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Class ambiguity refers to the phenomenon whereby similar features correspond to different classes at different 

locations. Given heterogeneous geographic data with class ambiguity, the spatial ensemble learning (SEL) 

problem aims to find a decomposition of the geographic area into disjoint zones such that class ambiguity is 

minimized and a local classifier can be learned in each zone. The problem is important for applications such 

as land cover mapping from heterogeneous earth observation data with spectral confusion. However, the 

problem is challenging due to its high computational cost. Related work in ensemble learning either assumes 

an identical sample distribution (e.g., bagging, boosting, random forest) or decomposes multi-modular input 

data in the feature vector space (e.g., mixture of experts, multimodal ensemble) and thus cannot effectively 

minimize class ambiguity. In contrast, we propose a spatial ensemble framework that explicitly partitions input 

data in geographic space. Our approach first preprocesses data into homogeneous spatial patches and uses a 

greedy heuristic to allocate pairs of patches with high class ambiguity into different zones. We further extend 

our spatial ensemble learning framework with spatial dependency between nearby zones based on the spatial 

autocorrelation effect. Both theoretical analysis and experimental evaluations on two real world wetland 

mapping datasets show the feasibility of the proposed approach. 
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1 INTRODUCTION 

Classifying heterogeneous geographic data with class ambiguity, i.e., same feature values 

corresponding to different classes in different locations, is a fundamental challenge in machine 

learning [14, 15]. Figure 1 shows an example in a wetland mapping application. The goal is to 

classify 
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Fig. 1. Real-world example of heterogeneous geographic data: class ambiguity exists in two white circles. 

remote sensing image pixels (Figure 1(a)) into wetland and dry land classes (Figure 1(b)). The two 

circled areas contain pixels that share very similar spectral values yet belong to two different classes 

(also called spectral confusion). As a result, decision tree and random forest classifiers learned from 

the entire image makes tremendous prediction errors as shown in Figure 1(c–d). The goal of spatial 

ensemble learning is to decompose the geographic area into zones to minimize class ambiguity and 

to learn a local model in each zone. 

Motivations: Spatial ensemble learning can be used in many applications where geographic data 

is heterogeneous with class ambiguity. For example, in remote sensing image classification, spectral 

confusion is a challenging issue [18]. The issue is particularly important in countries where the type 

of auxiliary data that could reduce spectral confusion—such as elevation data or imagery of high 

temporal and spatial resolution—is not available. In economic study, it may happen that old house 

age indicates high price in rural areas but low price in urban areas [9]. Thus, age can be an effective 

coefficient to classify house price in individual zones but ineffective in a global model. In cultural 

study, touching somebody during conversation is welcomed in France and Italy, but considered 

offensive in Britain unless in a sport field; the “V-Sign” gesture can mean “two” in America, 

“victory” in German, but “up yours” in Great Britain [27]. In these cases, spatial ensemble learning 

can provide a tool that captures heterogeneous relationships between factors (e.g., house age, 

gestures) and target phenomena (e.g., house price, culture meanings). 

Challenges: The SEL problem is computationally challenging. First, there are a large number of 

spatial samples (pixels) to partition. Second, the objective measure of class ambiguity is 
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nondistributive, i.e., the degree of class ambiguity in a zone cannot be easily computed from the 

degrees of class ambiguity in its sub-zones. Finally, given a geographic data, the number of 

candidate partitions is exponential to the number of spatial samples. It can be proved that finding an 

optimal zone partition is NP-hard. 

Related work: Spatial ensemble learning belongs to a general category of ensemble learning 

problems [5, 31, 38] in which a number of weak models are combined to boost prediction accuracy. 

Conventional ensemble methods, including bagging [2], boosting [10], and random forest [3], 

assume an identical distribution of samples. Thus, they cannot address heterogeneous geographic 

data with class ambiguity. Decomposition-based ensemble methods (also called divide-and-

conquer), including mixture of experts [16, 37] and multimodal ensemble [24], go beyond the 

identical and independent distribution assumption in that these methods can partition multi-modular 

input data and learn models in local partitions. Partitioning is usually conducted in feature vector 

space via a gating network, which can be learned simultaneously by an EM algorithm or modeled 

by radius basis functions [35] or multiple local ellipsoids [29]. However, partitioning input data in 

feature vector space cannot effectively separate samples with class ambiguity, because such samples 

are very “close” in non-spatial feature attributes. Other methods such as adding spatial coordinates 

into feature vectors can be ineffective, since it creates geographic partitions whose zonal footprints 

are hard to interpret and can be too rigid to separate ambiguous zones with arbitrary shapes. There 

are other techniques for spatially heterogeneous data. A geographically weighted model [9] uses 

spatial kernel weighting functions to learn local models. However, it requires to learn a local model 

at every location, which is computationally very expensive, and it cannot allow arbitrary shapes of 

spatial zones for local models. Gaussian process [22] and multi-task learning [11] can also be used 

for heterogeneous geographic data, but they do not particularly focus on the class ambiguity issue. 

The mixture-of-experts approach has been used for scene classification on images via sub-blocks 

partitioning and learning local experts. But that problem is to classify an entire image (not individual 

pixels) [33]. 

Our contributions: To address limitations of related work, in our recent work [17], we formulate 

a spatial ensemble learning framework that explicitly partitions input data in geographic space. Our 

approach first preprocesses data into homogeneous patches and then uses a greedy heuristic to group 

patches into contiguous zones while minimizing class ambiguity. A local model is learned from 

each zone to make predictions on samples in the same zone. In our recent work, we make the 

following contributions: (1) we formulate a novel spatial ensemble learning problem to classify 

heterogeneous geographic data with class ambiguity; (2) we propose effective and efficient 

algorithms, including constraint-based hierarchical clustering for homogeneous patch generation, 

as well as a bisecting algorithm to group patches into contiguous zones via greedy heuristics; (3) we 

conduct experimental evaluations on the classification and computational performance of proposed 

approach on real-world wetland mapping datasets. 

This article extends our recent work with the following additional contributions: (1) we provide 

theoretical analysis on the proposed algorithms, both on effectiveness and efficiency (time 

complexity); (2) we extend our previous spatial ensemble learning algorithm with spatial 

dependency constraint between adjacent-based classifiers to mitigate overfitting effect (when 

representative training samples do not exist within a zone but exist in another nearby zone); (3) we 

evaluate proposed extended method on a real-world dataset. We also add in full experiment results 

from our recent work. 

Scope: This article focuses on the class ambiguity issue in heterogeneous geographic data. Other 

recent advances that do not address class ambiguity, such as spatial-spectral classifiers [7], 
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objectbased image analysis [6, 25], metric learning, and active learning, fall outside the scope of 

this work. 

Outline: The article is organized as follows: Section 2 defines basic concepts and formalizes the 

spatial ensemble learning problem. Section 3 introduces our approach. Experimental evaluations are 

in Section 5. Section 6 discusses some other relevant works. Section 7 concludes the article with 

future work. 

