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Class ambiguity refers to the phenomenon whereby similar features correspond to different classes at different
locations. Given heterogeneous geographic data with class ambiguity, the spatial ensemble learning (SEL)
problem aims to find a decomposition of the geographic area into disjoint zones such that class ambiguity is
minimized and a local classifier can be learned in each zone. The problem is important for applications such
as land cover mapping from heterogeneous earth observation data with spectral confusion. However, the
problem is challenging due to its high computational cost. Related work in ensemble learning either assumes
an identical sample distribution (e.g., bagging, boosting, random forest) or decomposes multi-modular input
data in the feature vector space (e.g., mixture of experts, multimodal ensemble) and thus cannot effectively
minimize class ambiguity. In contrast, we propose a spatial ensemble framework that explicitly partitions input
data in geographic space. Our approach first preprocesses data into homogeneous spatial patches and uses a
greedy heuristic to allocate pairs of patches with high class ambiguity into different zones. We further extend
our spatial ensemble learning framework with spatial dependency between nearby zones based on the spatial
autocorrelation effect. Both theoretical analysis and experimental evaluations on two real world wetland
mapping datasets show the feasibility of the proposed approach.
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1 INTRODUCTION

Classifying heterogeneous geographic data with class ambiguity, i.e., same feature values
corresponding to different classes in different locations, is a fundamental challenge in machine
learning [14, 15]. Figure 1 shows an example in a wetland mapping application. The goal is to
classify
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(a) Spectral features in remote sensing (b) Ground truth classes (red: dry land,

image green: wetland)

Fig. 1. Real-world example of heterogeneous geographic data: class ambiguity exists in two white circles.

remote sensing image pixels (Figure 1(a)) into wetland and dry land classes (Figure 1(b)). The two
circled areas contain pixels that share very similar spectral values yet belong to two different classes
(also called spectral confusion). As a result, decision tree and random forest classifiers learned from
the entire image makes tremendous prediction errors as shown in Figure 1(c—d). The goal of spatial
ensemble learning is to decompose the geographic area into zones to minimize class ambiguity and
to learn a local model in each zone.

Motivations: Spatial ensemble learning can be used in many applications where geographic data
is heterogeneous with class ambiguity. For example, in remote sensing image classification, spectral
confusion is a challenging issue [18]. The issue is particularly important in countries where the type
of auxiliary data that could reduce spectral confusion—such as elevation data or imagery of high
temporal and spatial resolution—is not available. In economic study, it may happen that old house
age indicates high price in rural areas but low price in urban areas [9]. Thus, age can be an effective
coefficient to classify house price in individual zones but ineffective in a global model. In cultural
study, touching somebody during conversation is welcomed in France and Italy, but considered
offensive in Britain unless in a sport field; the “V-Sign” gesture can mean “two” in America,
“victory” in German, but “up yours” in Great Britain [27]. In these cases, spatial ensemble learning
can provide a tool that captures heterogeneous relationships between factors (e.g., house age,
gestures) and target phenomena (e.g., house price, culture meanings).

Challenges: The SEL problem is computationally challenging. First, there are a large number of
spatial samples (pixels) to partition. Second, the objective measure of class ambiguity is
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nondistributive, i.e., the degree of class ambiguity in a zone cannot be easily computed from the
degrees of class ambiguity in its sub-zones. Finally, given a geographic data, the number of
candidate partitions is exponential to the number of spatial samples. It can be proved that finding an
optimal zone partition is NP-hard.

Related work: Spatial ensemble learning belongs to a general category of ensemble learning
problems [5, 31, 38] in which a number of weak models are combined to boost prediction accuracy.
Conventional ensemble methods, including bagging [2], boosting [10], and random forest [3],
assume an identical distribution of samples. Thus, they cannot address heterogeneous geographic
data with class ambiguity. Decomposition-based ensemble methods (also called divide-and-
conquer), including mixture of experts [16, 37] and multimodal ensemble [24], go beyond the
identical and independent distribution assumption in that these methods can partition multi-modular
input data and learn models in local partitions. Partitioning is usually conducted in feature vector
space via a gating network, which can be learned simultaneously by an EM algorithm or modeled
by radius basis functions [35] or multiple local ellipsoids [29]. However, partitioning input data in
feature vector space cannot effectively separate samples with class ambiguity, because such samples
are very “close” in non-spatial feature attributes. Other methods such as adding spatial coordinates
into feature vectors can be ineffective, since it creates geographic partitions whose zonal footprints
are hard to interpret and can be too rigid to separate ambiguous zones with arbitrary shapes. There
are other techniques for spatially heterogeneous data. A geographically weighted model [9] uses
spatial kernel weighting functions to learn local models. However, it requires to learn a local model
at every location, which is computationally very expensive, and it cannot allow arbitrary shapes of
spatial zones for local models. Gaussian process [22] and multi-task learning [11] can also be used
for heterogeneous geographic data, but they do not particularly focus on the class ambiguity issue.
The mixture-of-experts approach has been used for scene classification on images via sub-blocks
partitioning and learning local experts. But that problem is to classify an entire image (not individual
pixels) [33].

Our contributions: To address limitations of related work, in our recent work [17], we formulate
a spatial ensemble learning framework that explicitly partitions input data in geographic space. Our
approach first preprocesses data into homogeneous patches and then uses a greedy heuristic to group
patches into contiguous zones while minimizing class ambiguity. A local model is learned from
each zone to make predictions on samples in the same zone. In our recent work, we make the
following contributions: (1) we formulate a novel spatial ensemble learning problem to classify
heterogeneous geographic data with class ambiguity; (2) we propose effective and efficient
algorithms, including constraint-based hierarchical clustering for homogeneous patch generation,
as well as a bisecting algorithm to group patches into contiguous zones via greedy heuristics; (3) we
conduct experimental evaluations on the classification and computational performance of proposed
approach on real-world wetland mapping datasets.

This article extends our recent work with the following additional contributions: (1) we provide
theoretical analysis on the proposed algorithms, both on effectiveness and efficiency (time
complexity); (2) we extend our previous spatial ensemble learning algorithm with spatial
dependency constraint between adjacent-based classifiers to mitigate overfitting effect (when
representative training samples do not exist within a zone but exist in another nearby zone); (3) we
evaluate proposed extended method on a real-world dataset. We also add in full experiment results
from our recent work.

Scope: This article focuses on the class ambiguity issue in heterogenecous geographic data. Other
recent advances that do not address class ambiguity, such as spatial-spectral classifiers [7],
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objectbased image analysis [6, 25], metric learning, and active learning, fall outside the scope of
this work.

