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A basic paradigm underlying the Hookean mechanics of amorphous, isotropic solids is that small deformations
are proportional to the magnitude of external forces. However, slender bodies may undergo large deformations
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even under minute forces, leading to nonlinear responses rooted in purely geometric effects. Here we study the
indentation of a polymer film on a liquid bath. Our experiments and simulations support a recently-predicted
stiffening response [D. Vella and B. Davidovitch, Phys. Rev. E, 2018, 98, 013003], and we show that the system
softens at large slopes, in agreement with our theory that addresses small and large deflections. We show how
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1 Introduction

A major challenge in the mechanics of materials and structures
is bridging the gap between a system’s local material response
and its global stiffness. This connection from microscopic to
macroscopic scales is often complicated by subtle geometric
effects.” One conceptually simple example is a buckled elastic
rod, which drastically changes its shape in response to loading.
Such elastica problems captured the attention of Galileo, the
Bernoullis, and Euler, and variations on them continue to
fascinate and push our understanding of slender bodies
today.>” Particular attention surrounds the behaviors of two-
dimensional sheets, which may carry tensile loads in one direc-
tion while buckling or wrinkling in a perpendicular direction,
leading to large anisotropies in the equilibrium stresses and
deformations.®™® Understanding such geometrically-nonlinear
behaviors is important to a wide range of applications, from
stretchable electronics'” to large-scale inflatable structures.'?
Here we study the indentation of a polymer film on a liquid
bath [Fig. 1a and b] using experiments and simulations spanning
four decades in indentation depth, and theory that addresses small
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stiffening and softening emanate from nontrivial yet generic features of the stress and displacement fields.

and large deflections. This model system shows a remarkably
rich response under continual loading—it first stiffens (i.e., F/d
increases) and then subsequently softens [Fig. 1c]. Whereas
stiffening was predicted by a recent detailed theoretical study,"
softening occurs at large slopes where a direct analysis of the
Foppl-von Karman equations is prohibitive. We harness a
simple geometric model that treats the sheet as inextensible
but with zero bending cost,* which allows us to understand
both the force and the film profile at large amplitude.
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Fig. 1 Indentation of a floating circular polymer film of radius R. (a) We
measure the normal force, F, versus indentation depth, ¢. (b) A film of
thickness t = 445 nm and radius R = 22 mm indented to depth 6 = 0.9 mm,
causing radial wrinkles to cover the sheet. (c) Measured F(9) for a film with
t = 213 nm and R = 44 mm, where the shaded band shows experimental
uncertainty due to noise. The data show a complex response with multiple
distinct scaling regimes. At large o, the system energy is dominated by the
cost of exposing additional liquid—air interfacial area as the boundary of
the film is pulled inwards, illustrated by the vertical dashed lines in (a). This
geometric effect leads to a plateau in the force (i.e., softening).
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Particular interest in the indentation of thin films surrounds
the observation that wrinkles significantly modify the stress field
in the sheet and the force transmitted to the indenter,'*'>'°
which has practical importance for indentation assays used to
measure film properties. Fundamental interest is bolstered by
the recent discovery of a novel wrinkled morphology that is
nearly isometric to the original undeformed state.">"” Such
“asymptotically isometric mechanics” arises in the dual limit
of weak applied tension and vanishing bending modulus.
Experiments on ultrathin polymer films measuring the extent of
wrinkles,"” the vertical profile of the film,'® and the force
response'® support this picture. Yet, apart from this particular
regime, direct measurements of forces in wrinkled interfacial
films are scarce. Here we confirm the entire predicted force
evolution for an indented floating film,">'® and we demonstrate
an additional regime at large amplitude with two surprising
features: A force plateau and a limiting interface shape that is
independent of the indentation depth. Our results establish the
maximal load-bearing capacity of a floating film under point
loading, and our theoretical approach for small and large deflec-
tions can readily be adapted to different geometries and loading
conditions. We close by highlighting analogous behaviors that
arise from similar mechanisms in model fiber networks, due to a
separation of energy scales between bending and stretching
deformations that favors nearly-isometric wrinkled deformations
in a sheet and the buckling of individual fibers in a network.

