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Abstract

Heatmapregressionwithadeepnetworkhasbecome
oneofthemainstreamapproachestolocalizefacialland-
marks.However,thelossfunctionforheatmapregressionis
rarelystudied.Inthispaper,weanalyzetheideallossfunc-
tionpropertiesforheatmapregressioninfacealignment
problems.Thenweproposeanovellossfunction,named
AdaptiveWingloss,thatisabletoadaptitsshapetodiffer-
enttypesofgroundtruthheatmappixels.Thisadaptabil-
itypenalizeslossmoreonforegroundpixelswhilelesson
backgroundpixels.Toaddresstheimbalancebetweenfore-
groundandbackgroundpixels,wealsoproposeWeighted
LossMap,whichassignshighweightsonforegroundand
difficultbackgroundpixelstohelptrainingprocessfocus
moreonpixelsthatarecrucialtolandmarklocalization.
Tofurtherimprovefacealignmentaccuracy,weintroduce
boundarypredictionandCoordConvwithboundarycoor-
dinates. Extensiveexperimentsondifferentbenchmarks,
includingCOFW,300WandWFLW,showourapproach
outperformsthestate-of-the-artbyasignificantmarginon
variousevaluationmetrics. Besides,theAdaptiveWing
lossalsohelpsotherheatmapregressiontasks.Codewill
bemadepubliclyavailableathttps://github.com/
protossw512/AdaptiveWingLoss.

1.Introduction

Facealignment,alsoknownasfaciallandmarklocal-
ization,seekstolocalizepre-definedlandmarksonhuman
faces.Facealignmentplaysanessentialroleinmanyface
relatedapplicationssuchasfacerecognition[48,38,35,
63,10],facefrontalization[22,53,28]and3Dfacerecon-
struction[14,45,33,19].Inrecentyears,Convolutional
NeuralNetwork(CNN)basedheatmapregressionhasbe-
comeoneofthemainstreamapproachesforfacealignment
problemsandachievedconsiderableperformanceonfrontal
faces.However,landmarksonfaceswithlargepose,occlu-
sionandsignificantblurarestillchallengingtolocalize.
Heatmapregression,whichregressesaheatmapgen-

eratedfromlandmarkcoordinates,iswidelyusedforface
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Figure2:Predictedheatmapqualitycomparison.The
modeltrainedwith MSEfailedtoaccuratelypredictthe
heatmaparoundleftcheek,lowerrightcheekandeye
brows. WiththeproposedAdaptive Wingloss(Fig.2d),
theheatmapbecomesmuchsharperonlandmarks.

alignment[4,29,61,47].Inheatmapregression,theground
truthheatmapisgeneratedbyplottingaGaussiandistribu-
tioncenteredateachlandmarkoneachchannel.Themodel
regressesagainstthegroundtruthheatmapatpixellevel
andthenusethepredictedheatmapstoinferlandmarkloca-
tions.Predictionaccuracyonforegroundpixels(pixelswith
positivevalues),especiallytheonesnearthemodeofeach
Gaussiandistribution(Fig.1),isessentialtoaccuratelylo-
calizelandmarks,evensmallpredictionerrorsonthesepix-
elscancausethepredictiontoshiftfromthecorrectmodes.
Onthecontrary,accuratelypredictingthevaluesofback-
groundpixels(pixelswithzerovalues)islessimportant,
sincesmallerrorsonthesepixelswillnotaffectlandmark
predictioninmostcases.However,predictionaccuracyon
difficultbackgroundpixels(Fig.1backgroundpixelsnear
foregroundpixels)arealsoimportantsincetheyareoften
incorrectlyregressedasforegroundpixelsandcouldcause
inaccuratepredictions.

Fromthisdiscussion,welocatetwoissuesofthewidely
usedMeanSquareError(MSE)lossinheatmapregression:
i)MSEisnotsensitivetosmallerrors,whichhurtstheca-
pabilitytocorrectlylocatethemodeoftheGaussiandis-
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tribution; ii) During training all pixels have the same loss

function and equal weights, however, background pixels

absolutely dominates foreground pixels on a heatmap. As

a result of i) and ii), models trained with the MSE loss

tend to predict a blurry and dilated heatmap with low in-

tensity on foreground pixels compared to the ground truth

(Fig. 2c). This low quality heatmap could cause wrong es-

timation of facial landmarks. Wing loss [16] is shown to

be effective to improve coordinate regression, however, ac-

cording to our experiment, it is not applicable for heatmap

regression. Small errors on background pixels will accumu-

late significant gradients and thus cause the training process

to diverge. We thus propose a new loss function and name

it Adaptive Wing loss (Sec. 4.2), that is able to significantly

improve the quality of heatmap regression results.

