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ABSTRACT: A poor or mediocre stereoselectivity is a key roadblock 
for a chiral catalyst to find practical adoptions. We report a facile method 
to create a tunable chiral space near a chiral catalyst to augment its selec-
tivity. The space was created rationally through templated polymeriza-
tion within cross-linked micelles, using readily available amino acid de-
rivatives. It provided gated entrance of reactants to the catalyst, enabling 
a mediocre prolinamide to catalyze aldol condensation in water with ex-
cellent yields and ee, in a size- and shape-selective manner.  

Asymmetric catalysis has become an indispensable tool in modern or-
ganic synthesis. An innumerable number of chiral ligands, metal com-
plexes, and catalysts have been developed in last decades to control the 
stereoselectivity of chemical reactions. Very few of these made onto the 
privileged list with general applicability across different reaction types.1,2 
Tremendous research efforts went into their developments, sometimes 
aided by serendipity. 

Most chiral catalysts failed to do so, however, either because their re-
action scope was too narrow or their stereoselectivity just too low. If the 
highest ee delivered by an enantioselective catalyst only reaches <50%, 
it rarely impresses researchers in the field or finds practical applications. 
Unfortunately, this might represent the largest group of chiral catalysts 
synthesized, published or not. 

Herein, we report a method to construct a chiral “gate” or nanospace 
near a chiral catalyst for direct aldol condensation in water as an exam-
ple.3-13  The gate controls the passage of reactants to the catalytic center 
to boost its enantioselectivity. In this way, even catalysts disqualified by 
traditional metrics might be useful, especially when highly selective cat-
alysts are not available for an important reaction at the time.        

To use microenvironmental chirality to improve the performance of 
a chiral catalyst, we need to build a chiral space near the catalytic center 
and tune its chirality.14,15 Although enzymes frequently use this approach 
to obtain nearly perfect selectivity, chemists cannot do so reliably. If syn-
thesizing a chiral catalyst/ligand itself might require great synthetic ef-
forts, building additional chiral space around the catalyst and influenc-
ing its stereoselectivity positively can be a more complicated task.     

We recently developed a method to perform molecular imprinting16-

18 within the mixed micelle of 1 containing DVB, 2,2-dimethoxy-2-phe-
nylacetophenone (DMPA, a photoinitiator), and a template molecule 
(Scheme 1).19 The tripropargylammonium headgroup of the surfactant 
allows the micelle to  be cross-linked on the surface with diazide 2 and 
functionalized with monoazide 3 by the Cu(I)-catalyzed click reaction. 

Free radical polymerization is then employed to cross-link the core, 
among DVB and the methacrylate of 1, essentially to “solidify” the core 
around the template. The purple sphere in the template is normally a 
hydrophilic group that prefers to stay on the surface of the micelle, so 
that the binding site for the template would be close to the surface.19 The 
molecularly imprinted nanoparticles (MINPs) obtained have remarka-
ble abilities to replicate structural features of the template, and were 
shown to differentiate isoleucine and leucine in di- and tripeptides,20 as 
well as mono- and oligosaccharides different in the stereochemistry of a 
single hydroxyl.21,22 MINPs are typically 5 nm in size and soluble in water 
and selected organic solvents (DMF and DMSO). Since MINPs are es-
timated by dynamic light scattering to have ~50 cross-linked surfactants, 
their number of binding sites per particle averages 1 when the surfac-
tant/template ratio is 50 in the MINP preparation.19 

 
Scheme 1. Template polymerization within cross-linked micelle. 

Although molecularly imprinted catalysts have been reported,16,23-27 
micellar imprinting, with its demonstrated high-fidelity and precision, 
provides us with a predicable way to construct a tunable nanospace 
around a catalyst.28-30 Scheme 2 shows the design. Simple L-pro-
linamides such as 4 tend to have poor enantioselectivity for aldol con-
densation unless the amide proton is activated by electron-withdrawing 
groups.4,31,32 Template 6 was prepared by standard peptide chemistry us-
ing commercially available (S)-p-nitrophenylalanine and (S)-L-proline. 
The template is color-coded to highlight different parts of its structure: 
the green moiety is the space holder for (S)-prolinamide catalyst 4, yel-
low for the enamine derivative of acetone, and cyan for p-nitrobenzalde-
hyde, the electrophile in the aldol reaction. The two p-t-butylphenyl 
groups are included as hydrophobic anchors for 4 to have a strong driv-
ing force to enter the imprinted site.  



 

 

 

S c h e m e 2.  Pr e p ar ati o n of c hir al MI N P f or al d ol r e a cti o n. 

