as it becomes

available. EC2’s (and other cloud provider’s) idle capacity

is likely large on average, as they must provision their total

server capacity for expected peak loads that rarely occur, or

risk annoying their users by rejecting too many of their VM

requests. Thus, spot instances enabled EC2 to earn additional

revenue from their (otherwise idle) server capacity, which is a

sunk cost. Importantly, since its idle capacity fluctuates, EC2

may need to revoke (or shutdown) spot instances at any time

to satisfy new requests for on-demand (or reserved instances),

which effectively reduces the supply of idle capacity. In con-

trast, EC2 does not forcibly revoke on-demand (or reserved)

instances. Figure 1 depicts this relationship between reserved,

on-demand, and spot instance pools, where the spot pool

fluctuates dynamically based on the unused reserved and on-

demand instances. Anytime EC2 allocates a new reserved or

✾�✁✂✄☎✆✝✞✟✠✡☛☞✌✍✎✏✑✒✓✔✕✖✗✘✙ ✚✛✜✢✣ ✤✥✦✧

Reserved

Instance Pool

Spot

Instance Pool
On-demand

Instance Pool

Reserved

Running Instance

Reserved

Idle Instance

On-demand

Instance
Spot Instance

Idle Servers

Fig. 1. Relationship between reserved, on-demand, spot instance pools hosted
on same set of physical cloud servers.

on-demand request, it reduces the resources available in the

spot instance pool and may result in a revocation.

Due to the possibility of revocation and their lack of avail-

ability guarantees, spot instances are much less valuable than

on-demand or reserved instances, which is typically reflected

in a spot price that is 2-10× less than the on-demand price.

In this case, by “value” we mean the useful performance

derived from a spot instance after accounting for the overhead

of revocation, which may include re-executing work lost on

revocation or implementing fault-tolerance mechanisms, such

as checkpointing and replication, to mitigate the impact of

revocation [28], [29]. Spot instances’ low cost is especially

attractive if applications do not require availability guarantees

and can gracefully handle periodic server revocations.

Of course, the key defining characteristic of spot instances

from the outset was their dynamic spot price that varied over

time. While EC2’s documentation never explicitly stated the

pricing algorithm, it did say that the spot price “...fluctuate[d]

periodically depending on the supply and demand of Spot

instance capacity,” and strongly implied that the price was

set equal to the lowest winning bid in a continuous sealed-bid

multi-unit uniform price auction. EC2’s global spot market

was (and is) massive—encompassing thousands of instance

types with distinct spot price dynamics—since it operated a

different spot market for each type of VM in each Availability

Zone (AZ) of each geographic region. EC2 also publishes spot

prices in real-time and makes the previous 3 months of data

accessible for download. As we discuss, the real-time spot

price data provided important visibility into EC2’s spot market

and the demand for different instance types, as well as the

underlying load dynamics of EC2’s cloud data centers.

Analyses of spot price data showed that EC2 periodically

changed the pricing algorithm, and suggested it may have

sometimes deviated from a simple uniform price auction, e.g.,

by having a hidden reserve price [30], [31]. Importantly, we

note that, since EC2 was the sole supplier, spot instances

were never sold in a “real” market, i.e., where the spot

price is determined by matching supply and demand among

competing buyers and sellers, as EC2 could manipulate the

price by manipulating the supply. For example, EC2 could

reduce the resources available in the spot pool even if there

were no reserved or on-demand requests, which would drive

up the real-time spot price. That said, EC2 did ensure that

spot instances would run “...as long as their bid exceeds

the current Spot Price.” Importantly, enforcing this revocation

policy required EC2 to set the instantaneous real-time spot

price such that it matched the instantaneous supply (of idle

server capacity) and demand (set of user bids and values).

To understand why, consider the scenario in Figure 2(a) with

a spot price equal to the N th highest bid for N available spot

instances (such that each user bids for a single instance). In

this case, the N available spot instances are allocated to the

N highest bids (b). However, if a new user bids greater than

the highest current bid (bnew in (c)) and the price reflects the

instantaneous matching of supply and demand, then the spot

price should change to the (N − 1)th highest bid, causing the

user with the N th highest bid to be revoked.

The revoked user with the N th highest bid should observe

that the spot price has risen above their bid price, which is

consistent with the revocation policy. The new user should be

allocated the revoked instance, since their bid is greater than

the spot price. Similarly, if the supply of idle server capacity

decreases (d), the spot price also increases such that any users

of revoked spot instances observes that the spot price rises

above their bid price. In contrast, if EC2 did not change the

spot price in these cases, then spot instances would have to be

revoked without the spot price rising above the corresponding

bid price, which contradicts the revocation policy. Thus, even

though EC2’s spot market was not a “real market,” its original

revocation policy did necessitate that it faithfully alter the spot

price to reflect the instantaneous supply and demand, so that

all users observed a consistent revocation policy. This resulted

in periods of high spot price volatility characterized by sharp

price spikes and dips, as noted in prior work [24], [25], [32],

[33]. This volatility is undesirable from a user’s perspective.

Undesirable spot price volatility likely led to Amazon’s

November 2017 announcement that spot prices will “...adjust

more gradually, based on longer-term trends in supply and

demand.” However, since these more gradual price adjustments

likely do not derive from instantaneously matching supply and

demand, then EC2 cannot enforce their original revocation

policy above. That is, users may have spot instances revoked,

or may not be able to acquire spot instances, when their

“maximum price” is above the spot price. There is evidence of

such behavior in the EC2’s spot market after the change [34].