Due to the translation invariance of the convolution op-

eration in bottom-up and top-down CNN structures such as

stacked Hourglass (HG) [41], the network is not able to

capture coordinate information, which we believe is use-

ful for facial landmark localization, since the structure of

human faces is relatively stable. Inspired by the Coord-

Conv layer proposed by Liu et al. [34], we encode into our

model the full coordinate information and the information

only on boundaries predicted from the previous HG module

into our model. The encoded coordinate information fur-

ther improves the performance of our approach. To encode

boundary coordinates, we also add a sub-task of boundary

prediction by concatenating an additional boundary channel

into the ground truth heatmap which is jointly trained with

other channels.

In summary, our main contributions include:

• Propose a novel loss function for heatmap regression

named Adaptive Wing loss, that is able to adapt its

curvature to ground truth pixel values. This adaptive

property reduces small errors on foreground pixels for

accurate landmark localization, while tolerates small

errors on background pixels for a better convergence

rate. With proposed Weighted Loss Map it is also able

to focus on foreground pixels and difficult background

pixels during training.

• Encode coordinate information, including coordinates

on boundary, into the face alignment algorithm using

CoordConv [34].

Our approach outperforms the state-of-the-art algorithms by

a significant margin on mainstream face alignment datasets

including 300W [46], COFW [7] and WFLW [55]. We also

show the validity of the Adaptive Wing loss in the human

pose estimation task which also utilizes heatmap regression.

2. Related Work

CNN based heatmap regression models leverage CNN

to perform heatmap regression. In recent work [61, 49,

5, 6], joint bottom-up and top-down architectures such as

stacked HG [41] were able to achieve the state-of-the-art

performance. Bulat et al. [5] proposed a hierarchical, par-

allel and multi-scale block as a replacement for the origi-

nal ResNet [23] block to further improve the localization

accuracy of HG. Tang et al. [49] was able to achieve cur-

rent state-of-the-art with quantized densely connected U-

Nets with fewer parameters than stacked HG models. Other

architectures are also able to achieve excellent performance.

Merget et al. [39] proposed a fully convolutional neural net-

work (FCN) that combines global and local context infor-

mation for a refined prediction. Valle et al. [52] combined

CNN with ensemble of regression trees in a coarse-to-fine

fashion to achieve the state-of-the art accuracy. Another fo-

cus of this area is the 3D face alignment [27, 36], that aims

to provide 3D dense alignment based on 2D images.

Loss functions for heatmap regression were rarely

studied in previous work. GoDP [58] used a distance-aware

softmax loss to assign large penalty on incorrectly classified

positive samples, while gradually reducing penalty on miss-

classified negative samples as the distance from nearby pos-

itive samples decrease. The Wing loss [16] is a modified log

loss for direct regression of landmark coordinates. Com-

pared with MSE, it amplifies the influence of small errors.

Although the Wing loss is able to achieve the state-of-the-

art performance in coordinate regression, it is not applicable

to heatmap regression due to its high sensitivity to small er-

rors on background pixels and the discontinuity of gradient

at zero. Our proposed Adaptive Wing loss is novel since it

is able to adapt its curvature to different ground truth pixel

values, such that it can be sensitive to small errors on fore-

ground pixels yet be able to tolerance small errors on back-

ground pixels. Hence, our loss can be applied to heatmap

regression while the original Wing loss cannot be.

Boundary information was first introduced into face

alignment by Wu et al. [55]. LAB proposed a two-stage net-

work with a stacked HG model to generate a facial bound-

ary map, and then regress facial landmark coordinates di-

rectly with the help of boundary map. We believe including

boundary information is beneficial to the heatmap regres-

sion and utilized a modified version to our model.

Coordinate Encoding. Translation invariance is intrin-

sic to the convolution operation. Although CNN greatly

benefited from this parameter sharing scheme, Liu et

al. [34] showed the inability of the convolution operation to

handle simple coordinate transforms, and proposed a new

operation called CoordConv, which encodes coordinate in-

formation as additional channels before convolution opera-

tion. CoordConv was shown to improve vision tasks such

as object detection and generative modeling. For face align-

ment, the input images are always generated from a face

detector with small variance on location and scale. These

properties inspire us to include CoordConv to help CNN
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Figure 3: An overview of our model. The stacked HG takes a face image cropped with the ground truth bounding box and

output one predicted heatmap for each landmark, respectively. An additional channel is used to predict facial boundaries.

Due to limited space, we omitted the detailed structure of the stacked HG architecture, please refer [41, 6] for details.
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Figure 4: Different Loss Functions. When y = 0, the

Adaptive Wing loss (purple) behaves similar to the MSE

loss (red). When y = 1, the Adaptive Wing loss (green)

behaves similar to the Wing loss (yellow), but the gradient

of the Adaptive Wing loss is smooth at point y = ŷ, as

shown in Figure 4b (Best viewed in color).

learn the relationship among facial landmarks based on their

absolute locations.

