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We prove a power saving over the trivial bound for the number of cohomological cuspidal automorphic representations

of fixed level and growing weight on GL3/Q, by adapting the methods of our earlier paper on GLs.

1 Introduction

The purpose of this article is to prove a power saving over the trivial bound for the number of cohomological
cuspidal automorphic representations on GL3/Q of fixed level and growing weight. To state our result, let
a > b > c be integers, and let V be the irreducible algebraic representation of GL3(R) with highest weight
(a,b,c). By a theorem of Borel and Wallach [5, Ch II, Prop 6.12], if an irreducible unitary representation 7 of
GL3(R) has nonzero (g, K)-cohomology with coefficients in V, then b =0 and ¢ = —a (i.e. V is equivalent to
its twist by the Cartan involution). We shall therefore restrict our attention to the coefficient systems V) with
highest weight (X,0,—\), and say that an irreducible unitary representation 7 is cohomological of weight A if
it is infinite dimensional and H*(g, K; 7™ ® V)) # 0. (Note that we take K = SO(3).) It is known that there are
two such 7, which are trivial on the positive scalar matrices and are twists of each other by the sign of the

determinant. Moreover, they satisfy

, C =23,
Hi(g Kine W) = {
0 i#23.
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We shall say that an automorphic representation 7 on GL3/Q is cohomological of weight \ if 7o, has this

property. Our main result is the following;:

Theorem 1.1. Fix a compact open subgroup K C GL3(Ay), and let Ay be the set of cuspidal automorphic
representations on GL3/Q that are cohomological of weight A and have level K. We have |Ay| < g A\3~4/27+e.

O

We shall deduce Theorem 1.1 from the following theorem on the cohomology of congruence subgroups of

SL(3,Z).

Theorem 1.2. Let T be a congruence subgroup of SL(3,7Z). We have dim H?(T', V3) <, \>~4/27+¢,
O

We note that the trivial bound in Theorems 1.1 and 1.2 is on the order of dim Vy ~ A3. As a result, these
theorems represent a power improvement for the dimension of a space of automorphic forms that are tempered
but not essentially square integrable at infinity. This is a difficult problem, which has only been solved in a few
cases [7, 8, 14, 17, 18]. (See also the paper [19] of Sardari for an analogous result at finite places.) Moreover,
there are currently no results of this type proved using the trace formula alone, despite recent progress in
understanding its analytic properties.

To illustrate this point, we shall recall some results on the problem of counting cohomological cuspidal
automorphic representations of fixed level and growing weight on GLo/K where K is imaginary quadratic. This
is analogous to Theorem 1.1, as these representations are also tempered but not essentially square integrable at
infinity. We let Sy denote the set of cohomological cuspidal automorphic representations of weight d and some
fixed unspecified level on GLy/K, where ‘weight d’ means having cohomology with respect to the coefficient
system sym?C? @ sym9C2? © |det|~?. The trivial bound here is |Sy| < d2, which is the dimension of the coefficient
system. The best known bound for |Sy| obtained by an analytic study of the trace formula is |S;| < d?/logd,
due to Finis, Grunewald and Tirao [12]. On the other hand, in [17] we used the theory of completed cohomology
developed by Calegari and Emerton [6, 9] to prove that dim Sy <. d®/3*t¢ and this was later improved to
<, d3/%F¢ by Hu [14]. Tt is likely that the best bound for |Ay| that one could prove using the trace formula is a
similar logarithmic improvement over \3.