As we discuss, this has profound effects on optimizing

applications for spot instances. The gradual spot price changes

and decoupling of spot price from revocations make EC2 spot

instances similar to transient server offerings from Google

Cloud Platform (GCE) (called Preemptible VMs [35]) and

Microsoft Azure (called Low-priority Batch VMs). In both

cases, GCE and Azure simply charge a fixed price for transient

servers and reserve the right to revoke them at any time. To

illustrate, Figure 3 shows the spot price of a m4.4xlarge

over 3 months both before and after the announcement above;

the horizontal line in the figure represents the on-demand

Spot Bids
(M bids)

Spot Instance Pool (N idle servers) Spot Bids

b1
b2
b3

bn

Spot Instance Pool (No idle servers)

b1 b4b3b2 b5

bn-1 bn

Spot Instance Pool (No idle servers)

b1 b4b3b2 b5

bn-1 bnew
bm

Idle Server Spot Instance

b) t=1, Spot Fulfilled: M > N c) t=2, Spot Revocation (spot price)a) t=0: Evaluating Spot bids

Spot price ($) = bn Spot price ($) = bn-1

Spot
Supply

1

2

3

n

Spot
Supply

1

2

3

n

Spot Bids
Spot

Supply
1

2

3

n

Spot Instance Pool (No idle servers)

b1 b4b3b2 b5

bn-1 bnew

d) t=3, Spot Revocation (supply)

Spot price ($) = bn-2

Spot Bids
Spot

Supply
1

2

3

n

Bid Accepted
(Resource Available)

Bid Rejected
(Resource NA)

X

bnew
b1
b2

bn

bm

bn-1bn-1

b1
b2
b3

bn

bm

bn-1

Fig. 2. Scenario a) and b) illustrate how spot requests are fulfilled, where the spot requests are sorted from highest to lowest based on the bid (top to bottom)
and are fulfilled based on the number of idle resources. Scenario c) represents arrival of a new spot bid (>spot price), which results in the revocation of
lowest bid request. Scenario d) depicts the spot revocation due to loss of the spot supply caused by on-demand and reserved requests.

✥�✁✂

✄☎✆

✝

✞

✟

✠

✡☛

☞✌

P
✍✎
✏
✑
✒✓
✔
✕
✖✗
✘✙
✚
✛
✜✢
✣
✤
✦✧

❚★✩✪

♠✫✬✭✮✯✰✱✲✳ ✴✵✶✷ ✸ ✹✺✻ ✼✽✾✿❀ ❁❂❃❄❅❆❇❈❉❊ ❋●❍■ ❏ ❑▲▼ ◆❖◗❘❙

Fig. 3. Comparison of m4.4xlarge spot VM price in us-west-1c over 3
months both before and after the EC2 spot pricing policy change.

price. The figure shows that before the change spot prices were

highly volatile, often spiking to well above the on-demand

price, while after the change, spot prices became largely fixed

with few variations over the entire 3 month period.

In this paper, we first outline both the advantages and

disadvantages of offering transient servers using a real-time

spot market (§II). We then discuss similar advantages and

disadvantages for the current, largely fixed-price, model that

resembles the one from GCE and Azure, and reasons EC2

likely adopted the simpler fixed-price approach (§III). We then

discuss possible avenues for addressing the problems with each

approach (§IV) before concluding (§V).

II. REAL-TIME SPOT MARKET PROS AND CONS

This section discusses the advantages and disadvantages of

selling transient servers in a real-time spot market where the

spot price is variable, and users bid on idle capacity and can

use it as long as their bid exceeds the spot price.

A. Advantages

Determines the Optimal Price.. The primary advantage of a

real-time spot market is that it automatically determines the

price necessary to sell the available supply, which varies over

time. If the demand is low or the supply is high, then the

price will drop, which, in theory, can attract additional demand

that can consume the available supply. In contrast, setting a

fixed price on a variable supply may result in periods where

demand is lower than supply (resulting in some idle capacity)

and where supply is lower than demand (requiring the cloud

platform to reject requests for VMs). Both cases reduce the

total revenue—-in the former by not selling all of the capacity,

and in the latter by selling the idle capacity for too low of

a price. The ability for markets to “automatically” set the

optimal price is the main reason that market-based allocation

of computing resources under constraint has been the subject

of research for more than 50 years [3], [4], [36], [5].

Reveals Important Information. EC2 always made the pre-

vious 3 months of spot price data available for each of the

thousands of spot instances it offered. In addition, there were

online archives that stored spot price data for many years. This

historical spot price data provided users important information

when making resource allocation decisions, as it enabled them

to estimate the frequency and distribution of both revocations

(at any bid level) and availability. Note that revocations and

availability are distinct metrics: revocations represent points

in time where the spot price rises above an instance’s bid

price, causing EC2 to revoke the instance, while availability

represents the percentage of time the spot price is below the

bid price. Thus, a spot instance can yield the same availability

across a wide range of revocation rates and characteristics.

Understanding revocations and availability characteristics is

important for applications, and can influence their choice of

spot instance and the value they derive from it. For example,

a stateless distributed web application that uses a frontend

load balancer to distribute requests across a large number

of active servers may not care much about the frequency of

revocations, since they have little impact on performance (as

the load balancer need only update its active server set when a

spot instance is revoked) [37], [38]. However, the application

would care about availability as it may require a certain target

capacity to be available for a certain percentage, e.g., 99.999%

available [38]. In contrast, a distributed machine learning

job that is iterating on volatile in-memory data may care

more about the revocation rate, since it influences the optimal

frequency for checkpointing volatile data to disk, i.e., that

balances the overhead of checkpointing with the expected time

required to re-generate volatile data lost on a revocation [23],

[25]. This application may care less about availability, either

because it is a background (rather than interactive) workload

without a strict deadline or because it always immediately

replaces a revoked spot instance with another one.

In both cases above, the applications use knowledge of each

spot instance’s volatility (or revocation rate) and availability

to better optimize their performance. In the case of the

stateless distributed web application, it may select different

spot instances with independent availability periods to ensure

that its aggregate capacity availability requirement is met [38].