Table 1. A List of Symbols and Descriptions 

Symbol Description 

F All samples in a raster framework 

L All labeled samples in F 

U All unlabeled samples in F 

si The ith spatial data sample 

xi The vector of non-spatial features 

li The vector of two spatial coordinates 

yi The class label of of sample si 

R(si,sj) Spatial neighborhood relationship 

P A patch 

Z A zone 

LZ All labeled samples in Z 

Nk (si) Feature space neighborhood of si 

a(si) Per sample class ambiguity 

a(Z) Per zone class ambiguity 

2 PROBLEM STATEMENT 

This section formally defines the problem. Table 1 provides descriptions of the symbols used in our 

problem definition. 

2.1 Basic Concepts 

Geographic raster framework: A geographic raster framework F is a tessellation of a 2-D plane into 

a regular grid. Each grid cell (or pixel) is a spatial data sample, defined assi = (xi,li,yi), 1 ≤ i ≤ |F|, 

where xi is a non-spatial feature vector, li is a two-dimensional vector of spatial coordinates, and yi ∈ 

{c1,c2, . . .,cp} is a class label among p categories. All the samples in F can be divided into two disjoint 

subsets, a labeled sample set L= {si = (xi,li,yi) ∈ F|yi is known} and unlabeled sample set U= {si = (xi,li,yi) 

∈ F|yi is unknown}. In the example of Figure 2(a), F has 64 samples, including 14 labeled samples 

(colored in “training labels”) and 50 unlabeled samples. Each sample has a onedimensional feature 

x and a class label (red or green). 

Geospatial neighborhood relationship: It is a Boolean function on two samples R(si,sj), whose 

value is true if and only if si and sj are spatially adjacent (i.e., two cells share a boundary). 
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Patch: A patch P is a spatially contiguous subset of samples, formally, P ⊆ F such that for any two 

samplessi,sj ∈ P
, either 

R(si,sj) is true or we can find a set of samplessp1,sp2, . . .,spL ∈ P such that R(si,sp1), 

R(spk ,spk+1), and R(spL,sj) are all true for 1 ≤ k ≤ L − 1. For example, all samples with input feature 

value 3 in Figure 2(a) form a patch. A patch is homogeneous if its samples have similar feature 

vectors (e.g., by Euclidean distance) and its labeled samples, if they exist, belong to only one class. 

For example, there are seven homogeneous patches highlighted in different gray scales in the first 

map of Figure 2(a). 

Zone: A zone Z is a number of homogeneous patches that are spatially contiguous with each other. 

It is a set of spatially contiguous samples in a raster framework Z ⊆ F with both labeled samples LZ 

=L ∩ Z and unlabeled samples UZ =U ∩ Z. In the example of Figure 2(c), zone 1 consists of three 

homogeneous patches, while zone 2 consists of four homogeneous patches. 

Class ambiguity refers to the phenomenon whereby samples with the same non-spatial feature 

vector belong to different classes due to spatial heterogeneity (e.g., heterogeneous terrains). For 

example, in Figure 2(a), the four samples labeled with feature valuex = 1 belong to different classes 

(two red and two green). A global decision tree model makes erroneous predictions (Figure 2(b)). 

 

Fig. 2. Illustrative example of problem inputs and outputs (best viewed in color). 

The degree of class ambiguity in a zone Z can be measured on its labeled samples LZ. We define the 

following three concepts to quantify class ambiguity: 

Feature space neighborhood: Feature space neighborhood of a sample si among all labeled 

samples LZ in zone Z is defined as Nk (si) = {sj ∈ LZ|sj  si,d(xi,xj) is the k smallest}, where d(xi,xj) is a 

metric function such as Euclidean distance. For example, for the red sample in the last column in 

the middle of Figure 2(a), its N2(si) can be any two labeled samples with x = 1 except the sample 

itself, including one red sample and two green samples. In this definition, we assume that labeled 

samples are locally dense in feature space to avoid the curse of dimensionality. In reality, this 
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assumption is often satisfied due to the spatial autocorrelation effect (i.e., nearby training samples 

often resemble each other). 

Per sample class ambiguity on a labeled sample si among all labeled samples LZ in zone Z is defined 

as the ratio of labeled samples in different class from si in its neighborhood Nk (si). Formal definition 

is in Equation 1, where I(·) is an indicator function. For example, the class ambiguity of the red 

sample in the last column of Figure 2(a) is = 0.5 if one red sample and one green sample (with 

feature x = 1) are selected as N2(si). Its value can also be = 1 if both green samples with feature 

value 1 happen to be selected as N2(si). 

1 

 a(si) =  j k i I(yj  yi) (1) 

k 
s ∈N (s ) 

The per zone class ambiguity of a zone is defined as the average of per sample class ambiguity 

over all labeled samples. It is formally defined in Equation (2). For example, in Figure 2(a–b), the 

class ambiguity in the zone of the entire raster framework is (  × 4 +  × 4 + 0 × 2 + 0 × 4)/14 = 0.3. 

Similarly, the per zone class ambiguity of Z1 or Z2 in Figure 2(c) is0. 

1 

 a(Z) = | | i a(si) (2) 

LZ s ∈LZ 

A spatial ensemble is a decomposition of a raster framework F into m disjoint zones {Z1,Z2, . . .,Zm} 

such that the average per zone class ambiguity is minimized. A local model can be learned in each 

zone Zi based on its labeled (training) samples LZi and then be used to classify unlabeled samples UZi 

in the same zone. The concept of a local model in each zone can be generalized to a set of models 

(e.g., bagging, boosting, random forest) in the zone. In other words, spatial ensemble learning can 

be used together with traditional ensemble methods since they are orthogonal. Figure 2(c) shows an 

example of spatial ensemble with m = 2. 

2.2 Problem Definition 

The spatial ensemble learning problem is defined as follows: Input: 

• A geographic raster framework F with labeled samples L and unlabeled samples U; 

• The number of zones in the spatial ensemble: m; 

• The parameter in feature space neighborhood: k. 

Output: A spatial ensemble with m contiguous zones such that: 
m 

arg min 
Z1,Z2,...,Zm 

a(Z 

m  i), 
i=1 



Spatial Ensemble Learning for Heterogeneous Geographic Data with Class Ambiguity 43:7 

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 4, Article 43. 

Publication date: August 2019. 

1 

where a(Zi) is the per zone class ambiguity, and f (Zi) is the number of isolated patches. 

Figure 2 shows a problem example. Inputs include a geographic data with 64 samples, 14 labeled 

(training) and 50 unlabeled, with one feature x and two classes (red, green) (Figure 2(a)). The class 

ambiguity of the entire framework is a(F) = 0.3, computed from the class histogram of training 

samples. A global decision tree makes prediction errors (Figure 2(b)). In contrast, a spatial ensemble 

with two zones in Figure 2(c) reduces per zone class ambiguity to zero. Predictions of local models 

show zero errors. 