2 Model system

We work in a geometry previously investigated by Holmes and
Crosby'® and Huang.”® We use spin-coated, ultrathin polystyrene
sheets (thickness 58 < ¢ < 490 nm, Young’s modulus E = 3.4 GPa)
of circular shape (radius 11 < R < 44 mm), that are floated on a
liquid bath of density p = 1000 kg m * and surface tension
y = 72 mN m '. We indent the films a vertical distance & as
illustrated in Fig. 1a, using a custom force probe mounted on a
computer-controlled vertical translation stage, following ref. 19. To
access an even larger dynamic range of indentation depths, we
perform numerical simulations in the molecular dynamics software
LAMMPS.*' We use a triangular lattice model for the sheet** and
springs with zero rest length for the liquid.” This approach allows us
to use parallel computing methods to address this inherently
multiscale problem where the sheet thickness, wrinkle wavelength,
and sheet radius occupy separate lengthscales.

Our films fall in the doubly-asymptotic limit of weak tension,
/Y < 1073, and negligible bending stiffness, ¢ = Bpg/y*> < 10™%,
where Y = Et is the stretching modulus, B is the bending
modulus, g is the gravitational acceleration, and ¢ is the inverse
bendability.® Such films can bare only a minute level of com-
pression before buckling out of plane, and they exhibit an
approximately linear stress-strain response under tensile loading,
all the way up to fracture.”> We work in the regime R > /.,
where (. = /y/pg~2.7mm is the gravity-capillary length,
which defines the lateral scale on which a bare liquid interface
would be disturbed due to a point deflection.
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As the sheet is indented beyond a threshold ¢, wrinkles form
in an annular region and then expand radially towards the
indenter and the edge of the film,">'® eventually covering the
film as in Fig. 1b. Fig. 1c shows the measured force versus
displacement for an experiment with ¢ = 213 nm and R = 44 mm.
The data show a complex response with multiple distinct scaling
regimes. At the largest o probed, the force levels off to a constant
value. For a bulk material, such a plateau would suggest plasticity
or failure, but as we will show, here the coupling of the geometry of
the sheet and the transmission of forces allows such a response
within the Hookean regime of the material. At smaller ¢ the force
F(9) is linear in J, but this is not the conventional linear response
often obtained at infinitesimal amplitude. At yet smaller ¢ the force
is markedly nonlinear and proportional to 4* For § < 10 * m, our
experimental uncertainties are too large to extract a clear scaling;
here our simulations are able to resolve a transition to an addi-
tional linear regime for very small ¢ [Fig. 4b]. We thus observe four
distinct scaling regimes for the normal force.

This phenomenology is consistent with a recent detailed
theoretical analysis of indentation,” although that work was
limited to small slopes and did not anticipate the force plateau
at large 0. We begin by reviewing key results from previous
theory and then develop a complementary theoretical approach
that is valid for arbitrary slopes and explains the observed
behavior at large amplitude.

3 Theory

3.1 Previous results

Progress on understanding the mechanical response of thin
floating films to indentation has relied on a far-from-threshold
(FT) framework that was developed in a series of recent
works.®***® This theory is based on the observation that for
sufficiently thin films, out-of-plane buckling completely relaxes
the compressive stress in one direction. In this framework,
complex wrinkle patterns emerge from at least two distinct
competitions: (i) in-plane stretching energy determines the
extent of the wrinkled zone; (ii) inside this region, the wrinkle
wavelength comes from balancing bending of the sheet with an
effective substrate stiffness.’®?” (Studies of ordering on other
mesoscopic lengthscales are ongoing.>®)

In the present problem, the indenter performs work that is
transmitted to a combination of elastic stretching of the sheet,
gravitational energy of the displaced fluid, and surface energy
due to exposing liquid surface area as the sheet retracts radially
inward [dashed lines in Fig. 1a]. At small J, the indenter probes
the stress state of the film, which is set by the interfacial
tension pulling at its edge. Thus, in the incipient regime:

4my
F~
In(1/e)
Here the film is stretched in a central region of width compar-
able to the gravity-capillary length, ¢ = /y/pg.%

0 (regime I). (1)

+ There are logarithmic corrections to eqn (1) for a finite-size indenter; see for
example ref. 16.
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At larger o the deflections in the sheet become nonlinear
and the force departs from this scaling. Eventually, azimuthal
stresses are compressive in an annular region, leading to the
formation of wrinkles that qualitatively modify the global stress
field. When wrinkles cover a finite fraction of the sheet, the
force is predicted to be:

ng52

F~226, [
In(9)

(regime IT), (2)

where 6 = (8/£.),/Y /y is a dimensionless indentation depth that
compares geometric and mechanical strain."” Note that eqn (2) is
a stiffening response because the effective spring constant F/d
(hereafter called the stiffness) is an increasing function of o.

