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Using electron beam accelerators attached to satellites in Earth orbit, it may be possible

to measure arc length and curvature of field-lines in the inner magnetosphere if the

accelerator is designed with the capability to vary the beam energy. In combination

with additional information, these measurements would be very useful in modeling

the magnetic field of the inner magnetosphere. For this purpose, a three step data

assimilation modeling approach is discussed. The first step in the procedure would be

to use prior information to obtain an initial forecast of the inner magnetosphere. Then,

a family of curves would be defined that satisfies the observed geometric attributes

measured by the experiments, and the prior forecast would then be used to optimize

the curve with respect to the allowed degrees of freedom. Finally, this approximation of

the field-line would be used to improve the initial forecast of the inner magnetosphere,

resulting in a description of the system that is optimally consistent with both the prior

information and the measured curvature and arc length. This article details the method by

which a family of possible approximations of the field-line may be defined via a numerical

procedure, which is central to the three step approach. This method serves effectively

as a pre-conditioner for parameter estimation problems using field-line curvature and arc

length measurements in combination with other measurements.

Keywords: field-line geometry, data assimilation, field-line approximation, beam injection from space,

energy-variable accelerator

1. BACKGROUND

1.1. Motivation
Current accelerator technologies allow for the possibility of equipping small to medium satellites
with lightweight electron beam accelerators. The scientific potential of such a setup is that an
electron beam can be fired into the loss cone from somewhere in the inner magnetosphere and will
end up in the ionosphere. Simulations have shown that electron beams fired into the ionosphere
would result in observable precipitation (Marshall et al., 2014, 2019), and this could allow for the
mapping of field-lines in the inner magnetosphere to their ionospheric foot-points at altitudes
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ranging between 40 and 75 km above the Earth’s surface
(Marshall and Bortnik, 2018). Past studies suggest that utilizing
both relativistic and non-relativistic electron beams in this
way is possible and would provide a means of mapping field-
lines at important locations in the inner magnetosphere to
the ionosphere. Experiments involving the artificial injection
of non-relativistic electron beams (having energies up to
40 keV) have shown that detecting these beams is feasible
(Winckler, 1980), and relativistic electron beams are expected
to be more stable due to higher relativistic mass and
lower beam density (Neubert and Banks, 1992). Additionally,
simple linear analysis suggests that relativistic beams traveling
through the magnetosphere are stable to two-stream instabilities
(Galvez and Borovsky, 1988), and are stable upon entering the
ionosphere to resistive hose, ion hose, and filamentation
instabilities (Gilchrist et al., 2001).

A necessary consideration for this endeavor is the magnetic
moment µ of the electrons in the beam, as the beam will not
precipitate unless µ < γmv2/2Bi, where Bi is the magnitude
of the field at the ionosphere. At midnight local time in the
inner magnetosphere, we may be able to employ a second order
asymptotic expansion of µ derived by Gardner (1966), which
is valid under conditions discussed in the following section. If
we assume that the beam is fired strictly in the direction of the
magnetic field, the formula takes a very simple form:

µ = µ̄ρ2κ2 (1)

where ρ = γmv/qB, µ̄ = γmv2/2B, and κ is the magnitude

of the field-line curvature, given by Eκ = (b̂ · ∇)b̂ where

b̂ = EB/B. Field-aligned electron beams are therefore expected to
precipitate if

ρ2κ2 < B/Bi (2)

This relationship reveals an opportunity for obtaining significant
information about the field-line geometry if the satellite is capable
of varying the energy of the beam. In the case of low energy beams
(on the order of 1 keV), µ is well-approximated by the zeroth
order term, so v‖ ≈ v. Since the total distance traveled by the
particles must then be approximately equal to the arc length of
the field-line between the launch and precipitation points, the
arc length can be inferred by measuring the electron time of
flight. If the energy of the beam is then increased, there may
eventually come a critical point where observed precipitation is
significantly reduced, indicating that the above inequality is no
longer satisfied. Taking ρc to represent the corresponding value
of ρ at this critical energy, the radius of curvature at the launch
point is determined to be:

Rc = ρc

√

Bi

B
(3)

This concept has been expanded in greater detail
by Willard et al. (2019).

