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Abstract

Heatmap regression with a deep network has become
one of the mainstream approaches to localize facial land-
marks. However, the loss function for heatmap regression is
rarely studied. In this paper, we analyze the ideal loss func-
tion properties for heatmap regression in face alignment
problems. Then we propose a novel loss function, named
Adaptive Wing loss, that is able to adapt its shape to differ-
ent types of ground truth heatmap pixels. This adaptabil-
ity penalizes loss more on foreground pixels while less on
background pixels. To address the imbalance between fore-
ground and background pixels, we also propose Weighted
Loss Map, which assigns high weights on foreground and
difficult background pixels to help training process focus
more on pixels that are crucial to landmark localization.
To further improve face alignment accuracy, we introduce
boundary prediction and CoordConv with boundary coor-
dinates. Extensive experiments on different benchmarks,
including COFW, 300W and WFLW, show our approach
outperforms the state-of-the-art by a significant margin on
various evaluation metrics. Besides, the Adaptive Wing
loss also helps other heatmap regression tasks. Code will
be made publicly available at https://github.com/
protosswblZ2/AdaptiveWingLoss.

1. Introduction

Face alignment, also known as facial landmark local-
ization, seeks to localize pre-defined landmarks on human
faces. Face alignment plays an essential role in many face
related applications such as face recognition [48, 38, 35,
63, 10], face frontalization [22, 53, 28] and 3D face recon-
struction [14, 45, 33, 19]. In recent years, Convolutional
Neural Network (CNN) based heatmap regression has be-
come one of the mainstream approaches for face alignment
problems and achieved considerable performance on frontal
faces. However, landmarks on faces with large pose, occlu-
sion and significant blur are still challenging to localize.

Heatmap regression, which regresses a heatmap gen-
erated from landmark coordinates, is widely used for face
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Figure 2: Predicted heatmap quality comparison. The
model trained with MSE failed to accurately predict the
heatmap around left cheek, lower right cheek and eye
brows. With the proposed Adaptive Wing loss (Fig. 2d),
the heatmap becomes much sharper on landmarks.

(a) Blurry
Large Pose

alignment [4, 29, 61, 47]. In heatmap regression, the ground
truth heatmap is generated by plotting a Gaussian distribu-
tion centered at each landmark on each channel. The model
regresses against the ground truth heatmap at pixel level
and then use the predicted heatmaps to infer landmark loca-
tions. Prediction accuracy on foreground pixels (pixels with
positive values), especially the ones near the mode of each
Gaussian distribution (Fig. 1), is essential to accurately lo-
calize landmarks, even small prediction errors on these pix-
els can cause the prediction to shift from the correct modes.
On the contrary, accurately predicting the values of back-
ground pixels (pixels with zero values) is less important,
since small errors on these pixels will not affect landmark
prediction in most cases. However, prediction accuracy on
difficult background pixels (Fig. 1 background pixels near
foreground pixels) are also important since they are often
incorrectly regressed as foreground pixels and could cause
inaccurate predictions.

From this discussion, we locate two issues of the widely
used Mean Square Error (MSE) loss in heatmap regression:
i) MSE is not sensitive to small errors, which hurts the ca-
pability to correctly locate the mode of the Gaussian dis-
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tribution; ii) During training all pixels have the same loss
function and equal weights, however, background pixels
absolutely dominates foreground pixels on a heatmap. As
a result of i) and ii), models trained with the MSE loss
tend to predict a blurry and dilated heatmap with low in-
tensity on foreground pixels compared to the ground truth
(Fig. 2c). This low quality heatmap could cause wrong es-
timation of facial landmarks. Wing loss [16] is shown to
be effective to improve coordinate regression, however, ac-
cording to our experiment, it is not applicable for heatmap
regression. Small errors on background pixels will accumu-
late significant gradients and thus cause the training process
to diverge. We thus propose a new loss function and name
it Adaptive Wing loss (Sec. 4.2), that is able to significantly
improve the quality of heatmap regression results.

Due to the translation invariance of the convolution op-
eration in bottom-up and top-down CNN structures such as
stacked Hourglass (HG) [41], the network is not able to
capture coordinate information, which we believe is use-
ful for facial landmark localization, since the structure of
human faces is relatively stable. Inspired by the Coord-
Conv layer proposed by Liu et al. [34], we encode into our
model the full coordinate information and the information
only on boundaries predicted from the previous HG module
into our model. The encoded coordinate information fur-
ther improves the performance of our approach. To encode
boundary coordinates, we also add a sub-task of boundary
prediction by concatenating an additional boundary channel
into the ground truth heatmap which is jointly trained with
other channels.