3. Our Model

Our model is based on the stacked HG architecture from

Bulat et al. [6] which improved over the original convolu-

tion block design from Newell et al. [41]. For each HG,

the output heatmap is supervised with the ground truth

heatmap. We also added a sub-task of boundary predic-

tion as an additional channel of the heatmap. Coordinate

encoding is added before the first convolution layer of our

network and before the first convolution block of each HG

module. An overview of our model is shown in Figure 3.

4. Adaptive Wing Loss for Face Alignment

4.1. Loss function rationale

Before starting our analysis, we would like to introduce

a concept from robust statistics. Influence [21] is a heuristic

tool used in robust statistics to investigate the properties of

an estimator. In the context of our paper, the influence func-

tion is proportional to the gradient [3] of our loss function.

So if the gradient magnitude is large at point y−ŷ (indicting

the error), then we say the loss function has a large influence

at point y − ŷ. If the gradient magnitude is close to zero at

this point, then we say the loss function has a small influ-

ence at point y − ŷ. Theoretically, for heatmap regression,

training is converged only if:
N
∑

n=0

H
∑

i=0

W
∑

j=0

C
∑

k=0

∇Lossn(yi,j,k − ŷi,j,k) = 0 (1)

where N is the total number of training samples, H , W
and C are the height, width and channels of heatmap, re-

spectively. Lossn is the loss of n − th sample, yi,j,k and

ŷi,j,k are ground truth pixel intensity and predicted pixel

intensity respectively. At convergence, the influence of all

errors must balance each other. Hence, a positive error on a

pixel with large gradient magnitude (hence large influence)

would need to be balanced by negative errors on many pix-

els with smaller influence. Errors with large gradient mag-

nitude will also be more focused on during training compare

to errors with small gradient magnitude.

The essence of heatmap regression is to output a Gaus-

sian distribution centered at each ground truth landmark.

Thus the accuracy of estimating pixel intensity at the mode

of the Gaussian plays a vital role on correctly localizing

landmarks. The two issues we illustrated in Sec. 1 result in

an inaccurate estimation on the position of landmarks due

to lacking of focus during training on foreground pixels. In

this section and Sec. 4.2, we will discuss the causes of the

first issue and how our proposed Adaptive Wing loss is able

to remedy it. The second issue will be discussed in Sec. 4.3.

The first issue is due to the commonly used MSE loss

function for Heatmap regression. The gradient of the MSE

loss is linear, so pixels with small errors have small influ-

ence, as shown in Figure 4b. This property could cause

training to converge while many pixels still have small er-

rors. As a result, models trained with MSE loss tend to

predict a blurry and dilated heatmap. Even worse, the pre-

dicted heatmap often has low intensity on foreground pix-

els around difficult landmarks, e.g. occluded landmarks or

faces with unusual illumination conditions. Accurately lo-

calizing landmarks from these low intensity pixels can be

difficult. A good example can be found in Figure 2.

L1 loss has constant gradient so that pixels with small

errors have the same influence as pixels with large errors.

However, the gradient of L1 loss is not continuous at point

zero, which means for convergence, the amount of pixels

with positive errors has to be exactly equal to the amount

that has negative errors. The difficulty of achieving such

delicate balance could cause training process to be unstable

and oscillating.
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Feng et al. [16] is able to improve the above loss func-

tions by proposing Wing loss that has constant gradient

when error is large, and large gradient when the error is

small. Thus pixels with small errors will be amplified. The

Wing loss is defined as follows:

Wing(y,ŷ)=







ωln(1+|
y−ŷ

ǫ
|) if |(y−ŷ)|<ω

|y − ŷ| − C otherwise
(2)

where y and ŷ are the pixel values on ground truth heatmap

and the predicted heatmap respectively, C = ω − ω ln(1 +
ω/ǫ) is used to make function continuous at |y − ŷ| = ω.

The Wing loss is, however, still not be able to overcome the

discontinuity of its gradient at y − ŷ = 0, with its large

gradient magnitude around this point, training is even more

difficult to converge compared with L1 loss. This property

makes the Wing loss not applicable for heatmap regression,

since with the Wing loss calculated on all background pix-

els, small errors on background pixels are having out-of-

proportion influence. Training a neural network that outputs

zero or small gradient on these pixels is very difficult. Ac-

cording to our experiment, the training of a heatmap regres-

sion network with the Wing loss is never able to converge.