The spatial ensemble learning problem is formulated as a geographical partition problem, because 

we assume that the underlying causes of class ambiguity is spatial heterogeneity. This phenomenon 

is also known as “ecological fallacy,” or spatial Simpson’s Paradox. Individual zones in spatial 

ensemble are contiguous to avoid overfitting (spatial regularization) and also to conform to the first 

law of geography, “Everything is related to everything else, but nearby things are more relevant 

than distant things” [34]. There are several other assumptions in our problem formulation. First, we 

assume samples in the raster framework form homogeneous patches. This is often true due to the 

spatial autocorrelation effect, particularly when the pixel resolution is high. Second, we assume 

feature vectors of unlabeled (test) samples are given within the same raster framework of training 

samples. In other words, the problem belongs to transductive learning. This can limit the scope of 

the problem. Finally, we assume a pixel belongs to only one class, i.e., there is no class ambiguity 

within a pixel. The computational challenges of the problem are discussed in Theorem 2.1. 

Theorem 2.1. The spatial ensemble learning problem is NP-hard. 

Proof. Here, we only provide main ideas. First, our objective function of per zone class ambiguity 

is non-monotonic and non-distributive. Thus, we cannot compare one candidate zone partitioning 

against another without computing class ambiguity. Second, the number of possible zone 

partitioning is beyond polynomial. This can be derived from the NP-hardness of grid graph 

partitioning problems [8].  3 PROPOSED APPROACH 

In this section, we present our algorithms to address computational challenges of the spatial 

ensemble learning problem. Our algorithms consist of two phases. First, input spatial data samples 

(both labeled and unlabeled) are clustered into homogeneous patches. We propose to use a 

constraint-based hierarchical spatial clustering approach (Section 3.1). After this, homogeneous 

patches are further grouped into contiguous zones through a recursive bisecting process (Section 

3.2). 

3.1 Preprocessing: Homogeneous Patches 

Given geographic data with all labeled and unlabeled samples, generating homogeneous patches 

can be considered as image segmentation [12] but with the constraint that labeled samples in the 

same patch, if they exist, belong to the same class. 

subject to (1)Zi ∩ Zj = ∅ fori  j, m 

(2) Zi =F, 

i=1 
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ALGORITHM 1: Homogeneous Patch Generation 

Input: 

• All samples in the raster framework: F 

• Spatial neighborhood relationship: R(·, ·) 

• The number of output patches: n, n  |F| Output: 

• A set of n patches: P= {P1,P2, . . .,Pn} 

1: Initialize a patch set P= {Pi = {si }|si ∈ F} 

2: while number of patches |P| > n do 

3: for each adjacent pair Pi and Pj do 

4: if d(Pi,Pj) has been computed then 

5: Continue to next for iteration 

6: if Lpi,Lpj either empty or same class then 

7: d(Pi,Pj) ← |Pi | |
1

Pj | si ∈Pi,sj ∈Pj d(xi,xj) 

8: else 

9: d(Pi,Pj) ← +∞ 

10: Find Pi,Pj with minimum dissimilarity d(Pi,Pj) 11: Merge 

these two patches: Pi ← Pi ∪ Pj, P ← P \ Pj 12: return P. 

 

Algorithm 1 shows our bottom-up hierarchical method to generate homogeneous patches. First, 

each data sample is initialized as a patch (step 1). The algorithm then repeatedly merges pairs of 

adjacent patches (patches with samples that are spatial neighbors) in a greedy manner. Only patch 

pairs whose labeled samples belong to the same class can be merged (step 6). The patch pair whose 

samples have the smallest feature dissimilarity (step 7) are merged first (steps 10–11). Merging 

continues until the number of patches is reduced to a given number n. In implementation, we can 

use a patch adjacency graph to efficiently find pairs of adjacent patches. The graph can be easily 

updated when two patches (nodes) are merged. Figure 3 shows a toy example. The input geographic 

data contains 64 samples with one feature and two classes (red and green). Adjacent samples with 

the same feature value are merged into a patch. For instance, all samples with feature value 4 in the 

upper left corner are merged into patchA. The final output is 7 homogeneous patches (shown by 

different shades: A to G). 
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Fig. 3. Illustration of homogeneous patch generation. 

Algorithm 1 has two major computational bottlenecks in its iterations: identification of the 

adjacent patch pair with the minimum dissimilarity on the entire map (step 10) and computation of 

dissimilarity values between new adjacent patch pairs (step 7). To address the first bottleneck, we 

propose to use a priority queue with adjacent patch pairs ordered by dissimilarity. To reduce the 

cost of patch dissimilarity computation, we reuse previously computed dissimilarity values when 

possible. 

Details of these computational refinements are in Algorithm 2. The algorithm maintains a 

neighborhood graph where nodes are patches and edges are spatial adjacency between patches. Edge 

weights eij are dissimilarity values between adjacent patch pairs (vi,vj). Initially, the graph is a grid 

graph with each sample (pixel) as a node (patch) (steps 1–2). Then, the algorithm repeatedly merges 

two neighboring nodes with the minimum edge weight until the total number of nodes (patches) are 

reduced to a required number n. To quickly find neighboring nodes with the minimum edge weight, 

we maintain a priority queue of all neighboring node pairs ordered by their edge weights (step 3) 

and extract the minimum element from the queue in each iteration (step 6). After extracted, the pair 

of nodes vi,vj are merged into a new node vn (step 10), and the corresponding edges are also updated. 

When computing the weights of edges connected to the new node vn, we reuse the weights of edges 

connected to nodesvi,vj (step 12) to avoid redundant computation (see definition of d(Pi,Pj) in steps 7 

and 9 in Algorithm 1). The weights of new patch pairs are added to the priority queue (step 13). 

Once nodes vi,vj are merged, their corresponding elements in the priority queue become obsolete. 

Thus, we maintain a hash set of all obsolete nodes (steps 1 and 9) to ignore their elements in the 

priority queue (steps 7–8). 

3.2 Group Homogeneous Patches into Zones 

After samples are clustered into homogeneous patches, the second phase of our spatial ensemble 

learning method aims to divide these patches into several contiguous groups (zones) to minimize 

class ambiguity within each group (zone). This can be considered as a planar graph partition problem 

where nodes are patches and edges are spatial adjacency. To group patches (nodes) into multiple 

zones, we propose a bisecting algorithm (Algorithm 3). The algorithm starts with one zone 

containing the set of all patches (steps 1–2), and then keeps breaking down the current most 

ambiguous zone into two until the number of zones reaches a required number (steps 3–7). The 

critical question now becomes how to divide a zone (set of patches) into two to minimize class 

ambiguity. This is done via another subroutine called TwoZoneSpatialEnsemble (Algorithm 4) 

whose details are introduced below. 