In summary, our main contributions include:

e Propose a novel loss function for heatmap regression
named Adaptive Wing loss, that is able to adapt its
curvature to ground truth pixel values. This adaptive
property reduces small errors on foreground pixels for
accurate landmark localization, while tolerates small
errors on background pixels for a better convergence
rate. With proposed Weighted Loss Map it is also able
to focus on foreground pixels and difficult background
pixels during training.

e Encode coordinate information, including coordinates
on boundary, into the face alignment algorithm using
CoordConv [34].

Our approach outperforms the state-of-the-art algorithms by
a significant margin on mainstream face alignment datasets
including 300W [46], COFW [7] and WFLW [55]. We also
show the validity of the Adaptive Wing loss in the human
pose estimation task which also utilizes heatmap regression.

2. Related Work

CNN based heatmap regression models leverage CNN
to perform heatmap regression. In recent work [61, 49,

5, 6], joint bottom-up and top-down architectures such as
stacked HG [41] were able to achieve the state-of-the-art
performance. Bulat ef al. [S] proposed a hierarchical, par-
allel and multi-scale block as a replacement for the origi-
nal ResNet [23] block to further improve the localization
accuracy of HG. Tang et al. [49] was able to achieve cur-
rent state-of-the-art with quantized densely connected U-
Nets with fewer parameters than stacked HG models. Other
architectures are also able to achieve excellent performance.
Merget et al. [39] proposed a fully convolutional neural net-
work (FCN) that combines global and local context infor-
mation for a refined prediction. Valle et al. [52] combined
CNN with ensemble of regression trees in a coarse-to-fine
fashion to achieve the state-of-the art accuracy. Another fo-
cus of this area is the 3D face alignment [27, 36], that aims
to provide 3D dense alignment based on 2D images.

Loss functions for heatmap regression were rarely
studied in previous work. GoDP [58] used a distance-aware
softmax loss to assign large penalty on incorrectly classified
positive samples, while gradually reducing penalty on miss-
classified negative samples as the distance from nearby pos-
itive samples decrease. The Wing loss [16] is a modified log
loss for direct regression of landmark coordinates. Com-
pared with MSE, it amplifies the influence of small errors.
Although the Wing loss is able to achieve the state-of-the-
art performance in coordinate regression, it is not applicable
to heatmap regression due to its high sensitivity to small er-
rors on background pixels and the discontinuity of gradient
at zero. Our proposed Adaptive Wing loss is novel since it
is able to adapt its curvature to different ground truth pixel
values, such that it can be sensitive to small errors on fore-
ground pixels yet be able to tolerance small errors on back-
ground pixels. Hence, our loss can be applied to heatmap
regression while the original Wing loss cannot be.

Boundary information was first introduced into face
alignment by Wu et al. [55]. LAB proposed a two-stage net-
work with a stacked HG model to generate a facial bound-
ary map, and then regress facial landmark coordinates di-
rectly with the help of boundary map. We believe including
boundary information is beneficial to the heatmap regres-
sion and utilized a modified version to our model.

Coordinate Encoding. Translation invariance is intrin-
sic to the convolution operation. Although CNN greatly
benefited from this parameter sharing scheme, Liu et
al. [34] showed the inability of the convolution operation to
handle simple coordinate transforms, and proposed a new
operation called CoordConv, which encodes coordinate in-
formation as additional channels before convolution opera-
tion. CoordConv was shown to improve vision tasks such
as object detection and generative modeling. For face align-
ment, the input images are always generated from a face
detector with small variance on location and scale. These
properties inspire us to include CoordConv to help CNN
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Figure 3: An overview of our model. The stacked HG takes a face image cropped with the ground truth bounding box and
output one predicted heatmap for each landmark, respectively. An additional channel is used to predict facial boundaries.
Due to limited space, we omitted the detailed structure of the stacked HG architecture, please refer [41, 6] for details.
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Figure 4: Different Loss Functions. When y = 0, the
Adaptive Wing loss (purple) behaves similar to the MSE
loss (red). When y = 1, the Adaptive Wing loss (green)
behaves similar to the Wing loss (yellow), but the gradient
of the Adaptive Wing loss is smooth at point y = ¢, as
shown in Figure 4b (Best viewed in color).

learn the relationship among facial landmarks based on their
absolute locations.