The ability to measure both field-line curvature and arc
length using a single satellite would significantly improve our
ability to model the magnetic field of the inner magnetosphere.

However, the issue of how to properly constrain a model using
field-line geometry has not been investigated thoroughly. In
particular, using measurements of field-line arc length in the
context of parameter estimation would seem to require a highly
inefficient procedure. For a given choice of model parameters
for the magnetic field, the error in the field-line arc length must
be computed by tracing field-lines numerically and computing
their arc lengths. This means that the standard approach to
parameter estimation, where the error is minimized iteratively,
would require solving a non-linear initial value problem once
per iteration, substantially increasing computational complexity
in comparison to typical parameter estimation problems.

The method presented in this paper is motivated by an
alternative approach, which will require that there is a way to
use the measurements of field-line geometry to approximate
the field-line curves themselves. If reasonable approximations of
field-lines are possible, then these approximations can be used
to enable parameter estimation without requiring the complex
calculation previously described. Instead, model parameters may
be estimated to maximize the alignment of the field with the
approximated curve, which is a far more straightforward task.
An especially elegant case where this could be used is in
the context of equilibrium models, where field-line curves are
already used to establish boundary conditions (Cheng, 1995;
Zaharia et al., 2004, 2005). No matter the approach used, it
is certainly true that making predictions about the magnetic
field configuration in the inner magnetosphere must require
more than just arc length and curvature measurements, and
this must also be true of any effort to approximate field-
lines themselves. It is therefore useful to consider the method
described in this paper in the context of a three step data
assimilation procedure (see Figure 1), where field-line geometry
measurements would be combined with prior information
about the inner magnetosphere. Data assimilation methods
have been used in geospace science for some time (Richmond,
1992; Schunk et al., 2004; Kondrashov et al., 2007; Merkin
et al., 2016), with no shortage of models that may be used
to describe geospace systems (Cheng, 1995; Lyon et al., 2004;
Tóth et al., 2007; Janhunen et al., 2012). The first step of this
procedure would be to use the prior information to obtain a
naive forecast of the magnetic field using traditional parameter
estimation techniques. Next, the field-line geometry would be
used to infer the field-line curve itself, satisfying the measured
geometric restrictions, and would be chosen to be as consistent
as possible with the naive forecast. Finally, the field-line curve
and the prior information would be used to obtain a complete
forecast of the magnetic field, again using traditional parameter
estimation techniques.

In the context of this kind of three step approach, it is
clear that the approximation of field-lines is merely a means
of transforming the measured geometric information into a
form that can be more easily used to constrain magnetic
field models using parameter estimation. Our method should
therefore be thought of as a pre-conditioner for the original
problem, provided that there is enough additional data available
such that the problem can be solved in the first place. The purpose
of this paper is to present a method by which a family of curves,
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FIGURE 1 | Schematic of the three step data assimilation procedure. In each step, some model is being optimized with respect to provided information. In step one,

the physical model is being optimized with respect to prior data to produce a naive forecast. In step two, a family of possible field-line curves is optimized with respect

to the naive forecast to produce an optimal field-line curve, which is the best approximation of the field-line. In step three, both the prior data and the optimal curve are

used to optimize the physical model and produce a complete forecast.

satisfying themeasured geometric attributes, may be defined such
that all remaining degrees of freedom are expressed in terms of
a finite set of free parameters, since it is these free parameters
that would need to be optimized in step two of the procedure
(Figure 1) resulting in a unique approximation of the field-line.