In the case of a distributed machine learning job, it may select

the spot instance that offers the lowest cost when accounting

for the overhead of checkpointing and re-executing work on

revocations [39], [23], [25]. Analyzing spot instances prices

also enables applications to select different risk tolerances. For

example, prior work examines selecting different “portfolios”

of spot instances to adjust a distributed application’s risk

tolerance, since some spot instances offer a low price but

high volatility, while others may offer a high price but low

volatility [32]. The latter has the potential for lower cost on

average across many jobs, but may yield a higher variance in

cost for any one job, exposing the application to higher risk.

Prior work on optimizing applications for transient servers

generally generally uses information about volatility and avail-

ability to select transient servers with different characteristics

and to select and tune fault-tolerance mechanisms. For exam-

ple, Pado focuses on distributed batch jobs that are structured

as directed acyclic graphs (DAGs) of tasks, and only executes

tasks with few dependencies on transient servers, since a

revocation results in a low penalty [22]. SpotOn jointly selects

the optimal spot instance and fault-tolerance mechanism, e.g.,

replication or checkpointing, that offers the lowest cost to com-

plete a batch job based on an application’s resource usage. The

work shows that both the price characteristics and the resource

usage influence the optimal choice [24]. HotSpot chases low

prices by continuously migrating applications encapsulated to

the globally lowest price spot instance, and shows that doing

this also reduces the application’s revocation rate [40].

Numerous other works also optimize different applications

for spot instances (or transient servers) based on knowledge

of price, revocations, and availability. Since spot price data

reveals these characteristics, it is critically important for opti-

mizing applications for transient cloud servers.

Control of Revocation and Availability Characteristics. Not

only did the spot price reveal revocation rates and availability

of spot instances, it enabled applications to control the relative

frequency and availability of spot instances by raising or

lowering their bid. Thus, applications could “buy” a lower

revocation rate and higher availability by raising their bid

price. This ability to control revocation rates and availability

is important, as different applications may have different toler-

ances for revocations and availability. This control combined

with the ability to select from spot instances with different

price characteristics gave users a wide range of options when

compiling their “portfolio” of spot instances.

Control of Revocation and Availability Dependencies. The

real-time spot price and associated revocation policy also

enabled distributed applications useful control over the timing

of revocations. Distributed applications often synchronize their

state periodically as the application progresses. Many big

data frameworks, such as Hadoop and Spark, follow the

Bulk Synchronous Processing model [41] such that parallel

tasks periodically synchronize at barriers, where all tasks

must reach the barrier before the application proceeds. These

synchronization barriers degrade performance if progress is

non-uniform across tasks as the “fast” tasks end up waiting on

the “slow” (or straggler) tasks [39]. These types of distributed

batch jobs are attractive for spot instances as they involve bulk

data processing that is amenable to delays or performance

degradation due to revocations. However, if parallel tasks

experience different numbers of revocations, their performance

will be bottlenecked by the slowest task (i.e., the one with the

most revocations).

EC2’s real-time spot market enabled distributed applications

to indirectly control the timing of revocations across tasks.

Namely, any spot instance with the same bid would experience

revocations at the same time based on changes in the common

spot price. This control is powerful, as it enables distributed

applications to ensure that transient servers experience both

the same number of revocations and experience revocations at

exactly the same time. Thus, batch applications can maintain

uniform performance across parallel tasks even when execut-

ing on transient servers. This is not possible under the current

spot price model, as revocations are not necessarily correlated

with the spot price. Note that while existing models may bulk

revoke a single request of, say, N transient servers, there is

no way to add servers post facto with the same revocation

timings. This is simple in the real-time spot market, where you

simply make a new request for spot instances with the same

bid price. These new spot instances will have revocations at

exactly the same frequency and time as other spot instances

at this bid price. Thus, EC2’s spot market enables a kind of

coordinated elasticity for transient servers that enables users

to add transient servers with the same revocation pattern.

In addition to controlling the revocation dependencies, the

spot market also enables control of availability dependencies.

This is critical to running highly available interactive services

on spot instances via over-provisioning [38]. In particular,

spot instances of the same type requested with the same

bid will have exactly correlated periods of availability. In

addition, requesting a spot instance of the same type with a

higher bid will have availability periods that are a superset

of the the availability of the spot instances with a lower

bid. To understand why this control is important, consider

provisioning a multi-tier web application on spot instances

using a container manager, such as Kubernetes [8].

This generally requires specifying the resources for each

tier independently. However, if the availability periods are

independent for each tier, then the total availability of the

service will be the product of the availabilities of each tier.

Thus, if each tier is available with percentage p, then the total

availability will be pk for a k-tier service. For example, if

3-tier service has an availability of 99%, then the aggregate

availability of the service will only be only 99%3 = 97%. In

contrast, if we can specify each tier such that their availability

periods are entirely dependent and correlated, then the 3-

tier service availability would simply be the availability of

any given tier or 99%. This control enables such interactive

services to provide the same availability with many fewer

transient servers (at a lower cost).

EC2’s real-time spot market enabled sophisticated control

of availability and revocation dependency relationships across

server requests. As we discuss, the current fixed-price offerings

from Google and Microsoft do not.

Always Obtainable. Cloud platforms offer a wide range of

different purchasing options, as mentioned in §I, which gener-

ally specify a fixed price over some commitment duration. For

example, on-demand instances incur a fixed price per unit time

and, once allocated, allow users to relinquish them whenever

they are done. Similarly, reserved instances incur a fixed price

over the length of the reservation, which can vary from 1 to

3 years. EC2 also includes more esoteric purchasing options,

such as spot block and scheduled reserve. Spot block enables

users to reserve short blocks of time on demand, from 1 to 6

hours, such that the instance is always revoked at the end of

the block. Scheduled reserve enables users to reserve repeating

blocks of time at daily, weekly, or monthly intervals.