3. Our Model

Our model is based on the stacked HG architecture from
Bulat ef al. [6] which improved over the original convolu-
tion block design from Newell er al. [41]. For each HG,
the output heatmap is supervised with the ground truth
heatmap. We also added a sub-task of boundary predic-
tion as an additional channel of the heatmap. Coordinate
encoding is added before the first convolution layer of our
network and before the first convolution block of each HG
module. An overview of our model is shown in Figure 3.

4. Adaptive Wing Loss for Face Alignment
4.1. Loss function rationale

Before starting our analysis, we would like to introduce
a concept from robust statistics. Influence [21] is a heuristic
tool used in robust statistics to investigate the properties of
an estimator. In the context of our paper, the influence func-
tion is proportional to the gradient [3] of our loss function.
So if the gradient magnitude is large at point y — ¢ (indicting
the error), then we say the loss function has a large influence
at point y — . If the gradient magnitude is close to zero at
this point, then we say the loss function has a small influ-
ence at point y — g. Theoretically, for heatmap regression,

training is converged only if:
N H W C

D> D> Viossa(yigw — figk) =0 ¢))

n=0 i=0 j=0 k=0
where N is the total number of training samples, H, W
and C are the height, width and channels of heatmap, re-
spectively. Loss,, is the loss of n — th sample, y; ;. and
1,55 are ground truth pixel intensity and predicted pixel
intensity respectively. At convergence, the influence of all
errors must balance each other. Hence, a positive error on a
pixel with large gradient magnitude (hence large influence)
would need to be balanced by negative errors on many pix-
els with smaller influence. Errors with large gradient mag-
nitude will also be more focused on during training compare
to errors with small gradient magnitude.

The essence of heatmap regression is to output a Gaus-
sian distribution centered at each ground truth landmark.
Thus the accuracy of estimating pixel intensity at the mode
of the Gaussian plays a vital role on correctly localizing
landmarks. The two issues we illustrated in Sec. 1 result in
an inaccurate estimation on the position of landmarks due
to lacking of focus during training on foreground pixels. In
this section and Sec. 4.2, we will discuss the causes of the
first issue and how our proposed Adaptive Wing loss is able
to remedy it. The second issue will be discussed in Sec. 4.3.

The first issue is due to the commonly used MSE loss
function for Heatmap regression. The gradient of the MSE
loss is linear, so pixels with small errors have small influ-
ence, as shown in Figure 4b. This property could cause
training to converge while many pixels still have small er-
rors. As a result, models trained with MSE loss tend to
predict a blurry and dilated heatmap. Even worse, the pre-
dicted heatmap often has low intensity on foreground pix-
els around difficult landmarks, e.g. occluded landmarks or
faces with unusual illumination conditions. Accurately lo-
calizing landmarks from these low intensity pixels can be
difficult. A good example can be found in Figure 2.

L1 loss has constant gradient so that pixels with small
errors have the same influence as pixels with large errors.
However, the gradient of L1 loss is not continuous at point
zero, which means for convergence, the amount of pixels
with positive errors has to be exactly equal to the amount
that has negative errors. The difficulty of achieving such
delicate balance could cause training process to be unstable
and oscillating.
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Feng et al. [16] is able to improve the above loss func-
tions by proposing Wing loss that has constant gradient
when error is large, and large gradient when the error is
small. Thus pixels with small errors will be amplified. The
Wing loss is defined as follows:

win(L+ £ if (-3 <w

Wing(y,7) = 2

ly—g]—C otherwise

where y and ¢ are the pixel values on ground truth heatmap
and the predicted heatmap respectively, C = w — wlIn(1 +
w/€) is used to make function continuous at |y — §| = w.
The Wing loss is, however, still not be able to overcome the
discontinuity of its gradient at y — ¢ = 0, with its large
gradient magnitude around this point, training is even more
difficult to converge compared with L1 loss. This property
makes the Wing loss not applicable for heatmap regression,
since with the Wing loss calculated on all background pix-
els, small errors on background pixels are having out-of-
proportion influence. Training a neural network that outputs
zero or small gradient on these pixels is very difficult. Ac-
cording to our experiment, the training of a heatmap regres-
sion network with the Wing loss is never able to converge.