At still larger o, wrinkles reach the edge of the sheet. This
event gives rise to a so-called ‘“‘asymptotic isometry” where
elastic energies in the sheet become negligible. In this regime,
the vertical profile of the sheet decays over an emergent lateral
scale Zeury = £2*R*? to minimize the sum of gravitational and
surface energies."'® A precise calculation yields:

F ~ 4.58(yR)**(pg)' (regime II). 3)

We note that regime I can be understood with standard
linear response theory, whereas regime III arises from distinct
geometric effects,"®'® yet the force is proportional to § in both
regimes.

The transitions between these regimes are governed by the
evolution of the stresses in the film."* A broad transition to
regime II is predicted at indentation depth:

,
Oy~ —t

7 (I — II), (4)

with a numerical prefactor reported in ref. 13 that varies with ¢ *.

Regime III is then predicted to begin at:

8. = 2.63R30)3 %m (zﬁ) (Il — 1I0). 5)

C

With the exception of eqn (3), the above predictions have
not been tested by experiments or simulations;§ we do so in
Section 4. Moreover, the behaviors at large slopes are comple-
tely unexplored. As we will show, the force plateau at large
amplitude constitutes another distinct scaling regime, which
we define as regime IV.

3.2 Stress field and indentation force

Here we outline a set of general arguments based on force
balance that are applicable to indentation at both small and
large slopes. This treatment allows us to describe the funda-
mental mechanisms for the previously-predicted stiffening at
small slopes,"?
large slopes.

while elucidating a novel softening regime at

§ Eqn (3) was compared with the experiments of Holmes & Crosby'? in the ESI to
ref. 15.
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We consider axially-symmetric vertical deflections of the sheet.
. . d
Radial force balance in the sheet reads: Z(rarr) — agp = 0, where
r

o, and gy are the radial and azimuthal stress components, with
the boundary condition ¢,,(R) = y at the edge. This equation has two
simple solutions: In the undeformed state, the stress field is
uniform, corresponding to the first solution: g, = ggg = y. At large
indentation (regimes III and IV), radial wrinkles cover the entire
sheet to avoid azimuthal compression that would have otherwise
been induced by the contraction of circles, so that gy = 0."* Thus,
in the second solution:
o (r) = ﬁ (6)
r

Here, the sheet behaves as if it were composed of many radial
strings transmitting the stress from the boundary to the indenter.

Fig. 2a shows the radial tensile stress ¢,, measured in our
simulations. As ¢ increases, the data go away from the uniform
solution towards the second solution that transmits larger
stresses to the center of the sheet. This occurs as the hoop
stress gy drops from y towards 0 over the majority of the film
[Fig. 2a, lower panel].

The radial tensile stress is linked to the normal force on the
indenter, F, by vertical force balance: F =2=n }‘ilré(ra,‘,.) sin(a),

where o is the angle between the horizontal and the sheet at
r =0, as drawn in Fig. 2b. We denote the axisymmetric height of
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Fig. 2 Radial stress and vertical profile. (a) Radial tensile stress, a,.(r), and
hoop stress, a9, measured in simulations with t = 210 nm, y = 72 mN mt
R = 44 mm, and averaged over (. As ¢ increases, vertical deflections of
the film reduce hoop stresses relative to radial stresses, amplifying the
radial stress at the indenter. Solid lines show the limiting behaviors at
5 = 0 [where a,(r) = age(r) = 7] and at large indentation [a,,(r) = yR/r and
agolr) = O]. (b) Vertical profile, {(r), shown in the shape of an Airy function.
The displacement at the origin is J, where the sheet forms an angle o with
the horizontal. We take the profile of the gross shape to be axisymmetric;
when this symmetry is broken there will be corrections to the force
relations derived here.
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the sheet by {(r), which neglects the undulations due to small-

amplitude wrinkles, so sin(x) = C’(O)/\/l + {’(0)2. In regimes III
and IV we may use eqn (6) for the radial stress, leading to:

F = 2Ry sin(a). (7)

These basic considerations get at the essence of the observed
stiffening and softening responses. Reduction of the hoop stress
due to radial retraction leads to larger radial stresses; this
growing anisotropy of stresses causes stiffening. Then at large
slopes, the force saturates as sin(x) ~ 1 [via eqn (7)], which
causes softening. To substantiate this qualitative picture, we now
consider the response of the film in more detail, starting from
small indentation.

3.3 Stiffening due to growing anisotropy of stresses

We begin by estimating the force on the indenter within the
linear response of the system at infinitesimal indentation. Here
the stress in the film is given by the simple isotropic solution,
namely, g, = 699 = . We suppose that the indenter will deform
a finite region of the sheet, so that the stress and displacement
are modified only within a core of some finite radius / (where it
is natural to assume that / oc /. since there is no other
available length). The force transmitted to the indenter is then
estimated by 2n/ysin(«), in analogy with eqn (7) but with
sin(x) ~ o//. Thus, in the initial regime, the force on the
indenter should scale as F ~ yJ, independent of / so long as
/ < R. This scaling is in agreement with eqn (1).

Intuitively, moving from an approximately uniform stress
fieldd to an increasingly anisotropic stress field causes the
observed stiffening, as forces are transmitted more effectively
to the indenter in the latter case. This qualitative picture
is supported by a recent far-from-threshold analysis of the
Féppl-von Kdrman equations,'®'> summarized above. At larger
0, wrinkles reach the edge of the sheet, giving rise to a so-called
“asymptotic isometry”'*>'>
become negligible.

where elastic energies in the sheet

3.4 Softening due to large slopes

We now show how large slopes give rise to a previously-
unanticipated softening response. We begin by considering
the case where wrinkles cover the sheet, yet the vertical deflec-
tions are still within the small-slopes limit. Under these condi-
tions, the vertical profile is given by:

Ai(r/leury)

C(V) =0 AI(O) )

8

where Ai(r) is the Airy function shown by the curve in Fig. 2b,
and Zeury = £2RY3. This profile may be derived by solving for
the stresses and deflections everywhere in the sheet'® or by
minimizing the surface and gravitational energy using the
geometric model described in Section 3.5. Using this result, the
slope at the origin is {'(0) = —(0// cur)AI’(0)/Ai(0) ~ 0.729(0// cury), SO

9 In the approximately uniform solution, there is nevertheless a stretched core
region where the stress is transmitted to the indenter."
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that small slopes are obtained when 6 « Zcu. Eqn (7) for the force
then reduces to:

F=2nRy('(0) ~ 4.58(yR)**(pg)"®6 (regime III). 9)

This result matches eqn (3), which was predicted in ref. 15 by
different means.

Our approach can also address large slopes, which corre-
spond to 0 2 /... The asymptotic force is obtained by setting
sin(x) = 1 in eqn (7), yielding:

F=2nRy (regime IV). (10)

This is a softening response because the stiffness, F/J, is a
decreasing function of . The crossover occurs when the
expressions (3) and (10) are comparable:

Sunr > 1.37/cury (T > V).

(11)

Interestingly, eqn (10) for the force in regime IV is the same
maximal force that a rigid disc of radius R can support before
sinking”®—despite the drastically different interfacial geometries
they produce, neither is significantly better at staying afloat.

3.5 Geometric model and localization transition

Here we show that in regimes III and IV, the profile {(r) can be
obtained from purely geometric arguments. In regime III, this
approach recovers the profile found in ref. 13; in regime IV, we
show that softening is accompanied by localization of {(r).