In general, since the price of these offerings does not adjust

dynamically to the demand, it is possible for EC2 to run out

of these resources. For example, prior work has shown that

the real-time price of spot instances (before the change in late

2017) is partially correlated with the availability of on-demand

instances [42]. The intuition was that the unavailability of on-

demand instances would drive up the price of spot instances,

since users could always obtain spot instances by bidding a

higher price. That is, the unavailability of on-demand servers

would increase the demand (and real-time price) of spot

instances. The work actively probed EC2 by requesting on-

demand instances during high spot price periods and observed

the rate at which the on-demand requests were rejected due

to “out of capacity” errors. This rate of on-demand rejection

correlated with high spot prices, such that the higher the spot

price the higher the on-demand rejection rate.

This insight reveals an important characteristic of spot

instances: since their price was dynamic, they were always

obtainable if users were willing to bid high enough for them.

This is not true for fixed price resources. Obtainability is

an important, yet often overlooked metric, in public cloud

platforms [43]. The metric is important for businesses, which

often want assurances that they can obtain cloud resources

to satisfy sudden increases in demand. Satisfying sudden

increases in demand (likely from new customers) is critical

for businesses. With the end of EC2’s real-time pricing, the

only way to ensure obtainability is on a long-term basis

by reserving instances for 1 to 3 year periods. Even then,

EC2 may reject requests for reservations to ensure they have

enough resources in their on-demand pool to satisfy requests.

This can be easily seen in the scheduled reserved option, as

some time periods “fill up” for scheduled reserved, such that

EC2 prevents additional users from reserving those times. In

general, though, users have little visibility into the obtainability

of different types of cloud servers.

B. Disadvantages

While EC2’s real-time spot market enabled numerous ad-

vantages, it also had a number of disadvantages that likely led

to its demise. We highlight the important disadvantages below.

Highly Complex. EC2’s spot market is highly complex with

thousands of server types, each with their own dynamic price.

Most users are likely not sophisticated enough to navigate this

complexity, and effectively use the information to optimize

their applications. While the advantages above are beneficial

for sophisticated users in optimizing their applications, most

of these advantages have been highlighted through research

and are likely not used in practice. Dynamic pricing may also

discourage enterprises from using spot instances despite their

low average price, as they typically have fixed IT budgets for

fixed resources that cannot accommodate variable pricing.

The volatility of the real-time spot market also often caused

the spot price to be significantly greater than the on-demand

price even if the average price was low. Initially, EC2 had no

limit on the bid value, and there were documented instances

of the spot price rising to greater than $1000 per hour for

instances with an on-demand price of $0.10 per hour (or

10k× higher price). This likely occurred due to convenience

bidding [44] where users bid excessively high prices to prevent

revocations from occurring under the assumption that the price

would never rise significantly above the on-demand price. Of

course, if everyone adopts this strategy, it will result in a

significant rise in the spot price. After these incidents, EC2

placed bid limits between 4-10× the on-demand price to limit

the negative impact of such convenience bidding strategies.

For enterprises that have already had difficulty adapting

from budgeting IT as capital costs to recurring cloud costs,

variable pricing may have discouraged the use of spot in-

stances. This may be one reason that Google and Microsoft

adopted fixed price models for their transient server offerings.

Requires Application Modifications. Using spot instances

typically requires application modifications to gracefully han-

dle revocations. While some applications may be designed to

handle rare failures, revocations differ from failures in that

they are an expected and frequent event, whereas failures are

rare and unexpected. Thus, designing applications to handle

revocations requires tuning fault-tolerance mechanisms to ac-

count for the costs of the mechanism, e.g., the frequency of

checkpointing or degree of replication. If users do not account

for these costs of revocations or fault-tolerance, then it is

possible for spot instances to result in an overall execution

cost that is actually higher than on-demand instances, even if

they have a lower price. The execution cost accounts for the

overhead due to revocation, while the price does not.

Recent work on resource deflation [45] proposes a different

model where resources are not simply revoked, but are just re-

duced to a minimal but still runnable state. This model is easier

for applications to handle since it does not subject them to

failure-like revocations, but only to performance degradation.

However, there are still issues here with handling non-uniform

performance, especially for synchronized applications [39].

For example, if resources are not uniformly deflated in a

distributed applications that periodically synchronizes its state,

it can result in “stragglers” that waste resources by waiting

for slow tasks to finish. In the cloud, these wasted resources

translate directly to wasted costs.

Ultimately, modifying applications to gracefully handle re-

vocations at low cost is often challenging and application-

specific, which may discourage use of spot instances. In-

terestingly, new serverless offerings which enable users to

execute time-limited stateless functions on-demand are similar

to transient servers in that they “revoke” the function after

some maximum running time, e.g., 300 seconds. However,

these offerings, unlike transient servers, require developers to

re-implement their applications with this usage model in mind.

Not Incentive Compatible. An incentive compatible auction

mechanism is one where every user is incentivized to bid

according to their true valuation. For example, a sealed-bid

Vickrey auction for a single item that charges the (highest)

winning bid the bid price of the second highest bid is known

to be incentive compatible and elicit truthful valuations from

bidders. That is, users gain no advantage from submitting a

bid that deviates from their actual truthful valuation. Vickrey-

Clarke-Groves (VCG) auctions extend this mechanism to mul-

tiple items. EC2 implied (although we do not know) that they

used a uniform price auction (possibly with a hidden reserve

price [30], [31] at certain times), which compared to VCG

auctions incentives bidders of multiple units to bid below their

truthful valuation. Of course, EC2’s auction was continuous

and revealed historical prices, which may also influence bids.

While EC2’s auction mechanism may not have been in-

centive compatible, the more significant problem with elic-

iting truthful bids is the presence of on-demand instances.