The above analysis leads us to define the desired prop-
erties of an ideal loss function for heatmap regression. We
expect our loss function to have a constant influence when
error is large, so that it will be robust to inaccurate anno-
tations and occlusions. As the training process continues
and errors getting smaller, there will be two scenarios: 1)
For foreground pixels, the influence (as well as the gradi-
ent) should start to increase so that the training is able to
focus on reducing these errors. The influence should then
decrease rapidly as the errors go very close to zero, so that
these ”good enough” pixels will no longer be focused on.
The reduced influence of correct estimations helps the net-
work to stay converged, instead of oscillating like the L1
and the Wing loss. ii) For background pixels, the gradient
should behaves more similar to the MSE loss, that is, it will
gradually decrease to zero as the training error decreases,
so that the influence will be relatively small when the errors
are small. This property reduces the focus of the training on
background pixels, stabilizing the training process.

A fixed loss function cannot achieve both properties
simultaneously. Thus, the loss function should be able
to adapt to different pixel intensities on the ground truth
heatmaps. As the ground truth pixels close to the mode
(have intensities that are close to 1), the influence of small
errors should increase. With ground truth pixel intensities
close to 0, the loss function should behave more similar
to the MSE loss. Since pixel values on the ground truth
heatmap range from 0 to 1, we also expect our loss func-
tion to have a smooth transition according to different pixel
values.

4.2. The Adaptive Wing Loss

Following intuitions above, we propose our Adaptive
Wing (AWing) loss, defined as follows:

win(L+ L= if|(y—g)| <6

Aly—4-C

AWing(y,j) = 3)

otherwise

where y and y are the pixel values on the ground truth
heatmap and the predicted heatmap respectively, w, 6, € and
« are positive values, A = w(1/(1 + (0/€) @) (a —
y)((0/e)*7v7V)(1/€) and C = (0A-wIn(1+(0/€)*Y))
are used to make loss function continuous and smooth at
|y — g = 6. Unlike Wing loss which uses w as the thresh-
old, we introduce a new variable 6 as a threshold to switch
between linear and nonlinear part. For heatmap regression,
we often regress a value between 0 and 1, so we expect our
threshold lies in this range. When |y — 4| < 8, we consider
the error to be small and need stronger influence. More im-
portantly, we adopt an exponential term o —y, which is used
to adapt the shape of the loss function to y and makes loss
function smooth at point zero. Note « has to be slightly
larger than 2 to maintain the ideal properties we discussed
in Sec. 4.1, this is due to the normalization of y in the range
of [0,1]. For pixels on y with values close to 1 (the land-
marks we want to localize), the power term o — y will be
slightly larger than 1, and the nonlinear part will behave
like Wing loss, which has large influence on smaller errors.
But different from Wing loss, the influence will decrease to
zero rapidly as errors are very close to zero (see Fig. 4). As
y decreases, the loss function will shift to a MSE-like loss
function, which allows the training not to focus on the pix-
els that still have errors but small influence. Figure 5 shows
how the power term a — y facilities the smooth transition
across different values of y, so that the influence of small
errors will gradually increase as the value of y increases.
Larger w and smaller € values will increase the influence on
small errors and vice versa, large w values are shown to be
effective according to our experiment.

The nonlinear part of our Adaptive Wing loss function
behaves similarly to Lorentzian (aka. Cauchy) loss [2] in
a more generalized fashion. But different from robust loss
functions such as Lorentzian and Geman-McClure [18], we
do not need the gradient to decrease to zero as error in-
creases. This is due to the nature of heatmap regression. In
robust regression, the learner learns to ignore noisy outliers
with large error. In the context of face alignment, all facial
landmarks are annotated with relatively small noises, so we
do not have noisy outliers to ignore. A linear loss is suffi-
cient for the training to converge to a location where predic-
tions will be fairly close to the ground truth heatmap, and
after that the loss function will switch to its nonlinear part
to refine the prediction with increased influence on small er-
rors. In practice, we found the linear form when errors are
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Figure 5: The nonlinear part of the Adaptive Wing loss
is able to adapt its shape according to different values of y.
As y increases, the shape is more similar to the Wing loss,
and the influence of small errors (near-side of the y axis)
will remain strong. As y decreases, the influence on these
errors will decrease and the loss function will behave more
like MSE.

large to achieve better performance, compared with keep
using the nonlinear form when the error is large.

We empirically used = 2.1 in our model. In our ex-
periments, we found w = 14, ¢ = 1, § = 0.5 to be most
effective, detailed ablation studies on parameter settings are
shown at Sec. 7.6.1.