We treat the sheet as inextensible but with zero bending
cost. Such a treatment was used to explain the wrapping of a
droplet in a thin sheet'* and the folding of an annular sheet
submitted to different inner and outer surface tensions,*® and
it is motivated by the weak lateral tension and negligible
bending stiffness of these films (/Y — 0 and ¢ — 0). In this
asymptotic regime, the only relevant energies are due to gravity
and surface tension:

U = Ugravity + V(AAfree)

= TEJ:O {pgré”(")z + ZVR< 1+ {(r)? — 1>} dr,

(12)
(13)

where AAg.. is the area of the water bath that is exposed by the
inward displacement of the sheet and {(r) is the axially-symmetric
height profile of the sheet that averages over wrinkles or other
microstructures (i.e., the “gross shape” of the sheet'*). The boundary
condition from the indenter is: {(0) = —d. The corresponding
Euler-Lagrange equation satisfied by the profile that minimizes
the energy is:

3/2

) = O+ 6] (19

éCU]’V

In the small-slope limit, eqn (14) reduces to {'(r) = r{(r)/
/eurv’, Which is solved by an Airy function [see eqn (8) above].
For arbitrary slope we solve eqn (14) numerically, yielding the
height profiles shown in Fig. 3. At large indentation, {(r)
becomes increasingly localized. (One way to see this is obser-
ving the deflection at 7//.u = 1, which saturates for large 9.)
Moreover, the profiles appear to approach a universal curve as ¢
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Fig. 3 Localization at large slopes. Vertical profile of the film, {(r), com-
puted by numerically minimizing egn (13). The profile becomes increas-
ingly localized at large . Inset: Same curves on semilogarithmic axes,
showing the approach to a universal curve.

increases. By analyzing the asymptotic behavior of eqn (14), we
find that {(r) ~ —[3log(1/r)/2]*" as r — 0, in good agreement
with the numerical solution (see Fig. S1, ESIT). As the profile
approaches this curve, the volume of fluid lifted by the sheet
reaches a plateau, so that the gravitational energy eventually
becomes negligible compared to surface energy. The total
energy at large amplitude is thus U ~ 2nyRd, which accounts
for the interfacial area of the bath that is exposed as the
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boundary of the film is pulled inwards. This energy scaling
recovers eqn (10) for the force in regime IV.

4 Comparison to experiments and
simulations

We show the measured force curves in experiments and simu-
lations in Fig. 4a and b, respectively, where the properties of the
film and bath were varied while staying in the highly bendable
yet inextensible limit (¢ < 107> and y/Y < 10~%). We varied the
radius and thickness of the film over a wide range, as shown in
the legend. In the simulations, we additionally varied the
Young’s modulus of the film (0.05 < E < 3.4 GPa) as well as
the liquid density (909 < p < 4545 kg m*) and surface tension
(39 <y <77mNm").

4.1 Collapsing the force curves

The data over a wide range of parameters may be organized into
four distinct scaling regimes, which correspond to regimes I-IV
described above. At small 6 we can collapse the data by
rescaling the axes, 6 — /6~ and F — F/F. as shown in
Fig. 4c, where J- and F. are selected for each curve to produce
the best collapse. Here we rely solely on the simulations to
characterize the normal force, as the experiments could not
definitively resolve the incipient regime. We find an excellent fit
to the empirical form: F/F, = (1/2)[8/d. + (6/4.)?], consistent

Experiments (fixed y, p, E) (b) 102 "= ] Simulations (variousy, p, E)
R=1lmm R=22mm R=44mm e ~_,;/ R=6mm R=12mm R=44mm
—— =58 nm t=84nm —— t=I187nm 248 71 === t=210nm - - - t=210nm === t=212nm
— 38 120 —213 10 A -==210 === 1030 ---212
— 103 ) — 242 — s 5. 297 ---212
157 — 287 — 260 R 1o of L ’,;,.‘?,’ 297 R=18mm --- 35
206 —— 490 — 310 10°5) 77 364 --- t=210nm
107t 515
107
(C) 10* 0
[0 sspessnsnses sommsesnans —-
103 ‘
10 10}
* |
= g ;
T 1o :
Ry R :
. 102F ‘
10 |
10'F : i
/// 1 P 10°¢ ,'? :
102k 3 Regime =11 ] 10% * Regime Il — Il ; Regime Il -1V
107! 10° 10! 107 10° 102 10" 10° 10 102 107! 10°
5/6, 5/ 8/8 s

