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We prove a power saving over the trivial bound for the number of cohomological cuspidal automorphic representations

of fixed level and growing weight on GL3/Q, by adapting the methods of our earlier paper on GL2.

1 Introduction

The purpose of this article is to prove a power saving over the trivial bound for the number of cohomological

cuspidal automorphic representations on GL3/Q of fixed level and growing weight. To state our result, let

a ≥ b ≥ c be integers, and let V be the irreducible algebraic representation of GL3(R) with highest weight

(a, b, c). By a theorem of Borel and Wallach [5, Ch II, Prop 6.12], if an irreducible unitary representation π of

GL3(R) has nonzero (g,K)-cohomology with coefficients in V , then b = 0 and c = −a (i.e. V is equivalent to

its twist by the Cartan involution). We shall therefore restrict our attention to the coefficient systems Vλ with

highest weight (λ, 0,−λ), and say that an irreducible unitary representation π is cohomological of weight λ if

it is infinite dimensional and H∗(g,K;π ⊗ Vλ) 6= 0. (Note that we take K = SO(3).) It is known that there are

two such π, which are trivial on the positive scalar matrices and are twists of each other by the sign of the

determinant. Moreover, they satisfy

Hi(g,K;π ⊗ Vλ) =
{ C i = 2, 3,

0 i 6= 2, 3.
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We shall say that an automorphic representation π on GL3/Q is cohomological of weight λ if π∞ has this

property. Our main result is the following:

Theorem 1.1. Fix a compact open subgroup K ⊂ GL3(Af ), and let Aλ be the set of cuspidal automorphic

representations on GL3/Q that are cohomological of weight λ and have level K. We have |Aλ| �K,ε λ
3−4/27+ε.

We shall deduce Theorem 1.1 from the following theorem on the cohomology of congruence subgroups of

SL(3,Z).

Theorem 1.2. Let Γ be a congruence subgroup of SL(3,Z). We have dimH2(Γ, Vλ) �Γ,ε λ
3−4/27+ε.

We note that the trivial bound in Theorems 1.1 and 1.2 is on the order of dimVλ ∼ λ3. As a result, these

theorems represent a power improvement for the dimension of a space of automorphic forms that are tempered

but not essentially square integrable at infinity. This is a difficult problem, which has only been solved in a few

cases [7, 8, 14, 17, 18]. (See also the paper [19] of Sardari for an analogous result at finite places.) Moreover,

there are currently no results of this type proved using the trace formula alone, despite recent progress in

understanding its analytic properties.

To illustrate this point, we shall recall some results on the problem of counting cohomological cuspidal

automorphic representations of fixed level and growing weight on GL2/K where K is imaginary quadratic. This

is analogous to Theorem 1.1, as these representations are also tempered but not essentially square integrable at

infinity. We let Sd denote the set of cohomological cuspidal automorphic representations of weight d and some

fixed unspecified level on GL2/K, where ‘weight d’ means having cohomology with respect to the coefficient

system symdC2 ⊗ symdC2 ⊗ |det|−d. The trivial bound here is |Sd| � d2, which is the dimension of the coefficient

system. The best known bound for |Sd| obtained by an analytic study of the trace formula is |Sd| � d2/ log d,

due to Finis, Grunewald and Tirao [12]. On the other hand, in [17] we used the theory of completed cohomology

developed by Calegari and Emerton [6, 9] to prove that dimSd �ε d
5/3+ε, and this was later improved to

�ε d
3/2+ε by Hu [14]. It is likely that the best bound for |Aλ| that one could prove using the trace formula is a

similar logarithmic improvement over λ3.

One has a lower bound for |Aλ| of |Aλ| � λ from symmetric square lifts [2, Sec 3.4], and the computations

of [1] (and those of [12] in the analogous case of SL2(C)) suggest that this is the main contribution so that in

fact |Aλ| ∼ λ.

Theorem 1.2 will be proved by combining the methods of our previous paper [17] with a new bound for the

growth of invariants in certain Fp-representations of SL3(Zp) (Proposition 2.3). We in fact prove a version of

Proposition 2.3 for a general SLd(Zp) (Corollary 3.3), but at present we are unable to deduce new bounds on

cohomology from this. We discuss this further in Section 2.5.
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By improving Proposition 2.3, it may be possible to improve the saving in the exponent of our main theorem

from 4/27 to 8/45, but we have not checked this carefully. More precisely, the improvement would be made in

the proof of Proposition 3.6, see Remark 3.8. We do not know if this is the best exponent one could obtain using

the methods of this paper.