Since graph partitioning problems are generally computationally hard [8], in Algorithm 4, we 

propose a greedy heuristic that assign patches (graph nodes) into two zones maximizing inter-zone 
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class ambiguity while minimizing intra-zone class ambiguity. To do that, the algorithm uses a 

seedgrowing process to expand two zones on a patch adjacency graph. At the beginning, all patches 

ALGORITHM 2: Faster Homogeneous Patch Generation 

Input: 

• All samples in the raster framework: F 

• Spatial neighborhood relationship: R(·, ·) 

• The number of output patches: n, n  |F| Output: 

• A set of n patches: P= {P1,P2, . . .,Pn} 

1: Initialize a patch set P= {Pi = {si }|si ∈ F} 

2: Initialize a neighborhood graph G(V,E) with each patch as a node: vi =Pi 

= {si } for 1 ≤ i ≤ |F| 

eij = ⎧⎪⎨⎪⎩d∞(xi,xj) ifsi,sj are neighbors, same class or unlabeled 

otherwise 

3: Create a priority queue PQ with all neighbor pairs (vi,vj,eij) 

4: Initialize a set of obsolete nodes O ← ∅ 

5: while |V | > n and PQ not empty do 

6: (vi,vj,eij) ← ExtractMin(PQ) 

7: if vi ∈ O or vj ∈ O then 

8: Continue to next while iteration 

9: O ← O ∪ {vi } ∪ {vj } 

10: Create a new node vn merging vi,vj in G (Pn ← Pi ∪ Pj) 

11: for each other neighbor node vk of vi or vj do 
12: 

 ⎪⎪⎪⎧⎪⎪⎨ ek,ik|Pki|·|k Pki |+ieki ,j |jPkk,|·|j Pkj | j ifvk neighbors bothvi,vj 

ek,n = ⎪⎪⎪⎪⎩⎪dek(,Pi |,PP|kP|·|)|P||·|PkPk|·|i(||·|P+(PdP|+i(i||P|++Pke|,P|P)jjj|))|||PPk |·||·|PPj || ififvvkk 

neighborsneighborsvvij onlyonly 

|P |·|(P |+|P |) 
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13: Add edge (vk,vn,ek,n) to graph G 

14: Add (vk,vn,ek,n) into priority queue PQ 15: Remove 

obsolete nodes vi,vj and their edges 16: return P= V . 

 

are marked as unassigned (step 2), and the class ambiguity of all patch pairs (whether adjacent or 

not) are computed (step 3). The algorithm finds the two patches with the highest class ambiguity as 

initial seeds and assigns one patch to each zone, respectively (steps 4–5). The algorithm also 

maintains a set of frontier nodes (unassigned spatially adjacent nodes) F1,F2 for each zone (steps 6– 

7). Next, the algorithm iteratively grows a zone by adding a node from its frontier until all nodes 

are assigned (i.e., two frontiers are empty). 

When selecting a node from the frontier of a zone, we use a greedy heuristic that maximizes inter-

zone class ambiguity while minimizing intra-zone class ambiguity. This is shown in the formula of 

A1
k and A2

k (steps 10 and 14). In the formula of A1
k, the numerator is the maximum class ambiguity 

between the candidate patch Pk and patches in the other zone Z2, reflecting inter-zone class 

ambiguity, while the denominator is the maximum class ambiguity between Pk and patches in its 

corresponding zone Z1, reflecting intra-zone class ambiguity. We add a value 1 in the formula for 

normalization. To avoid the case in which most patches are assigned to one single zone, we also add 

a size-balance factor Bk
1 (Bk

2) to our heuristic. Size balance factor across two zones can be 

 

ALGORITHM 3: Bisecting Multi-zone Spatial Ensemble 

Input: 

• A set of homogeneous patches: P= {P1,P2, . . .,Pn} 

• The number of zones: m (m  n) 

• The parameter in class ambiguity measure: k 
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• The balancing parameter in our greedy heuristic: α Output: 

• A spatial ensemble of m zones: Z= {Z1, . . .,Zm} 1: Initialize a zone with all input 

patches: Z1 ← P 

2: Initialize a set of zones for outputs: 
Z 

← {Z1} 

3: while |Z| < m do 

4: Find the zone with max class ambiguity: 

Z0 = arg max a(Zi) 
Zi ∈Z 

5: Remove zone Z0 from result set: 
Z 

← 
Z 

\ Z0 6:

 = TwoZoneSpatialEnsemble(Z0, k, 

α) 

7: Z ← Z Z 

8: return Z 

 

measured via the entropy −r1 logr1 − r2 logr2, where r1 and r2 are the ratio of the sizes (number of 

samples) of zone 1 and zone 2 to their total size. A higher entropy value indicates more sizebalanced 

zones. We use a parameterα to weight the influence of two factors in our heuristic (step 12 and 16). 

The node with the maximum overall score Pk0 is selected and is added to its corresponding zone Zf0 

(step 18). The node is then removed from frontiers. Its original frontier is expanded with the node’s 

unassigned neighbors. Finally, all nodes are assigned, the frontiers become empty, and the two 

zones are returned (step 21). 

Running example: Figure 4 shows a running example of Algorithm 4 with the same input data as 

the example in Figure 3. Assume k = 2, α = 0.5, and m = 2. The adjacency graph of patches is 

Table 2. Patch Pairs with Non-zero Class Ambiguity 

Patch Pi Patch Pj a(Pi ∪ Pj) 

B F 0.5 

C D 0.5 

D C 0.5 

F B 0.5 

ALGORITHM 4: Two Zone Spatial Ensemble 

Input: 

• A set of homogeneous patches: P= {P1,P2, . . .,Pn} 

• The parameter in class ambiguity measure: k 

• The weight parameter in our greedy heuristic: α Output: 

• A spatial ensemble of two zones: {Z1,Z2} 

1: Create a spatial adjacency graph with patches as nodes 
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2: Initialize all nodes as unassigned 

3: Compute class ambiguity aij = a(Pi ∪ Pj) for any i  j 

4: Find Pi,Pj with max class ambiguity aij 

5: Initialize Z1 ← {Pi}, Z2 ← {Pj}, mark Pi,Pj as visited 

6: Initialize F1 with all unassigned neighboring patches of Z1 

7: Initialize F2 with all unassigned neighboring patches of Z2 

8: while F do 

9: for each  

10: 
A

k1+ sup
∈Z 

a(Pk,Po) //class ambiguity avoidance 
Po∈Z1 

11: Bk
1 ← SizeBalance(Z,Z2) //zone size balance 

Sk ← αA  12: Compute overall score: 

13: for each  
 k o 

14: 
A  

∈Z //class ambiguity avoidance 
Po∈Z2 

15: Bk
2 ← SizeBalance(Z1,Z2 ∪ {Pk}) //zone size balance 

16: Compute overall score: Sk
2 ← αA  

17: Find the Pk0 ∈ Ff0 (f0 ∈ {1, 2}) with max overall score 

18: Zf0 ← Zf0 ∪ {Pk0 }, mark Pk0 as visited 

19: F1 ← F1 \ {Pk0 }, F2 ← F2 \ {Pk0 } 

20: Expand Ff0 with all unassigned neighboring patches of Pk0 21: 

return {Z1, Z2} 

shown in Figure 4(b). Patch pairwise class ambiguity is shown in Table 2. The two zones are shown 

by two different colors. Frontiers are shown by solid edges connected to zones. Initially, Z1 = {C} 

and Z2 = {D} (Figure 4(b)). The frontier of Z1 is {B}, while the frontier of Z2 is {A,E,F,G}. In the next 

iteration, all candidate nodes from the frontiers have zero class ambiguity avoidance score, but node 

B has the highest size balance score, so it is selected to grow Z1. Nodes F,A,G,E are then selected 

consecutively. The final output two zones are shown in Figure 4(i). This output is slightly different 

from our problem example in Figure 2, but both reduce class ambiguity to zero. 