4.3. Weighted loss map

In this section we will discuss the second issue in
Sec. 4.1. In a typical setting for facial landmark localiza-
tion with a 64 x 64 heatmap, and the size of Gaussian of
7 x 7, foreground pixels only constitute 1.2% of all the pix-
els. Assigning equal weight for such an unbalanced data
could make the training process slow to converge and re-
sult in an inferior performance. To further establish the
network’s ability to focus on foreground pixels and diffi-
cult background pixels (background pixels that are close to
foreground pixels), we introduce the Weighted Loss Map
to balance the loss from different types of pixels. We first
define our loss map mask to be:

M= {1 where Hd >=0.2 @
0 otherwise
where H? is generated from ground truth heatmap H by a
3 x 3 gray dilation. The loss map mask M assigns fore-
ground pixels and difficult background pixels 1, and other
pixels 0.

With the loss map mask M, We define our Weighted
Loss Map as follows:

Lossweighted(H, H) = Loss(H, H) ® (W - M +1)  (5)
where ® is element-wise production, W is a scalar hyper-
parameter to control how much weight to be added. See
Figure 6 for a visualization of weight map generation. In
our experiments we use W = 10. The intuition is to assign
pixels on heatmap with different weights. Foreground pix-
els have to be focused on during training, since these pixels

are the most useful for localizing the mode of the Gaussian
distribution. Difficult background pixels should also be fo-
cused on since these pixels are relatively difficult to regress,
accurately regressing them could help narrow down the area
of foreground pixels to improve localization accuracy.

() H (b) H* () M
Figure 6: Important pixels are generated by dilating H from
Figure 6a with 3x3 dilation, and then binarizing to Figure 6¢
with a threshold of 0.2. For visualization purposes, all chan-
nels are max-pooled into one channel.

5. Boundary Information

Inspired by [55], we introduce boundary prediction into
our network as a sub-task, but in a different manner. Instead
of breaking boundaries into different parts, we use only one
additional channel as the boundary channel that combines
all boundary lines to our heatmap. We believe this will effi-
ciently capture the global information on a human face. The
boundary information then will be aggregated into the net-
work naturally via convolution operations in a forward pass,
and will also be used in Section 6 to generate the boundary
coordinate map, which can further improve localization ac-
curacy according to our ablation study in Sec. 7.6.1.

6. Coordinate aggregation

We integrate CoordConv [34] into our model to improve
the capability of traditional convolutional neural network to
capture coordinate information. In addition to X, Y and
radius coordinate encoding in [34], we also leverage our
boundary prediction to generate X and Y coordinates only
at boundary. More specifically, we define X coordinate en-
coding to be C, the boundary prediction from previous HG
is B, the boundary coordinate encoding B, is defined as:

. here B >= 0.
Bz:{c where B >= 0.05 ©)

0 otherwise
B, is generated in the similar fashion from C'y. The coor-
dinate channels are generated at runtime and then concate-
nated with the original input to perform regular convolution.
7. Experiments
7.1. Datasets

We tested our approach on the COFW [7], 300W [46],
300W private test dataset and the WFLW [55] dataset. The

6975



WFLW dataset is the most difficult dataset of them all. For
more details on theses datasets, please refer to supplemen-
tary materials.

7.2. Evaluation Metrics

Normalized Mean Error (NME) is commonly used to
evaluate the quality of face alignment algorithms. The NME
for each image is defined as:

M
A 1 llp: — pill2
NME(P,P) = — S WP Pill2 )
M d

where P and P are the ground truth and the predicted

landmark coordinates for each image respectively, M is
the number of landmarks of each image, p; is the i-th pre-
dicted landmark coordinates in P and p; is the i-th ground
truth landmark coordinates in ]5, d is the normalization fac-
tor. For the COFW dataset, we use inter-pupil (distance
of eye centers) as the normalization factor. For the 300W
dataset, we provide both inter-ocular distance (distance of
outer eye corners) used as the original evaluation protocol in
[46], and inter-pupil distance used in [44]. For the WFLW
dataset, we use the inter-ocular distance described in [55].

Failure Rate (FR) is another metric to evaluate localiza-
tion quality. For one image, if NME is larger than a thresh-
old, then it is considered a failed prediction. For the 300W
private test dataset, we use 8% and 10% respectively to
compare with different approaches. For the WFLW dataset,
we follow [16, 55] and use 10% as the threshold.

Cumulative Error Distribution (CED) curve shows the
NME to the proportion of total test samples. The curve is
usually plotted from zero up to the NME failure rate thresh-
old (e.g. 10%, 8%). Area Under Curve (AUC) is calculated
based on the CED curve. Larger AUC reflects that larger
portion of the test dataset is well predicted.