The above analysis leads us to define the desired prop-

erties of an ideal loss function for heatmap regression. We

expect our loss function to have a constant influence when

error is large, so that it will be robust to inaccurate anno-

tations and occlusions. As the training process continues

and errors getting smaller, there will be two scenarios: i)

For foreground pixels, the influence (as well as the gradi-

ent) should start to increase so that the training is able to

focus on reducing these errors. The influence should then

decrease rapidly as the errors go very close to zero, so that

these ”good enough” pixels will no longer be focused on.

The reduced influence of correct estimations helps the net-

work to stay converged, instead of oscillating like the L1

and the Wing loss. ii) For background pixels, the gradient

should behaves more similar to the MSE loss, that is, it will

gradually decrease to zero as the training error decreases,

so that the influence will be relatively small when the errors

are small. This property reduces the focus of the training on

background pixels, stabilizing the training process.

A fixed loss function cannot achieve both properties

simultaneously. Thus, the loss function should be able

to adapt to different pixel intensities on the ground truth

heatmaps. As the ground truth pixels close to the mode

(have intensities that are close to 1), the influence of small

errors should increase. With ground truth pixel intensities

close to 0, the loss function should behave more similar

to the MSE loss. Since pixel values on the ground truth

heatmap range from 0 to 1, we also expect our loss func-

tion to have a smooth transition according to different pixel

values.

4.2. The Adaptive Wing Loss

Following intuitions above, we propose our Adaptive

Wing (AWing) loss, defined as follows:

AWing(y,ŷ)=







ωln(1+|
y−ŷ

ǫ
|α−y) if |(y−ŷ)|<θ

A|y − ŷ| − C otherwise
(3)

where y and ŷ are the pixel values on the ground truth

heatmap and the predicted heatmap respectively, ω, θ, ǫ and

α are positive values, A = ω(1/(1 + (θ/ǫ)(α−y)))(α −
y)((θ/ǫ)(α−y−1))(1/ǫ) and C = (θA−ω ln(1+(θ/ǫ)α−y))
are used to make loss function continuous and smooth at

|y − ŷ| = θ. Unlike Wing loss which uses ω as the thresh-

old, we introduce a new variable θ as a threshold to switch

between linear and nonlinear part. For heatmap regression,

we often regress a value between 0 and 1, so we expect our

threshold lies in this range. When |y − ŷ| < θ, we consider

the error to be small and need stronger influence. More im-

portantly, we adopt an exponential term α−y, which is used

to adapt the shape of the loss function to y and makes loss

function smooth at point zero. Note α has to be slightly

larger than 2 to maintain the ideal properties we discussed

in Sec. 4.1, this is due to the normalization of y in the range

of [0, 1]. For pixels on y with values close to 1 (the land-

marks we want to localize), the power term α − y will be

slightly larger than 1, and the nonlinear part will behave

like Wing loss, which has large influence on smaller errors.

But different from Wing loss, the influence will decrease to

zero rapidly as errors are very close to zero (see Fig. 4). As

y decreases, the loss function will shift to a MSE-like loss

function, which allows the training not to focus on the pix-

els that still have errors but small influence. Figure 5 shows

how the power term α − y facilities the smooth transition

across different values of y, so that the influence of small

errors will gradually increase as the value of y increases.

Larger ω and smaller ǫ values will increase the influence on

small errors and vice versa, large ω values are shown to be

effective according to our experiment.

The nonlinear part of our Adaptive Wing loss function

behaves similarly to Lorentzian (aka. Cauchy) loss [2] in

a more generalized fashion. But different from robust loss

functions such as Lorentzian and Geman-McClure [18], we

do not need the gradient to decrease to zero as error in-

creases. This is due to the nature of heatmap regression. In

robust regression, the learner learns to ignore noisy outliers

with large error. In the context of face alignment, all facial

landmarks are annotated with relatively small noises, so we

do not have noisy outliers to ignore. A linear loss is suffi-

cient for the training to converge to a location where predic-

tions will be fairly close to the ground truth heatmap, and

after that the loss function will switch to its nonlinear part

to refine the prediction with increased influence on small er-

rors. In practice, we found the linear form when errors are
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(a) AWing loss (b) Gradient of AWing

Figure 5: The nonlinear part of the Adaptive Wing loss

is able to adapt its shape according to different values of y.

As y increases, the shape is more similar to the Wing loss,

and the influence of small errors (near-side of the y axis)

will remain strong. As y decreases, the influence on these

errors will decrease and the loss function will behave more

like MSE.

large to achieve better performance, compared with keep

using the nonlinear form when the error is large.

We empirically used α = 2.1 in our model. In our ex-

periments, we found ω = 14, ǫ = 1, θ = 0.5 to be most

effective, detailed ablation studies on parameter settings are

shown at Sec. 7.6.1.