One has a lower bound for | Ay of |Ax] > A from symmetric square lifts [2, Sec 3.4], and the computations
of [1] (and those of [12] in the analogous case of SL2(C)) suggest that this is the main contribution so that in
fact |Ax] ~ A

Theorem 1.2 will be proved by combining the methods of our previous paper [17] with a new bound for the
growth of invariants in certain F,-representations of SL3(Z,) (Proposition 2.3). We in fact prove a version of
Proposition 2.3 for a general SL4(Z,) (Corollary 3.3), but at present we are unable to deduce new bounds on

cohomology from this. We discuss this further in Section 2.5.
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By improving Proposition 2.3, it may be possible to improve the saving in the exponent of our main theorem
from 4/27 to 8/45, but we have not checked this carefully. More precisely, the improvement would be made in
the proof of Proposition 3.6, see Remark 3.8. We do not know if this is the best exponent one could obtain using

the methods of this paper.

1.1 Proof of Theorem 1.1 assuming Theorem 1.2

Before proving Theorem 1.2, we show how it implies Theorem 1.1 using the extension of Matsushima’s formula
to noncompact quotients proved in [3, 4]. Let Z* be the positive scalar matrices in GL3(R), and define
X = GL3(Q)\GL3(A)/KZ*. We have X = |JT;\SL3(R), where I'; are congruence subgroups of SL(3,Z).

There is a unique irreducible unitary infinite dimensional representation 7y of SL3(R) with H?(g, K;m) ®
V) # 0. This implies that if 7 € Ay then the restriction of 7w, to SL3(R) must be isomorphic to 7). Moreover,
Too I8 trivial on Z*. If we let m(my, X) denote the multiplicity with which my occurs in L2, (X), it follows
that |Ax| < m(my, X). I T C SL(3,Z) is a congruence subgroup we also let m(my,I") be the multiplicity of
in L2 . (T'\SL(3,R)). We have

cusp

m(my, X) < Zm(m\,ri),

so it suffices to prove that m(my,I') < . A3—4/27+¢ for any T. The extension of Matsushima’s formula to
noncompact quotients proved in [3, 4] implies that m(my,T') < dim H?(T',Vy), and Theorem 1.2 completes the

proof.

2 Proof of Theorem 1.2

In this section we prove Theorem 1.2, assuming the bound for the growth of invariants in F,-representations
of SL3(Z,) stated in Proposition 2.3; this proposition is proved in Section 3. We introduce notation in Section
2.1, and construct a lattice V) C V) in Section 2.2 (after changing coefficients to Q,,) that will later be used in
our reduction mod p argument. We recall facts about p-adic Banach space representations in Section 2.3, and
complete the proof of Theorem 1.2 in Section 2.4. Section 2.5 discusses the problem of extending our results to

other groups.

2.1 Notation

We let p > 3 be a prime which will be fixed throughout Section 2. We shall consider V) as a representation
of GL3(Q) with Q, coefficients. We define G,, = {g € SL(3,Z,) : g = 1(p")}, and let G = G1. We let T and
U be the diagonal and strictly upper triangular subgroups of G, and define P(n) = TUG,,. We define the

non-commutative Iwasawa algebras

AZp = L%HZP[G/G;C], AQP = AZP ®Z,, Qp, and A= %IFP[G/G]G],
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where the projections are induced from the maps G/Gy — G/Gy, for k' > k. Suppose L is a representation of
G over F;,, and let L* be the dual representation equipped with the weak topology. If L is smooth, then the
action of G on L* extends uniquely to an action of A such that for any ¢ € L* the orbit map A — L*, x — x/,
is continuous. We use h* to denote the dimension of H?, computed with continuous cochains in the case of the

group G.

2.2 Choosing a lattice in V)

We shall require a lattice V) C V) with the properties described in the following lemma.

Lemma 2.1. If n > 1 satisfies p"~! > 3, there is a G-stable lattice V5 C V) such that V,\/pV) is isomorphic

to a submodule of F,[G/P(n)].

Proof. Let V¥ be the dual of Vy, and (,-) the pairing between them. Let w} € V¥ be a nonzero vector of
highest weight. As a representation of SL3(Q,), Vi is isomorphic to the space of functions on SL(3,Q,) of the

form

f(g) = (W(g_l)v,wf\>, veVy,

where SL(3,Q,) acts by [r(h)f](g) = f(h~'g). We define V) to be the Z,-module of functions whose values on
G lie in Z,, which is clearly a G-stable lattice. This implies that Vy/pV, may be identified with the submodule
of C(G,F,) obtained by reducing functions in V5 modulo p, and we must show that these reductions are
right-invariant under P(n).