1.2. Applicability
Since the scope of this method will be restricted only to
situations involving data taken from energy-variable electron
beam experiments, it is important to clarify the key assumptions
upon which the inference of field-line arc length and curvature
are based. Central to the former inference is the assumption that
the path of the electron beam very closely approximates the field-
line curve, so that the arc length is approximately equal to the
total distance traveled by the electrons. For field-aligned electron
beams, this can only be assumed if µ is dominated by the zeroth
order term, which requires ρκ ≪ 1. We also must assume that
the field-line geometry does not shift appreciably over the particle
time of flight, which is on the order of seconds. Central to the later
inference is the assumption that Bφ ≈ 0 and that the field can be
well-approximated as axisymmetric to second order, since this is
required in order for Gardner’s formula to represent an adiabatic
invariant. In part, the validity of these assumptions are energy
dependent. For field-aligned particles, we can express the kinetic
energy as a function of µ:

E(µ) = mc2
(

√

1+
�2R2c
c2

µ

µ̄
− 1

)

(4)

where� = qB/m. From this, we define three relevant energies:

Ê1 = mc2
(

√

1+
�2R2c
c2

(0.1%)− 1
)

(5a)

Ê2 = mc2
(

√

1+
B

Bi

R2c�
2

c2
− 1

)

(5b)

Ê3 = mc2
(

√

1+
�2L2φ

c2
− 1

)

(5c)

Ê1 is the energy whereµ/µ̄ = 0.1%, and is therefore a reasonable
maximum energy where the approximation v‖ ≈ v is valid. Ê2 is

the critical energy where the inequality (2) is violated, and Ê3 is
the energy where ρ = Lφ , where Lφ is defined by

L2φ = r2 sin2(θ)
( 1

B

∂2B

∂φ2

)−1
(6)

Lφ is a distance scale corresponding to the second order variation
of B in φ. We must assume axisymmetry in order to employ
Gardner’s formula, so Ê3 is therefore the energy where Equation
(1) should no longer be expected to apply to field-aligned
particles. Note, however, that ρ is not necessarily equal to
the gyroradius unless the particle motion becomes completely
perpendicular to the direction of the field. It is understood
then that Ê3 represents a conservative restriction on where
validity in our assumptions is expected. Since the altitude of peak
precipitation depends slightly on the energy of the beam, it is
important to recognize that Bi is similarly dependent on energy.
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We have neglected this dependence in the above definitions
in light of recent simulations which have shown that electron
beams having energies between 0.1 and 10 MeV will observably
precipitate within a range of altitudes spanning roughly 35 km
(Marshall and Bortnik, 2018), which does not correspond to a
significant variation in Bi. In order to perform this experiment
successfully, the satellite must be capable of varying the beam
energy to reach both Ê1 and Ê2, the energy of the beam must be
less than Ê3 everywhere on its path, and Ê2 must be less than Ê3
at the launch point.

Using T89, the Tsyganenko 1989 magnetic field model
(Tsyganenko, 1989), we are able to show precisely how these
energy criteria affect the scope of the method. In Figure 2, the
thresholds Ê1, Ê2, and Ê3 are each calculated over midnight
local time in the case where Kp = 1, where Kp is the global
geomagnetic activity index. The color scale displays low energies
using brighter colors, and high energies using darker colors.
Along with these calculations, Figure 2 also indicates the region
on midnight local time where the criteria 10 keV ≤ Ê1 < Ê2 ≤
10 MeV and Ê2 < Ê3 are satisfied. Note that the energy range
of 10 keV to 10 MeV is an optimistic range of energies, and it is
not known at the present time what energy range is allowed by
current or future accelerator technology. Figures 3, 4 display this
same information but in the case of Kp = 5 and Kp = 7. From

these calculations, we observe that Ê3 is significantly large on
midnight local time, and T89 also predicts Bφ = 0 on midnight.
Therefore, we conclude from this that any assumptions that rely
on Gardner’s formula are valid on this domain. Additionally,
we see that the region where this method may be applied is
restricted to the case where the satellite is positioned near the
equatorial plane. This may be problematic if the value of Ê2 is
in the relativistic range, sinceµmay not necessarily be conserved
for relativistic electrons in this region [seeWillard et al. (2019) for
further discussion on this topic]. However, asKp increases, we see

from Figures 3, 4 that Ê2 decreases significantly. This indicates
that the ability to infer field-line curvature may be possible from
near the midplane during times where the field-line curvature is
large. This is consistent with the dependence on Rc seen in the
definition of Ê2 in (5b).