As e x p e ct e d, 4 p erf or m e d p o orl y i n t h e as y m m etri c al al d ol r e a cti o n. 
U n d er t y pi c al lit er at ur e c o n diti o ns ( 1 0 m ol % c at al yst i n D M S O ), r e a c-
ti o n b et w e e n a c et o n e a n d p - nitr o b e nz al d e h y d e g a v e a 6 4 % yi el d a n d 

4 2 % e e f or t h e R - e n a nti o m er aft er 2 4 h at r o o m t e m p er at ur e ( T a bl e 1, 

e ntr y 1 ). W h e n t h e r e a cti o n w as p erf or m e d i n w at er, n o pr o d u ct w as o b-
t ai n e d, p ossi bl y d u e t o p o or s ol u bilit y of t h e c at al yst i n w at er ( e ntr y 2 ).    

T a bl e 1. Al d ol r e a cti o n b et w e e n a c et o n e a n d p - nitr o b e n z al d e-

h y d e c at al y z e d b y 4 @ MI N P ( 6 ). a 

 
 

e ntr y m ol % MI N P ( 6 )  m ol % 4  yi el d ( % )  e e ( % ) 

1  0 b 1 0  6 4  4 2 
2  0  1 0  0  0 
3  2  5  4 2  1 4 
4  5 5  4 8  3 2 
5  1 0 5  6 7  8 0 
6  5 1 0  5 7  5 3 
7  1 0 1 0  8 4  9 1 
8  1 5 1 0  9 9  9 6 
9  1 0 c 1 0  7  3 

a T h e r e a cti o ns w er e p erf or m e d wit h 2 m M p - nitr o b e nz al d e h y d e a n d 5 0 

L a c et o n e i n 1 m L of w at er f or 2 4 h u nl ess ot h er wis e i n di c at e d. b  S ol-
v e nt w as D M S O. c R e a cti o n w as p erf or m e d wit h n o ni m pri nt e d n a n o p ar-
ti cl es ( NI N Ps ) pr e p ar e d wit h o ut a n y t e m pl at e.  

 

T o o ur d eli g ht,  in t h e pr es e n c e of 5 m ol % 4 , a n i n cr e asi n g a m o u nt of 

MI N P ( 6 ) i n cr e as e d t h e yi el d st e a dil y a n d t h e e e e v e n m or e ( e ntri es 3 –
5 ). T h e s a m e tr e n d w as o bs er v e d wit h 1 0 m ol % c at al yst, all o wi n g t h e 
r e a cti o n t o pr o c e e d t o pr a cti c all y c o m pl eti o n wit h a m e as ur e d e e of 9 6 %. 
T h e i m pri nt e d bi n di n g sit e w as cl e arl y k e y t o t h e i m pr o v e m e nt b e c a us e 
n o ni m pri nt e d n a n o p arti cl es, pr e p ar e d wit h o ut a n y t e m pl at e, g a v e littl e 

h el p t o 4  ( e ntr y 9 ).  

T o pr o b e t h e i nfl u e n c e of t h e c hir al g at e o n t h e r e a cti o n, w e p er-

f or m e d a d diti o n al r e a cti o ns usi n g (R )- pr oli n a mi d e 5  a n d MI N Ps pr e-

p ar e d fr o m t w o ot h er st er e ois o m ers of t h e t e m pl at e 7  & 8  ( T a bl e 2 ). As 

s h o w n i n e ntri es 1 & 2, MI N P (6 ) b o ost e d t h e yi el d a n d e n a nti os el e cti v-

it y of (S )- pr oli n a mi d e 4 . N ot o nl y s o, it e n a bl e d t h e r a c e mi c mi xt ur e of 

4 & 5  t o gi v e a r e m ar k a bl e 7 7 % e e ( e ntr y 3 ). I n v erti n g t h e c hir alit y of t h e 

c hir al g at e t hr o u g h ( R )- p - nitr o p h e n yl al a ni n e di mi nis h e d b ot h t h e yi el d 

a n d e e ( e ntr y 4 ). W h e n b ot h t h e g at e a n d t h e c at al yst w er e i n v ert e d, a n 
e x c ell e nt yi el d a n d e e w er e o bt ai n e d a g ai n, f or t h e o p p osit e e n a nti o m er 
of t h e al d ol pr o d u ct ( e ntr y 7 ). C o nsist e nt wit h t h e m at c h – mis m at c h –
m at c h tr a nsiti o n, b ot h t h e yi el ds a n d e e’s i n T a bl e 2 w er e n e arl y s y m-
m etri c al wit h r es p e ct t o t h e c e nt er ( e ntr y 4 ), i n cl u di n g t h os e o bt ai n e d 
fr o m t h e r a c e mi c c at al ysts. 