Outline: The article is organized as follows: Section 2 defines basic concepts and formalizes the
spatial ensemble learning problem. Section 3 introduces our approach. Experimental evaluations are
in Section 5. Section 6 discusses some other relevant works. Section 7 concludes the article with

future work.
Table 1. A List of Symbols and Descriptions
Symbol Description
F All samples in a raster framework
L All labeled samples in F
v All unlabeled samples in F
Sj The ith spatial data sample
Xj The vector of non-spatial features
li The vector of two spatial coordinates
Vi The class label of of sample s;
R(si,s;) Spatial neighborhood relationship
P A patch
z A zone
Lz All labeled samples in Z
N (si) Feature space neighborhood of s;
a(si) Per sample class ambiguity
a(2) Per zone class ambiguity

2 PROBLEM STATEMENT

This section formally defines the problem. Table 1 provides descriptions of the symbols used in our
problem definition.

2.1 Basic Concepts
Geographic raster framework: A geographic raster framework F is a tessellation of a 2-D plane into

a regular grid. Each grid cell (or pixel) is a spatial data sample, defined ass; = (x;,1;,y1), 1 <i < |F|,
where x;is a non-spatial feature vector, /iis a two-dimensional vector of spatial coordinates, and y; €
{c1,¢2, . . .,cp}is aclass label among p categories. All the samples in F can be divided into two disjoint
subsets, a labeled sample set L= {s;= (x;,/;,yi) €F|yiis known} and unlabeled sample set U= {s;= (x;,[;,yi)
€ F|yiis unknown}. In the example of Figure 2(a), F has 64 samples, including 14 labeled samples
(colored in “training labels”) and 50 unlabeled samples. Each sample has a onedimensional feature
x and a class label (red or green).

Geospatial neighborhood relationship: It is a Boolean function on two samples R(s;,s;), whose

value is true if and only if s;and s;are spatially adjacent (i.e., two cells share a boundary).
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Patch: A patch P is a spatially contiguous subset of samples, formally, P CF such that for any two

sampless;,s; EP’ cither R(

si,8)) 18 true or we can find a set of sampless,i,Sp2, - - .,5p €P such that R(s;,sp1),
R(sp,Spe1), and R(spy,s)) are all true for 1 < k < L - 1. For example, all samples with input feature
value 3 in Figure 2(a) form a patch. A patch is homogeneous if its samples have similar feature
vectors (e.g., by Euclidean distance) and its labeled samples, if they exist, belong to only one class.
For example, there are seven homogeneous patches highlighted in different gray scales in the first
map of Figure 2(a).

Zone: A zone Z is a number of homogeneous patches that are spatially contiguous with each other.
It is a set of spatially contiguous samples in a raster framework Z CF with both labeled samples Lz
=L n Z and unlabeled samples Uz;=U n Z. In the example of Figure 2(c), zone 1 consists of three
homogeneous patches, while zone 2 consists of four homogeneous patches.

Class ambiguity refers to the phenomenon whereby samples with the same non-spatial feature
vector belong to different classes due to spatial heterogeneity (e.g., heterogeneous terrains). For
example, in Figure 2(a), the four samples labeled with feature valuex = 1 belong to different classes
(two red and two green). A global decision tree model makes erroneous predictions (Figure 2(b)).

2][1]1]1
2[2[1]1
1[1]3]3[2]2[2]2 Count
1]1]3]3]3]2]z2]2
1]1]2]2]3]3]2]2
1/1(2)2]2]3]3]|2 @
2]2[2]3]3
-2223 1 2 3 4 xvalue ’@
Input feature x Training labels All ground truth Class ambiguity= 0.3 Global model Prediction (errors in bold)
(a) Problem inputs (b) Problem outputs for global model
Count Count
[]
1 23 4 xvalue Zone 2 1 2 3 4 xvalue
Class ambiguity is 0 Class ambiguity is 0 [—7
Zone 1 x=1 x<1
o> G !
Model 1 Zonal prediction] Model 2 Zonal prediction2

Fig. 2. Illustrative example of problem inputs and outputs (best viewed in color).

The degree of class ambiguity in a zone Z can be measured on its labeled samples L;. We define the
following three concepts to quantify class ambiguity:

Feature space neighborhood: Feature space neighborhood of a sample s; among all labeled
samples Lzin zone Z is defined as Nk (si) = {s; € Lz|s; s;,d(x;x;) is the k smallest}, where d(x;,x;) is a
metric function such as Euclidean distance. For example, for the red sample in the last column in
the middle of Figure 2(a), its NVa(s;) can be any two labeled samples with x = 1 except the sample
itself, including one red sample and two green samples. In this definition, we assume that labeled
samples are locally dense in feature space to avoid the curse of dimensionality. In reality, this
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assumption is often satisfied due to the spatial autocorrelation effect (i.e., nearby training samples
often resemble each other).

Per sample class ambiguity on a labeled sample s;among all labeled samples Lzin zone Z is defined
as the ratio of labeled samples in different class from s;in its neighborhood Nk (s;). Formal definition
is in Equation 1, where /(-) is an indicator function. For example, the class ambiguity of the red

sample in the last column of Figure 2(a) is I= 0.5 if one red sample and one green sample (with
feature x = 1) are selected as N(s;). Its value can also be I= 1 if both green samples with feature
value 1 happen to be selected as Na(s;).
1
als)=— iy ) (1

k
SEN(s)

The per zone class ambiguity of a zone is defined as the average of per sample class ambiguity
over all labeled samples. It is formally defined in Equation (2). For example, in Figure 2(a-b), the

class ambiguity in the zone of the entire raster framework is (I x4 +I x4+0x2+0x4)/14=0.3.
Similarly, the per zone class ambiguity of Z; or Z; in Figure 2(c) is0.
1
alZ)=—| |+ als) 2

Lzselz

A spatial ensemble is a decomposition of a raster framework F into m disjoint zones {Z1,Z,, . . .,Zm}
such that the average per zone class ambiguity is minimized. A local model can be learned in each
zone Zibased on its labeled (training) samples Lz and then be used to classify unlabeled samples Uz
in the same zone. The concept of a local model in each zone can be generalized to a set of models
(e.g., bagging, boosting, random forest) in the zone. In other words, spatial ensemble learning can
be used together with traditional ensemble methods since they are orthogonal. Figure 2(c) shows an
example of spatial ensemble with m = 2.

2.2 Problem Definition

The spatial ensemble learning problem is defined as follows: Input:
¢ A geographic raster framework F with labeled samples L and unlabeled samples U;
¢ The number of zones in the spatial ensemble: m;
¢ The parameter in feature space neighborhood: .

Output: A spatial ensemble with m contiguous zones such that:
m

argmin  —  q(Z
21,25,...,.2m

" R A
RIGHTEB LINK ‘f ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 4, Article 43. Publication
date: August 2019.



Spatial Ensemble Learning for Heterogeneous Geographic Data with Class Ambiguity 43:7

1 subjectto  (1)Zin Zj= @fori j, m

(2) Zi=F,

i=1

where a(Z;) is the per zone class ambiguity, and f(Z;) is the number of isolated patches.