1.1 Proof of Theorem 1.1 assuming Theorem 1.2

Before proving Theorem 1.2, we show how it implies Theorem 1.1 using the extension of Matsushima’s formula

to noncompact quotients proved in [3, 4]. Let Z+ be the positive scalar matrices in GL3(R), and define

X = GL3(Q)\GL3(A)/KZ+. We have X =
⋃

Γi\SL3(R), where Γi are congruence subgroups of SL(3,Z).

There is a unique irreducible unitary infinite dimensional representation πλ of SL3(R) with H2(g,K;πλ ⊗

Vλ) 6= 0. This implies that if π ∈ Aλ then the restriction of π∞ to SL3(R) must be isomorphic to πλ. Moreover,

π∞ is trivial on Z+. If we let m(πλ, X) denote the multiplicity with which πλ occurs in L2
cusp(X), it follows

that |Aλ| ≤ m(πλ, X). If Γ ⊂ SL(3,Z) is a congruence subgroup we also let m(πλ,Γ) be the multiplicity of πλ

in L2
cusp(Γ\SL(3,R)). We have

m(πλ, X) ≤
∑

i

m(πλ,Γi),

so it suffices to prove that m(πλ,Γ) �Γ,ε λ
3−4/27+ε for any Γ. The extension of Matsushima’s formula to

noncompact quotients proved in [3, 4] implies that m(πλ,Γ) ≤ dimH2(Γ, Vλ), and Theorem 1.2 completes the

proof.

2 Proof of Theorem 1.2

In this section we prove Theorem 1.2, assuming the bound for the growth of invariants in Fp-representations

of SL3(Zp) stated in Proposition 2.3; this proposition is proved in Section 3. We introduce notation in Section

2.1, and construct a lattice Vλ ⊂ Vλ in Section 2.2 (after changing coefficients to Qp) that will later be used in

our reduction mod p argument. We recall facts about p-adic Banach space representations in Section 2.3, and

complete the proof of Theorem 1.2 in Section 2.4. Section 2.5 discusses the problem of extending our results to

other groups.

2.1 Notation

We let p > 3 be a prime which will be fixed throughout Section 2. We shall consider Vλ as a representation

of GL3(Q) with Qp coefficients. We define Gn = {g ∈ SL(3,Zp) : g ≡ 1(pn)}, and let G = G1. We let T and

U be the diagonal and strictly upper triangular subgroups of G, and define P (n) = TUGn. We define the

non-commutative Iwasawa algebras

ΛZp
= lim
←−
k

Zp[G/Gk], ΛQp
= ΛZp

⊗Zp
Qp, and Λ = lim

←−
k

Fp[G/Gk],
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where the projections are induced from the maps G/Gk′ → G/Gk for k′ ≥ k. Suppose L is a representation of

G over Fp, and let L∗ be the dual representation equipped with the weak topology. If L is smooth, then the

action of G on L∗ extends uniquely to an action of Λ such that for any ` ∈ L∗ the orbit map Λ → L∗, x 7→ x`,

is continuous. We use hi to denote the dimension of Hi, computed with continuous cochains in the case of the

group G.

2.2 Choosing a lattice in Vλ

We shall require a lattice Vλ ⊂ Vλ with the properties described in the following lemma.

Lemma 2.1. If n ≥ 1 satisfies pn−1 > 3λ, there is a G-stable lattice Vλ ⊂ Vλ such that Vλ/pVλ is isomorphic

to a submodule of Fp[G/P (n)].

Proof . Let V ∗λ be the dual of Vλ, and 〈·, ·〉 the pairing between them. Let w∗λ ∈ V ∗λ be a nonzero vector of

highest weight. As a representation of SL3(Qp), Vλ is isomorphic to the space of functions on SL(3,Qp) of the

form

f(g) = 〈π(g−1)v, w∗λ〉, v ∈ Vλ,

where SL(3,Qp) acts by [π(h)f ](g) = f(h−1g). We define Vλ to be the Zp-module of functions whose values on

G lie in Zp, which is clearly a G-stable lattice. This implies that Vλ/pVλ may be identified with the submodule

of C(G,Fp) obtained by reducing functions in Vλ modulo p, and we must show that these reductions are

right-invariant under P (n).