Fig. 4 Normal force measurements showing four scaling regimes. (a and b) Force versus indentation depth for (a) experiments and (b) simulations at
several film radii and a wide range of thicknesses. (Values of y, p, and E are listed in the legend to Fig. 5.) (c) The data at small indentation (simulation
curves) are collapsed by rescaling the vertical and horizontal axes by 6« and Fx for each film. The data are described well by the empirical form: F/F, =
(1/2) [5/5* + (6/5*)2] (black line), until they peel away at large d. (d) A different rescaling by d«« and F« collapses the data at larger indentation in
simulations and experiments. (e) A transition to a plateau in the force occurs at d« in simulations and experiments.
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Fig. 5 Comparison between experiments, simulations, and theory for the magnitude of the force in regimes |I-IV (a—d) and the transitions between the
regimes (e—g). We varied the sheet and liquid parameters over a wide range, as shown in the legend. Panels (a) and (e) include only simulations; all other
panels include simulations and experiments. In all panels, the solid lines show the theoretical predictions given in the main text with no free parameters
legn (1)—(5) from ref. 13 and 15 and eqn (10)—(11) predicted by our work]. The prediction for panel (b) was computed using 6 = 6, which is in the middle of the
range of & for the measurements. The star in panel (c) shows the value obtained from previous experiments in regime I1l, reported in ref. 19. The dashed lines
in panel (e) show eqgn (4) with the lowest and highest theoretically-predicted prefactors for the simulation parameters used here. The inset to panel (e) shows
the dimensionless indentation depth &, = (d./.)\/(Y /) versus bendability, e * = y2/(Bpg), and the solid line connects points predicted by ref. 13.

with a broad transition from F oc d to F oc 6> with increasing d.
(There is at present no theoretical explanation for this parti-
cular form of the crossover between these two regimes.)

At intermediate §, we observe a transition from F oc §*to F oc §
in the simulations and experiments, which coincides with wrinkles
reaching the edge of the sheet [Fig. 6]. We can collapse all the data
in the neighborhood of this transition at d.- by rescaling the axes,
0 — /0« and F — F/F.., as shown in Fig. 4d. At larger ¢, the force
reaches a plateau; we collapse the curves around this third transi-
tion by selecting 0+ and Fu for each curve [Fig. 4e].

4.2 Magnitude of the force

This observed sequence of scalings of the normal force with ¢ follows
the theoretically-predicted progression given by regimes I-IV
[eqn (1)-(3) from ref. 13, 15 and eqn (10) from the present work].
We now show that the data also follow the predicted dependence of
the force on the other system parameters, namely, R, ¢, E, 7, and p. To

reveal this dependence, in Fig. 5(a-d) we plot the magnitudes of F/o,
F/3%, F/5, and F measured in regimes I-1V, respectively, which were
obtained by measuring the coefficients of these scalings for each
sheet. (We also include the value measured by ref. 19 in regime III.)
We are able to resolve regimes II-IV in experiments, and we find
reasonable agreement with the theoretical predictions with no free
parameters (solid lines). The experimental data in regime IT show a
systematically lower coefficient than the prediction, whereas the
agreement in regime III is excellent. We note that in regime IV,
the sheet contacts itself over an appreciable area, due to the
formation of radial folds. Because of this additional adhesion energy
that we do not include in the geometric model, we expect the
predictions to overestimate the indentation force at large o, in
agreement with observations.

Our simulations greatly expand the range of the tested
parameters, as they allow us to vary y and p over a wide range.
The simulations can also resolve regime I and measure its
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Fig. 6 Morphological transition marking the start of regime Ill. Indenta-

tion depth where wrinkles reach the edge of the film, versus o« extracted
from the force measurements. These two transitions are found to coin-
cide, as predicted in ref. 13 and shown by the dashed line with slope 1. Data
are from experiments using three different film radii.

coefficient [Fig. 5a]. The data are in reasonable agreement with
the prediction, eqn (1), but with a somewhat higher numerical
prefactor. The coefficient in regime II is again lower than the
prediction, although the simulation data suggest that the
discrepancy is limited to the numerical prefactor in eqn (2),
as the open symbols are shifted down by a constant factor from
the solid curve. We again find excellent agreement with the
prediction in regime III, and good agreement in regime IV.