7.3. Implementation details

During training and testing, we use provided bounding
boxes from dataset (with the longer side as the length of
a square) to crop faces from images, except for the 300W
private test dataset since no official bounding boxes are pro-
vided. For the WFLW dataset, the provided bounding boxes
are not very accurate, to ensure all landmarks are preserved
from cropping, we enlarge the bounding boxes by 10% on
both dimensions. For the 300W private test dataset, we use
ground truth landmarks to crop faces.

The input of the network is 256 x 256, the output of
each stacked HG is 64 x 64. We use four stacks of HG,
same with other baselines. During training, we use RM-
SProp [50] with an initial learning rate of 1 x 10™%. We
set the momentum to be 0 (adopted from [6, 41]) and the
weight decay to be 1 x 1075, We train for 240 epoches, and
the learning rate is reduced to 1 x 1075 and 1 x 1076 af-
ter 80 and 160 epoches. Data augmentation is performed

with random rotation (£50°), translation (+25px), flip-
ping (50%), and rescaling (+15%). Random Gaussian blur,
noise and occlusion are also used. All models are trained
from scratch. During inference, we adopt the same strategy
used in Newell et al. [41], the location on the pixel with
the highest response is shifted a quarter pixel to the second
highest nearby pixel. The boundary line is generated from
landmarks via distance transform similar to [55], different
boundary lines are merged into one channel by selecting
maximum values on each pixel across all channels.

Method NME AUC;o4 FRjog

Human [7] 5.60 B 0.00
TCDCNgcev 14 [66]  8.05 - -
Wu et al. ICCV 15 [57] 5.93 - -

RARgcev 16 [59]1  6.03 . 4.14

DAC-CSRcvpr 17 [17]  6.03 - 4.73
SHNcverw 17 [62]  5.60 - -
PCD-CNNcvypr 13 [31] 5.77 - 3.73

Wil’lgcva 18 [16] 5.44 - 3.75
AWing(Ours) 494 6440 0.99
NME AUCss, FRgy

DCFEgccv 18 [52] 527 3586  7.29
AWing(Ours) 494 3911 552

Table 2: Evaluation on the COFW dataset
7.3.1 Evaluation on COFW

Experiment results on the COFW dataset is shown in Ta-
ble 2. Our approach outperforms previous state-of-the-art
by a significant margin, especially on the failure rate. We
are able to reduce the failure rate measured at 10% NME
from 3.73% to 0.99%. As for NME, our method perform
much better than human (5.60%). Our performance on the
COFW shows the robustness of our approach against faces
with large pose and heavy occlusion.

7.4. Evaluation on 300W

Our method is able to achieve the state-of-the-art perfor-
mance on the 300W testing dataset, see Table 3. For the
challenge subset (iBug dataset), we are able to outperform
Wing [16] by a significant margin, which also proves the
robustness of our approach against occlusion and large pose
variation. Furthermore, on the 300W private test dataset
(Table 4), we again outperform the previous state-of-the-
art on variant metrics including NME, AUC and FR mea-
sured with either 8% NME and 10% NME. Note that we
more than halved the failure rate of the next best baseline to
0.83%, which means only 5 faces out of 600 have an NME
that is larger than 8§%.

7.5. Evaluation on WFLW

Our method again achieves the best results on the WFLW
dataset in Table 1, which is significantly more difficult than
COFW and 300W (see Fig. 7 for visualizations). On ev-
ery subset we outperform the previous state-of-the-art ap-
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Pose  Expression Illumination Make-up Occlusion  Blur