Let w−λ ∈ Vλ be the vector of lowest weight with 〈w−λ, w
∗
λ〉 = 1, and define fλ(g) = 〈π(g−1)w−λ, w

∗
λ〉. We

have fλ(e) = 1, and the invariance properties of w−λ and w∗λ imply that for u− in the lower triangular unipotent

and b in the standard Borel we have fλ(u−b) = χ(b), where χ is the highest weight character of V ∗λ . By the

Bruhat decomposition, these facts specify fλ uniquely. Moreover, the function

hλ :




x11 x12 x13

x21 x22 x23

x31 x32 x33


 → xλ

11 det


 x11 x12

x21 x22




λ

also has these properties, so that fλ = hλ.

Let Pλ be the space of polynomials on M3(Qp) spanned by the left translates of hλ under SL3(Qp), and let

Pλ ⊂ Pλ be the lattice of polynomials that are integral on G. It follows that Vλ and Vλ are the restrictions of Pλ

and Pλ to SL3(Qp) respectively. Moreover, because all elements of Pλ transform by the same character under

the action of scalar matrices, elements of Pλ are integral on 1 + pM3(Zp). We also see that all polynomials in

Pλ have degree at most 3λ. By combining this with Lemma 2.2 and our assumption that 3λ < pn−1, we see
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that, on 1 + pM3(Zp), the functions in Pλ/pPλ are constant on cosets of pnM3(Zp). It follows that functions

in Vλ/pVλ are invariant under Gn. The invariance under TU follows from our choice of w∗λ as a highest weight

vector, which completes the proof.

Lemma 2.2. Let h ∈ Qp[x] have degree d, and suppose that h maps Zp to Zp. Let h : Zp → Fp be the reduction

of h modulo p. If d < pt, then h is constant on cosets of ptZp.

Proof . We first use the integral-valued property of h to show that we have

h(x) =

d∑

j=0

cj

(
x

j

)
(1)

with cj ∈ Zp (we trivially have a unique such representation with cj ∈ Qp). We prove this using induction on d,

and note that the case d = 0 holds trivially. If d ≥ 1, we consider the polynomial

h(x+ 1)− h(x) =

d∑

j=1

cj

(
x

j − 1

)
,

and note that this is also integral valued on Zp. Applying the induction hypothesis gives cj ∈ Zp for j ≥ 1, and

we have c0 = h(0) ∈ Zp.

Having established the representation (1), it suffices to consider the case where h is a binomial coefficient
(
x
d

)
with d < pt. But the lemma in this case follows from a result of Lucas [16] (see also [11]) on congruences of

binomial coefficients modulo p.

2.3 p-adic Banach space representations

We now recall from [20] some facts about representations of G (or any other compact p-adic Lie group) on a

p-adic Banach space.

We recall that a topological Zp-module is called linear-topological if the zero element has a fundamental

system of open neighbourhoods consisting of Zp-submodules. We let Modtop(Zp) be the category of all Hausdorff

linear-topological Zp-modules with morphisms being all continuous Zp-linear maps. We let Modtfc (Zp) be the

full subcategory in Modtop(Zp) consisting of torsion free and compact linear-topological Zp-modules. We recall

from [20, Rmk 1.1] that if M is any object in Modtfc (Zp), we have

M '
∏

i∈I

Zp (2)
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for some set I. We let Ban(Qp) be the category of all Qp-Banach spaces (E, ‖ ‖), with morphisms being

continuous linear maps. We let Ban(Qp)
≤1 be the subcategory of spaces such that ‖E‖ ⊂ |Qp|, with the

morphisms being norm-decreasing linear maps.

In [20, Section 1], Schneider and Teitelbaum define two contravariant functors between the categories

Ban(Qp)
≤1 and Modtfc (Zp). For an object M in Modtfc (Zp) they define the Qp-Banach space

Md = Homcts
Zp

(M,Qp) with norm ‖`‖ = max
m∈M

|`(m)|,

which defines a contravariant functor Modtfc (Zp) → Ban(Qp)
≤1. For a Banach space (E, ‖ ‖) with unit ball L,

they also define

Ed = HomZp
(L,Zp) with the topology of pointwise convergence,

which gives a contravariant functor Ban(Qp)
≤1 → Modtfc (Zp). They prove in [20, Thm 1.2] that the functors

M 7→ Md and E 7→ Ed define an antiequivalence of categories. In particular, if E is an object in Ban(Qp)
≤1, L

is the unit ball in E, and M = Ed, then we have E = Md and L = Homcts
Zp

(M,Zp).