Let w_y € V) be the vector of lowest weight with (w_y,w}) = 1, and define f(g9) = (r(g~Hw_x,w}). We
have f(e) = 1, and the invariance properties of w_y and w} imply that for u_ in the lower triangular unipotent
and b in the standard Borel we have fy(u_b) = x(b), where x is the highest weight character of V)*. By the

Bruhat decomposition, these facts specify f) uniquely. Moreover, the function

T11 Ti2 13 A

T11 12
At X x X — a7 det
h 21 22 23 i\l

T21  X22
31 T32 T33

also has these properties, so that f\ = h).

Let Py be the space of polynomials on Ms5(Q),) spanned by the left translates of hy under SL3(Q,), and let
Px C Py be the lattice of polynomials that are integral on G. It follows that V) and V) are the restrictions of Py
and Py to SL3(Q,) respectively. Moreover, because all elements of Py transform by the same character under
the action of scalar matrices, elements of Py are integral on 1 + pMs(Z,). We also see that all polynomials in

P\ have degree at most 3. By combining this with Lemma 2.2 and our assumption that 3\ < p"~!, we see
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that, on 1+ pMs3(Z,), the functions in Py /pP) are constant on cosets of p"Ms(Z,). It follows that functions
in V5 /pVy are invariant under G,,. The invariance under TU follows from our choice of w} as a highest weight
vector, which completes the proof.

Lemma 2.2. Let h € Q,[z] have degree d, and suppose that h maps Z, to Z,. Let h : Z, — F, be the reduction

of h modulo p. If d < p', then h is constant on cosets of p'Z,.

Proof. We first use the integral-valued property of h to show that we have

d
x
hz) = ¢ < ) (1)
=0 M
with ¢; € Z, (we trivially have a unique such representation with ¢; € Q). We prove this using induction on d,

and note that the case d = 0 holds trivially. If d > 1, we consider the polynomial

x
Wz +1) = h() = jZfJ(j—l)’
and note that this is also integral valued on Z,. Applying the induction hypothesis gives c¢; € Z,, for j > 1, and
we have ¢g = h(0) € Z,,.
Having established the representation (1), it suffices to consider the case where h is a binomial coefficient
(%) with d < p'. But the lemma in this case follows from a result of Lucas [16] (see also [11]) on congruences of

binomial coefficients modulo p.

2.3 p-adic Banach space representations

We now recall from [20] some facts about representations of G (or any other compact p-adic Lie group) on a
p-adic Banach space.

We recall that a topological Z,-module is called linear-topological if the zero element has a fundamental
system of open neighbourhoods consisting of Z,-submodules. We let Modyop(Z,,) be the category of all Hausdorff
linear-topological Z,-modules with morphisms being all continuous Z,-linear maps. We let Modzf(Zp) be the
full subcategory in Modyop(Zy) consisting of torsion free and compact linear-topological Z,-modules. We recall

from [20, Rmk 1.1] that if M is any object in Mod™(Z,), we have

M~]]Z, (2)

icl
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for some set I. We let Ban(Q,) be the category of all Q,-Banach spaces (E,| ||), with morphisms being
continuous linear maps. We let Ban(Q,)<! be the subcategory of spaces such that ||E| C |Q,|, with the
morphisms being norm-decreasing linear maps.