Figure 2 shows a problem example. Inputs include a geographic data with 64 samples, 14 labeled
(training) and 50 unlabeled, with one feature x and two classes (red, green) (Figure 2(a)). The class
ambiguity of the entire framework is a(F) = 0.3, computed from the class histogram of training
samples. A global decision tree makes prediction errors (Figure 2(b)). In contrast, a spatial ensemble
with two zones in Figure 2(c) reduces per zone class ambiguity to zero. Predictions of local models
show zero errors.

The spatial ensemble learning problem is formulated as a geographical partition problem, because
we assume that the underlying causes of class ambiguity is spatial heterogeneity. This phenomenon
is also known as “ecological fallacy,” or spatial Simpson’s Paradox. Individual zones in spatial
ensemble are contiguous to avoid overfitting (spatial regularization) and also to conform to the first
law of geography, “Everything is related to everything else, but nearby things are more relevant
than distant things” [34]. There are several other assumptions in our problem formulation. First, we
assume samples in the raster framework form homogeneous patches. This is often true due to the
spatial autocorrelation effect, particularly when the pixel resolution is high. Second, we assume
feature vectors of unlabeled (test) samples are given within the same raster framework of training
samples. In other words, the problem belongs to transductive learning. This can limit the scope of
the problem. Finally, we assume a pixel belongs to only one class, i.e., there is no class ambiguity
within a pixel. The computational challenges of the problem are discussed in Theorem 2.1.

Theorem 2.1. The spatial ensemble learning problem is NP-hard.

Proof. Here, we only provide main ideas. First, our objective function of per zone class ambiguity
is non-monotonic and non-distributive. Thus, we cannot compare one candidate zone partitioning
against another without computing class ambiguity. Second, the number of possible zone
partitioning is beyond polynomial. This can be derived from the NP-hardness of grid graph
partitioning problems [8]. 3 PROPOSED APPROACH

In this section, we present our algorithms to address computational challenges of the spatial
ensemble learning problem. Our algorithms consist of two phases. First, input spatial data samples
(both labeled and unlabeled) are clustered into homogeneous patches. We propose to use a
constraint-based hierarchical spatial clustering approach (Section 3.1). After this, homogeneous
patches are further grouped into contiguous zones through a recursive bisecting process (Section
3.2).

3.1 Preprocessing: Homogeneous Patches

Given geographic data with all labeled and unlabeled samples, generating homogeneous patches
can be considered as image segmentation [12] but with the constraint that labeled samples in the
same patch, if they exist, belong to the same class.
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ALGORITHM 1: Homogeneous Patch Generation

Input:
J All samples in the raster framework: F
. Spatial neighborhood relationship: R(:, -)
. The number of output patches: n, n |F| Output:
. A set of n patches: P={P1,Py, .. .,Pn}

1: Initialize a patch set P= {P;= {s; }|s; EF}

2: while number of patches |P| >n do

3; for each adjacent pair Piand P;jdo

4: if d(P;,P;) has been computed then

5: Continue to next for iteration

6: if Ly, Lp; either empty or same class then
T d(Pi,Pj) & [Pi| | Pi| si€Pi,si€P;d(xi,x;))

8: else

9: d(P;,P;) & +oo

10: Find P;,P;with minimum dissimilarity d(P;,P;) 11: Merge
these two patches: Pi¢ P;UP;, P & P\ P;12: return P.

Algorithm | shows our bottom-up hierarchical method to generate homogeneous patches. First,
each data sample is initialized as a patch (step 1). The algorithm then repeatedly merges pairs of
adjacent patches (patches with samples that are spatial neighbors) in a greedy manner. Only patch
pairs whose labeled samples belong to the same class can be merged (step 6). The patch pair whose
samples have the smallest feature dissimilarity (step 7) are merged first (steps 10—11). Merging
continues until the number of patches is reduced to a given number #. In implementation, we can
use a patch adjacency graph to efficiently find pairs of adjacent patches. The graph can be easily
updated when two patches (nodes) are merged. Figure 3 shows a toy example. The input geographic
data contains 64 samples with one feature and two classes (red and green). Adjacent samples with
the same feature value are merged into a patch. For instance, all samples with feature value 4 in the
upper left corner are merged into patch4. The final output is 7 homogeneous patches (shown by
different shades: 4 to G).
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Fig. 3. Illustration of homogeneous patch generation.

Algorithm 1 has two major computational bottlenecks in its iterations: identification of the
adjacent patch pair with the minimum dissimilarity on the entire map (step 10) and computation of
dissimilarity values between new adjacent patch pairs (step 7). To address the first bottleneck, we
propose to use a priority queue with adjacent patch pairs ordered by dissimilarity. To reduce the
cost of patch dissimilarity computation, we reuse previously computed dissimilarity values when
possible.

Details of these computational refinements are in Algorithm 2. The algorithm maintains a
neighborhood graph where nodes are patches and edges are spatial adjacency between patches. Edge
weights ejare dissimilarity values between adjacent patch pairs (v;v)). Initially, the graph is a grid
graph with each sample (pixel) as a node (patch) (steps 1-2). Then, the algorithm repeatedly merges
two neighboring nodes with the minimum edge weight until the total number of nodes (patches) are
reduced to a required number #. To quickly find neighboring nodes with the minimum edge weight,
we maintain a priority queue of all neighboring node pairs ordered by their edge weights (step 3)
and extract the minimum element from the queue in each iteration (step 6). After extracted, the pair
of nodes v;,v;are merged into a new node v, (step 10), and the corresponding edges are also updated.
When computing the weights of edges connected to the new node v,, we reuse the weights of edges
connected to nodesv;,vj(step 12) to avoid redundant computation (see definition of d(P;,P;) in steps 7
and 9 in Algorithm 1). The weights of new patch pairs are added to the priority queue (step 13).
Once nodes v;,v;are merged, their corresponding elements in the priority queue become obsolete.
Thus, we maintain a hash set of all obsolete nodes (steps 1 and 9) to ignore their elements in the
priority queue (steps 7-8).

32 Group Homogeneous Patches into Zones

After samples are clustered into homogencous patches, the second phase of our spatial ensemble
learning method aims to divide these patches into several contiguous groups (zones) to minimize
class ambiguity within each group (zone). This can be considered as a planar graph partition problem
where nodes are patches and edges are spatial adjacency. To group patches (nodes) into multiple
zones, we propose a bisecting algorithm (Algorithm 3). The algorithm starts with one zone
containing the set of all patches (steps 1-2), and then keeps breaking down the current most
ambiguous zone into two until the number of zones reaches a required number (steps 3—7). The
critical question now becomes how to divide a zone (set of patches) into two to minimize class
ambiguity. This is done via another subroutine called TwoZoneSpatialEnsemble (Algorithm 4)
whose details are introduced below.