We now consider a Banach space E with a continuous representation of G. We say that this representation

is unitary if it preserves the norm. The representation induces an action of G on the dual E′ = Ed[1/p], which

may be completed to an action of ΛQp
. We say that E is admissible as a representation of G if E′ is a finitely

generated ΛQp
-module. In [20, Lemma 3.4] and the subsequent discussion, the authors show that admissibility

implies that for any G-stable lattice L ⊂ E, the representation of G on L/pL is smooth and admissible (in the

usual sense of these terms, recalled at the start of Section 2.4). They also prove that if an object E in Ban(Qp)
≤1

carries an admissible unitary representation of G, then Ed is a finitely generated ΛZp
-module.

2.4 Completed cohomology

The last ingredient we need before proving Theorem 1.2 is the following bound for the growth of invariants in

representations of G. If L is a representation of G over Fp, we recall that L is called smooth if every v ∈ L has

an open stabilizer in G, and admissible if the dimension of LH is finite for any open subgroup H < G.

Proposition 2.3. Let L be a smooth admissible representation of G over Fp such that L∗ is a finitely generated

torsion Λ module. Then we have

dimLTGn �L (100p−4/9)n|G : TGn|

for all n.

Note that Proposition 2.3 represents a power saving over the trivial bound of dimLTGn �L |G : TGn|. It

will be proved in Section 3.
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We now complete the proof of Theorem 1.2. Let φ : Γ → SL(3,Zp) be the natural injection obtained by

composing Γ → SL(3,Z) → SL(3,Zp), and note that φ(Γ) is open. By choosing p sufficiently large and passing

to a subgroup of Γ, we may assume that φ(Γ) = G. Our assumption that p > 3 then implies that Γ is torsion

free. For k ≥ 1, define Γk = Γ ∩Gk. Let n be the smallest integer with pn−1 > 3λ and 3|n, and let Vλ ⊂ Vλ be

obtained by applying Lemma 2.1 to this n. Following Calegari and Emerton, we define

H̃i(Vλ) = lim
←−
s

lim
−→
k

Hi(Γk,Vλ/p
s), H̃i(Vλ)Qp

= H̃i(Vλ)⊗Zp
Qp.

Because Vλ is continuous as a representation of G, for each fixed s, Vλ/p
s is eventually trivial on Γk. If we define

H̃i = lim
←−
s

lim
−→
k

Hi(Γk,Zp/p
s), H̃i

Qp
= H̃i ⊗Zp

Qp,

we therefore have H̃i(Vλ) = H̃i ⊗Zp
Vλ and H̃i(Vλ)Qp

= H̃i
Qp

⊗Qp
Vλ. We recall the following facts about H̃i

Qp
.

• H̃i is a p-adically separated and complete Zp-module with bounded p-torsion exponent, by [6, Thm 1.1]

and [9, Lemma 2.1.4]. This implies that the torsion free quotient H̃i
tf is also separated and complete, so

that H̃i
Qp

= H̃i
tf ⊗Qp is naturally a Qp-Banach space in which H̃i

tf is the unit ball.

• The natural action of G on H̃i
tf induces an admissible unitary representation of G on H̃i

Qp
which extends

to the group SL(3,Qp) [9, Thm 2.1.5 and 2.2.11].

• Because SL(3,R) does not admit discrete series, the dual space of H̃i
Qp

is a torsion ΛQp
-module for all i

[7].

• There is a spectral sequence Ei,j
2 = Hi

cts(G, H̃j
Qp

⊗Qp
Vλ) =⇒ Hi+j(Γ, Vλ) [9, Prop 2.1.11].

The spectral sequence above implies that

h2(Γ, Vλ) ≤
∑

i+j=2

hi(G, H̃j
Qp

⊗Qp
Vλ), (3)

where hi denotes the dimension of Hi
cts. Moreover, the terms in this sum with j = 0, 1 vanish. The vanishing of

the j = 1 term follows from H̃1 = 0, which is a consequence of the congruence subgroup property for SL(3,Z).