Sufficiently adaptive applications have a strong incentive to

always bid a value close to the on-demand price. If the

spot price exceeds the corresponding on-demand price, then

these applications can simply request on-demand instances and

switch to using them. Much prior work on optimizing for spot

instances adopted this simple bidding strategy [40], [25], [32],

[24], [20]. Thus, as applications that use spot instances become

more sophisticated, we would expect the real-time spot price to

rise to something close to the on-demand price. In fact, EC2

ingrained this bidding strategy into its tools for using spot

instances, such as Spot Fleet [46], which by default bids the

on-demand price. In addition, after the change in the pricing

algorithm that ended the real-time spot price, EC2 replaced

the bid with a “maximum price” that is set by default equal to

the corresponding on-demand price. Thus, the real-time spot

market likely never elicited truthful bids from users.

We highlighted this fact in prior work from 2016 argu-

ing that due to this EC2’s real-time spot market was not

sustainable [29]. In particular, as applications became more

sophisticated, the spot price would not only rise but become

more volatile, requiring applications to incur a higher revo-

cation overhead. The higher price and increased overhead

would eliminate nearly any benefit to using spot instances.

In addition, the presence of a risk-free on-demand price may

result in other ways to game the spot market. For example,

prior work points out that a low spot price relative to the

on-demand price actually implies that a spot instance has a

low risk of revocation, since it requires a larger change in

the supply/demand balance to trigger the revocation [40]. As

a result, the lowest priced spot instances are also the ones

with the lowest revocation risk. Thus, dynamically migrating

to the spot instance with the lowest price is highly attractive.

Of course, this strategy does not work if everyone does this.

We discuss these second-order effects on the market below.

Excessive Revocations. The frequency of revocations dictate

the inherent value of transient servers and spot instances. The

higher the revocation rate, the more overhead applications

incur from re-executing lost work or executing fault-tolerance

mechanisms. Thus, the revocation rate dictates the usable

resources of transient servers. Offering transient servers in a

real-time spot markets incurs strictly more revocations than

offering them for a fixed price. In the former case, revocations

can occur for two reasons: the underlying supply of spot

instances changes or the set of bids and values change. In

the latter case, revocations can only occur when the supply of

spot instances changes, as there are no user bids.

Thus, in a real-time spot market, even if the supply stays the

same, the spot price can be highly volatile due to competing

users out-bidding each other. As a result, a real-time spot

market will experience strictly more revocations than offering

transient servers for a fixed price, which decreases the usable

resources—not consumed by revocation overhead—and value

of the spot instance relative to selling them for a fixed price.

Thus, the more volatile the spot market, the less the resources

that are sold in the spot market are worth. This dynamic is

unlike the market for other commodities, and is another reason

why we previously argued that EC2’s real-time spot market

was not sustainable [29]. Note that these excessive revocations

are the “price” that is paid for enabling spot instances to be

always obtainable (an advantage from the previous section). To

have a resource that is always obtainable, the cloud platform

must be able to revoke that resource from other users in

response to a user request. Such user-induced revocations

cannot occur when using a fixed price.

Second-order Effects.. Many of the proposed cost reducing

optimizations for spot instances have potential second-order

effects that would likely increase real-time spot prices and

make them more volatile if widely adopted, which based on the

discuss above would result in more revocations and decrease

spot instances’ inherent value. For example, the HotSpot

system that continuously migrates to the lowest-priced spot

instance would increase volatility if everyone adopted it, as all

users would chase the same low prices, which would cause that

price to rise [40]. The rise would result in another migration

that would raise the price of another spot instance. Prior work

generally has not considered these second-order effects, since

most users of spot instances are currently unsophisticated. The

low real-time spot price is direct evidence of unsophisticated

users, since if all users were engaged in many of the optimiza-

tions mentioned above, the price of spot instances would be

closer to on-demand instances.

III. FIXED PRICE TRANSIENT SERVER PROS AND CONS

Since EC2’s late-2017 change in its spot pricing algorithm

to reflect only “longer-term trends in supply and demand,”

the spot price volatility has reduced significantly, as reflected

in Figure 3. Our analysis across thousands of spot instance

prices shows that, while there are some gradual increases and

decreases in spot prices over time, the vast majority of spot

instances now exhibit very little change in their spot price. In

effect, EC2’s spot market is now akin to GCE and Azure’s

fixed-price transient server offerings, as the price is largely

stable and does not reflect real-time supply and demand.

In some ways, the current EC2 approach represents the

worst of both worlds, as the spot price is technically still

dynamic and variable for users, so there is no assurance of

a stable price, even if the price is mostly fixed.. In addition,

allowing users to issue a default “maximum price” equal to the

on-demand price prevents EC2 from seeing users’ real value

function. While the previous approach did not necessarily elicit

truthful bids from all users, it did require users to place a

bid (there was no default), and likely provided some limited

visibility into user demand. It is likely that the large majority

of requests under the current approach just use the default

maximum price, regardless of their true valuation. As a result,

EC2 likely has less accurate information available to correctly

set the long-term spot price. In addition to the disadvantages

above, the fixed-price (or near fixed-price model in EC2’s case)

has advantages and disadvantages that roughly mirror those

from the previous section. We elaborate below.

A. Advantages

Less Complex. The fixed-price model is much easier for users

to understand and does not expose them to as much complexity

compared to real-time spot prices. The model is also easier to

budget for enterprises that are used to allocating fixed budgets.

This is likely the primary reason that EC2, as well as GCE

and Azure, have adopted this model. Less complex offerings

are more likely to be used and adopted by customers. Even

though the real-time spot price yields the “optimal” price in

theory, the price elasticity of demand for cloud servers may not

be high, since applications must typically be modified to use

transient servers. In general, if applications have been modified

and can gracefully use transient servers, they should use them,

since their price is less than the on-demand price. Thus, these

applications are not sensitive to the spot price. In contrast, if

applications have not been modified to use transient servers,

they cannot use them regardless of their price.