4.3 Transitions between the regimes

Fig. 5e shows the indentation depth 6. where we observe the
transition from regime I to II, obtained by collapsing the
simulation data in Fig. 4c. To compare with theory, we note
that ref. 13 predicted a numerical prefactor for the scaling in
eqn (4) that varies slowly with the bendability, ¢ *. For the
physical parameters used here, this prefactor varies from 1.25
to 1.6. We show this range with a purple band. The data are in
reasonable agreement with the prediction. To further examine
the variation of the numerical prefactor in eqn (4), the inset to
Fig. 5e shows 6, = (8, /:)\/(Y/y) versus the bendability, &'
The measurements are systematically higher than the predic-
tion obtained from ref. 13, which has no free parameters. Both
show a weak dependence on ¢ .

Fig. 5f shows the measured indentation depth J., obtained
by collapsing the data in Fig. 4d. The data are in good agree-
ment with the theoretical prediction, eqn (5), over a wide range
of parameters. This transition into regime III is predicted to be
brought on by the change in the stresses when wrinkles reach
the edge of the film," leading to the eqn (6) for a,(r). Our
experiments provide simultaneous optical, force, and depres-
sion measurements, so we can test this scenario directly. Fig. 6
compares the indentation depth where wrinkles first reach the
edge of the film, with the indentation depth where we see a
crossover from a quadratic to a linear scaling in the normal
force, i.e., 0 = d-. The data follow the dashed line of slope 1,
indicating that these two events indeed coincide.

Fig. 5g shows the measured transition depth J~«« marking
the onset of regime IV, obtained by collapsing the data in
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symbols) over a wide range of parameters (see Fig. 5 for symbol legend).
Small symbols mark the observed transition into regime IV.

Fig. 4e. Only a subset of our experiments and simulations were
carried out to large amplitude, so we have fewer measurements
of this transition. Nevertheless, we find good agreement
between experiments, simulations, and our theory with no
fitting parameters [eqn (11)].

Fig. 7 assembles regimes I-III into a phase diagram using
the dimensionless parameters 6 = (5/4.)+/(Y/7) and # = R//...
Regime 1V is not included in the diagram, because the III — IV
transition is determined by a different dimensionless group,

0 = 0/leury. Nevertheless, our predictions imply that d... > .
as long as Y/y » (R//.)*?, which is the case in our studies
(as well as most experimentally-accessible scenarios in the
inextensible regime, Y/y >» 1).

4.4 Softening and localization

To examine regime IV in more detail, Fig. 8a shows F(6) on
linear axes for a set of experiments with R = 44 mm. At large
displacement, the force reaches a plateau value that shows no
trend with sheet thickness. We mark the predicted transition at
9.4 mm with a dashed line, which is in excellent
agreement with the data. The force is predicted to saturate at
~20 mN from eqn (10); this is the order of magnitude of the
observed plateau, but other effects such as folding® should
play a role in determining the value of the saturation force, as
discussed above.

Fig. 8b shows the volume displaced by the film in two
simulations carried out to large amplitude with differing values
of the surface tension. The curves are collapsed by plotting the
volume scaled by /ear and the indentation depth scaled by /curv-
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Fig. 8 Softening and localization at large slopes. (a) Normal force
versus displacement in experiments with R = 44 mm and a range of
thicknesses. At large J, the force reaches a plateau that shows no
trend with thickness. This transition to regime IV is captured by egn (11)
for d«+ (dashed line). (b) The volume of the fluid that is lifted by the film, V,
plateaus to a value proportional to Zcu>. Solid line: Axisymmetric theory.
Dashed lines: Simulations with t = 212 nm, R = 44 mm, and two
different values of surface tension. (c) Surface energy becomes dominant
at large 0 when the lifted volume saturates. The axisymmetric predictions
for Usurface and Ugravity (black curves) are in excellent agreement with our
simulations (dashed lines) and experiments (solid red line: t = 213 nm,
R = 44 mm).