For the j = 0 term, one has H̃0 = Zp, and so H2(G, H̃0
Qp

⊗Qp
Vλ) = H2(G, Vλ). A theorem of Lazard [15, Ch

V, Thm 2.4.10] shows that H2(G, Vλ) is a subspace of the Lie algebra cohomology group H2(sl3, Vλ), which

vanishes by Whitehead’s lemma. We therefore have

h2(Γ, Vλ) ≤ h0(G, H̃2
Qp

⊗Qp
Vλ).

We let E = H̃2
Qp

, and let L = H̃2
tf be the unit ball in E. We define L = L/pL. We then have

h0(G,E ⊗Qp
Vλ) ≤ h0(G,L⊗Zp

Vλ) ≤ h0(G,L⊗Fp
(Vλ/p)),
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where the middle term denotes the rank of the free finitely generated Zp-module (L⊗Zp
Vλ)

G. The inclusion

Vλ/pVλ ⊂ Fp[G/P (n)] from Lemma 2.1 gives

h0(G,L⊗Fp
(Vλ/p)) ≤ h0(G,L⊗Fp

Fp[G/P (n)]), (4)

and by Shapiro’s Lemma this is equal to dimL
P (n)

. We now use the SL(3,Qp) action to conjugate P (n) so

that it is closer to TGn, which lets us apply Proposition 2.3. If we define x = diag(pn/3, 1, p−n/3), then we have

xP (n)x−1 ⊂ TGn/3. We apply Lemma 3.4 to these groups, which gives

dimL
P (n)

= dimL
xP (n)x−1

≤ |TGn/3 : xP (n)x−1| dimL
TGn/3

.

We let M = Ed, so that L ' Homcts(M,Zp). The isomorphism M '
∏

i∈I Zp from (2) implies that

L ' c0(I,Zp) := {f : I → Zp | for all c > 0, |f(i)| > c for only finitely many i},

and that the vector spaces L and M := M/pM satisfy M = L
∗
(where the quotient topology on M is the same

as the pointwise topology). We know that M is a finitely generated and torsion ΛZp
-module, and because it has

no Zp-torsion this implies that M is a finitely generated and torsion Λ-module. Proposition 2.3 then gives

|TGn/3 : xP (n)x−1| dimL
TGn/3

� (100p−4/9)n/3|G : xP (n)x−1|

= (100p−4/9)n/3p3n.

By our choice of n, (100p−4/9)n/3p3n � λ3−4/2710n, which completes the proof after choosing p sufficiently large.

2.5 Extension to other groups

The fact that we cannot presently obtain Theorem 1.1 for extensions of Q, or higher GLd, is due to the way

we obtained the bound h2(Γ, Vλ) ≤ h0(G, H̃2
Qp

⊗Qp
Vλ) above. We did this by using the congruence subgroup

property to show that the contributions of H̃0
Qp

and H̃1
Qp

to the sum (3) are trivial, so we are left with

h0(G, H̃2
Qp

⊗Qp
Vλ). The fact that only an h0 remains is essential to our argument, as it lets us use the bound

(4) above (which isn’t necessarily true for higher hi).

To generalize our argument, we would need to bound the growth of ha(Γ, V ) in the lowest degree a that

cusp forms contribute (where V is a varying local system). For a group GLd/F with d ≥ 4, or d = 3 and F 6= Q,

we have a ≥ 3. Therefore, to control the right hand side of the inequality

ha(Γ, V ) ≤
∑

i+j=a

hi(G, H̃j
Qp

⊗Qp
V )
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we would need to control a term hi(G, H̃j
Qp

⊗Qp
V ) with i ≥ 1 and j ≥ 2, and we currently do not know how to

do this. In [17], we overcame this obstacle by showing that Vλ/p had an efficient filtration by modules isomorphic

to Fp[G/P (n)] for varying n (or rather, the analogous statement in the GL2 case). In the case of GL3, it would

suffice to solve the following:

Problem 2.4. There is δ > 0 such that for any λ, Vλ/p has a filtration by modules Fp[G/P (ni)] such that

∑

i

|G : P (ni)|
1−4/81 � λ3−δ.

Note that the exponent 1− 4/81 comes from the bound dimL
P (n)

� |G : P (n)|1−4/81, which we implicitly

deduced from Proposition 2.3 above.