As a result, deriving the “optimal” price may not be a

significant advantage for a real-time spot market, especially

since the market does not necessarily elicit truthful bids.

Instead, encouraging users to spend the developer time to

modify their applications to run on transient servers may be

more effective at encouraging their use (and increasing revenue

from them). This is likely the primary reason Google and

Microsoft have adopted fixed-price transient server offerings.

Incentive Agnostic. The fixed-price model does not require

users to make bids, and so is agnostic to incentives and

gaming. However, as we discuss below, since users do not

know either revocation or availability information, there is less

opportunity to optimize applications to efficiently use fixed-

price transient servers.

Fewer Revocations. As mentioned in the previous section, in

a fixed-price model revocations only occur when the supply

of idle capacity changes. There are no revocations related to

changes in user demand, i.e., users outbidding other users. As

discussed above, fewer revocations is better for applications.

No Second Order Effects. There are no second order effects,

since applications have no revocation or availability informa-

tion to optimize for transient server characteristics. This is an

advantage in that users cannot game the market en masse in

a way that makes transient servers less useful, as can be done

with a real-time spot market.

B. Disadvantages

Non-optimal Pricing. The chosen fixed-price is guaranteed to

be non-optimal if demand. As a result, the approach may leave

excess resources available during periods of low demand, and

may require rejecting requests during periods of high demand.

However, this disadvantage may be offset due to increased use

from less complex pricing. Thus, while in theory, a fixed-price

reduces the potential revenue, in practice it may not have a

significant impact on the revenue from transient servers.

Requires Application Modifications. The fixed-price model

still includes revocations, and thus still requires application

modifications. Cloud providers likely view this as the largest

impediment to transient server adoption. Simplifying pricing,

may encourage developers to address the non-trivial applica-

tion modifications necessary to use transient servers.

Reveals No Information. The fixed-price model reveals no

information about transient server revocation and availability

characteristics. As a result, it is impossible to implement most

of the optimizations for transient servers proposed in prior

work on the fixed-price instances available from EC2, Google,

and Azure today. While this prevents gaming and second-

order effects, it also results in less efficient applications. For

example, a distributed machine learning job that iterates on

data stored in volatile memory may checkpoint this state too

frequently (or infrequently) resulting in a higher overhead than

necessary. Applications also will not be able to effectively

choose between different types of transient servers. In the real-

time pricing model, applications can see when demand for one

type of server rises, and then choose to select another server,

which represents a natural form of load balancing.

This lack of information is a major drawback. Prior work

has proposed methods for revealing some information about

availability and revocation rates [28] that could aid users in

optimizing their applications for transient servers. However,

unlike with spot instances, this information is not externally

verifiable by users. Defining service level objectives (SLOs)

that are not externally verifiable by users could potentially

lead to users accusing the platform of lying (or to the platform

actually lying). As a result, cloud providers often define SLOs

that are externally verifiable. In contrast, users can externally

verify that their revocation behavior conformed to the real-time

spot price by observing when their instances are allocated and

revoked relative to their bid and the spot price.

No Control of Revocation and Availability Characteris-

tics.. Not only do fixed-price transient servers not reveal any

information about revocation and availability characteristics,

they also do not enable any indirect control over them. This

eliminates an important dimension of optimization that is

available to applications in the real-time spot market.

No Control of Revocation and Availability Dependencies.

In EC2, GCE, and Azure there is no way to control the

dependency relationships between transient servers allocated

in different requests. These transient servers may be revoked

at different times and have independent availabilities. As men-

tioned earlier, many optimizations for distributed applications

rely on controlling these dependency relationships.

Not Always Obtainable. As mentioned earlier, fixed-price

resources are not always obtainable, as once demand exceeds

supply one user cannot take resources from another. Fixed-

price transient servers are essentially first-come-first-serve.

IV. MOVING FORWARD

The best way to offer transient cloud servers to users

remains an open research question. The spot price model has

significant advantages that enable sophisticated applications

to optimize their performance. However, the spot market

was not sustainable [29] for numerous reasons. In contrast,

offering transient servers for a fixed price is simpler (and

may encourage more usage), but prevent basic techniques to

optimize for transient servers, which decreases application

efficiency and transient server value. Thus, a key research

question is whether it is possible to combine the advantages of

both models. There are two basic approaches for addressing

this question: we can either start with the real-time spot price

model or the fixed price model and try to fix their respective

concerns. We discuss each approach below.

Fixing the Spot Market. The primary drawback of the spot

market is that it is highly complex for users. The drawback,

which likely motivated EC2 to alter their model, is easily ad-

dressed by having software services that allocate resources on

applications’ behalf. There is ample research into brokers [47],

derivative clouds [21], and virtual cloud service providers [48]

that mask the complexity of spot instances from applications.

Many of these approaches are transparent to applications and

implemented at the system [21] or middleware layer [24]. It is

also possible to embed market intelligence into applications,

so that they can respond to changing market conditions by

re-configuring themselves [25], [24], [32]. There are startup

companies as well focused on improving the efficiency of

cloud usage [49]. These companies are akin to “demand

response” companies for the energy sector, except they focus

on adjusting the resource usage of their clients’ applications

in response to changing cloud availability and prices.

Part of the challenge above also intersects the drawback

of requiring application modifications. As noted above, it is

possible to design approaches that are transparent to applica-

tions and implemented at the system layer. In addition, recent

work proposes using resource deflation rather than abrupt

shutdowns to revoke resources, which has less impact on

application correctness [45]. New execution models, such as

serverless, also require applications to be re-developed as a set

of stateless function executions of short duration, e.g., less than

300 seconds. Thus, serverless applications could likely execute

on transient servers with few modifications, as the maximum

function duration is nearly as small as the revocation warning.