Since graph partitioning problems are generally computationally hard [8], in Algorithm 4, we
propose a greedy heuristic that assign patches (graph nodes) into two zones maximizing inter-zone
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class ambiguity while minimizing intra-zone class ambiguity. To do that, the algorithm uses a
seedgrowing process to expand two zones on a patch adjacency graph. At the beginning, all patches
ALGORITHM 2: Faster Homogeneous Patch Generation

Input:
o All samples in the raster framework: F
o Spatial neighborhood relationship: R(-, )
o The number of output patches: n, n |F| Output:
. A set of n patches: P={P1,P,, .. .,Pn}

1: Initialize a patch set P={Pi= {s;}|si EF}

2: Initialize a neighborhood graph G(V,E) with each patch as a node: vi=Pi
={si}for 1 <i<|F|

eij= ”{ I ldoo(xi,xj) ifs;,s; are neighbors, same class or unlabeled

otherwise

3: Create a priority queue PQ with all neighbor pairs (v;,v;,e;)
4: Initialize a set of obsolete nodes O ¢ @

5:while | V' | > n and PO not empty do

6: (viyvj,ei) € ExtractMin(PQ)
7: if ;€ O or v;€ O then
8: Continue to next while iteration

9: 0 < 0 U{vi} Uy}

10: Create a new node v, merging v;,vjin G (Pn < P;UP))
11: for each other neighbor node v of v;or v;do
12:
| | | ” |{ ek,ik| Pki| - |k Pki | +ieki j |iPkk, || Pk | j ikaneighbors botth,Vj
ek,n= | | | | udek(,Pil,PPlkP|~|)|P||~|PkPk|~|i(||-|P+(PdP|+i(i||P|++Pke|,P|P)jjj|))|||PPk|~||~|PPj|| ififvvi

neighborsneighborsvy; onlyonly

[PI1(PI+IP 1)
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13: Add edge (v«,vn,exn) to graph G
14: Add (vk,vn,exn) into priority queue PQ 15: Remove
obsolete nodes v;,v;and their edges 16: return P= 1.

are marked as unassigned (step 2), and the class ambiguity of all patch pairs (whether adjacent or
not) are computed (step 3). The algorithm finds the two patches with the highest class ambiguity as
initial seeds and assigns one patch to each zone, respectively (steps 4-5). The algorithm also
maintains a set of frontier nodes (unassigned spatially adjacent nodes) Fi,F, for each zone (steps 6—
7). Next, the algorithm iteratively grows a zone by adding a node from its frontier until all nodes
are assigned (i.e., two frontiers are empty).

When selecting a node from the frontier of a zone, we use a greedy heuristic that maximizes inter-
zone class ambiguity while minimizing intra-zone class ambiguity. This is shown in the formula of
A'vand A% (steps 10 and 14). In the formula of 4'¢, the numerator is the maximum class ambiguity
between the candidate patch Py and patches in the other zone Z,, reflecting inter-zone class
ambiguity, while the denominator is the maximum class ambiguity between Py and patches in its
corresponding zone Z;, reflecting intra-zone class ambiguity. We add a value 1 in the formula for
normalization. To avoid the case in which most patches are assigned to one single zone, we also add
a size-balance factor Bi' (Bi?) to our heuristic. Size balance factor across two zones can be

a) Homoge- (b) Patch adja- (c)AssignC,Dto (d) Grow on B (e) Grow on F
neous patches cency graph two initial zones

ALGORITHM 3: Bisecting Multi-zone Spatial Ensemble

Input:
o A set of homogeneous patches: P={P1,P;, .. .,Pn}
o The number of zones: m (m n)
o The parameter in class ambiguity measure: &
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o The balancing parameter in our greedy heuristic: a Output:

o A spatial ensemble of m zones: Z= {Z,, . . .,Zm} 1: Initialize a zone with all input

patches: Z; < P

2: Initialize a set of zones for outputs: z & {24}
3:while |Z| <m do

4 Find the zone with max class ambiguity:
Zo= arg max a(Z;)
L

5: Remove zone Zo from result set: z & z \ Zo6:

(7. 7, . TwoZoneSpatialEnsemble(Zo, £,
a)
7.z « 7 .

8: return Z

measured via the entropy - logri - r» logr,, where 7| and r; are the ratio of the sizes (number of
samples) of zone 1 and zone 2 to their total size. A higher entropy value indicates more sizebalanced
zones. We use a parametera to weight the influence of two factors in our heuristic (step 12 and 16).
The node with the maximum overall score Py, is selected and is added to its corresponding zone Z,
(step 18). The node is then removed from frontiers. Its original frontier is expanded with the node’s
unassigned neighbors. Finally, all nodes are assigned, the frontiers become empty, and the two
zones are returned (step 21).

Running example: Figure 4 shows a running example of Algorithm 4 with the same input data as
the example in Figure 3. Assume k& =2, a = 0.5, and m = 2. The adjacency graph of patches is

Table 2. Patch Pairs with Non-zero Class Ambiguity

Patch P; Patch P; a(PiU Pj)
B F 0.5
C D 0.5
D C 0.5
F B 0.5
ALGORITHM 4: Two Zone Spatial Ensemble
Input:
. A set of homogeneous patches: P={P1,P,, . . .,Pn}
o The parameter in class ambiguity measure: &
. The weight parameter in our greedy heuristic: o Output:
o A spatial ensemble of two zones: {Z1,Z,}
1: Create a spatial adjacency graph with patches as nodes
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2: Initialize all nodes as unassigned
3: Compute class ambiguity a;= a(P; UP;) for any i j

4: Find P;,P;with max class ambiguity a;
5: Initialize Z; ¢ {Pi}, Z, < {P;}, mark P;,P;as visited

6: Initialize F; with all unassigned neighboring patches of Z;
7: Initialize F, with all unassigned neighboring patches of Z,

g: while FINEEEEEEE |,

9: for each -
10: 1+ sup™ alpk,po) //class ambiguity avoidance

Po€Z1

11: Bi' ¢ SizeBalance(Z,Z,) - //zone size balance
12: Compute overall score: Sk & aA_
13: for each-

k

14: A_ € //class ambiguity avoidance

Po€z2

15: Bi? ¢« SizeBalance(Z3,Z, U{P\}) //zone size balance
16: Compute overall score: Si* ¢ aA_
17: Find the Pw € Fro (fo €{1, 2}) with max overall score

18: Zso & Z5o U{Pko }, mark Pyoas visited

19: F1 ¢ F1\ {Pko}, F2 & F2\ {Pko}

20: Expand Fy with all unassigned neighboring patches of Py, 21:
return {Z;, Z,}

shown in Figure 4(b). Patch pairwise class ambiguity is shown in Table 2. The two zones are shown
by two different colors. Frontiers are shown by solid edges connected to zones. Initially, Z; = {C}
and Z; = {D} (Figure 4(b)). The frontier of Z; is {B}, while the frontier of Z,is {4,E,F,G}. In the next
iteration, all candidate nodes from the frontiers have zero class ambiguity avoidance score, but node
B has the highest size balance score, so it is selected to grow Z;. Nodes F,4,G,E are then selected
consecutively. The final output two zones are shown in Figure 4(i). This output is slightly different
from our problem example in Figure 2, but both reduce class ambiguity to zero.