3 Invariants of Λ modules

This section contains the proof of Proposition 2.3. We in fact prove a general version for any SLd(Zp), stated as

Corollary 3.3 below. For d ≥ 2, let Gd(n) = {g ∈ SLd(Zp) : g ≡ 1(pn)} and Gd = Gd(1). As d will be fixed for

most of the proof, we shall usually omit it and simply write G and G(n). We define T and Λ in the analogous

way to Section 2.1. We shall deduce Corollary 3.3 from the following two results. The first uses only elementary

representation theory, and the second follows from a theorem of M. Harris [13].

Theorem 3.1. Assume that p > d. Let L be a representation ofG over Fp such that dimLG(n) �L p−n|G : G(n)|

for all n. We then have

dimLTG(n) �L 10(d−1)np−(2/3)
d−1n|G : TG(n)|.

Theorem 3.2 (M. Harris). Assume that p > 2. If L is a smooth admissible representation of G over Fp such

that L∗ is a finitely generated torsion Λ module, then dimLG(n) �L p−n|G : G(n)| for all n.

See [10, Prop 2.17] for a strengthening of Theorem 3.2. Note that the theorem still holds if p = 2, provided

we change G to the depth 4 principal congruence subgroup G(2) (so that G remains a uniformly powerful pro-p

group). Combining these gives:

Corollary 3.3. Assume that p > d. Let L be a smooth admissible representation of G over Fp such that L∗ is

a finitely generated torsion Λ module. Then

dimLTG(n) �L 10(d−1)np−(2/3)
d−1n|G : TG(n)|.
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Note that if L∗ is a finitely generated Λ module, then one has the trivial bounds dimLG(n) � |G : G(n)| and

dimLTG(n) � |G : TG(n)|, and Theorem 3.2 and Corollary 3.3 respectively represent power savings over these

bounds under the assumption that L∗ is torsion. To prove Theorem 3.1, we shall show that one may stretch the

subgroup G(n) into TG(n) while maintaining control of the invariants, using the basic method of [17, Prop 7].

3.1 A lemma on passage to subgroups

The following lemma will let us pass bounds for invariants between subgroups of G.

Lemma 3.4. Let V be a representation of G over Fp, and let G ≥ H1 ≥ H2 be open subgroups of G. We have

dimV H2 ≤ |H1 : H2| dimV H1 .

Proof . By Lemma 3.5, it suffices to find a chain of normal subgroups H1 = J1 � J2 � . . .� Ji = H2. We

claim that the groups Jk = (H1 ∩G(k))H2 (which stabilize at H2 for k large) suffice. First, one observes

that these are in fact groups, as H2 normalizes H1 and G(k). Next, we wish to show that Jk is normal

in Jk−1. To do this, it suffices to check that H2 and H1 ∩G(k − 1) each normalize Jk. This is clear for

H2, as it normalizes H1, H2, and G(k). Moreover, H1 ∩G(k − 1) normalizes H1 ∩G(k), and so it suffices

to show that for g ∈ H1 ∩G(k − 1) and h ∈ H2 we have ghg−1 ∈ Jk. We have [g, h] ∈ [G(k − 1), G] ⊂ G(k) and

[g, h] ∈ [H1, H2] ⊂ H1, hence ghg−1 ∈ (H1 ∩G(k))h ⊂ Jk as required.

Lemma 3.5. Let J1 � J2 be two groups, with J1/J2 of order p. Let V be a representation of J1 over Fp. Then

dimV J2 ≤ p dimV J1 .

Proof . The space V J2 carries a representation of J1/J2. If we let j ∈ J1/J2 be nontrivial, then on V J2 we have

ker(1− j) = V J1 and (1− j)p = 0. The lemma follows.

3.2 Proof of Theorem 3.1.

Let S ⊂ T be the torus

S =








x

. . .

x

x1−d




: x ∈ 1 + pZp





.

We first prove a version of Theorem 3.1 with T replaced by S.
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Proposition 3.6. Assume that p > d. Let V be a representation of G over Fp, and suppose that there exist

C,N > 0 and R < pd
2−1 such that dimV G(n) ≤ CRn for all n ≤ N . Let ρ = R1/3p(4−d

2)/3. Then

dimV SG(n) ≤ C ′(10ρ−1)nRn = C ′10nR2n/3p(d
2−4)n/3

for all n ≤ N , where C ′ = Cmax{1, (10ρ−1)−2}.

We could prove Proposition 3.6 with any one dimensional torus, but the reason we have chosen S is that

it commutes with the copy of Gd−1 in the upper left hand block of G. It follows that V SG(n) is a Gd−1 module,

which lets us apply Proposition 3.6 inductively to bound dimV TG(n) in Proposition 3.9 below.