4.3. Weighted loss map

In this section we will discuss the second issue in

Sec. 4.1. In a typical setting for facial landmark localiza-

tion with a 64 × 64 heatmap, and the size of Gaussian of

7× 7, foreground pixels only constitute 1.2% of all the pix-

els. Assigning equal weight for such an unbalanced data

could make the training process slow to converge and re-

sult in an inferior performance. To further establish the

network’s ability to focus on foreground pixels and diffi-

cult background pixels (background pixels that are close to

foreground pixels), we introduce the Weighted Loss Map

to balance the loss from different types of pixels. We first

define our loss map mask to be:

M =

{

1 where Hd >= 0.2

0 otherwise
(4)

where Hd is generated from ground truth heatmap H by a

3 × 3 gray dilation. The loss map mask M assigns fore-

ground pixels and difficult background pixels 1, and other

pixels 0.

With the loss map mask M , We define our Weighted

Loss Map as follows:

Lossweighted(H, Ĥ) = Loss(H, Ĥ)⊗ (W ·M + 1) (5)

where ⊗ is element-wise production, W is a scalar hyper-

parameter to control how much weight to be added. See

Figure 6 for a visualization of weight map generation. In

our experiments we use W = 10. The intuition is to assign

pixels on heatmap with different weights. Foreground pix-

els have to be focused on during training, since these pixels

are the most useful for localizing the mode of the Gaussian

distribution. Difficult background pixels should also be fo-

cused on since these pixels are relatively difficult to regress,

accurately regressing them could help narrow down the area

of foreground pixels to improve localization accuracy.

(a) H (b) Hd (c) M

Figure 6: Important pixels are generated by dilating H from

Figure 6a with 3x3 dilation, and then binarizing to Figure 6c

with a threshold of 0.2. For visualization purposes, all chan-

nels are max-pooled into one channel.

5. Boundary Information

Inspired by [55], we introduce boundary prediction into

our network as a sub-task, but in a different manner. Instead

of breaking boundaries into different parts, we use only one

additional channel as the boundary channel that combines

all boundary lines to our heatmap. We believe this will effi-

ciently capture the global information on a human face. The

boundary information then will be aggregated into the net-

work naturally via convolution operations in a forward pass,

and will also be used in Section 6 to generate the boundary

coordinate map, which can further improve localization ac-

curacy according to our ablation study in Sec. 7.6.1.

6. Coordinate aggregation

We integrate CoordConv [34] into our model to improve

the capability of traditional convolutional neural network to

capture coordinate information. In addition to X , Y and

radius coordinate encoding in [34], we also leverage our

boundary prediction to generate X and Y coordinates only

at boundary. More specifically, we define X coordinate en-

coding to be Cx, the boundary prediction from previous HG

is B, the boundary coordinate encoding Bx is defined as:

Bx =

{

Cx where B >= 0.05

0 otherwise
(6)

By is generated in the similar fashion from Cy . The coor-

dinate channels are generated at runtime and then concate-

nated with the original input to perform regular convolution.

7. Experiments

7.1. Datasets

We tested our approach on the COFW [7], 300W [46],

300W private test dataset and the WFLW [55] dataset. The
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WFLW dataset is the most difficult dataset of them all. For

more details on theses datasets, please refer to supplemen-

tary materials.

7.2. Evaluation Metrics

Normalized Mean Error (NME) is commonly used to
evaluate the quality of face alignment algorithms. The NME
for each image is defined as:

NME(P, P̂ ) =
1

M

M
∑

i=1

||pi − p̂i||2
d

(7)

where P and P̂ are the ground truth and the predicted

landmark coordinates for each image respectively, M is

the number of landmarks of each image, p̂i is the i-th pre-

dicted landmark coordinates in P and pi is the i-th ground

truth landmark coordinates in P̂ , d is the normalization fac-

tor. For the COFW dataset, we use inter-pupil (distance

of eye centers) as the normalization factor. For the 300W

dataset, we provide both inter-ocular distance (distance of

outer eye corners) used as the original evaluation protocol in

[46], and inter-pupil distance used in [44]. For the WFLW

dataset, we use the inter-ocular distance described in [55].

Failure Rate (FR) is another metric to evaluate localiza-

tion quality. For one image, if NME is larger than a thresh-

old, then it is considered a failed prediction. For the 300W

private test dataset, we use 8% and 10% respectively to

compare with different approaches. For the WFLW dataset,

we follow [16, 55] and use 10% as the threshold.

Cumulative Error Distribution (CED) curve shows the

NME to the proportion of total test samples. The curve is

usually plotted from zero up to the NME failure rate thresh-

old (e.g. 10%, 8%). Area Under Curve (AUC) is calculated

based on the CED curve. Larger AUC reflects that larger

portion of the test dataset is well predicted.