Algorithm 4 will face the situation whereby some patches do not have (or have only few) training 

samples. The algorithm still can work in this case, since it always starts with two patches with the 

largest class ambiguity (each contains sufficient training samples in an opposite class). In zone 

expansion steps, patches without training samples can appear in the frontier to be merged. For such 

patches, we will still use the same selection measures (i.e., class ambiguity avoidance, size balance). 
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It is just that adding a patch without training samples will not change class ambiguity of a zone; it 

can only impact the size balance. 

3.3 Extension with Spatial Dependency Across Zones 

In our current spatial ensemble framework, a base classifier is learned based on training samples in 

a zone itself and is only used to classify the samples within the same zone. In other words, base 

classifiers in different zones work independently. One potential limitation of this framework is that 

when the number of zones is large, the amount of training samples falling into each zone tends to 

reduce, posing a potential risk for overfitting. For example, there can be sub-areas in a zone whose 

representative training samples are partitioned into another zone due to our recursive zone partition 

process based on greedy strategy. In this case, these sub-areas may be misclassified due to lack of 

representative training samples in the zone. 

To address the challenge, we propose to use the multi-task learning framework to joint-learn base 

classifiers in different zones together. Each task is the process of learning a base classifier in a 

specific zone based on training samples in it. One main question is how to determine the relatedness 

between different tasks (zones). According to the first law of geography, “everything is related to 

everything else, but near things are more related than distance things.” Thus, zones that are adjacent 

to each other tend to be similar, and thus their classifiers should be related. However, in our spatial 

ensemble learning, we should also consider class ambiguity between zones, which indicates 

“negative” relatedness. If two zones have high class ambiguity, then we should avoid learning 

similar models between the two zones, because such models tend to misclassify ambiguous samples. 

Therefore, we define relatedness between different tasks based on both zone spatial adjacency and 

zone class ambiguity. Specifically, we define relatedness between zone Zi and zone Zj, i.e.,Wi,j, in 

Equation (3), where a(Zi ∪ Zj) is the class ambiguity, and σ > 0 is a parameter to control the impact 

of class ambiguity on task relatedness (a small σ value means more negative impact of class 

ambiguity on task relatedness). 

⎧
⎪⎨
⎪⎩ a(Z ∪Zj) 

Wi,j = eif Zi and Zj are spatially adjacent (3) 0 otherwise 

Based on the definition of task (zone) relatedness, we use multi-task learning with spatial 

dependency constraint across adjacent zones. The constraint is added to the objective (loss) function 

of individual models. Similar ideas have been studied before on feature vector space ensemble [23], 

but the effect on spatial ensemble has not been explored. Here, we use logistic regression as an 

example. The idea can be generalized to all base classification models with differentiable loss 

functions. The overall objective function can be specified as Equation (4): 

m 

L(β1, β2, . . ., βm) = 
− 

 k logP(yi |xi) + λ Wi,j (βi − βj)T (βi − βj) 

 − k=1 i ∈L ⎡ ⎢ ⎢ ⎢ ⎢   kT kTi i i,j i  kT i  i ⎥ ⎦ ⎤ ⎥ ⎥ ⎥ ⎥   − − 
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m k log ⎢ ⎣  −β x 1−y 
1 

y + λ Wi,j T (βi= 

 βj). 
e
 

(βi βj) k=1 i ∈L 1 + e−β x 1 + e−β x i,j 

(4) 

 

Fig. 5. Proof of class ambiguity measure as an upper bound of Bayesian error. 

The objective is convex but non-linear. Thus, the Newton Ralphson [36] method can be used to 

estimate optimal parameter values. After parameters βk for all zone k are learned, each base classifier 

can be used to classify samples within its own zone. Two base classifiers with high relatedness (both 

being spatially adjacent and with low class ambiguity) will share similar model parameters (their 

training samples are mutually utilized). This helps avoid overfitting when representative training 

samples of one zone happen to exist in nearby zones only. 

4 THEORETICAL ANALYSIS 

Theorem 4.1. The expectation of per zone class ambiguity measure is an upper bound of Bayesian 

error. 

Proof. Without the loss of generalizability, we provide proof for the case of binary classification 

(two classes). Assume that the prior probability of class 1 and class 2 in a zone Z are PZ (C1) and PZ 

(C2), respectively. Also assume that the conditional probability of a feature vector x in two classes 

are PZ (x|C1) and PZ (x|C2), respectively, as shown in Figure 5. The Bayesian error in Z can be 

expressed below for binary classes. The expression is based on the definition that Bayesian error 

rate is the lowest possible error rate for any classifier. The optimal classifier is the one that classifies 

a sample into a class with a higher probability. 

BayesianError(Z) =  min(PZ (C1)PZ (x|C1),PZ (C2)PZ (x|C2))dx 

x 

Assume that samples are locally dense in feature space (this assumption is often true when training 

samples are in the form of spatially contiguous patches and the spatial autocorrelation effect is high). 

The proposed per sample class ambiguity measure (a(s)) is an estimation of the percentage of 

opposite-class samples against the checked sample in a small neighborhood dx = {x |d  
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ϵ} in the feature vector space. This small neighborhood is approximated by our feature space 

neighborhood Nk (s) in per sample class ambiguity measure. Thus, the probability ratio at feature 

value x can be approximated by the corresponding class ratio in Nk (s): 

 ⎡ ⎢  ⎤  

 E[a(s)] = E ⎢ ⎢ ⎢ 1 k I(yj  y)⎥ ⎦ ⎥ ⎥ ⎥ ⎥  = PZ |
(C2)PZ (x|

C2) 
| , 

⎢ ⎣ k j (s) PZ (C1)PZ (x C1) + PZ (C2)PZ (x C2) s ∈N 

where x is the feature value of s. 

E[a(Z)] =PZ (C1)PZ (x|C1) · PZ |(C2)PZ (x|C2) | dx, x PZ (C1)PZ (x 

C1) + PZ (C2)PZ (x C2) 

+PZ (C2)PZ (x|C2) · PZ |(C1)PZ (x|C1) | dx, x PZ (C1)PZ (x 

C1) + PZ (C2)PZ (x C2) 

2P x PZ (C1)PZ (x|C1) + PZ 

(C2)PZ (x|C2) 

=Z (C1)P(x|C1)PZ (C2)PZ (x|C2) dx, 

1 

=x 
PZ (C1)P1Z (x |C1) + PZ (C2)P1Z (x |C2) dx. 

From the fact that the minimum of two values is smaller than their harmonic mean, we can get 

BayesianError(Z) ≤ E[a(Z)]. In multi-class scenarios, the neighbor samples of ans can be grouped 

into two parts, i.e., those in the same class as s and those in other classes, which simplify the problem 

into a binary case. Therefore, proposed per zone class ambiguity measure is an upper bound of 

Bayesian error.  