Proof . If ρ < 10 then the bound we wish to prove is weaker than the trivial bound dimV SG(n) ≤ CRn. We

may therefore assume that ρ ≥ 10, in which case the bound we must prove is dimV SG(n) ≤ C(10ρ−1)n−2Rn.

For any n− 1 ≥ k ≥ 0, we define S(n, k) = (S ∩G(n− k))G(n). One may think of S(n, k) as the subgroup of

G obtained by stretching G(n) by k steps in the S direction. We shall prove by induction that

dimV S(n,k) ≤ C(10ρ−1)k−1Rn (5)

for all 1 ≤ n ≤ N and 0 ≤ k ≤ n− 1. As S(n, n− 1) = SG(n), this gives the proposition. Note that (5) follows

from the conditions of the proposition when k = 0, 1.

Fix (n, k), and suppose that (5) holds for all (n′, k′) less than (n, k) in the lexicographic ordering. We may

assume that k ≥ 2, and hence that n ≥ 3. As in [17, Prop 7], we shall deduce (5) for (n, k) from the cases

(n− 1, k − 1) and (n, k − 1), by applying inclusion-exclusion counting to the invariants under certain subgroups

lying between S(n− 1, k − 1) and S(n, k − 1).

It may be seen that S(n, k − 1) is normal in S(n− 1, k − 1), and that the quotient X = S(n− 1, k −

1)/S(n, k − 1) is Abelian and isomorphic to the vector space Fd2−1
p . The image of S(n, k) in X is a line, which

we denote by `. We define

N =




1

. . .

1 pn−1

1




, N =




1

. . .

1

pn−1 1




,

and define W ⊂ X to be the subspace spanned by `, N , and N . Define U ⊂ W to be the subspace spanned by

N and N . If Y ⊂ X is any subspace (which we may identify with a subgroup of G), we let V Y be the vectors

in V fixed by Y . The argument on [17, p. 1638] gives
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(
2m

m− 1
− 1

)
dimV ` ≤

2

m− 1
dimV 0 +

m(m− 1)

2
dimV W , (6)

where m = bρc, and we briefly recall how this works. First, the following lemma implies that dimV `′ = dimV `

for any line `′ ⊂ W not contained in U .

Lemma 3.7. If `′ ⊂ W is a line not contained in U , then there is g ∈ G whose action by conjugation descends

to X, and such that g`′g−1 = `.

Proof . This follows in the same way as [17, Lemma 8]. If we define

N ′ =




1

. . .

1 pk−1

1




, N
′
=




1

. . .

1

pk−1 1




,

it may be checked that N ′ and N
′
normalize S(n− 1, k − 1) and S(n, k − 1), and that conjugation by N ′ or N

′

acts on W by shearings that fix U pointwise and translate in the directions of N and N respectively.

Next, if P ⊂ W is a plane different from U , and `1, . . . , `j ⊂ P are distinct lines that do not lie in U , then

[17, Lemma 9] gives

dimV `1 + dim

j∑

i=2

V `i ≤ dim

j∑

i=1

V `i + (j − 1) dimV P . (7)

The assumption R < pd
2−1 implies that m ≤ ρ < p, so that we may choose m lines `1, . . . , `m satisfying these

conditions. We may apply (7) successively to the collections {`1, . . . , `m}, {`2, . . . , `m}, . . . , {`m−1, `m} to obtain

dimV `1 + dim

m∑

i=2

V `i ≤ dim

m∑

i=1

V `i + (m− 1) dimV P

dimV `2 + dim

m∑

i=3

V `i ≤ dim

m∑

i=2

V `i + (m− 2) dimV P

...

dimV `m−1 + dimV `m ≤ dim(V `m−1 + V `m) + dimV P .

Adding these and simplifying gives

m∑

i=1

dimV `i ≤ dim

m∑

i=1

V `i +
m(m− 1)

2
dimV P ≤ dimV 0 +

m(m− 1)

2
dimV P . (8)
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When combined with dimV `i = dimV `, this becomes

m dimV ` ≤ dimV 0 +
m(m− 1)

2
dimV P . (9)

If P1, . . . , Pm ⊂ W are planes containing `, we may apply the argument from [17, Lemma 9] to the lines

P1/`, . . . , Pm/` in W/` to obtain the analog of (7), and hence of (8), which is

m∑

i=1

dimV Pi ≤ dimV ` +
m(m− 1)

2
dimV W .