7.3. Implementation details

During training and testing, we use provided bounding

boxes from dataset (with the longer side as the length of

a square) to crop faces from images, except for the 300W

private test dataset since no official bounding boxes are pro-

vided. For the WFLW dataset, the provided bounding boxes

are not very accurate, to ensure all landmarks are preserved

from cropping, we enlarge the bounding boxes by 10% on

both dimensions. For the 300W private test dataset, we use

ground truth landmarks to crop faces.

The input of the network is 256 × 256, the output of

each stacked HG is 64 × 64. We use four stacks of HG,

same with other baselines. During training, we use RM-

SProp [50] with an initial learning rate of 1 × 10−4. We

set the momentum to be 0 (adopted from [6, 41]) and the

weight decay to be 1×10−5. We train for 240 epoches, and

the learning rate is reduced to 1 × 10−5 and 1 × 10−6 af-

ter 80 and 160 epoches. Data augmentation is performed

with random rotation (±50◦), translation (±25px), flip-

ping (50%), and rescaling (±15%). Random Gaussian blur,

noise and occlusion are also used. All models are trained

from scratch. During inference, we adopt the same strategy

used in Newell et al. [41], the location on the pixel with

the highest response is shifted a quarter pixel to the second

highest nearby pixel. The boundary line is generated from

landmarks via distance transform similar to [55], different

boundary lines are merged into one channel by selecting

maximum values on each pixel across all channels.

Method NME AUC10% FR10%

Human [7] 5.60 - 0.00

TCDCNECCV 14 [66] 8.05 - -

Wu et al. ICCV 15 [57] 5.93 - -

RARECCV 16 [59] 6.03 - 4.14

DAC-CSRCVPR 17 [17] 6.03 - 4.73

SHNCVPRW 17 [62] 5.60 - -

PCD-CNNCVPR 18 [31] 5.77 - 3.73

WingCVPR 18 [16] 5.44 - 3.75

AWing(Ours) 4.94 64.40 0.99

NME AUC8% FR8%

DCFEECCV 18 [52] 5.27 35.86 7.29

AWing(Ours) 4.94 39.11 5.52

Table 2: Evaluation on the COFW dataset

7.3.1 Evaluation on COFW

Experiment results on the COFW dataset is shown in Ta-

ble 2. Our approach outperforms previous state-of-the-art

by a significant margin, especially on the failure rate. We

are able to reduce the failure rate measured at 10% NME

from 3.73% to 0.99%. As for NME, our method perform

much better than human (5.60%). Our performance on the

COFW shows the robustness of our approach against faces

with large pose and heavy occlusion.

7.4. Evaluation on 300W

Our method is able to achieve the state-of-the-art perfor-

mance on the 300W testing dataset, see Table 3. For the

challenge subset (iBug dataset), we are able to outperform

Wing [16] by a significant margin, which also proves the

robustness of our approach against occlusion and large pose

variation. Furthermore, on the 300W private test dataset

(Table 4), we again outperform the previous state-of-the-

art on variant metrics including NME, AUC and FR mea-

sured with either 8% NME and 10% NME. Note that we

more than halved the failure rate of the next best baseline to

0.83%, which means only 5 faces out of 600 have an NME

that is larger than 8%.

7.5. Evaluation on WFLW

Our method again achieves the best results on the WFLW

dataset in Table 1, which is significantly more difficult than

COFW and 300W (see Fig. 7 for visualizations). On ev-

ery subset we outperform the previous state-of-the-art ap-
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Metric Method Testset
Pose

Subset

Expression

Subset

Illumination

Subset

Make-up

Subset

Occlusion

Subset

Blur

Subset

NME(%)

ESRCVPR 14 [8] 11.13 25.88 11.47 10.49 11.05 13.75 12.20

SDMCVPR 13 [60] 10.29 24.10 11.45 9.32 9.38 13.03 11.28

CFSSCVPR 15 [68] 9.07 21.36 10.09 8.30 8.74 11.76 9.96

DVLNCVPR 17 [56] 6.08 11.54 6.78 5.73 5.98 7.33 6.88

LABCVPR 18 [55] 5.27 10.24 5.51 5.23 5.15 6.79 6.32

WingCVPR 18 [16] 5.11 8.75 5.36 4.93 5.41 6.37 5.81

AWing(Ours) 4.36 7.38 4.58 4.32 4.27 5.19 4.96

FR10%(%)