Algorithm 4 will face the situation whereby some patches do not have (or have only few) training
samples. The algorithm still can work in this case, since it always starts with two patches with the
largest class ambiguity (each contains sufficient training samples in an opposite class). In zone
expansion steps, patches without training samples can appear in the frontier to be merged. For such
patches, we will still use the same selection measures (i.e., class ambiguity avoidance, size balance).
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It is just that adding a patch without training samples will not change class ambiguity of a zone; it
can only impact the size balance.

33 Extension with Spatial Dependency Across Zones

In our current spatial ensemble framework, a base classifier is learned based on training samples in
a zone itself and is only used to classify the samples within the same zone. In other words, base
classifiers in different zones work independently. One potential limitation of this framework is that
when the number of zones is large, the amount of training samples falling into each zone tends to
reduce, posing a potential risk for overfitting. For example, there can be sub-areas in a zone whose
representative training samples are partitioned into another zone due to our recursive zone partition
process based on greedy strategy. In this case, these sub-areas may be misclassified due to lack of
representative training samples in the zone.

To address the challenge, we propose to use the multi-task learning framework to joint-learn base
classifiers in different zones together. Each task is the process of learning a base classifier in a
specific zone based on training samples in it. One main question is how to determine the relatedness
between different tasks (zones). According to the first law of geography, “everything is related to
everything else, but near things are more related than distance things.” Thus, zones that are adjacent
to each other tend to be similar, and thus their classifiers should be related. However, in our spatial
ensemble learning, we should also consider class ambiguity between zones, which indicates
“negative” relatedness. If two zones have high class ambiguity, then we should avoid learning
similar models between the two zones, because such models tend to misclassify ambiguous samples.
Therefore, we define relatedness between different tasks based on both zone spatial adjacency and
zone class ambiguity. Specifically, we define relatedness between zone Zjand zone 7j, i.e.,Wjj, in
Equation (3), where a(Z;i UZ) is the class ambiguity, and ¢ > 0 is a parameter to control the impact
of class ambiguity on task relatedness (a small ¢ value means more negative impact of class
ambiguity on task relatedness).

‘(l{ﬂ

a(z Wwj)
Wij= eif Ziand Z;are spatially adjacent (3)0  otherwise

Based on the definition of task (zone) relatedness, we use multi-task learning with spatial
dependency constraint across adjacent zones. The constraint is added to the objective (loss) function
of individual models. Similar ideas have been studied before on feature vector space ensemble [23],
but the effect on spatial ensemble has not been explored. Here, we use logistic regression as an
example. The idea can be generalized to all base classification models with differentiable loss
functions. The overall objective function can be specified as Equation (4):

m

LBy, By - . Bm) = «logP (i |xi) + 2 Wi (Bi= B) (Bi- )

—k=1i€L ””l KTKTi i, i kTiilJ]llll - -
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= mklOg | l -8 x 1-y ! y+ A Wi T(ﬂ,‘
e
Bi)-
(ﬂi ﬂj) k=1i€ 1 +e-6x 1 +e-6x ij
4)
Probability density
Class C; Class C,

Feature value x

dx

Fig. 5. Proof of class ambiguity measure as an upper bound of Bayesian error.

The objective is convex but non-linear. Thus, the Newton Ralphson [36] method can be used to
estimate optimal parameter values. After parameters S for all zone & are learned, each base classifier
can be used to classify samples within its own zone. Two base classifiers with high relatedness (both
being spatially adjacent and with low class ambiguity) will share similar model parameters (their
training samples are mutually utilized). This helps avoid overfitting when representative training
samples of one zone happen to exist in nearby zones only.

4 THEORETICAL ANALYSIS

Theorem 4.1. The expectation of per zone class ambiguity measure is an upper bound of Bayesian
error.

Proof. Without the loss of generalizability, we provide proof for the case of binary classification
(two classes). Assume that the prior probability of class 1 and class 2 in a zone Z are P,(C:) and P,
(C»), respectively. Also assume that the conditional probability of a feature vector x in two classes
are P7(x|Ci) and P (x| (), respectively, as shown in Figure 5. The Bayesian error in Z can be
expressed below for binary classes. The expression is based on the definition that Bayesian error
rate is the lowest possible error rate for any classifier. The optimal classifier is the one that classifies
a sample into a class with a higher probability.

BayesianError(Z) = min(Pz(C1)Pz(x| C1),Pz(C2)Pz (x| C2))dx

X

Assume that samples are locally dense in feature space (this assumption is often true when training
samples are in the form of spatially contiguous patches and the spatial autocorrelation effect is high).
The proposed per sample class ambiguity measure (a(s)) is an estimation of the percentage of
opposite-class samples against the checked sample in a small neighborhood dx = {x |

. ' o
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€} in the feature vector space. This small neighborhood is approximated by our feature space
neighborhood N (s) in per sample class ambiguity measure. Thus, the probability ratio at feature

value x can be approximated by the corresponding class ratio in Nk (s):

[l ]

(CAP _( C)
v 27

Eas) = 1o 1y 9T 2 prytenFt ,

|1k 16) P2(C)P2 (x C1) + P2 (Co)P (x Co) s en

where x is the feature value of s.
Ela(Z)] =Pz (C1)Pz(x|C1) - Pz |(C2)Pz (x| C2) | dx, xPz(C1)Pz(x

C\) + Pz(Cy)Pz(x Co}

+Pz(C2)Pz (x| C2) P HENPH e H e PACH (x

N D (D (o
VAR IVA ) LAV AT S |

(C)Pz (x| Ca)
=7(C1)P(x| C\)Pz(C2)Pz (x| Cy) dx,

=X pz(C1)P1z(x |C1) + Pz(C2)P1z(x | C2) dx.

From the fact that the minimum of two values is smaller than their harmonic mean, we can get
BayesianError(Z) < E[a(Z)]. In multi-class scenarios, the neighbor samples of ans can be grouped

into two parts, i.e., those in the same class as s and those in other classes, which simplify the problem
into a binary case. Therefore, proposed per zone class ambiguity measure is an upper bound of
Bayesian error.

Theorem 4.1 is important, because Bayesian error rate is generally considered as the lowest
possible error rate for any classifier in statistical classification. The fact that class ambiguity is an
upper bound of Bayesian error theoretically justifies that minimizing class ambiguity through spatial
ensemble learning (zone partitioning) can help reduce Bayesian error rate and thus improve
classification performance in each zone.