In [20, Section 1], Schneider and Teitelbaum define two contravariant functors between the categories

Ban(Q,)=!' and Mod"(Z,). For an object M in Mod(Z,) they define the Q,-Banach space
M®* = Hom$*(M,Q,) with norm ||| = max [¢(m)],
P me

which defines a contravariant functor Mod® (Z,) — Ban(Q,)<'. For a Banach space (F, || ||) with unit ball L,
they also define

Ed = Homgz, (L,Z,) with the topology of pointwise convergence,

which gives a contravariant functor Ban(Q,)<' — Mod"/(Z,). They prove in [20, Thm 1.2] that the functors
M +— M9 and E + E? define an antiequivalence of categories. In particular, if E is an object in Ban((@p)fl7 L
is the unit ball in E, and M = E?, then we have E = M? and L = Hom%t;(M, Zy).

We now consider a Banach space E with a continuous representation of G. We say that this representation
is unitary if it preserves the norm. The representation induces an action of G' on the dual E’ = E[1/p], which
may be completed to an action of Ag,. We say that E is admissible as a representation of G if E’ is a finitely
generated Ag,-module. In [20, Lemma 3.4] and the subsequent discussion, the authors show that admissibility
implies that for any G-stable lattice L C E, the representation of G on L/pL is smooth and admissible (in the
usual sense of these terms, recalled at the start of Section 2.4). They also prove that if an object E in Ban(@p)§1

carries an admissible unitary representation of G, then E? is a finitely generated Az,-module.

2.4 Completed cohomology

The last ingredient we need before proving Theorem 1.2 is the following bound for the growth of invariants in
representations of G. If L is a representation of G over Fj,, we recall that L is called smooth if every v € L has

an open stabilizer in G, and admissible if the dimension of L is finite for any open subgroup H < G.

Proposition 2.3. Let L be a smooth admissible representation of G over IF), such that L* is a finitely generated
torsion A module. Then we have
dim LTG <1 (100p~4°)"|G : TG,|

for all n.

O

Note that Proposition 2.3 represents a power saving over the trivial bound of dim L7% < |G : TG,|. It

will be proved in Section 3.
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We now complete the proof of Theorem 1.2. Let ¢ : I' — SL(3,Z,) be the natural injection obtained by

composing I' — SL(3,Z) — SL(3,Z,), and note that ¢(I") is open. By choosing p sufficiently large and passing
to a subgroup of T', we may assume that ¢(I') = G. Our assumption that p > 3 then implies that T is torsion
free. For k > 1, define 'y, = I' N Gj. Let n be the smallest integer with p"~! > 3\ and 3|n, and let V\ C V) be

obtained by applying Lemma 2.1 to this n. Following Calegari and Emerton, we define

H'(Vy) = limlim H (T, Vi /p%),  H'(Va)g, = H' (V) ®2z, Qp-
s k

Because V) is continuous as a representation of G, for each fixed s, Vy/p® is eventually trivial on T'. If we define

H' =limlimH" (T, Zy/p*), Hp = H' ®z, Qp,
s k

we therefore have ﬁi(VA) = H ®z, Vx and ﬁi(VA)Qp = ff@p ®q, Vx. We recall the following facts about ﬁip.

e Hiisa p-adically separated and complete Z,-module with bounded p-torsion exponent, by [6, Thm 1.1]
and [9, Lemma 2.1.4]. This implies that the torsion free quotient ﬁ]gf is also separated and complete, so
that fI@p = ITIZf ® Qp, is naturally a Q,-Banach space in which f[gf is the unit ball.

e The natural action of G on fIt’f induces an admissible unitary representation of G' on fI@p which extends
to the group SL(3,Q,) [9, Thm 2.1.5 and 2.2.11].

e Because SL(3,R) does not admit discrete series, the dual space of ﬁ[@p is a torsion Ag,-module for all 4
[7].

e There is a spectral sequence E5? = H',

(G, HY, ®q, V) = H™I(T,V3) [9, Prop 2.1.11].