Metric Method Testset Subset Subset Subset Subset Subset Subset
ESRcvpr 14 [8] 11.13 25.88 11.47 10.49 11.05 13.75 12.20
SDMecvpr 13 [60] 1029  24.10 11.45 9.32 9.38 13.03 11.28
CFSScvpr 15 [68] 9.07 21.36 10.09 8.30 8.74 11.76 9.96
NME(%) DVLNcypr 17 [56] 6.08 11.54 5.73 5.98 7.33 6.88
LABcver 18 [55] 5.27 10.24 5.23 5.15 6.79 6.32
Wingcva 18 [16] 5.11 8.75 493 541 6.37 5.81
AWing(Ours) 4.36 7.38 4.32 4.27 5.19 4.96
ESRcvpr 14 [8] 3524 90.18 42.04 30.80 38.84 47.28 41.40
SDMcvpr 13 [60] 2940  84.36 33.44 26.22 27.67 41.85 35.32
CFSScypr 15 [68]  20.56  66.26 23.25 17.34 21.84 32.88 23.67
FRy0%(%) DVLNcypr17 [56] 10.84  46.93 11.15 7.31 11.65 16.30 13.71
LABcver 18 [55] 7.56 28.83 6.73 7.77 13.72 10.74
Wingcvpr 13 [16] 6.00 22.70 4.30 7.77 12.50 7.76
AWing(Ours) 2.84 13.50 2.58 291 5.98 3.75
ESRcvpr 14 [8] 0.2774 0.0177 0.1981 0.2953 0.2485 0.1946 0.2204
SDMcvpr 13 [60]  0.3002  0.0226 0.2293 0.3237 0.3125 0.2060 0.2398
CFSScvypr 15 [68]  0.3659  0.0632 0.3157 0.3854 0.3691 0.2688 0.3037
AUCj o,  DVLNcypr 17 [56] 0.4551 0.1474 0.3889 0.4743 0.4494 0.3794 0.3973
LABcvpris [55]  0.5323  0.2345 0.4951 0.5433 0.5394 0.4490 0.4630
Wingevypr 1s [16]  0.5504  0.3100 0.4959 0.5408 0.5582 0.4885 0.4918
AWing(Ours) 0.5719 0.3120 0.5149 0.5777 0.5715 0.5022 0.5120

Table 1: Evaluation on the WFLW dataset

Inter-pupil Normalization
CFANEgccy 14 [65] 5.50 16.78 7.69
SDMcvpr 13 [60] 5.57 15.40 7.50
LBFcypr 14 [43] 4.95 11.98 6.32
CFSScvpr 15 [68] 473 9.98 5.76
TCDCN¢ [67] 4.80 8.60 5.54
MDMcvpr 16 [51] 4.83 10.14 5.88
RAREgccv 16 [99] 4.12 8.35 4.94
DVLNcvpr 17 [56] 3.94 7.62 4.66
TSRcvpr 17 [37] 4.36 7.56 4.99
DSRNcvpr 13 [40] 4.12 9.68 5.21
RCN*(L+ELT)cvrr 13) [24] 4.20 7.78 4.90
DCFEgccvy 18 [52] 3.83 7.54 4.55
LABcvpr 13 [55] 3.42 6.98 4.12
Wingcva 18 [16] 3.27 7.18 4.04
AWing(Ours) 3.77 6.52 4.31

Inter-ocular Normalization
PCD-CNNcvypr 15 [30] 3.67 7.62 4.44
CPM+SBRCVPR 18 [13] 3.28 7.58 4.10
SANcver 13 [13] 3.34 6.60 3.98
LABcver 13 [55] 2.98 5.19 3.49
DU—NetECCV 18 [49] 2.90 5.15 3.35
AWing(Ours) 2.72 4.52 3.07

Table 3: Evaluation on the 300W testset

proaches by a significant margin. Note that the baseline
Wing is using ResNet50 [23] as the backbone architecture,
which already performs better than the CNN6/7 architec-
ture they used in COFW and 300W. We are also able to
reduce the failure rate and increase the AUC dramatically
and hence improving the overall localization quality signif-
icantly. All in all, our approach fails on only 2.84% of all
images, more than a two times improvement compared with
previous best results.

Method NME AUCs; FRgx
ESRcvpr 14 [8] - 32.35 17.00
c¢GPRTcvpr 15 [32] - 4132 12.83

CFSScvepr 15 [68] - 39.81 12.30
MDMcvypr 16 [51] 5.05 4532 6.80
DANcvprw 17 [29] 430 47.00 2.67
SHNcvprw 17 [61] 4.05 - -

DCFEgccy 15 [52] 3.88 5242 1.83

AWing(Ours) 3,56 55.76 0.83
NME AUC,p4 FRige

M3-CSR ¢ [11] - 47.52 55
Fan et al. ¢ [15] - 48.02 14.83
DR + MDM cvpr 17 [20] - 52.19  3.67
JMFA 7 [12] - 54.85  1.00
LABcvypr 15 [55] - 58.85 0.83
AWing(Ours) 3,56 6440 0.33

¢ (»‘ﬂf ¥

Figure 7: Visualizations on WFLW test dataset.