Theorem 4.2. The time complexity of baseline homogeneous patch generation (Algorithm 1) is

O((N - n)(N + ep?)), where N is the total number of samples, n is the number of output patches, e

. ' o
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and p are the maximum number of neighbors and the maximum number of samples on each patch,

respectively.

Proof. The loop runs O(N - n) iterations. In each iteration, the algorithm needs to compute feature
distance for any neighboring patch pair if its value does not exist already. This only happens when
a patch is recently created through merging other patches. Thus, there are at most O(e) distance
computations in each iteration, each costing O(p?). Together with a linear scan to select minimum
distance pair, each iteration costs O(N + ep?). So, total cost is O((N - n)(N + ep?).

Theorem 4.3. The time complexity of faster homogeneous patch generation (Algorithm 2) is
O((N - n)(log N + ep?)), where N is the total number of samples, n is the number of output patches,

e and p are the maximum number of neighbors and the maximum number of samples on each

patch, respectively.

Proof. The main difference between Algorithm 2 and Algorithm 1 is that the former uses a priority
queue to extract the patch pair with the minimum distance, costing O(log N) instead of O(N) for each
operation. Step 12 of Algorithm 2 also prunes out some redundant computation but does not improve
the worst-case time complexity. So, the total cost is O((N - n)(log N + ep?).

Theorem 4.4. The time complexity of two zone spatial ensemble (Algorithm 4) and bisecting
spatial ensemble (Algorithm 3) is O(n**logk) and O(mn*?logk), respectively, where m is the number
of output zones, n is the number of input patches, [ is the maximum number of labeled samples in
each patch, and k is the class ambiguity parameter.

Proof. We first analyze the time complexity of Algorithm 4. Step 3 computes class ambiguity of
O(n?) patch pairs, each costing O(/ logk) if we use a size k priority queue to maintain the current -
nearest-neighbors in feature space. This is the most time-consuming part. After this, in each
iteration, the algorithm selects one node from two frontiers with O(n) candidates. Evaluating each
candidate costs O(n). So, the total cost is O(n* logk + n?) = O(n?I* logk). For Algorithm 3, in each
“while” loop, it computes the zone with maximum class ambiguity, costingO((n/)? logk) = O(n*P
logk), and then calls Algorithm 4, costing O(n*/? logk). Thus, the total time complexity of
Algorithm 3 is O(mn*P logk).

5 EXPERIMENTAL EVALUATION

The goal of the experiments was to:

¢ Evaluate the classification accuracy of spatial ensemble learning.
e Test the sensitivity of spatial ensemble to its parameters.
¢ Evaluate the proposed extension with spatial dependency across zones.

¢ Evaluate the computational costs of spatial ensemble algorithms.

5.1  Experiment Setup

. ' o
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In the classification accuracy experiment, we compared the following methods:

¢ Global model learning (i.e., learning models and making predictions on the entire study area),
including single model, and bagging, boosting, and random forest [1].

¢ Decomposition-based ensemble via feature clustering, e.g., K means or hierarchical
clustering (HC). Specifically, all samples are clustered into groups, and a base classifier (or
bagging, boosting, and random forest of base classifiers) is learned in each group and makes
predictions.

¢ Hierarchical mixture of expert method [16, 37].

e Multimodal ensemble based on K means clustering from Reference [24].
e Spatial ensemble method with base classifiers as either a single model or model ensemble

(bagging, boosting, and random forest).

We also tested the sensitivity of spatial ensemble learning to its parameters, including the number
of zones m, the base classifier type, class ambiguity measure parameter &, and balancing parameter
o in greedy heuristic. The number of patchesn in preprocessing was determined via trying different
values and visualizing the output homogeneous patches. For computational performance
comparison, we compared our baseline and refined homogeneous patch generation algorithms
(Algorithms 1 and 2). We also evaluated computational performance of the bisecting spatial
ensemble algorithm (Algorithm 3). Codes for spatial ensemble and global models were implemented
in Java and base classifiers were from Weka toolbox [1]. Codes for decomposition-based ensemble
via feature clustering, as well as multimodal ensemble, were implemented in R. Codes for the
hierarchical mixture of experts were in Matlab [26] (the code has only logistic regression as base
classifiers). We conducted computational experiments on an iMac desktop with 4GHz Intel Core 17
processor and 32GB DDR3 main memory.

Dataset description: Our datasets were collected from two areas in Minnesota: Chanhassen and
Big Stone [30]. We used eight explanatory features, including four spectral bands (red, green, blue,
near-infrared) in high resolution (3m by 3m) aerial photos from the National Agricultural Imagery
Program during leaf-off season, and four corresponding textures on homogeneity [28]. Class labels
(wetland and dry land) were collected from the updated National Wetland Inventory. The
Chanhassen scene contains 221 by 374 pixels, and the BigStone scene contains 718 by 830 pixels.
We used systematic clustered sampling to select the training set and used remaining pixels as the
test set (details in Table 3).

Table 3. Dataset Description

Training Test Samples
Samples
Scene Dry Wet Dry Wet

Chanhassen | 6,715 4,323 40,362 31,254
Big Stone | 45,483 | 27,138 | 345,557 | 177,762

Evaluation metric: We evaluated the classification performance with confusion matrices and F-
score (harmonic mean of precision and recall) on the wetland class (wetland class is of more
interest).

" R A
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5.2 Classification Performance Evaluation

5.2.1 Comparison on Classification Accuracy. In Chanhassen data, we set parameter values as n
=100, m =6, k=10, a = 0.9. In BigStone data, we set parameter values as n = 800, m = 20, k = 10,
o= 0.9 (n and m were set higher in BigStone than in Chanhassen, because BigStone is larger). The
classification accuracy results for the two datasets are summarized in Table 4 and Table 5,
respectively. In the confusion matrix displayed in each table, the first and second rows show true
dry land and wetland samples, respectively, and the first and second columns show predicted dry
land and wetland samples, respectively. We can see that in global models, bagging, boosting, and
random forest slightly improve a single decision tree (overall F-score increases by 0.03), but
significant errors remain. Decomposition-based ensemble methods via feature space clustering—
e.g., K means or hierarchical clustering—improve global models from up to 0.79 to up to 0.84 in
Chanhassen data, and from up to 0.78 to 0.84 in BigStone data. Note that we did not run hierarchical
clustering on BigStone data due to the high computational cost on a large number of samples.
Mixture of experts do not perform well on either dataset, even worse than global models, probably
due to its logistic regression (generalized linear model) base classifiers. We also tried multimodal
ensemble [24] with K-means clustering. The best results were achieved (F-scores of around 0.71 for
Chanhassen dataset and around 0.81 for BigStone dataset) when we set up the number of clusters in
each class as 2. But its performance quickly gets worse when we increase the number of clusters in
each class. In summary, improvements of these methods over global models are largely due to their
ensemble of local models in feature space. However, since training samples with class ambiguity
can easily fall into the same cluster in feature space (due to highly similar feature values) though
their classes are different, these methods cannot separate samples with class ambiguity. In contrast,
the spatial ensemble of models achieve the best F-scores (over 0.9 on Chanhassen data, and up to
0.86 on BigStone data). The improvements can be seen in the reduction on the number of false
negatives in the confusion matrices (lower left corner) (around 80% reduction on Chanhassen data,
and around 50% reduction on BigStone data, compared with global models).