The spectral sequence above implies that

hz(F7 V)\) < Z hZ(G7ﬁ([§p ®Qp VA)v (3)
itj=2

where h? denotes the dimension of H{ . Moreover, the terms in this sum with j = 0, 1 vanish. The vanishing of
the 7 = 1 term follows from H!' = 0, which is a consequence of the congruence subgroup property for SL(3,Z).
For the j = 0 term, one has H° = Z,, and so H%(G, E[&p ®q, Va) = H?*(G, V). A theorem of Lazard [15, Ch
V, Thm 2.4.10] shows that H?(G,V,) is a subspace of the Lie algebra cohomology group H?(sl3, V), which

vanishes by Whitehead’s lemma. We therefore have

h*(T,Va) < (G, H3 @q, VA).

We let E = I?QP, and let L = ffff be the unit ball in E. We define L = L/pL. We then have

h(G,E ®q, Vi) < h°(G,L®z, V\) < h°(G,L ®F, (Vx/p)),
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where the middle term denotes the rank of the free finitely generated Z,-module (L ®z, Vx)¢. The inclusion

Vi/pVx C Fy[G/P(n)] from Lemma 2.1 gives

h'(G, L@, (Vx/p)) < h°(G, L @s, F,[G/P(n)]), (4)

). We now use the SL(3,Q,) action to conjugate P(n) so

and by Shapiro’s Lemma this is equal to dim fp(n
that it is closer to TG,,, which lets us apply Proposition 2.3. If we define z = diag(p™/?, 1, p~™/?), then we have

xP(n)z~1 C TG, 3. We apply Lemma 3.4 to these groups, which gives

xP(n)z~ TGrys

dimI"" = dim T < |TGs: 2P(n)z~"|dim T

We let M = E4, so that L ~ Homes(M,Z,). The isomorphism M =~ [],_, Z,, from (2) implies that

iel
L~cy(I,Zy):={f:1—7Z,|forall c>0,|f(i)] > c for only finitely many i},

and that the vector spaces L and M := M /pM satisfy M = f* (where the quotient topology on M is the same
as the pointwise topology). We know that M is a finitely generated and torsion Az -module, and because it has

no Z,-torsion this implies that M is a finitely generated and torsion A-module. Proposition 2.3 then gives

TG, 3 : aP(n)z™"| dimL" 9 < (100p~4/""/3|G : xP(n)z™"

— (100p74/9>n/3p3n.
By our choice of n, (100p’4/9)”/3p3" < A3=4/2710", which completes the proof after choosing p sufficiently large.

2.5 Extension to other groups

The fact that we cannot presently obtain Theorem 1.1 for extensions of Q, or higher GLg4, is due to the way
we obtained the bound h?(T', Vy) < hO(G, ﬁép ®q, Vi) above. We did this by using the congruence subgroup
property to show that the contributions of f[&p and f[ép to the sum (3) are trivial, so we are left with
ro(G, ]:Tép ®q, Va). The fact that only an h° remains is essential to our argument, as it lets us use the bound
(4) above (which isn’t necessarily true for higher h?).

To generalize our argument, we would need to bound the growth of h*(T', V) in the lowest degree a that
cusp forms contribute (where V' is a varying local system). For a group GLy/F with d > 4, or d = 3 and F # Q,

we have a > 3. Therefore, to control the right hand side of the inequality

R, V)< Y WG HY ®q, V)

i+j=a
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we would need to control a term h*(G, ﬁép ®q, V) with i > 1 and j > 2, and we currently do not know how to
do this. In [17], we overcame this obstacle by showing that Vy /p had an efficient filtration by modules isomorphic
to F,[G/P(n)] for varying n (or rather, the analogous statement in the GLs case). In the case of GLs, it would

suffice to solve the following:

Problem 2.4. There is § > 0 such that for any A, V/p has a filtration by modules F,[G/P(n;)] such that

D IG : Pny) ' < X3,

7

O

Note that the exponent 1 — 4/81 comes from the bound dimI"" « |G : P(n)|*~*/8!, which we implicitly

deduced from Proposition 2.3 above.