 

T a bl e 2. Al d ol r e a cti o n b et w e e n a c et o n e a n d p - nitr o b e n z al d e-

h y d e c at al y z e d b y 4 a n d / or 5 wit h diff er e nt MI N Ps. a 

 
 

E ntr y 
m ol % 
MI N P 

t e m pl at e  c at al yst yi el d ( % )  e e ( % ) 

1  1 5 ( S , S )- 6  4 9 9  9 6 ( R ) 

2  1 0 ( S , S )- 6  4  8 4 9 1  ( R ) 

3  1 0  ( S , S )- 6  4 & 5 b 6 9 7 7  ( R ) 

4  1 0  ( S , R )- 7  4  4 7 4 0  ( R ) 

5  1 0  ( R , R )- 8  4 & 5 c 6 3 7 1 ( S ) 

6  1 0  ( R , R )- 8  5  7 9 8 9 ( S ) 

7  1 5  ( R , R )- 8  5  9 7 9 4 ( S ) 
a T h e r e a cti o ns w er e p erf or m e d wit h 2 m M b e nz al d e h y d e, 1 0 m ol % c at-
al yst, a n d 5 0 L a c et o n e i n 1 m L of w at er f or 2 4 h. b  T h e a m o u nt of c at-
al yst w as 1 0 m ol %. 

 

P erf or m a n c e of pr oli n e- d eri v e d c at al ysts i n w at er c a n b e i m pr o v e d 
si g nifi c a ntl y w h e n t h e y ar e att a c h e d t o a m p hi p hili c p ol y m ers or mi-
c ell es. 3 3- 3 7  U n us u al h y dr ati o n at t h e h y dr o p h o bi c / h y dr o p hili c i nt erf a c e 
h as b e e n p ost ul at e d t o i m p a ct t h e c at al yti c a cti viti es. 3 8  Alt h o u g h t h e 
s a m e eff e ct mi g ht h a v e c o ntri b ut e d t o o ur i m pr o v e m e nt, it c a n n ot e x-
pl ai n t h e > 7 0 % e e o bt ai n e d wit h t h e r a c e mi c c at al ysts. 

T o g ai n a d diti o n al u n d erst a n di n g of t h e c at al ysis, w e m e as ur e d t h e 

bi n di n g pr o p erti es of MI N P ( 6 ). T h e bi n di n g c o nst a nt ( K a) f or 4 a n d 5 

w as 2 0. 4 ×  1 04  a n d 0. 1 8 ×  1 04  M- 1, r es p e cti v el y ( T a bl e S 1 ). T h e > 1 0 0: 1 

e n a nti os el e cti vit y i n t h e bi n di n g s u g g ests t h at MI N P ( 6 ) c o ul d e asil y 

pi c k o ut t h e c orr e ct c at al yst ( 4 ) a n d p erf or m as y m m etri c c at al ysis wit h 
t h e r a c e mi c c at al ysts, as s h o w n a b o v e. Als o, t h e 6 9 % yi el d a n d 7 7 % e e 
o bt ai n e d wit h 1 0 m ol % r a c e mi c c at al ysts ( T a bl e 2, e ntr y 3 ) w er e e x p er-
i m e nt all y t h e s a m e as t h e 6 7 % yi el d a n d 8 0 % e e o bt ai n e d wit h 5 m ol % 

4  ( T a bl e 1, e ntr y 5 ). Si n c e u n b o u n d c at al yst w as i n a cti v e a c c or di n g t o 
T a bl e 1, e ntr y 2, t h e e n a nti os el e cti vit y of t h e r a c e mi c c at al ysts m ost 

li k el y c a m e fr o m t h e MI N P- b o u n d 4 .   

W e c o ul d n ot st u d y t h e bi n di n g of p - nitr o b e nz al d e h y d e (t h e li miti n g 

r e a g e nt i n t h e r e a cti o n ) dir e ctl y b e c a us e of its i ns ol u bilit y i n w at er. 
N o n et h el ess, t h e c hir al g at e /s p a c e cr e at e d fr o m ( S )- p - nitr o p h e n yl al a-

ni n e w as cl e arl y pr es e nt, as is ot h er m al titr ati o n c al ori m etr y (I T C ) 

s h o w e d t h at t h e a mi n o a ci d w as b o u n d b y 4 @ MI N P ( 6 ) wit h K a = 4. 5 1 

×  1 04  M- 1 a n d its e n a nti o m er wit h K a = 0. 5 9 ×  1 04  M- 1 ( T a bl e S 1 ). T h e 

e n a nti os el e cti vit y of bi n di n g f or t h e a mi n o a ci ds ( ~ 8: 1 ) b y t h e MI N P 
t h us w as l o w er t h a n t h at f or t h e c at al yst ( > 1 0 0: 1 ). T h e r es ult w as c o n-
sist e nt wit h o ur pr e vi o us fi n di n g t h at c hir al p o c k ets n e ar t h e s urf a c e of 
MI N P h a d l o w er st er e os el e cti vit y t h a n t h os e d e e p er i nsi d e, d u e t o 
str o n g h y dr o p h o bi c c o ntri b uti o ns t o t h e bi n di n g. 3 9   