Incentive compatibility is more difficult to fix, as the pres-

ence of fixed-price on-demand instances influences bid values.

This might require either abandoning the fixed-price model

and selling on-demand instances for a variable price, which

is highly unlikely for the foreseeable future. However, once

software systems are flexible enough to handle revocations,

price dynamics, elasticity, and dynamic adaptation, there may

be less reason to sell on-demand resources for a fixed price.

That said, it depends on the efficiency gains (and peak-to-

trough) ratio of cloud usage, which is currently not known.

If the peak-to-trough is high, then the gains from dynamic

pricing may be significant. Addressing incentive compatibility

would go a long way towards addressing both excessive

revocations and second-order effects, since these concerns are

primarily a function of the lack of incentive compatibility.

Fixing the Fixed-price Model. The fixed-price model can-

not address its non-optimal price and lack of obtainability,

as these are a function of the fixed price. However, cloud

platforms could reveal more information about revocation

and availability of different VM types, as proposed in prior

work [28]. The challenge here is doing so in a way that

is externally verifiable by cloud users without compromising

user privacy. The spot pricing model indirectly is able to do

this via the spot price. Enabling visibility into revocation and

availability characteristics is related to exposing information.

In this case, cloud platforms might consider selling different

classes of transient servers that have different characteristics

for different prices [28]. Finally, enabling control of depen-

dency relationships is more straightforward to address. Cloud

platforms could enable users to link requests for transient

servers together, such that their revocations or availability

periods were concurrent. Of course, these control mechanisms

should be designed so that users are not able to game them.

V. CONCLUSIONS

This paper discusses the implications of EC2’s change in

its spot pricing algorithm such that the spot price does not

track instantaneous supply and demand, similar to the fixed-

price approach of Google and Microsoft. We then compare

market-based versus fixed pricing when offering transient

cloud servers. The best way to offer transient servers is still

an open research question. As a result, we discuss different

approaches for fixing the problems with both the spot market

approach and the fixed-price approach.

Acknowledgements. This work is funded by NSF grants

#1802523, #1815412, #1763834, #1836752, and #1405826, as

well as DOD ARL grant W911NF-17-2-019 and the Amazon

AWS Cloud Credits for Research program.

REFERENCES

[1] “Spot Instance Product Details,” https://aws.amazon.com/ec2/spot/details/,
Accessed August 2017.

[2] “Amazon EC2 Beta,” https://aws.amazon.com/about-aws/whats-
new/2009/12/14/announcing-amazon-ec2-spot-instances/, December
14th 2009.

[3] I. Sutherland, “A Futures Market in Computer Time,” Communications

of the ACM, vol. 11, no. 6, June 1968.
[4] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and

W. S. Stornetta, “Spawn: A Distributed Computational Economy,” IEEE

Transactions on Software Engineering, vol. 18, no. 2, February 1992.
[5] J. Shneidman, C. Ng, D. Parkes, A. AuYoung, A. Snoeren, A. Vah-

dat, and B. Chun, “Why Markets Could (But Don’t Currently) Solve
Resource Allocation Problems in Systems,” in HotOS, June 2005.

[6] R. Singh, P. Sharma, D. Irwin, P. Shenoy, and K. Ramakrishnan, “Here
Today, Gone Tomorrow: Exploiting Transient Servers in Datacenters,”
IEEE Internet Computing, vol. 18, no. 4, April 2014.

[7] R. Singh, D. Irwin, P. Shenoy, and K. Ramakrishnan, “Yank: Enabling
Green Data Centers to Pull the Plug,” in Symposium on Networked

Systems Design and Implementation (NSDI), April 2013.
[8] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,

Omega, and Kubernetes,” ACM Queue - Containers, vol. 14, no. 1,
January-February 2016.

[9] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale Cluster Management at Google with Borg,” in
European Conference on Computer Systems (EuroSys), April 2015.

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-grained Resource
Sharing in the Data Center,” in NSDI, March 2011.

[11] W. Guo, K. Chen, Y. Wu, and W. Zheng, “Bidding for highly available
services with low price in spot instance market (hpdc),” in The Interna-

tional ACM Symposium on High-Performance Parallel and Distributed

Computing, June 2015.
[12] M. Mazzucco and M. Dumas, “Achieving Performance and Availabil-

ity Guarantees with Spot Instances,” in International Conference on

High Performance Computing and Communications (HPCC), September
2011.

[13] I. Menache, O. Shamir, and N. Jain, “On-demand, Spot, or Both:
Dynamic Resource Allocation for Executing Batch Jobs in the Cloud,”
in International Conference on Autonomic Computing (ICAC), 2014.

[14] S. Zaman and D. Grosu, “Efficient Bidding for Virtual Machine In-
stances in Clouds,” in International Conference on Cloud Computing

(CLOUD), July 2011.
[15] Q. Zhang, E. Gürses, R. Boutaba, and J. Xiao, “Dynamic Resource

Allocation for Spot Markets in Clouds,” in Workshop on Hot Topics in

Management of Internet, CLoud, and Enterprise Networks and Services

(HotICE), March 2011.
[16] B. Javadi, R. Thulasiram, and R. Buyya, “Statistical Modeling of Spot

Instance Prices in Public Cloud Environments,” in UCC, December
2011.

[17] Y. Song, M. Zafer, and K. Lee, “Optimal Bidding in Spot Instance
Market,” in Infocom, March 2012.

[18] ——, “Optimal Bidding in Spot Instance Market,” in International

Conference on Computer Communications (Infocom), March 2012.
[19] L. Zheng, C. Joe-Wong, C. Tan, M. Chiang, and X. Wang, “How to

Bid the Cloud,” in ACM SIGCOMM Conference (SIGCOMM), August
2015.