3 Invariants of A modules

This section contains the proof of Proposition 2.3. We in fact prove a general version for any SLq(Z,), stated as
Corollary 3.3 below. For d > 2, let Gq(n) ={g9 € SL4(Zy) : g = 1(p")} and G4 = G4(1). As d will be fixed for
most of the proof, we shall usually omit it and simply write G and G(n). We define T and A in the analogous
way to Section 2.1. We shall deduce Corollary 3.3 from the following two results. The first uses only elementary

representation theory, and the second follows from a theorem of M. Harris [13].

Theorem 3.1. Assume that p > d. Let L be a representation of G over F,, such that dim L& < p~"|G : G(n)|

for all n. We then have

dim LTCM) < 1006 Dny=@/3" G 16 ().

O

Theorem 3.2 (M. Harris). Assume that p > 2. If L is a smooth admissible representation of G over F, such
that L* is a finitely generated torsion A module, then dim LE™ <, p~"|G : G(n)| for all n.
O

See [10, Prop 2.17] for a strengthening of Theorem 3.2. Note that the theorem still holds if p = 2, provided
we change G to the depth 4 principal congruence subgroup G(2) (so that G remains a uniformly powerful pro-p

group). Combining these gives:

Corollary 3.3. Assume that p > d. Let L be a smooth admissible representation of G over [F,, such that L* is

a finitely generated torsion A module. Then

dim LT < 100Dy~ G 1G(n)).
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]

Note that if L* is a finitely generated A module, then one has the trivial bounds dim L&) < |G : G(n)| and
dim LT¢™ <« |G : TG(n)|, and Theorem 3.2 and Corollary 3.3 respectively represent power savings over these
bounds under the assumption that L* is torsion. To prove Theorem 3.1, we shall show that one may stretch the

subgroup G(n) into T'G(n) while maintaining control of the invariants, using the basic method of [17, Prop 7].

3.1 A lemma on passage to subgroups

The following lemma will let us pass bounds for invariants between subgroups of G.

Lemma 3.4. Let V be a representation of G over F,, and let G > H; > Hy be open subgroups of G. We have
dim V2 < |Hy : Hy|dim V1,

Proof. By Lemma 3.5, it suffices to find a chain of normal subgroups Hi =J; > Jo>...>J; = Hy. We
claim that the groups Jy = (H; N G(k))Hz (which stabilize at Hy for k large) suffice. First, one observes
that these are in fact groups, as Hs normalizes H; and G(k). Next, we wish to show that Jg is normal
in Jy_1. To do this, it suffices to check that Hs and H; N G(k — 1) each normalize J;. This is clear for
Hs, as it normalizes Hy, Hs, and G(k). Moreover, H; N G(k — 1) normalizes H; N G(k), and so it suffices
to show that for g € H; N G(k — 1) and h € Hy we have ghg~! € J,. We have [g,h] € [G(k — 1),G] C G(k) and
lg,h] € [H1, Hz] C Hy, hence ghg™t € (Hy N G(k))h C Ji as required.

Lemma 3.5. Let J; >> Jy be two groups, with J;/J> of order p. Let V' be a representation of J; over F,,. Then
dim V72 < pdim Vi,

O

Proof. The space V/2 carries a representation of .J; /Jo. If we let j € .J;/.Jo be nontrivial, then on V2 we have

ker(1 — j) = V/t and (1 — j)? = 0. The lemma follows.

3.2 Proof of Theorem 3.1.

Let S C T be the torus

S = ' cx €1+ pZy

We first prove a version of Theorem 3.1 with T replaced by S.
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Proposition 3.6. Assume that p > d. Let V be a representation of G' over F,, and suppose that there exist

C,N >0 and R < p?° ~! such that dim VE™ < CR" for all n < N. Let p = R/3p#=d*)/3 Then
dim VSG(n) < C/(lop—l)an — C/lonR2n/3p(d2_4)n/3

for all n < N, where C’ = C max{1, (10p~1)~2}.