The precise situation where our method may be applied is

as follows: a satellite equipped with an electron beam capable

of firing at a range of energies will be in an orbit that intersects

midnight local time near the midplane at a radial distance R and

latitude θb. Once at midnight, the satellite will then begin to fire

a beam with kinetic energy less than Ê1, and the precipitation
of the beam in the ionosphere will be observed at a latitude θa.
The time delay between the firing and the observation of the
precipitation of the beam at the ionosphere is used to infer the
total arc length of the field-line χ̂ . The satellite will then gradually
increase the energy of the beam until there is significantly
reduced precipitation. We will assume that this critical energy is
not greater than Ê3 so that the field-line curvature at the position
of the satellite κ will also be inferred. We will also assume that
all points on the field-line lie on midnight local time and that
the magnetic field can be well-approximated as a dipole near the
surface of the earth.

2. METHOD DESCRIPTION

2.1. Intuition
Our objective is to formalize a method by which field-lines
may be approximated with curves that are consistent with
measurements. In this section, we describe the problem that
must be solved and the strategy that we take in solving it.
The problem we would aim to solve is that of finding a
family of curves that satisfy a set of constraints: (1) the curve
must pass through the precipitation point and be consistent
with a dipole field-line near the precipitation point, (2) the
curve must pass through the position of the satellite and be
consistent with the measured tangent direction and curvature
of the field-line at the position of the satellite, and (3) the
arc length of the curve between the launch and precipitation
points must be consistent with the measured arc length. Our
method satisfies these constraints by defining curves analytically
near the end-points and defining the curves numerically over
the rest of the domain. This strategy amounts to defining
the curve piece-wise (see Figure 5), so that (a) the equation
of the curve is exactly that of a dipole field-line near the
precipitation point (satisfying the first constraint), (b) the
equation of the curve is exactly a second-order polynomial
near the launch point (satisfying the second constraint while
assuming higher order derivatives are zero), and (c) the curve is
numerically determined over the rest of the domain to satisfy the
third constraint.

This strategy allows for the third constraint to be satisfied
through a numerical procedure nearly independently of the first
and second constraints. In this way, the problem is essentially
simplified to the problem of finding families of curves having
a given arc length between set end points. In order to solve
this simplified problem, we let the curve be defined as an
interpolation of a finite scatter of points. To understand how
these points must be chosen to approximately satisfy the arc
length constraint, it is best to consider a polygonal chain that
has these points as vertices. By approximating the arc length
along the curve between two of these prescribed points as merely
the straight-line-distance between the points (see Figure 6),
constraining the arc length of the curve in this sub-domain is
approximately equivalent to constraining the total length of the
chain. Our approximation method can then be understood to
be that of an iterative process where the vertices of the chain
are chosen one by one. At each step in the iteration, the choice
of where the next vertex will be located is necessarily restricted,
since at every stage of the iteration it is possible to choose a vertex
that makes it impossible to finish constructing the chain without
changing the length. This restriction can be clearly identified
by considering the shortest possible chain connecting the two
end points given a chosen vertex (see Figure 7). If this shortest
possible chain has a total length greater than the required length,
then there must not be a curve within the set of possible curves
that passes through that chosen vertex. Restricting the vertex-
choosing process in this way guarantees that, after carrying out
this process through some number of iterations, the final vertex
can always be chosen so that the required length of the chain
may be satisfied exactly. The actual curve is then determined here
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FIGURE 2 | Ê1, Ê2, and Ê3 computed over midnight local time in the case of Kp = 1. Bright colors indicate lower energy, and darker colors indicate higher energy. Ê1
is shown in the top left panel, Ê2 in the top right, and Ê3 in the bottom left. In the bottom right panel, the region where this method should be applied is shown in black.

to be an interpolation of the points generated by this iterative
procedure. In this way of conceptualizing themethod, the degrees
of freedom seen in the general solution are manifested as the
freedom to construct chains having any particular set of vertices
so long as the choice of a particular vertex does not restrict the
length of the chain connecting the end points to lengths greater
than the required length.