F urt h er i nsi g ht i nt o t h e c at al ysis w as o bt ai n e d fr o m a ki n eti c st u d y, 
w hi c h s h o w e d a z er o- or d er d e p e n d e n c e of t h e r e a cti o n r at e o n p - nitr o-

b e nz al d e h y d e ( Fi g ur es S 1 3 a n d S 1 4 ). T h e r es ult i n di c at es t h at n o n c o v a-

l e nt bi n di n g of p - nitr o b e nz al d e h y d e b y MI N P (6 ) w as m u c h f ast er t h a n 

t h e al d ol r e a cti o n a n d t h e bi n di n g sit e w as s at ur at e d u n d er o ur r e a cti o n 

mailto:4@MINP(6).


 

conditions during the majority of the reaction time.    

Table 3 shows the scope of the catalysis, keeping the reaction condi-
tions the same while varying the aromatic aldehydes. Excellent yields 
and ee were obtained consistently when the para substituent was re-
moved (R = H) or replaced with an electron-donating group (R = Me or 
OMe), an electron-withdrawing group (R = CN, NO2), or halogens (R 
= F, Cl, Br). Hence, augmented enantioselectivity was obtained as long 
as the para substituent could fit reasonably well in the imprinted binding 
pocket created from the p-nitro group. The size- and shape-selectivity of 
4@MINP(6) was evident when a larger group such as t-butyl was placed 
at the para position, when the para nitro group was moved to other po-
sitions (meta or ortho), or when larger naphthaldehyde was used.  

 

Table 3. Aldol reaction between acetone and aromatic alde-
hydes catalyzed by 4@MINP(6).a 

 
a The reaction was performed with 2 mM benzaldehyde and 50 L ace-
tone in 1 mL of water for 24 h. 

Our  4@MINP(6) thus mimicked enzymes in their ability to catalyze 
highly selective reactions for their targeted substrates: 4 being the cata-
lytic co-factor and the MINP being an enzyme-mimic to provide a chiral, 
nanosized active site for the size- and shape-selectivity. Such catalysts 
can be extremely useful for applications such as converting a target reac-
tant in a complex mixture or developing reaction-based sensors or sig-
nal-amplification systems. For common synthetic applications, how-
ever, it will be more desirable if the size of the chiral gate can be con-
trolled so that the scope of the reaction can be tuned rationally. 

Fortunately, to have a wider gate, so to speak, all we had to do was to 
use a larger group in place of the p-nitrobenzyl in the micellar imprinting. 
Template (S, S)-9 was prepared in straightforward manners from natu-
ral L-serine and L-proline. Indeed, with a larger chiral space near the pro-
linamide, 4@MINP(9) was able to catalyze the aldol reaction for all the 
nitrobenzaldehydes, para, meta, or ortho (Table 4). 2-Naphthaldehyde, 
with the right shape and size, was also let in, although the reaction took 
48 instead of 24 h, possibly due to a different reactivity and/or a different 
turnover rate.40 1-Naphthaldehyde remained unreactive and gave poor 
selectivity, as anticipated from its wrong shape.  

This work demonstrates the power of a rationally engineered chiral 
nanospace (i.e., “gate”), provided that the space can be tuned reliably in 
chirality, size, and shape. Not only could it endow a nearby chiral catalyst 
with size- and shape-selectivity, more importantly, it could also boost its 
performance in asymmetric catalysis, in yields and stereoselectivity. It is 
remarkable that chiral gating in the aldol reactions enabled racemic cat-
alysts to afford >70% ee, when the MINP had high enantioselectivity in 

its binding. 

Table 4. Aldol reaction between acetone and aromatic alde-
hydes catalyzed by 4@MINP(9).a 

 
a The reaction was performed with 2 mM benzaldehyde and 50 L ace-
tone in 1 mL of water for 24 h unless indicated otherwise. b The reaction 
time was 48 h. 

 

In a longer term, we envision to develop a predictable, convenient 
remedy to aid those catalysts that fail to “make the last few yards” in their 
asymmetric race. Although aldol reactions were studied as examples, the 
principle demonstrated should be general. MINPs can be prepared con-
veniently in a one-pot reaction in less than 2 days.19 Their purification 
requires nothing other than precipitation and washing. With their ability 
to reproduce chiral nanospace faithfully from chiral templates, they have 
the potential to enable disqualified chiral catalysts to return to the asym-
metric research field and find practical applications.   
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