O

We could prove Proposition 3.6 with any one dimensional torus, but the reason we have chosen S is that
it commutes with the copy of G4_1 in the upper left hand block of G. It follows that VS¢(") is a G4_; module,

which lets us apply Proposition 3.6 inductively to bound dim V7™ in Proposition 3.9 below.

Proof. If p < 10 then the bound we wish to prove is weaker than the trivial bound dim V¢ < CR"™. We
may therefore assume that p > 10, in which case the bound we must prove is dim V3¢ < C(10p=1)*~2R".
For any n —1 > k > 0, we define S(n,k) = (SNG(n — k))G(n). One may think of S(n, k) as the subgroup of

G obtained by stretching G(n) by k steps in the S direction. We shall prove by induction that

dim VS < ¢(10p~ 1)k~ 1R" (5)

foralll1<n< Nand 0<k<n-—1. As S(n,n — 1) = SG(n), this gives the proposition. Note that (5) follows
from the conditions of the proposition when k& = 0, 1.

Fix (n, k), and suppose that (5) holds for all (n’, k’) less than (n, k) in the lexicographic ordering. We may
assume that k£ > 2, and hence that n > 3. As in [17, Prop 7|, we shall deduce (5) for (n,k) from the cases
(n—1,k—1) and (n,k — 1), by applying inclusion-exclusion counting to the invariants under certain subgroups
lying between S(n — 1,k — 1) and S(n,k — 1).

It may be seen that S(n,k —1) is normal in S(n— 1,k — 1), and that the quotient X = S(n—1,k —
1)/S(n,k — 1) is Abelian and isomorphic to the vector space FgQ_l. The image of S(n,k) in X is a line, which

we denote by £. We define

and define W C X to be the subspace spanned by ¢, N, and N. Define U C W to be the subspace spanned by
N and N. If Y C X is any subspace (which we may identify with a subgroup of G), we let V¥ be the vectors
in V fixed by Y. The argument on [17, p. 1638] gives
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dim 0 + =1

(27”1 - 1> dim V'’ < dim V"W, (6)

m — m—1

where m = |p], and we briefly recall how this works. First, the following lemma implies that dim V¢ = dim V*

for any line ¢/ C W not contained in U.

Lemma 3.7. If ¢/ C W is a line not contained in U, then there is g € G whose action by conjugation descends

to X, and such that g¢'g~! = ¢.

Proof. This follows in the same way as [17, Lemma 8]. If we define

it may be checked that N’ and N normalize S(n—1,k—1) and S(n,k — 1), and that conjugation by N’ or N

acts on W by shearings that fix U pointwise and translate in the directions of N and N respectively.

Next, if P C W is a plane different from U, and ¢1,...,¢; C P are distinct lines that do not lie in U, then

[17, Lemma 9] gives

J J
dim V' +dim Y V4 <dim» V4 4+ (j — 1) dim V7. (7)
=2 i=1
The assumption R < pdz_1 implies that m < p < p, so that we may choose m lines /1, ...,¥¢,, satisfying these

conditions. We may apply (7) successively to the collections {¢1,...,¢m},{la, ... lm}, .., {€m—1,¢m} to obtain

dim V% +dim Y V4 <dim >V + (m — 1) dim V7
=2 =1

dim V% + dim Y V% <dim >V + (m — 2)dim V7
=3 =2

dim V=1 4 dim Vi < dim(Vi =1 + V) + dim V.