To summarize, the problem of finding a general curve that
is consistent with the information gathered by energy-variable
electron beam experiments is not straightforward. With minimal
loss in generality, we employ a strategy where curves are defined
analytically near the end points and numerically over the rest
of the domain. This allows for the arc length of the curve to be
restricted nearly independently of the other constraints, which
are localized about the end points. Our method for satisfying the
arc length constraint is a numerical procedure where a finite set
of points are each chosen iteratively, and the curve is ultimately
given as an interpolation of these points.

2.2. Formalism
To represent the field-line, we define the function f such that
all points (r, θ) on the field-line satisfy r = f (θ). The known
or assumed geometric attributes of the field-line can then be
expressed as constraints on f :

f (θb) = R (7a)

f ′(θb) = R
Br

Bθ
(7b)

f ′′(θb) = R
(

1− Rκ

(

1+
B2r
B2θ

)3/2

+ 2
B2r
B2θ

)

(7c)

f (θ) ≈ RE
sin2(θ)

sin2(θa)
for θ ≈ θa (7d)

∫ θb

θa

√

f 2 + f ′2dθ = χ̂ (7e)
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FIGURE 3 | Ê1, Ê2, and Ê3 computed over midnight local time in the case of Kp = 5. Bright colors indicate lower energy, and darker colors indicate higher energy. Ê1
is shown in the top left panel, Ê2 in the top right, and Ê3 in the bottom left. In the bottom right panel, the region where this method should be applied is shown in black.

Where R is the radial distance of the satellite, θa and θb are
the latitude of the precipitation point and the position of the
satellite, respectively, κ is the measured curvature, and χ̂ is the
measured arc length. Note that the fourth constraint (7d) follows
from the assumption that the field is well-approximated as a
dipole near the Earth, since dipole field-lines are expressed as r ∝
sin2(θ). These restrictions define the original problemmentioned
previously. Following the strategy already described, we define f
piece-wise:

f (θ) =











f1(θ) for θa ≤ θ < θ̂1

f2(θ) for θ̂1 ≤ θ ≤ θ̂2

f3(θ) for θ̂2 < θ ≤ θb

(8)

where f1 and f3 are determined by only the first four of the above
constraints (7a–7d), as well as the additional constraint that f3

should have no higher order derivatives:

f1(θ) = RE
sin2(θ)

sin2(θa)

f3(θ) = R+ (θ − θb) f ′(θb)+
1

2
(θ − θb)

2 f ′′(θb)

(9)

(see Figure 5).We define two length parameters L1 and L2, which
will allow the domain to be divided up with respect to distances:

θ̂1 = sin−1(

√

L1

RE
sin(θa))

θ̂2 = θb + sin−1(L2/R)

(10)

L1 and L2 are distance scales representing how far from the origin
the field-line can be expected to match f1 and how far from
the launch point it is expected to match f3, respectively. f2 must
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FIGURE 4 | Ê1, Ê2, and Ê3 computed over midnight local time in the case of Kp = 7. Bright colors indicate lower energy, and darker colors indicate higher energy. Ê1
is shown in the top left panel, Ê2 in the top right, and Ê3 in the bottom left. In the bottom right panel, the region where this method should be applied is shown in black.

satisfy:

f2(θ̂1) = f1(θ̂1), f2(θ̂2) = f3(θ̂2)
∫ θ̂2

θ̂1

√

f 22 + f ′22 dθ = χ̃
(11)

where we have defined a new arc length variable for brevity:

χ̃ = χ̂ −

∫ θ̂1

θa

√

f 21 + f ′21 dθ −

∫ θb

θ̂2

√

f 23 + f ′23 dθ (12)