ESRCVPR 14 [8] 35.24 90.18 42.04 30.80 38.84 47.28 41.40

SDMCVPR 13 [60] 29.40 84.36 33.44 26.22 27.67 41.85 35.32

CFSSCVPR 15 [68] 20.56 66.26 23.25 17.34 21.84 32.88 23.67

DVLNCVPR 17 [56] 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LABCVPR 18 [55] 7.56 28.83 6.37 6.73 7.77 13.72 10.74

WingCVPR 18 [16] 6.00 22.70 4.78 4.30 7.77 12.50 7.76

AWing(Ours) 2.84 13.50 2.23 2.58 2.91 5.98 3.75

AUC10%

ESRCVPR 14 [8] 0.2774 0.0177 0.1981 0.2953 0.2485 0.1946 0.2204

SDMCVPR 13 [60] 0.3002 0.0226 0.2293 0.3237 0.3125 0.2060 0.2398

CFSSCVPR 15 [68] 0.3659 0.0632 0.3157 0.3854 0.3691 0.2688 0.3037

DVLNCVPR 17 [56] 0.4551 0.1474 0.3889 0.4743 0.4494 0.3794 0.3973

LABCVPR 18 [55] 0.5323 0.2345 0.4951 0.5433 0.5394 0.4490 0.4630

WingCVPR 18 [16] 0.5504 0.3100 0.4959 0.5408 0.5582 0.4885 0.4918

AWing(Ours) 0.5719 0.3120 0.5149 0.5777 0.5715 0.5022 0.5120

Table 1: Evaluation on the WFLW dataset

Method
Common

Subset

Challenging

Subset
Fullset

Inter-pupil Normalization

CFANECCV 14 [65] 5.50 16.78 7.69

SDMCVPR 13 [60] 5.57 15.40 7.50

LBFCVPR 14 [43] 4.95 11.98 6.32

CFSSCVPR 15 [68] 4.73 9.98 5.76

TCDCN16’ [67] 4.80 8.60 5.54

MDMCVPR 16 [51] 4.83 10.14 5.88

RARECCV 16 [59] 4.12 8.35 4.94

DVLNCVPR 17 [56] 3.94 7.62 4.66

TSRCVPR 17 [37] 4.36 7.56 4.99

DSRNCVPR 18 [40] 4.12 9.68 5.21

RCN+(L+ELT)CVPR 18) [24] 4.20 7.78 4.90

DCFEECCV 18 [52] 3.83 7.54 4.55

LABCVPR 18 [55] 3.42 6.98 4.12

WingCVPR 18 [16] 3.27 7.18 4.04

AWing(Ours) 3.77 6.52 4.31

Inter-ocular Normalization

PCD-CNNCVPR 18 [30] 3.67 7.62 4.44

CPM+SBRCVPR 18 [13] 3.28 7.58 4.10

SANCVPR 18 [13] 3.34 6.60 3.98

LABCVPR 18 [55] 2.98 5.19 3.49

DU-NetECCV 18 [49] 2.90 5.15 3.35

AWing(Ours) 2.72 4.52 3.07

Table 3: Evaluation on the 300W testset

proaches by a significant margin. Note that the baseline

Wing is using ResNet50 [23] as the backbone architecture,

which already performs better than the CNN6/7 architec-

ture they used in COFW and 300W. We are also able to

reduce the failure rate and increase the AUC dramatically

and hence improving the overall localization quality signif-

icantly. All in all, our approach fails on only 2.84% of all

images, more than a two times improvement compared with

previous best results.

Method NME AUC8% FR8%

ESRCVPR 14 [8] - 32.35 17.00

cGPRTCVPR 15 [32] - 41.32 12.83

CFSSCVPR 15 [68] - 39.81 12.30

MDMCVPR 16 [51] 5.05 45.32 6.80

DANCVPRW 17 [29] 4.30 47.00 2.67

SHNCVPRW 17 [61] 4.05 - -

DCFEECCV 18 [52] 3.88 52.42 1.83

AWing(Ours) 3.56 55.76 0.83

NME AUC10% FR10%

M3-CSR16’ [11] - 47.52 5.5

Fan et al. 16’ [15] - 48.02 14.83

DR + MDM CVPR 17 [20] - 52.19 3.67

JMFA17’ [12] - 54.85 1.00

LABCVPR 18 [55] - 58.85 0.83

AWing(Ours) 3.56 64.40 0.33

Table 4: Evaluation on the 300W private dataset

Figure 7: Visualizations on WFLW test dataset.

7.6. Ablation study

7.6.1 Evaluation on different loss function parameters

To find the optimal parameter settings for the Adaptive

Wing loss for heatmap regression, we examined differ-

ent parameter combinations and evaluated on the WFLW

dataset with faces cropped from ground truth landmarks.