Adding these and simplifying gives

(m—1)

m m o 1
S dim Vi <dim > vE o+ % dim VP < dim Vv + dim VP (8)
=1 =1
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When combined with dim V% = dim V¥, this becomes

~1
mdim V¢ < dim VO + m(m —1)

dim V7. (9)
If P,...,P, CW are planes containing ¢, we may apply the argument from [17, Lemma 9] to the lines
Pi/¢, ..., Py, /tin W/ to obtain the analog of (7), and hence of (8), which is

“ -1
S dim VP < dim V¢ o+ %

i=1

dim VW,

Bounding each dim V¥ from below using (9) and rearranging gives (6).
Our inductive hypothesis (5) for (n — 1,k — 1) gives dim VX < C(10p~!)*=2R"~! and combining this with
Lemma 3.4 we have

dim VW < pT 4 dim VX < C(10p~ )P 2R pt 4,

The inductive hypothesis for (n, k — 1) gives dim V° < C(10p~1)¥=2R", and substituting these into (6) gives

2 2 -1
1) dim V¢ < C(10p7 )2 R pmm =) g ea) |
m—1 m—1 2

By our choice of m, we have

—1
2m 2 mim—1) | 24
SLE

(ml ) <m1+ 2 Rp

-1
U 2_mm=b) ) 2 g1,
m—1 m—1 2

This completes the inductive step, and hence the proof.

Remark 3.8. It may be possible to improve the bound of Proposition 3.6 by working with more conjugates of
S than we do here. This amounts to conjugating ¢ within a 2d — 1-dimensional subspace of X, rather than the

three-dimensional space W.

By applying Proposition 3.6 inductively, we may prove the following.

Proposition 3.9. Assume that p > d. Let V be a representation of G' over F,, and suppose that there exist
C,N >0 and R < p?’~! such that dim VE™ < CR" for all n < N. Then

dim V6™ < Ck10(@d-DnRE/3* npo(dn
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for all n < N, where o(d) = d(d — 1) — (2/3)"1(d? — 1), and x > 0 depends only on R, p, and d.

Proof. We proceed by induction on d. We let ¥ > 0 denote a constant depending only on R, p, and d that may
vary from line to line. The base case of d = 2 is exactly the statement of Proposition 3.6. We next prove it for a
given d > 3, assuming it holds for d — 1. Let V', N, R, and C be as in the statement of the proposition. We think
of the groups G4_1(n) as embedded in G4 in the upper left block. For any k¥ <n < N, we may apply Lemma
3.4 to the groups SG4(k) = SGq(n)Ga—1(k) to obtain

dim VSGamMGa1(k) < |9G (k) : SGgq(n)G g1 (k)| dim VSCa*).

note that SG4(n)Gg4—1(k) is in fact a group, because S and G4_1(k) commute and they both normalize G4(n).

Combining this with
1SGa(k) : SGa()Guma ()] = p(Go/SGu-0) k) _ pfai=2)0=b
and the bound for dim V5%4(*) from Proposition 3.6 gives

dim V' 5Ga(n)Ga-1(k) < p(2d72)(n7k)C«KlokR2k/3p(d274)k/3 < Cﬁlonp(2d72)nR2k/3p(d276d+2)k/3.

This implies that we may invoke the induction hypothesis for the representation of Gq_q on Vy = V5G4(") with
data Cp = Ck10"p(2d=2n R, — R2/3p(d2_6d+2)/3, and Ny = n. (It may be checked that Ry < p(d_l)z_l.) If Ty

is the diagonal subgroup of G4_1, this gives

i n : ToGa_1(n
dim V7™ = dip V0%
< Co/i10(d72)”R(()2/3)d72"pcr(d71)n
= Cr10@-Dnp(2d=2n 2/ 0 o (d—1)n

_ C«ﬁlo(df1)np(2d72)nR(2/3)d71np(2/3)d’2n(d276d+2)/3po(d71)n.

The proposition now follows after checking that the exponent of p satisfies

(2d — 2) + (2/3)472(d® — 6d + 2)/3 + o(d — 1) = o(d).
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Finally, we deduce Theorem 3.1 from Proposition 3.9. We are given that the conditions of the proposition

hold with R = pd2_2, some C > 0, and any N, and it may be checked that in this case the proposition gives

exactly the conclusion of Theorem 3.1.
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