We define Lf to be a function giving the straight line distance
between two points on the curve r = f (θ):

Lf (a, b) =
∣

∣

∣

∣

∣

∣

(

f (b) sin(b)
f (b) cos(b)

)

−

(

f (a) sin(a)
f (a) cos(a)

)

∣

∣

∣

∣

∣

∣
(13)

for arbitrary angles a and b (see Figure 6). If we consider a finite
set of angles {21, . . . ,2N} that are evenly spaced over the domain

[θ̂1, θ̂2], andN is chosen such that the discretization is sufficiently
fine, then the integral equation may be well-approximated by

N−1
∑

i=1

Lf (2i,2i+1) = χ̃ (14)

At each angle2n, we define a function Dn(f ) by

Dn(f ) =

n
∑

i=1

Lf (2i,2i+1)+ Lf (2n+1,2N) (15)

Dn(f ) is the length of the chain having vertices at each of
the angles {21, . . . ,2n+1,2N}. Dn(f ) represents the minimum
length of a chain given a chosen vertex at the angle2n+1. In order
for the chosen vertex to be allowed, one can check that Dn(f ) ≤
χ̃ (see Figure 7). We restrict f2 to be a linear combination of
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FIGURE 5 | This diagram illustrates how f is defined piece-wise in terms of the

functions f1, f2, and f3. In the top image, the three functions are shown as a

graph of r vs. θ . In the bottom image, it is shown how the functions

correspond to three different parts of the field-line.

FIGURE 6 | This diagram illustrates the meaning of the function Lf (a,b) given a

curve r = f (θ ) which passes through points at θ = a and θ = b.

functions φi, which are commonly known as tent functions:

f2(θ) =

N
∑

i=1

Ciφi (θ)

φi(θ) =
N

θ̂2 − θ̂1











2i+1 − θ for2i ≤ θ < 2i+1

θ −2i−1 for2i−1 ≤ θ < 2i

0 otherwise

(16)

FIGURE 7 | This diagram illustrates the meaning of the criterion Dn(f ) ≤ χ̃ .

Dn(f ) is the length of the shortest possible chain given the choice of

f (2n+1) = Cn+1. If Dn(f ) > χ̃ , it is not possible to construct a chain having

total length χ̃ that connects the end points.

FIGURE 8 | This diagram illustrates the meaning of the coefficients Ci . If f is a

linear combination of tent functions, then f (2i ) = Ci .

Note that f2(2i) = Ci (see Figure 8). Given the reasoning
previously described in terms of polygonal chains, the coefficients
may be chosen so that they satisfy the following recursion rule:

C1 = f1(θ̂1) (17a)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 8 September 2019 | Volume 6 | Article 59
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Cn+1 ∈
{

c
∣

∣

∣ Dn

(

n
∑

i=1

Ciφi + cφn+1

)

≤ χ̃

}

(17b)

CN−1 ∈
{

c
∣

∣

∣ DN−2

(

N−2
∑

i=1

Ciφi + cφN−1

)

= χ̃

}

(17c)

CN = f3(θ̂2) (17d)

The degrees of freedom in the general solution are here expressed
as the freedom to choose any set of coefficients that satisfy the
above relations. This freedom must now be expressed in terms
of some finite set of parameters. There are undoubtedly many
possible approaches that one could take in doing this. To prove
that this is possible, one can check that this can be done simply
by replacing the above recursion rule (17b) with the formula:

Cn+1 = min(Zn)+
1

2

(

max(Zn)−min(Zn)
)

(

tanh(Kn)+ 1
)

Zn =
{

c
∣

∣

∣
Dn

(

n
∑

i=1

Ciφi + cφn+1

)

≤ χ̃

}

(18)
Any chosen set of real numbers {K1, . . . ,KN−3} correspond to a
particular solution to the problem.