Bounding each dimV Pi from below using (9) and rearranging gives (6).

Our inductive hypothesis (5) for (n− 1, k − 1) gives dimV X ≤ C(10ρ−1)k−2Rn−1, and combining this with

Lemma 3.4 we have

dimV W ≤ pd
2−4 dimV X ≤ C(10ρ−1)k−2Rn−1pd

2−4.

The inductive hypothesis for (n, k − 1) gives dimV 0 ≤ C(10ρ−1)k−2Rn, and substituting these into (6) gives

(
2m

m− 1
− 1

)
dimV ` ≤ C(10ρ−1)k−2Rn

(
2

m− 1
+

m(m− 1)

2
R−1pd

2−4

)
.

By our choice of m, we have

(
2m

m− 1
− 1

)−1 (
2

m− 1
+

m(m− 1)

2
R−1pd

2−4

)

=

(
2m

m− 1
− 1

)−1 (
2

m− 1
+

m(m− 1)

2
ρ−3

)
≤ 10ρ−1.

This completes the inductive step, and hence the proof.

Remark 3.8. It may be possible to improve the bound of Proposition 3.6 by working with more conjugates of

S than we do here. This amounts to conjugating ` within a 2d− 1-dimensional subspace of X, rather than the

three-dimensional space W .

By applying Proposition 3.6 inductively, we may prove the following.

Proposition 3.9. Assume that p > d. Let V be a representation of G over Fp, and suppose that there exist

C,N > 0 and R < pd
2−1 such that dimV G(n) ≤ CRn for all n ≤ N . Then

dimV TG(n) ≤ Cκ10(d−1)nR(2/3)d−1npσ(d)n
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for all n ≤ N , where σ(d) = d(d− 1)− (2/3)d−1(d2 − 1), and κ > 0 depends only on R, p, and d.

Proof . We proceed by induction on d. We let κ > 0 denote a constant depending only on R, p, and d that may

vary from line to line. The base case of d = 2 is exactly the statement of Proposition 3.6. We next prove it for a

given d ≥ 3, assuming it holds for d− 1. Let V , N , R, and C be as in the statement of the proposition. We think

of the groups Gd−1(n) as embedded in Gd in the upper left block. For any k ≤ n ≤ N , we may apply Lemma

3.4 to the groups SGd(k) > SGd(n)Gd−1(k) to obtain

dimV SGd(n)Gd−1(k) ≤ |SGd(k) : SGd(n)Gd−1(k)| dimV SGd(k);

note that SGd(n)Gd−1(k) is in fact a group, because S and Gd−1(k) commute and they both normalize Gd(n).

Combining this with

|SGd(k) : SGd(n)Gd−1(k)| = pdim(Gd/SGd−1)(n−k) = p(2d−2)(n−k)

and the bound for dimV SGd(k) from Proposition 3.6 gives

dimV SGd(n)Gd−1(k) ≤ p(2d−2)(n−k)Cκ10kR2k/3p(d
2−4)k/3 ≤ Cκ10np(2d−2)nR2k/3p(d

2−6d+2)k/3.

This implies that we may invoke the induction hypothesis for the representation of Gd−1 on V0 = V SGd(n) with

data C0 = Cκ10np(2d−2)n, R0 = R2/3p(d
2−6d+2)/3, and N0 = n. (It may be checked that R0 < p(d−1)

2−1.) If T0

is the diagonal subgroup of Gd−1, this gives

dimV TGd(n) = dimV
T0Gd−1(n)
0

≤ C0κ10
(d−2)nR

(2/3)d−2n
0 pσ(d−1)n

= Cκ10(d−1)np(2d−2)nR
(2/3)d−2n
0 pσ(d−1)n

= Cκ10(d−1)np(2d−2)nR(2/3)d−1np(2/3)
d−2n(d2−6d+2)/3pσ(d−1)n.

The proposition now follows after checking that the exponent of p satisfies

(2d− 2) + (2/3)d−2(d2 − 6d+ 2)/3 + σ(d− 1) = σ(d).
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Finally, we deduce Theorem 3.1 from Proposition 3.9. We are given that the conditions of the proposition

hold with R = pd
2−2, some C > 0, and any N , and it may be checked that in this case the proposition gives

exactly the conclusion of Theorem 3.1.
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