Theorem 4.1 is important, because Bayesian error rate is generally considered as the lowest 

possible error rate for any classifier in statistical classification. The fact that class ambiguity is an 

upper bound of Bayesian error theoretically justifies that minimizing class ambiguity through spatial 

ensemble learning (zone partitioning) can help reduce Bayesian error rate and thus improve 

classification performance in each zone. 

Theorem 4.2. The time complexity of baseline homogeneous patch generation (Algorithm 1) is 

O((N − n)(N + ep2)), where N is the total number of samples, n is the number of output patches, e 
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and p are the maximum number of neighbors and the maximum number of samples on each patch, 

respectively. 

Proof. The loop runs O(N − n) iterations. In each iteration, the algorithm needs to compute feature 

distance for any neighboring patch pair if its value does not exist already. This only happens when 

a patch is recently created through merging other patches. Thus, there are at most O(e) distance 

computations in each iteration, each costing O(p2). Together with a linear scan to select minimum 

distance pair, each iteration costs O(N + ep2). So, total cost is O((N − n)(N + ep2).  

Theorem 4.3. The time complexity of faster homogeneous patch generation (Algorithm 2) is 

O((N − n)(log N + ep2)), where N is the total number of samples, n is the number of output patches, 

e and p are the maximum number of neighbors and the maximum number of samples on each 

patch, respectively. 

Proof. The main difference between Algorithm 2 and Algorithm 1 is that the former uses a priority 

queue to extract the patch pair with the minimum distance, costing O(log N) instead of O(N) for each 

operation. Step 12 of Algorithm 2 also prunes out some redundant computation but does not improve 

the worst-case time complexity. So, the total cost is O((N − n)(log N + ep2).  

Theorem 4.4. The time complexity of two zone spatial ensemble (Algorithm 4) and bisecting 

spatial ensemble (Algorithm 3) is O(n2l2 logk) and O(mn2l2 logk), respectively, where m is the number 

of output zones, n is the number of input patches, l is the maximum number of labeled samples in 

each patch, and k is the class ambiguity parameter. 

Proof. We first analyze the time complexity of Algorithm 4. Step 3 computes class ambiguity of 

O(n2) patch pairs, each costing O(l2 logk) if we use a size k priority queue to maintain the current k-

nearest-neighbors in feature space. This is the most time-consuming part. After this, in each 

iteration, the algorithm selects one node from two frontiers with O(n) candidates. Evaluating each 

candidate costs O(n). So, the total cost is O(n2l2 logk + n2) = O(n2l2 logk). For Algorithm 3, in each 

“while” loop, it computes the zone with maximum class ambiguity, costingO((nl)2 logk) = O(n2l2 

logk), and then calls Algorithm 4, costing O(n2l2 logk). Thus, the total time complexity of 

Algorithm 3 is O(mn2l2 logk).  

5 EXPERIMENTAL EVALUATION 

The goal of the experiments was to: 

• Evaluate the classification accuracy of spatial ensemble learning. 

• Test the sensitivity of spatial ensemble to its parameters. 

• Evaluate the proposed extension with spatial dependency across zones. 

• Evaluate the computational costs of spatial ensemble algorithms. 

5.1 Experiment Setup 
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In the classification accuracy experiment, we compared the following methods: 

• Global model learning (i.e., learning models and making predictions on the entire study area), 

including single model, and bagging, boosting, and random forest [1]. 

• Decomposition-based ensemble via feature clustering, e.g., K means or hierarchical 

clustering (HC). Specifically, all samples are clustered into groups, and a base classifier (or 

bagging, boosting, and random forest of base classifiers) is learned in each group and makes 

predictions. 

• Hierarchical mixture of expert method [16, 37]. 

• Multimodal ensemble based on K means clustering from Reference [24]. 

• Spatial ensemble method with base classifiers as either a single model or model ensemble 

(bagging, boosting, and random forest). 

We also tested the sensitivity of spatial ensemble learning to its parameters, including the number 

of zones m, the base classifier type, class ambiguity measure parameter k, and balancing parameter 

α in greedy heuristic. The number of patchesn in preprocessing was determined via trying different 

values and visualizing the output homogeneous patches. For computational performance 

comparison, we compared our baseline and refined homogeneous patch generation algorithms 

(Algorithms 1 and 2). We also evaluated computational performance of the bisecting spatial 

ensemble algorithm (Algorithm 3). Codes for spatial ensemble and global models were implemented 

in Java and base classifiers were from Weka toolbox [1]. Codes for decomposition-based ensemble 

via feature clustering, as well as multimodal ensemble, were implemented in R. Codes for the 

hierarchical mixture of experts were in Matlab [26] (the code has only logistic regression as base 

classifiers). We conducted computational experiments on an iMac desktop with 4GHz Intel Core i7 

processor and 32GB DDR3 main memory. 

Dataset description: Our datasets were collected from two areas in Minnesota: Chanhassen and 

Big Stone [30]. We used eight explanatory features, including four spectral bands (red, green, blue, 

near-infrared) in high resolution (3m by 3m) aerial photos from the National Agricultural Imagery 

Program during leaf-off season, and four corresponding textures on homogeneity [28]. Class labels 

(wetland and dry land) were collected from the updated National Wetland Inventory. The 

Chanhassen scene contains 221 by 374 pixels, and the BigStone scene contains 718 by 830 pixels. 

We used systematic clustered sampling to select the training set and used remaining pixels as the 

test set (details in Table 3). 

Table 3. Dataset Description 

Scene 

Training 

Samples 

Test Samples 

Dry Wet Dry Wet 

Chanhassen 6,715 4,323 40,362 31,254 

Big Stone 45,483 27,138 345,557 177,762 

Evaluation metric: We evaluated the classification performance with confusion matrices and F-

score (harmonic mean of precision and recall) on the wetland class (wetland class is of more 

interest). 
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5.2 Classification Performance Evaluation 

5.2.1 Comparison on Classification Accuracy. In Chanhassen data, we set parameter values as n 

= 100, m = 6, k = 10, α = 0.9. In BigStone data, we set parameter values as n = 800, m = 20, k = 10, 

α = 0.9 (n and m were set higher in BigStone than in Chanhassen, because BigStone is larger). The 

classification accuracy results for the two datasets are summarized in Table 4 and Table 5, 

respectively. In the confusion matrix displayed in each table, the first and second rows show true 

dry land and wetland samples, respectively, and the first and second columns show predicted dry 

land and wetland samples, respectively. We can see that in global models, bagging, boosting, and 

random forest slightly improve a single decision tree (overall F-score increases by 0.03), but 

significant errors remain. Decomposition-based ensemble methods via feature space clustering—

e.g., K means or hierarchical clustering—improve global models from up to 0.79 to up to 0.84 in 

Chanhassen data, and from up to 0.78 to 0.84 in BigStone data. Note that we did not run hierarchical 

clustering on BigStone data due to the high computational cost on a large number of samples. 