3. EXAMPLE APPLICATIONS

In this section, we will show the approximations that are
generated from our method when the parameters χ̂ and κ are
taken from realistic field-lines obtained from T89 on midnight
local time with parameters chosen to correspond with Kp = 1.
Although themethod is consistent, it must be shown that realistic
curves can be easily obtained by imposing realistic restrictions
on the remaining degrees of freedom. For this purpose, it is not
necessary to express these degrees of freedom in terms of any
free parameters as described in the previous section. Rather, it
is sufficient for our purposes to include an additional restriction
to the recursion:

Cn+1 ∈
{

Cn

(

1+
(

2
l

M
− 1

)

ǫ

)}

(19)

Where l = 0, 1, . . . ,M and ǫ sets a maximum fractional increase
between Cn and Cn+1. The set of all particular solutions to
the problem is now guaranteed to be a finite set of functions.
Through a brute force algorithm, we may then systematically
generate each particular solution and then sort them by the
average square second derivative of f2, which is equivalent to
sorting by

〈

f ′′2

〉

∼

N−1
∑

i=2

(

Ci+1 + Ci−1 − 2Ci

)2
(20)

Field-lines with small f ′′ are typical of T89, so it is expected that
choosing f2 as the curve with the least

〈

f ′′2
〉

should result in curves
that are not very different from the original field-lines fromwhich

the parameters χ̂ and κ were obtained. Field-lines can be traced
from T89 as parametric curves (x(s), z(s)) satisfying:

(

x′(s)
z′(s)

)

= b̂(x(s), z(s)) (21)

where b̂ = EB/B. Here, s represents the arc length between the
point (x(s), z(s)) and the point (x(0), z(0)). The field-lines are
traced by iteratively solving the above equation from a chosen
launch position until ||(x(sf ), z(sf ))|| ≤ 1, for some value sf , at
which point it is clear that χ̂ ≈ sf . The curvature at the launch

point is then computed from the formula κ = (b̂ · ∇)b̂.
For this demonstration, we will make the choices L1 = 3RE,

N = 10, M = 15, and ǫ = 0.2. Our choice of L2 is different
depending on the launch point: for launch points at themidplane,
we choose L2 = Rc, while off the midplane the value is chosen
more conservatively to be L2 = RE/3. Figure 9 shows four
examples of the smoothest solutions generated with this method
alongside the T89 field-lines used to obtain the parameters.
Figure 10 shows the ten smoothest generated curves only in
comparison with each other so that the remaining degrees of
freedom can be visualized. Figure 11 shows the same information
as Figures 9, 10, but is an example of using launch points
that are not on the equatorial plane and are instead slightly
away from the equatorial plane. These examples show that this
method can be easily constrained to produce realistic field-
lines that match well with the original field-lines used to obtain
the parameters.

4. DISCUSSION

In the above example, we show that the degrees of freedom
seen in the family of curves may be easily constrained to agree
well with T89 by minimizing the average square of the second
derivative of f . In actual practice, this method should be used
as part of the three step data assimilation technique mentioned
previously. As an example, suppose the model that we wish to
constrain is the axisymmetric Grad-Shafranov equation:

∇ ·
( 1

r2 sin2(θ)
∇ψ

)

= −µ0
dP

dψ
(22)

where themagnetic field is EB = (∇ψ×φ̂)/r sin(θ), P is the plasma
pressure, and we have assumed Bφ = 0. The first step of the
procedure would then be to find a solution to Grad-Shafranov
that optimizes some set of measurements to obtain a naive
forecast potential ψ . In the second step, ψ would be assimilated
to optimize the field-line approximation by minimizing a cost
function J related to the variance of ψ on the curve r = f (θ):

J ∼
〈

w(θ)ψ(θ , f (θ))−
〈

ψ(θ , f (θ))
〉

〉

(23)

where w(θ) is some weight function. The final step of the three
step data assimilation approach would be to then assimilate the
curve r = f (θ) together with the equilibrium model. This
may be done by finding an optimal solution as in the first step
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FIGURE 9 | Comparison between T89 field-lines and curves generated via the

brute force implementation of the method, where the particular curve that was

picked has the least < f ′′ >. Each panel is an example comparison where a

different launch point was selected. Above each example is a percent error,

here computed from the mean difference between f and the T89 curve divided

by the mean averaged over θ .

only with the added constraint that ψ(f (θ), θ) = constant.
This example is particularly elegant, since the added constraint
is a Dirichlet boundary condition, provided that the domain
of the calculation is restricted to the region enclosed by the
approximated field-line.