However, the search space is too large and we only have

limited resources. To reduce the search space, we set our

initial θ to 0.5, since the pixel value of the ground truth
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Method Mean Error(%)

MSE 5.39

MSE+WM 5.04

AW 4.65

AW+WMbase 4.49

AW+WM 4.30

AW+WM+B 4.28

AW+WM+B+C 4.26

AW+WM+B+C+CB 4.21

Table 7: Ablation study on different methods, where AW

is the Adaptive Wing Loss, WMbase is the baseline weight

mask, WM is our Weighted Loss Map, B is boundary inte-

gration, C is CoordConv and CB is CoordConv with bound-

ary coordinates.

heatmap is from 0 to 1, we believe focusing on errors that

are smaller than 0.5 is more than enough. Table 5 shows

NMEs on different combinations of ω and ǫ. As a result, we

picked ω = 14 and ǫ = 1. The experiments also show our

Adaptive Wing loss is not very sensitive to ω and ǫ, since

the difference of NMEs are not significant within a certain

range of different settings. Then we fixed ω and ǫ, and ex-

amine different θ, the results are shown in Table 6.

❍
❍
❍
❍
❍

ǫ
ω

10 12 14 16 18

0.5 4.28 4.25 4.24 4.28 4.29

1 4.24 4.26 4.21 4.22 4.26

2 4.23 4.27 4.26 4.28 4.30

Table 5: Evaluation on different parameter settings of the

Adaptive Wing loss.

θ 0.3 0.4 0.5 0.6 0.7

NME 4.25 4.22 4.21 4.26 4.23

Table 6: Evaluation on different values of θ.

7.6.2 Evaluation of different modules

Evaluation on the effectiveness of different modules is

shown in Table 7. The dataset used for ablation study

is WFLW. During training and testing, faces are cropped

from ground truth landmarks. Note the baseline model

(model trained with MSE) underperforms the state-of-the-

art. To compare with a naive weight mask without focus on

hard negative pixels, we introduced a baseline weight map

WM base = ĤW + 1, where W = 10. The major con-

tribution comes from Adaptive Wing loss, which improves

the benchmark by 0.74%. All other modules contributed in-

crementally to the localization performance, our Weighted

Loss Map improves 0.25%, boundary prediction and coor-

dinates encoding are able to contribute another 0.09%. Our

Weighted Loss Map also outperforms WM base by a consid-

erable margin, thanks to its ability to focus on hard back-

ground pixels.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

DeepCut [42] 94.6 86.8 79.9 75.4 83.5 82.8 77.9 83.0

Pishchulin et al. [42] - - - - - - - 84.3

4HG+MSE 94.3 85.9 78.2 72.0 84.8 83.1 80.6 81.8

4HG+AW 96.3 88.7 81.1 78.2 88.3 88.1 86.4 85.9

Table 8: Evaluation on LSP dataset with PCK@0.2.

7.7. Evaluation on human pose estimation

Although this paper mainly deals with face alignment,

we have also performed experiments to prove the ability of

the proposed Adaptive Wing loss in another heatmap regres-

sion task, human pose estimation. We choose LSP [26] (us-

ing person-centric (PC) annotations) as evaluation dataset.

LSP dataset consists of 11,000 training images and 1,000

testing images. Each image is labeled with 14 keypoints.

The goal of this experiment is to examine the capability

of the proposed Adaptive Wing loss to handle the pose

estimation task compared with baseline MSE loss, rather

than achieving the state-of-the-art in human pose estima-

tion. Some other works [9, 54, 25, 42] obtain better re-

sults by adding MPII [1] into training or as pre-training,

or use re-annotated labels with high resolution images in

[42]. Besides the MSE loss baseline, we also reported base-

lines from methods that trained solely on the LSP dataset.

We trained our model from scratch with original labeling

and low resolution images to see how well our Adaptive

Wing loss could handle labeling noise and low quality im-

ages. Percentage Correct Keypoints (PCK) [64] is used as

the evaluation metric with torso dimension as the normal-

ization factor. Please refer to the supplemental materials for

more implementation details. Results are shown in Table 8.

Our proposed Adaptive Wing loss significantly boosts per-

formance compared with MSE, which proves the general

applicability of the proposed Adaptive Wing loss on more

heatmap regression tasks.

8. Conclusion

In this paper, we located two issues in the MSE loss func-

tion in heatmap regression. To resolve these issues, we pro-

posed the Adaptive Wing loss and Weighted Loss Map for

accurate localization of facial landmarks. To further im-

prove localization results, we also introduced boundary pre-

diction and CoordConv with boundary coordinates into our

model. Experiments show that our approach is able to out-

perform the state-of-the-art on multiple datasets by a signif-

icant margin, using various evaluation metrics, especially

on failure rate and AUC, which indicates our approach is

more robust to difficult scenarios.
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