The quantitative evolution is described extremely well by our
geometric model, including the plateau predicted at large o,
which results from the localization of the vertical profile at large
amplitude. As the displaced volume saturates, our theory
predicts that the surface energy, Usuyrface = 7(AAfree), Decomes
dominant over the gravitational energy, Ugryiy defined in
eqn (12) and (13). This progression is supported by Fig. 8c,
where we show Ugyrface and Ugraviy Measured in the same
simulations, in agreement with our theory. We also obtain
Usurface 1N experiment by measuring the shape of the boundary
of the sheet in top-view images, further corroborating this
picture.

4.5 Crumples and folds

Two additional morphologies are observed in the experiments:
stress-focusing ‘“‘crumples” that consist of repeated buckled
structures terminating at sharp tips,>'*> and radial folds where
the film contacts itself."> Remarkably, crumples do not affect
the force on the probe (see Fig. S5, ESIT), whereas a fold elicits a
small drop in the force. According to the geometric model,
crumples should only affect the force on the probe if they alter
the gross shape of the film from the optimal axisymmetric
shape. In contrast, folds may contribute an additional energy
due to self-contact, which is beyond the scope of this work.

5 Conclusion

Despite the simplicity of the poking protocol, we have shown
that it gives rise to two distinct geometric nonlinearities.
Stiffening is controlled by the dimensionless number:

6 = (8/€.)\/Y [y, which compares geometry-induced strain to
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the mechanical strain imposed by surface tension, as predicted
by ref. 13. Our results at large amplitude have identified a
softening response that is controlled by the dimensionless

number: & = /leury = 3((>>R'/?), which approximates the
maximal slope of the sheet. Fig. 9 summarizes our results by
showing the evolution of the stiffness, F/0, using simulation,
experiment, and theory, for a film with ¢ = 213 nm. The stiffness
may be seen transitioning through the four regimes as the
indentation depth is increased.

The mechanism for the observed stiffening is the growing
anisotropy of stresses in the sheet as loading progresses. The
resulting hoop compression eventually leads to wrinkles, which
for very thin films cause the compressive stresses in the
azimuthal direction to vanish, (o499 = 0), so that radial forces
are passed directly through the wrinkled region, rather than
being carried evenly by the radial and hoop components. This
leads to a long-range decay of the radial stress, o,,(r) oc 1/r. The
basic physical ingredients leading to this enhanced force
propagation are quite modest, so that similar behaviors occur
in other materials. For instance, the same stress field arises in
the mechanics of fiber networks, which make up paper, textiles,
and the structural components of tissues and cells.** There, the
buckling of fibers sets a threshold for the maximum compres-
sive stresses that may be endured, which is a natural analogue
to the formation of wrinkles in thin sheets subjected to small
compressional loads. This applies to both two- and three-
dimensional networks; in d dimensions, eqn (6) becomes
o) oc ¥ @D 3% (The stress field for forcing at multiple sites
does not obey superposition, so the behavior will differ at high
density of forcing sites.>)

Softening is not related to the stress field but rather to the
gross shape—it arises when there are large deviations from the
original slopes on the surface of the object. Seen in this way,
one may identify similarities with other interfacial problems.
For instance, when a thin film is laterally compressed on a
liquid bath, the confining force softens as it undergoes a
wrinkle-to-fold transition with large slopes.*®*” The energy
functional [eqn (13)] is qualitatively similar to that of a liquid
meniscus in 1D and 2D, where the profile also localizes at large
displacements.*®

Recent work has proposed using elastic sheets to tailor the
mechanical, chemical, or optical properties of droplets and
interfaces,* in analogy with molecular or particulate surfactants.*’
Here we have shown how a simple geometric model—originally
developed to understand shape selection'*?°—can also predict
forces, including at large displacements where conventional
approaches may fail. In particular, eqn (12) may be used to
determine the energy-minimizing configurations of a sheet as a
function of a continuously-varying control parameter (here, the
indentation depth 9), which then determines the force. This general
approach is suitable for other forms of loading such as displace-
ments applied at the edge of a sheet, and it applies to intrinsically
curved sheets and curved liquid surfaces. This versatile method
thus opens the way for understanding the mechanics of sheet-
laden interfaces in general settings.
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