Further investigation is necessary in order to fully justify
the experimental techniques described at the start of this
paper. The ability to infer the curvature of field-lines relies
on the ability to accurately aim the electron beam, and it has
yet to be determined how feasible this is given the current
technology. As mentioned previously, this inference also relies
on the assumption that Gardner’s asymptotic expansion of
µ is conserved, and the degree to which this assumption

FIGURE 10 | The 10 curves generated by via the brute force implementation

of the method that have the least < f ′′ > in comparison to each other. Each

panel is an example comparison where a different launch point was selected.

Above each example is a percent error, here computed from the mean

variance of f divided by the mean averaged over θ .

can still be made given perturbations of the magnetic field
has yet to be determined. It is also a possibility that
artificially injecting electrons into the ambient plasma may
drive instabilities that will significantly affect the path of
the beam. Although past experiments have shown that this
possibility is not necessarily significant (Winckler, 1980), further
investigation is necessary in order to fully determine which
conditions would require that the ambient plasma is taken
into account.

The task of designing energy-variable electron beam
experiments certainly has many difficult challenges that must
be overcome, so it is necessary to consider the importance
of this feature with respect to our method. Primarily, the
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FIGURE 11 | The top image conveys the same information as the images in

Figure 9, but the launch point for this example is chosen to be away from the

equatorial plane. The bottom image likewise conveys the same information as

the images in Figure 10 but for a launch point away from the equatorial plane.

ability to vary the energy of the beam is required in order
to directly measure the field-line curvature at the launch
position. However, curvature is also necessary in order to
know the value of Ê1, and therefore a lack of knowledge
of the curvature leads to a source of uncertainty in the arc
length measurement. Without an energy-variable experiment,
it would therefore be necessary to simply infer the field-
line curvature by some other means. For example, if the
satellite is positioned well above the equatorial plane, it
may be reasonable to simply assume that κ ≈ 0 and Ê1 is
relatively large. However, it is uncertain as to whether or
not this application would be of much use to modeling
the inner magnetosphere if the field-line curvature is not
actually measured.

As mentioned previously, this method as a whole is only
applicable in those cases where the arc length and curvature
may be measured using a single satellite equipped with an
energy-variable accelerator. However, various techniques and
concepts employed in this method may be adapted to be
used in alternative cases. For example, the technique used to
approximate the arc length constraint using polygonal chains
may be adapted to any context where the arc length of field-lines
is known. Provided some method by which the field-line torsion
may be inferred, we may additionally consider generalizing
this method to study field-lines that are not restricted to
midnight local time. This method should therefore be seen as
a particular implementation of a more general approach to

utilizing measurements of field-line geometry that may utilize a
wider variety of measurements than discussed here.

5. SUMMARY

In this article, we discuss a way in which it may be possible to
measure field-line curvature and arc length using energy-variable
electron beam experiments. In order to use these measurements
to constrain models of Earth’s inner magnetosphere, we discuss
a three step data assimilation approach where prior information
about the field may be used to approximate the field-line. The
prior information may then be used in conjunction with this
approximation to better constrain the model. Central to this
approach is the method presented in this article, which is a
means of approximating a general solution to a set of constraints,
such that the problem is only slightly more restricted than mere
adherence to the measurements of field-line arc length and
curvature, and the degrees of freedom in this general solution
can be expressed in terms of free variables. As an example, we
obtain parameters from realistic field-lines traced from T89, and
compare these curves with select approximations generated using
the method to show that T89 curves can be reproduced to good
accuracy using the method by imposing a realistic bias.
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