5.2.2 Effect of the Number of Zones m. To test the effect of the number of zones m in spatial
ensemble learning, we fixed the other parameters the same as Section 5.2, but varying the number
of zones m from 2 to 10 in Chanhassen data, and from 2 to 40 in BigStone data. We measured the
overall F-score of the four spatial ensemble learning models over m. Results are summarized in
Figure 6(d) and Figure 7(d). As can be seen, as the number of zones m increases, the classification
accuracy of all spatial ensemble learning models improves and then reaches a plateau. Similar trends
are shown on both datasets. It is worth noting that we have sufficient training samples falling into
each zone in this case. For the case in which we have insufficient training samples falling into a
zone, we can leverage the method proposed in Section 3.3, and its results are shown in Section 5.3.
In practice, the parameter m can be determined based on the size and homogeneity

Table 4. Results on Chanhassen (“SE” for Spatial Ensemble)

Ensemble Method Confusion Matrix F score

36,734 | 3,628

Global Single Model 0.76
9,640 21,614
. 36,497 | 3,865

Global Bagging 0.79
8,272 22,982

Global Boosti 35,506 | 4,856 0.79

a in .

opal BOOSHIE 7,646 | 23,608
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36,867 | 3,495
Global Random Forest 0.79
8,349 | 22,905
o 35,664 | 4,698
Kmeans with Single Model 0.79
9,655 21,599
. . 36,430 | 3,932
Kmeans with Bagging 0.83
7,868 23,386
. . 36,286 | 4,076
Kmeans with Boosting 0.83
7,475 23,779
. 36,824 | 3,538
Kmeans with Random Forest 0.84
7,675 23,579
I 14,627 | 2,236
HC with Single Model 0.79
3,728 9,409
. . 15,124 | 1,702
HC with Bagging 0.83
3,124 10,050
. . 15,059 | 1,767
HC with Boosting 0.83
3,065 10,109
. 15,208 | 1,618
HC with Random Forest 0.84
3,160 10,014
. 33,963 | 6,399
Mixture of Experts 0.71
10,326 | 20,928
I 37,407 | 2,955
SE with Single Model 0.92
2,073 29,181
. . 37,565 | 2,797
SE with Bagging 0.93
1,871 29,383
. . 37,527 | 2,835
SE with Boosting 0.93
1,851 29,403
SE with Random Forest 37,609 | 2753 0.93
with Random Fore .
om o 1,688 | 29.566

of the study area. The bigger and more heterogeneous a study area is, a larger m value is needed.
We also tested the sensitivity of other feature space ensemble methods to the number of clusters.
Results were shown in Figure 6(a—c) and Figure 7(a—b). We did not run hierarchical clustering on
BigStone data due to the high computational cost on a large number of samples. In
decompositionbased ensemble via feature clustering (e.g., K-means and hierarchical clustering), F-
scores only increase with m for single decision tree base classifiers and generally do not improve
with m for bagging, boosting, and random forest base classifiers. From the results, feature space
ensemble do not need a large number of clusters if base classifiers in each cluster are bagging,
boosting, or random forest instead of single decision trees. The reason can be that bagging, boosting,

and
Table 5. Results on BigStone (“SE” for Spatial Ensemble)
Ensemble Method Confusion Matrix F score
Global Single Model 305,172 ‘ 40,385 0.75
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46,760 | 131,002

. 313,625 | 31,932
Global Bagging 45586 | 132.176 0.77

. 307,866 | 37,691
Global Boosting 14313 132.949 0.76

317,777 | 27,780
Global Random Forest 0.78
46,263 131,499

s 315,721 | 39,943
Kmeans with Single Model 0.82
38,705 | 128,950

. . 312,173 | 33,296
Kmeans with Bagging 44126 | 133.724 0.83

313,313 | 32,156

Kmeans with Boosting 0.84
43,769 | 134,081
Kmeans with Random 316,663 | 28,806 0.84
Forest 44,299 133,551 '
. 329,400 | 16,157
Mixture of Experts 0.60

93,589 84,173

- 316,201 | 29,356
SE with Single Model 0.85
25,300 | 152,462

. . 316,908 | 28,649
SE with Bagging 3162 | 154.600 0.86

. . 315,817 | 29,740
SE with Boosting 23397 | 154365 0.85

) 318,009 | 27,548
SE with Random Forest 0.86
22,926 | 154,836
random forest are more complex models compared with single decision trees and thus do not need

a large number of clusters in feature space.

5.2.3 Effect of Base Classifier Type. The parameters were the same as Section 5.2. We chose
several different base classifier types including decision tree (DT), SVM, neural network (NN), and
logistic regression (LR). Results on two datasets are shown in Figure 8. We can see that spatial
ensemble learning consistently outperforms global model learning on different base classifier types.
The gap is narrower when neural network is used as a base classifier, probably due to its greater
model complexity.

5.2.4 Effect of the Parameter k in Class Ambiguity Measure. We fixed the same parameters as
Section 5.2 except that we varied the parameter k£ from 5 to 25. Results of our four spatial ensemble
models on different parameter k£ are summarized in Figure 9. From the results, we can see that the
spatial ensemble learning algorithm is not sensitive to the value of k. This is partly because we test
our algorithm to a relatively modest range of &. Since k is the number of nearest neighboring labeled
samples in the feature space, a very big value of k& will make the nearest neighbor samples not a
good approximation of local distribution and thus degrade performance. In addition, class ambiguity
measure based on a very large k£ may not be computable when the number of training
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Fig. 6. Effect of the number of zones m on Chanhassen data.

samples in a patch pair is much smaller than k. In practice, we can select a modest value of £, e.g.,
k=5ork=10.

5.2.5 Effect of the Parameter o in Greedy Heuristic. We fixed the same parameters as Section
5.2 except that we varied the balancing parameter in our greedy heuristic a from 0 to 1. A higher a
means a higher weight on class ambiguity avoidance than on zone size balance. Results are
summarized in Figure 10. We can see that the spatial ensemble learning results are generally stable.
In Chanhassen data, classification performance slightly improves as a increases. In BigStone data,
classification performance stays stable except for the extreme cases alpha =0 and « = 1. In practice,
we can determine the value of a based on cross-validation.