[20] P. Sharma, D. Irwin, and P. Shenoy, “How Not to Bid the Cloud,” in
Workshop on Hot Topics in Cloud Computing (HotCloud), June 2016.

[21] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy, “SpotCheck:
Designing a Derivative IaaS Cloud on the Spot Market,” in European

Conference on Computer Systems (EuroSys), April 2015.
[22] Y. Yang, G. Kim, W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho, and

B. Chun, “Pado: A Data Processing Engine for Harnessing Transient Re-
sources in Datacenters,” in European Conference on Computer Systems

(EuroSys), April 2017.
[23] Y. Yan, Y. Gao, Z. Guo, B. Chen, and T. Moscibroda, “TR-Spark:

Transient Computing for Big Data Analytics,” in Symposium on Cloud

Computing (SoCC), October 2016.
[24] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy, “SpotOn: A

Batch Computing Service for the Spot Market,” in Symposium on Cloud

Computing (SoCC), August 2015.

[25] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy, “Flint: Batch-
Interactive Data-Intensive Processing on Transient Servers,” in European

Conference on Computer Systems (EuroSys), April 2016.
[26] J. Barr, “Amazon EC2 Update – Streamlined Access to

Spot Capacity, Smooth Price Changes, Instance Hibernation,”
https://aws.amazon.com/blogs/aws/amazon-ec2-update-streamlined-
access-to-spot-capacity-smooth-price-changes-instance-hibernation/,
November 28th 2017.

[27] D. Chelupati and R. Pary, “New Amazon EC2 Spot pric-
ing model: Simplified purchasing without bidding and fewer
interruptions,” https://aws.amazon.com/blogs/compute/new-amazon-ec2-
spot-pricing/, March 13th 2018.

[28] S. Subramanya, A. Rizk, and D. Irwin, “Cloud Spot Markets are Not
Sustainable: The Case for Transient Guarantees,” in HotCloud, June
2016.

[29] ——, “Cloud Spot Markets are Not Sustainable: The Case for Transient
Guarantees,” in HotCloud, June 2016.

[30] O. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, “Decon-
structing Amazon EC2 Spot Instance Pricing,” ACM Transactions on

Economics and Computation (TEAC), vol. 1, no. 3, 2013.
[31] ——, “Deconstructing Amazon EC2 Spot Instance Pricing,” in In-

ternational Conference on Cloud Computing Technology and Science

(CloudCom), November 2011.
[32] P. Sharma, D. Irwin, and P. Shenoy, “Portfolio-driven Resource Man-

agement for Transient Cloud Servers,” in International Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS), June
2017.

[33] S. Shastri and D. Irwin, “Towards Index-based Global Trading in Cloud
Markets,” in Workshop on Hot Topics in Cloud Computing (HotCloud),
June 2017.

[34] S. Fox, “New AWS Spot Pricing Model: The Good, the Bad,
and the Ugly,” https://autoscalr.com/2018/01/04/new-aws-spot-pricing-
model-good-bad-ugly/, January 4th 2018.

[35] “Google Cloud Platform: Preemptible Virtual Machines,”
https://cloud.google.com/preemptible-vms/, September 21st 2016.

[36] I. Stoica, H. Abdel-Wahab, and A. Pothen, “A microeconomic scheduler
for parallel computers,” in Workshop on Job Scheduling Strategies for

Parallel Processing (JSSPP), April 1995.
[37] A. Ali-Eldin, J. Westin, B. Wang, P. Sharma, and P. Shenoy, “SpotWeb:

Running Latency-sensitive Distributed Web Services on Transient Cloud
Servers,” in HPDC, June 2019.

[38] P. Ambati and D. Irwin, “Optimizing the Cost of Executing Mixed
Interactive and Batch Workloads on Transient VMs,” in International

Conference on Measurement and Modeling of Computer Systems (SIG-

METRICS), June 2019.
[39] P. Ambati, D. irwin, P. Shenoy, L. Gao, A. Ali-Eldin, and J. Albrecht,

“Understanding the Synchronization Costs of Distributed ML on Tran-
sient Cloud Resources,” in IC2E, June 2019.

[40] S. Shastri and D. Irwin, “HotSpot: Automated Server Hopping in Cloud
Spot Markets,” in SoCC, September 2017.

[41] L. Valiant, “A Bridging Model for Parallel Computation,” CACM,
vol. 33, no. 8, August 1990.

[42] X. Ouyang, D. Irwin, and P. Shenoy, “SpotLight: An Information Service
for the Cloud,” in International Conference on Distributed Computing

Systems (ICDCS), June 2016.
[43] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes, “Long-term SLOs

for Reclaimed Cloud Computing Resources,” in SoCC, 2014.
[44] J. Boutelle, “What to do when Amazon’s spot prices spike, in Gigaom,”

December 27th 2011.
[45] P. Sharma, A. Ali-Eldin, and P. Shenoy, “Resource Deflation: A New

Approach for Transient Resource Reclamation,” in European Conference

on Computer Systems (EuroSys), March 2019.
[46] J. Barr, “New Spot Fleet Option - Distribute Your Fleet Across Multiple

Capacity Pools,” AWS Blog, https://aws.amazon.com/blogs/aws/new-
spot-fleet-option-distribute-your-fleet-across-multiple-capacity-pools/,
September 15th 2015.

[47] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. Yocum,
“Sharing Networked Resources with Brokered Leases,” in USENIX, June
2006.

[48] L. Zheng, C. Joe-Wong, C. Brinton, C. Tan, S. Ha, and M. Chiang, “On
the Viability of a Cloud Virtual Service Provider,” in SIGMETRICS,
June 2016.

[49] F. Lardinois, “Spotinst, which helps you buy AWS Spot Instances, raises
$2M Series A, in TechCrunch,” March 8th 2016.