Mixture of experts do not perform well on either dataset, even worse than global models, probably 

due to its logistic regression (generalized linear model) base classifiers. We also tried multimodal 

ensemble [24] with K-means clustering. The best results were achieved (F-scores of around 0.71 for 

Chanhassen dataset and around 0.81 for BigStone dataset) when we set up the number of clusters in 

each class as 2. But its performance quickly gets worse when we increase the number of clusters in 

each class. In summary, improvements of these methods over global models are largely due to their 

ensemble of local models in feature space. However, since training samples with class ambiguity 

can easily fall into the same cluster in feature space (due to highly similar feature values) though 

their classes are different, these methods cannot separate samples with class ambiguity. In contrast, 

the spatial ensemble of models achieve the best F-scores (over 0.9 on Chanhassen data, and up to 

0.86 on BigStone data). The improvements can be seen in the reduction on the number of false 

negatives in the confusion matrices (lower left corner) (around 80% reduction on Chanhassen data, 

and around 50% reduction on BigStone data, compared with global models). 

5.2.2 Effect of the Number of Zones m. To test the effect of the number of zones m in spatial 

ensemble learning, we fixed the other parameters the same as Section 5.2, but varying the number 

of zones m from 2 to 10 in Chanhassen data, and from 2 to 40 in BigStone data. We measured the 

overall F-score of the four spatial ensemble learning models over m. Results are summarized in 

Figure 6(d) and Figure 7(d). As can be seen, as the number of zones m increases, the classification 

accuracy of all spatial ensemble learning models improves and then reaches a plateau. Similar trends 

are shown on both datasets. It is worth noting that we have sufficient training samples falling into 

each zone in this case. For the case in which we have insufficient training samples falling into a 

zone, we can leverage the method proposed in Section 3.3, and its results are shown in Section 5.3. 

In practice, the parameter m can be determined based on the size and homogeneity 

Table 4. Results on Chanhassen (“SE” for Spatial Ensemble) 

Ensemble Method Confusion Matrix F score 

Global Single Model 
36,734 3,628 

0.76 
9,640 21,614 

Global Bagging 
36,497 3,865 

0.79 
8,272 22,982 

Global Boosting 
35,506 4,856 

0.79 
7,646 23,608 
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Global Random Forest 
36,867 3,495 

0.79 
8,349 22,905 

Kmeans with Single Model 
35,664 4,698 

0.79 
9,655 21,599 

Kmeans with Bagging 
36,430 3,932 

0.83 
7,868 23,386 

Kmeans with Boosting 
36,286 4,076 

0.83 
7,475 23,779 

Kmeans with Random Forest 
36,824 3,538 

0.84 
7,675 23,579 

HC with Single Model 
14,627 2,236 

0.79 
3,728 9,409 

HC with Bagging 
15,124 1,702 

0.83 
3,124 10,050 

HC with Boosting 
15,059 1,767 

0.83 
3,065 10,109 

HC with Random Forest 
15,208 1,618 

0.84 
3,160 10,014 

Mixture of Experts 
33,963 6,399 

0.71 
10,326 20,928 

SE with Single Model 
37,407 2,955 

0.92 
2,073 29,181 

SE with Bagging 
37,565 2,797 

0.93 
1,871 29,383 

SE with Boosting 
37,527 2,835 

0.93 
1,851 29,403 

SE with Random Forest 
37,609 2,753 

0.93 
1,688 29,566 

of the study area. The bigger and more heterogeneous a study area is, a larger m value is needed. 

We also tested the sensitivity of other feature space ensemble methods to the number of clusters. 

Results were shown in Figure 6(a–c) and Figure 7(a–b). We did not run hierarchical clustering on 

BigStone data due to the high computational cost on a large number of samples. In 

decompositionbased ensemble via feature clustering (e.g., K-means and hierarchical clustering), F-

scores only increase with m for single decision tree base classifiers and generally do not improve 

with m for bagging, boosting, and random forest base classifiers. From the results, feature space 

ensemble do not need a large number of clusters if base classifiers in each cluster are bagging, 

boosting, or random forest instead of single decision trees. The reason can be that bagging, boosting, 

and 

Table 5. Results on BigStone (“SE” for Spatial Ensemble) 

Ensemble Method Confusion Matrix F score 

Global Single Model 305,172 40,385 0.75 
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46,760 131,002 

Global Bagging 
313,625 31,932 

0.77 
45,586 132,176 

Global Boosting 
307,866 37,691 

0.76 
44,813 132,949 

Global Random Forest 
317,777 27,780 

0.78 
46,263 131,499 

Kmeans with Single Model 
315,721 39,943 

0.82 
38,705 128,950 

Kmeans with Bagging 
312,173 33,296 

0.83 
44,126 133,724 

Kmeans with Boosting 
313,313 32,156 

0.84 
43,769 134,081 

Kmeans with Random 

Forest 

316,663 28,806 
0.84 

44,299 133,551 

Mixture of Experts 
329,400 16,157 

0.60 
93,589 84,173 

SE with Single Model 
316,201 29,356 

0.85 
25,300 152,462 

SE with Bagging 
316,908 28,649 

0.86 
23,162 154,600 

SE with Boosting 
315,817 29,740 

0.85 
23,397 154,365 

SE with Random Forest 
318,009 27,548 

0.86 
22,926 154,836 

random forest are more complex models compared with single decision trees and thus do not need 

a large number of clusters in feature space. 

5.2.3 Effect of Base Classifier Type. The parameters were the same as Section 5.2. We chose 

several different base classifier types including decision tree (DT), SVM, neural network (NN), and 

logistic regression (LR). Results on two datasets are shown in Figure 8. We can see that spatial 

ensemble learning consistently outperforms global model learning on different base classifier types. 

The gap is narrower when neural network is used as a base classifier, probably due to its greater 

model complexity. 

5.2.4 Effect of the Parameter k in Class Ambiguity Measure. We fixed the same parameters as 

Section 5.2 except that we varied the parameter k from 5 to 25. Results of our four spatial ensemble 

models on different parameter k are summarized in Figure 9. From the results, we can see that the 

spatial ensemble learning algorithm is not sensitive to the value of k. This is partly because we test 

our algorithm to a relatively modest range of k. Since k is the number of nearest neighboring labeled 

samples in the feature space, a very big value of k will make the nearest neighbor samples not a 

good approximation of local distribution and thus degrade performance. In addition, class ambiguity 

measure based on a very large k may not be computable when the number of training 
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Fig. 6. Effect of the number of zones m on Chanhassen data. 

samples in a patch pair is much smaller than k. In practice, we can select a modest value of k, e.g., 

k = 5 or k = 10. 

5.2.5 Effect of the Parameter α in Greedy Heuristic. We fixed the same parameters as Section 

5.2 except that we varied the balancing parameter in our greedy heuristic α from 0 to 1. A higher α 

means a higher weight on class ambiguity avoidance than on zone size balance. Results are 

summarized in Figure 10. We can see that the spatial ensemble learning results are generally stable. 

In Chanhassen data, classification performance slightly improves as α increases. In BigStone data, 

classification performance stays stable except for the extreme cases alpha = 0 and α = 1. In practice, 

we can determine the value of α based on cross-validation. 