53 The Effect of Extension with Spatial Dependency Across Zones
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Here, we evaluate the effect of extending spatial _ ensemble learning framework with
additional spatial dependency between base classifiers. We used the Bigstone dataset, since it is
larger and more prone to overfitting for when training samples are sparsely distributed on the map
(some zones in spatial ensemble may lack representative training samples that exist
in other nearby zones). We selected training samples that are in the form of 104 circular
clusters, with 43 clusters (6,347 samples) in the wetland class and 61 clusters (9,149
samples) in the dry land class. We used logistic regression model as base model. We
compared three candidate methods, including

C_score

Fig. 7. Effect of the number of zones m on BigStone data.
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—-3Core

global logistic regression model, spatial ensemble of logistic regression models without spatial
dependency, as well as spatial ensemble of logistic regression models with spatial dependency
between base classifiers. The parameter 4 was set as 100 in extended spatial ensemble method.
Results are summarized in Figure 11. As can be seen, the global model has an F-score below 0.65
(around 0.645). Spatial ensemble proposed in our conference paper without spatial dependency has
Fig. 9. Effect of class ambiguity measure parameter k.
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Fig. 10. Effect of balancing parameter « in spatial . ensemble.
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Fig. 11. Evaluate the effect of spatial dependency between base classifiers in spatial ensemble.
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Fig. 12. Time costs of baseline and refined algorithms in homogeneous patch generation.

F-score slightly increasing with the number of zones. Its F-scores are all above that of the global
model. We did not show more zones because the algorithm stopped partitioning a zone further when
no class ambiguity can be seen based on training samples within the zone. In contrast, our spatial
ensemble with spatial dependency between base classifiers showed the best classification
performance. The results show that adding spatial dependency can help improve spatial ensemble
learning framework when training samples are sparse in the region. It is worth noting that adding
spatial dependency may not necessarily improve classification performance in all cases. Spatial
dependency constraint is helpful when representative training samples do not exist within a zone
but exist in another nearby zone.

5.4 Computational Performance Evaluation

We now discuss the computational time costs of our spatial ensemble learning algorithms, including
the homogeneous patch generation phase and the bisecting spatial ensemble phase.

To evaluate the time costs of homogeneous patch generation phase, we compared our baseline
algorithm (Algorithm 1) and refined algorithm (Algorithm 2) on different parameter values of n
(the number of patches). We used the Chanhassen data with 82,654 total input samples. We varied
the values of parameter » from 82,000 to 100. Results are shown in Figure 12. We can see that as n
decreases, the time costs of both algorithms increase (due to more merging operations), but the cost
of baseline is far higher than the refined algorithm. The growth rate of time cost in the baseline
algorithm gradually gets lower with decreasing n. The reason is that as the patch adjacency graph
gets smaller, the cost of finding the best patch pair with the minimum dissimilarity is also lower. In
contrast, the growth rate in the refined algorithm gets higher. The reason is that as patches get larger,
the cost computing dissimilarity is more expensive (finding the patch pair with the minimum
dissimilarity from a priority queue is very fast).

We measured the time costs of homogeneous patch generation (the refined algorithm) and
bisecting spatial ensemble on the two datasets we used. The parameter settings were the same as
Section 5.2. Results are summarized in Table 6. The time costs are averages of five runs. The
reported time does not include local model learning time. Our algorithms can process over half a
million samples within several minutes.
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Regarding computational costs of various ensemble methods, we did not provide quantitative
comparison, since methods are implemented in different programming languages. Based on our
experience, feature space clustering based on K-means is the fastest. Spatial ensemble and feature

Table 6. Computational Time Costs of Spatial Ensemble

Chanhassen | BigStone
Number of samples 82,654 595,940
Patch Generation 45s 238s
Bisecting Spatial 6s 190s
Ensemble

space clustering based on hierarchical clustering are much slower due to time-expensive patch
generation and feature clustering.

6 DISCUSSION

There are other relevant works to our problem. Geographic Object Based Image Analysis
(GEOBIA) [13] is a popular technique for earth imagery classification. GEOBIA first segments
earth imagery into objects and then treats objects as minimum classification units. Segmentation
can be done by software tools (e.g., eCognition) based on feature similarity (e.g., color, texture)
often semi-automatically with human in the loop. Results are promising (e.g., reducing salt-
andpepper noise) particularly on high-resolution earth imagery. The main difference from our work
is on the goal of space partition: GEOBIA partitions image based on feature similarity to recognize
objects, while our spatial ensemble approach partitions space into zones to minimize class
ambiguity. To consider class ambiguity in existing GEOBIA, extra manual efforts are often needed
such as adding object features like “distance to roads.” In fact, image segmentation in GEOBIA can
be used in the preprocessing step of our approach (Algorithms 1-2) to generate homogeneous
patches. After this, our spatial ensemble algorithms (Algorithms 3—4) can be applied to assign
patches (or image segments) into different zones to minimize class ambiguity. There are other
spatial classification methods that address spatial autocorrelation, including spatial decision trees
[19, 20, 21]. These methods are orthogonal and complementary to spatial ensemble learning. In
recent years, deep-learning methods (e.g., Deeplab [4], U-net [32]) have achieved great success in
image segmentation applications. In our spatial ensemble problem, the input training set only
consists of isolated labeled pixels (or pixel groups), not complete image segments. Thus, it is hard
to apply a deep-learning approach. However, if sufficient training data with complete labeled image
segments are available, deep-learning methods can be very promising solutions.

Our problem requires two important parameters: the number of zones m and the number of feature
space neighbors k. According to our results in sensitivity analysis, our algorithm is not quite
sensitive to the number k. In practice, we can select a modest number such as 10. The number of
zones m can be determined based on generally two factors in a specific application: the overall study
area size and the homogeneity of landscape in the area. A bigger study area and a more
geographically heterogeneous area require a bigger m. For example, in urban areas where landscape
often changes, the number of zones should be bigger; in rural areas where landscape is often largely
homogeneous, the number of zones can be small.

7 CONCLUSION
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This article investigates the spatial ensemble learning problem for heterogeneous geographic data
with class ambiguity. We proposed spatial ensemble learning algorithms that consist of two phases:
generating homogeneous patch from input spatial data samples and grouping homogeneous patches
into different zones to reduce class ambiguity via a greedy heuristic. We also extended our spatial
ensemble learning framework with spatial dependency constraint between nearby base classifiers.
We analyzed the theoretical properties of proposed algorithms both on effectiveness and on
computational efficiency. Evaluations on real-world datasets show that our spatial ensemble
approach outperforms global models in classification accuracy, and incorporating spatial
dependency in spatial ensemble can improve classification performance. Computational
experiments also show that proposed computational refinements are effective in reducing time cost.

In future work, we plan to evaluate proposed algorithms on other applications such as spatial
modeling in economic data. We also plan to investigate inductive spatial ensemble learning, in
which test samples can be from a different spatial framework from the training samples.
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