7.6. Ablation study
7.6.1 Evaluation on different loss function parameters

To find the optimal parameter settings for the Adaptive
Wing loss for heatmap regression, we examined differ-
ent parameter combinations and evaluated on the WFLW
dataset with faces cropped from ground truth landmarks.
However, the search space is too large and we only have
limited resources. To reduce the search space, we set our
initial 6 to 0.5, since the pixel value of the ground truth
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Method Mean Error(%)
MSE 5.39
MSE+WM 5.04
AW 4.65
AW+WMy,se 4.49
AW+WM 4.30
AW+WM+B 4.28
AW+WM+B+C 4.26
AW+WM+B+C+CB 4.21

Table 7: Ablation study on different methods, where AW
is the Adaptive Wing Loss, WMy, is the baseline weight
mask, WM is our Weighted Loss Map, B is boundary inte-
gration, C is CoordConv and CB is CoordConv with bound-
ary coordinates.

heatmap is from O to 1, we believe focusing on errors that
are smaller than 0.5 is more than enough. Table 5 shows
NME:s on different combinations of w and €. As a result, we
picked w = 14 and € = 1. The experiments also show our
Adaptive Wing loss is not very sensitive to w and e, since
the difference of NMEs are not significant within a certain
range of different settings. Then we fixed w and ¢, and ex-
amine different 6, the results are shown in Table 6.

“Ylio 12 14 16 18

05 | 428 425 424 428 429
1 424 426 421 422 426
2 423 427 426 428 430

Table 5: Evaluation on different parameter settings of the
Adaptive Wing loss.

0 03 04 05 06 07
NME | 425 422 421 426 423

Table 6: Evaluation on different values of 6.

7.6.2 Evaluation of different modules

Evaluation on the effectiveness of different modules is
shown in Table 7. The dataset used for ablation study
is WFLW. During training and testing, faces are cropped
from ground truth landmarks. Note the baseline model
(model trained with MSE) underperforms the state-of-the-
art. To compare with a naive weight mask without focus on
hard negative pixels, we introduced a baseline weight map
W Mpye = HW + 1, where W = 10. The major con-
tribution comes from Adaptive Wing loss, which improves
the benchmark by 0.74%. All other modules contributed in-
crementally to the localization performance, our Weighted
Loss Map improves 0.25%, boundary prediction and coor-
dinates encoding are able to contribute another 0.09%. Our
Weighted Loss Map also outperforms W M, by a consid-
erable margin, thanks to its ability to focus on hard back-
ground pixels.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean
DeepCut [42] 946 868 799 754 835 828 779 83.0
Pishchulin et al. [42] - - - - - - - 84.3
4HG+MSE 943 859 782 720 848 831 806 818
4HG+AW 96.3 887 811 782 883 881 864 859

Table 8: Evaluation on LSP dataset with PCK@0.2.

7.7. Evaluation on human pose estimation

Although this paper mainly deals with face alignment,
we have also performed experiments to prove the ability of
the proposed Adaptive Wing loss in another heatmap regres-
sion task, human pose estimation. We choose LSP [26] (us-
ing person-centric (PC) annotations) as evaluation dataset.
LSP dataset consists of 11,000 training images and 1,000
testing images. Each image is labeled with 14 keypoints.
The goal of this experiment is to examine the capability
of the proposed Adaptive Wing loss to handle the pose
estimation task compared with baseline MSE loss, rather
than achieving the state-of-the-art in human pose estima-
tion. Some other works [9, 54, 25, 42] obtain better re-
sults by adding MPII [1] into training or as pre-training,
or use re-annotated labels with high resolution images in
[42]. Besides the MSE loss baseline, we also reported base-
lines from methods that trained solely on the LSP dataset.
We trained our model from scratch with original labeling
and low resolution images to see how well our Adaptive
Wing loss could handle labeling noise and low quality im-
ages. Percentage Correct Keypoints (PCK) [64] is used as
the evaluation metric with torso dimension as the normal-
ization factor. Please refer to the supplemental materials for
more implementation details. Results are shown in Table 8.
Our proposed Adaptive Wing loss significantly boosts per-
formance compared with MSE, which proves the general
applicability of the proposed Adaptive Wing loss on more
heatmap regression tasks.

8. Conclusion

In this paper, we located two issues in the MSE loss func-
tion in heatmap regression. To resolve these issues, we pro-
posed the Adaptive Wing loss and Weighted Loss Map for
accurate localization of facial landmarks. To further im-
prove localization results, we also introduced boundary pre-
diction and CoordConv with boundary coordinates into our
model. Experiments show that our approach is able to out-
perform the state-of-the-art on multiple datasets by a signif-
icant margin, using various evaluation metrics, especially
on failure rate and AUC, which indicates our approach is
more robust to difficult scenarios.
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