5.3 The Effect of Extension with Spatial Dependency Across Zones 
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Here, we evaluate the effect of extending spatial ensemble learning framework with 

additional spatial dependency between base classifiers. We used the Bigstone dataset, since it is 

larger and more prone to overfitting for when training samples are sparsely distributed on the map 

(some zones in spatial ensemble may lack representative training samples that exist 

in other nearby zones). We selected training samples that are in the form of 104 circular 

clusters, with 43 clusters (6,347 samples) in the wetland class and 61 clusters (9,149 

samples) in the dry land class. We used logistic regression model as base model. We 

compared three candidate methods, including 

 

Fig. 7. Effect of the number of zones m on BigStone data. 
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global logistic regression model, spatial ensemble of logistic regression models without spatial 

dependency, as well as spatial ensemble of logistic regression models with spatial dependency 

between base classifiers. The parameter λ was set as 100 in extended spatial ensemble method. 

Results are summarized in Figure 11. As can be seen, the global model has an F-score below 0.65 

(around 0.645). Spatial ensemble proposed in our conference paper without spatial dependency has 

Fig. 9. Effect of class ambiguity measure parameter k. 
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Fig. 10. Effect of balancing parameter α in spatial ensemble. 

 

Fig. 11. Evaluate the effect of spatial dependency between base classifiers in spatial ensemble. 
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Fig. 12. Time costs of baseline and refined algorithms in homogeneous patch generation. 

F-score slightly increasing with the number of zones. Its F-scores are all above that of the global 

model. We did not show more zones because the algorithm stopped partitioning a zone further when 

no class ambiguity can be seen based on training samples within the zone. In contrast, our spatial 

ensemble with spatial dependency between base classifiers showed the best classification 

performance. The results show that adding spatial dependency can help improve spatial ensemble 

learning framework when training samples are sparse in the region. It is worth noting that adding 

spatial dependency may not necessarily improve classification performance in all cases. Spatial 

dependency constraint is helpful when representative training samples do not exist within a zone 

but exist in another nearby zone. 

5.4 Computational Performance Evaluation 

We now discuss the computational time costs of our spatial ensemble learning algorithms, including 

the homogeneous patch generation phase and the bisecting spatial ensemble phase. 

To evaluate the time costs of homogeneous patch generation phase, we compared our baseline 

algorithm (Algorithm 1) and refined algorithm (Algorithm 2) on different parameter values of n 

(the number of patches). We used the Chanhassen data with 82,654 total input samples. We varied 

the values of parameter n from 82,000 to 100. Results are shown in Figure 12. We can see that as n 

decreases, the time costs of both algorithms increase (due to more merging operations), but the cost 

of baseline is far higher than the refined algorithm. The growth rate of time cost in the baseline 

algorithm gradually gets lower with decreasing n. The reason is that as the patch adjacency graph 

gets smaller, the cost of finding the best patch pair with the minimum dissimilarity is also lower. In 

contrast, the growth rate in the refined algorithm gets higher. The reason is that as patches get larger, 

the cost computing dissimilarity is more expensive (finding the patch pair with the minimum 

dissimilarity from a priority queue is very fast). 

We measured the time costs of homogeneous patch generation (the refined algorithm) and 

bisecting spatial ensemble on the two datasets we used. The parameter settings were the same as 

Section 5.2. Results are summarized in Table 6. The time costs are averages of five runs. The 

reported time does not include local model learning time. Our algorithms can process over half a 

million samples within several minutes. 
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Regarding computational costs of various ensemble methods, we did not provide quantitative 

comparison, since methods are implemented in different programming languages. Based on our 

experience, feature space clustering based on K-means is the fastest. Spatial ensemble and feature 

Table 6. Computational Time Costs of Spatial Ensemble 

 Chanhassen BigStone 

Number of samples 82,654 595,940 

Patch Generation 45s 238s 

Bisecting Spatial 

Ensemble 

6s 190s 

space clustering based on hierarchical clustering are much slower due to time-expensive patch 

generation and feature clustering. 

6 DISCUSSION 

There are other relevant works to our problem. Geographic Object Based Image Analysis 

(GEOBIA) [13] is a popular technique for earth imagery classification. GEOBIA first segments 

earth imagery into objects and then treats objects as minimum classification units. Segmentation 

can be done by software tools (e.g., eCognition) based on feature similarity (e.g., color, texture) 

often semi-automatically with human in the loop. Results are promising (e.g., reducing salt-

andpepper noise) particularly on high-resolution earth imagery. The main difference from our work 

is on the goal of space partition: GEOBIA partitions image based on feature similarity to recognize 

objects, while our spatial ensemble approach partitions space into zones to minimize class 

ambiguity. To consider class ambiguity in existing GEOBIA, extra manual efforts are often needed 

such as adding object features like “distance to roads.” In fact, image segmentation in GEOBIA can 

be used in the preprocessing step of our approach (Algorithms 1–2) to generate homogeneous 

patches. After this, our spatial ensemble algorithms (Algorithms 3–4) can be applied to assign 

patches (or image segments) into different zones to minimize class ambiguity. There are other 

spatial classification methods that address spatial autocorrelation, including spatial decision trees 

[19, 20, 21]. These methods are orthogonal and complementary to spatial ensemble learning. In 

recent years, deep-learning methods (e.g., Deeplab [4], U-net [32]) have achieved great success in 

image segmentation applications. In our spatial ensemble problem, the input training set only 

consists of isolated labeled pixels (or pixel groups), not complete image segments. Thus, it is hard 

to apply a deep-learning approach. However, if sufficient training data with complete labeled image 

segments are available, deep-learning methods can be very promising solutions. 

Our problem requires two important parameters: the number of zones m and the number of feature 

space neighbors k. According to our results in sensitivity analysis, our algorithm is not quite 

sensitive to the number k. In practice, we can select a modest number such as 10. The number of 

zones m can be determined based on generally two factors in a specific application: the overall study 

area size and the homogeneity of landscape in the area. A bigger study area and a more 

geographically heterogeneous area require a bigger m. For example, in urban areas where landscape 

often changes, the number of zones should be bigger; in rural areas where landscape is often largely 

homogeneous, the number of zones can be small. 

7 CONCLUSION 
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This article investigates the spatial ensemble learning problem for heterogeneous geographic data 

with class ambiguity. We proposed spatial ensemble learning algorithms that consist of two phases: 

generating homogeneous patch from input spatial data samples and grouping homogeneous patches 

into different zones to reduce class ambiguity via a greedy heuristic. We also extended our spatial 

ensemble learning framework with spatial dependency constraint between nearby base classifiers. 

We analyzed the theoretical properties of proposed algorithms both on effectiveness and on 

computational efficiency. Evaluations on real-world datasets show that our spatial ensemble 

approach outperforms global models in classification accuracy, and incorporating spatial 

dependency in spatial ensemble can improve classification performance. Computational 

experiments also show that proposed computational refinements are effective in reducing time cost. 

In future work, we plan to evaluate proposed algorithms on other applications such as spatial 

modeling in economic data. We also plan to investigate inductive spatial ensemble learning, in 

which test samples can be from a different spatial framework from the training samples. 
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