MOD: Minimally Ordered Durable Datastructures for
Persistent Memory

Swapnil Haria
University of Wisconsin-Madison
swapnilh@cs.wisc.edu

Abstract

Persistent Memory (PM) makes possible recoverable appli-
cations that can preserve application progress across system
reboots and power failures. Actual recoverability requires
careful ordering of cacheline flushes, currently done in two
extreme ways. On one hand, expert programmers have rea-
soned deeply about consistency and durability to create ap-
plications centered on a single custom-crafted durable data-
structure. On the other hand, less-expert programmers have
used software transaction memory (STM) to make atomic
one or more updates, albeit at a significant performance cost
due largely to ordered log updates.

In this work, we propose the middle ground of composable
persistent datastructures called Minimally Ordered Durable
datastructures (MOD). We prototype MOD as a library of C++
datastructures—currently, map, set, stack, queue and vector—
that often perform better than STM and yet are relatively
easy to use. They allow multiple updates to one or more
datastructures to be atomic with respect to failure. More-
over, we provide a recipe to create additional recoverable
datastructures.

MOD is motivated by our analysis of real Intel Optane
PM hardware showing that allowing unordered, overlapping
flushes significantly improves performance. MOD reduces
ordering by adapting existing techniques for out-of-place
updates (like shadow paging) with space-reducing structural
sharing (from functional programming). MOD exposes a Ba-
sic interface for single updates and a Composition interface for
atomically performing multiple updates. Relative to widely
used Intel PMDK v1.5 STM, MOD improves map, set, stack,
queue microbenchmark performance by 40%, and speeds up
application benchmark performance by 38%.

“Now at Google.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS °20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00
https://doi.org/10.1145/3373376.3378472

Mark D. Hill
University of Wisconsin-Madison
markhill@cs.wisc.edu

Michael M. Swift
University of Wisconsin-Madison
swift@cs.wisc.edu

CCS Concepts. Software and its engineering — Soft-
ware libraries and repositories; Software fault toler-
ance; Software performance; - Information systems —
Storage class memory.

Keywords. crash-consistency, durability, datastructures, per-
sistent memory.

ACM Reference Format:

Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD:
Minimally Ordered Durable Datastructures for Persistent Memory.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS °20), March 16-20, 2020, Lausanne, Switzerland. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3373376.3378472

1 Introduction

Persistent Memory (PM) is here—Intel Optane DC Persistent
Memory Modules (DCPMM) began shipping in 2019 [21].
Such systems expose fast, byte-addressable, non-volatile
memory (NVM) devices as main memory and allow appli-
cations to access this persistent memory via regular load/-
store instructions. In fact, we ran all experiments in this
paper on a system with engineering samples of Optane
DCPMM [22, 23].

The durability of PM enables recoverable applications that
preserve in-memory data beyond process lifetimes and sys-
tem crashes, a desirable quality for workloads like databases,
key-value stores and long-running scientific computations [4,
28]. Such applications use cacheline flush instructions to
move data from volatile caches to durable PM and order
these flushes carefully to ensure consistency. For instance,
applications must durably update data before updating a
persistent pointer to the data, or atomically do both.

However, few recoverable PM applications have been de-
veloped so far, though libraries like Mnemosyne [46] and
Intel Persistent Memory Development Kit (PMDK) [19] have
existed for several years. Currently, there are two approaches
to building such applications: single-purpose custom data-
structures (e.g., persistent B-trees [6, 44, 48]) or general-
purpose transactions. Both approaches have some benefits,
but we believe that neither is suitable for developers building
new PM applications.

Although custom datastructures are typically fast, signifi-
cant effort is needed in designing these structures to ensure
that updates are performed atomically with respect to failure,
i.e., either all modified data is made durable in PM or none.

https://doi.org/10.1145/3373376.3378472
https://doi.org/10.1145/3373376.3378472

Designers need to ensure that modified data is logged and
dirty cachelines are explicitly flushed to PM in a deliberate
order enforced by the use of appropriate fence instructions
for consistency. Moreover, performance optimizations useful
in one datastructure may not generalize to others. Finally,
custom datastructures typically do not support the compo-
sition of failure-atomic operations spanning multiple data-
structures, e.g., popping an element of a durable queue and
inserting it into a durable map.

At the other extreme, existing PM libraries offer soft-
ware transactional memory (PM-STM) for building crash-
consistent code, but with complicated interfaces and high
performance overheads. Operations on existing datastructures
are wrapped in transactions to facilitate consistent recov-
ery on a crash. These transactions also allow developers
to compose failure-atomic operations that update multiple
datastructures. However, existing PM-STM interfaces can
be hard to use correctly. For instance, PMDK transactions
require programmer annotations (TX_ADD) to specify mem-
ory locations that may be modified within a transaction.
Incorrect usage of such annotations is a common source of
crash-consistency bugs in applications built with PMDK [31].

Moreover, the generality of transactions comes with per-
formance overheads, mainly from flushes to PM. As we will
show, on average 64% of the overall execution time in PM-
STM based applications is spent in flushing activity. These
high overheads arise from excessive ordering constraints
in these transactions, with each transaction having 5-11 or-
dering points (i.e., sfence on x86-64). Our experiments on
Optane DCPMM show that flushes (i.e., clwb on x86-64) slow
execution more when they are more frequently ordered. For
instance, 8 clwbs can be performed 75% faster when they
are ordered jointly by a single sfence than when each clwb
is individually ordered by an sfence.

To make PM application development more widely accessi-
ble, we propose a middle ground: Minimally Ordered Durable
Datastructures (MOD) [16], a library of many persistent data-
structures with simple abstractions and good performance
(and a methodology to make more). MOD performs better
than transactions in most cases and also allows the compo-
sition of updates to multiple persistent datastructures. To
allow the programmer to easily build new PM applications,
we encapsulate away the details of persistence such as crash-
consistency, ordering and durability mechanisms in the im-
plementation of these datastructures. Instead, MOD enables
programmers to focus on core logic of their applications.

Similar efforts such as the Standard Template Library
(STL) [11] in C++ have proved extremely popular, allow-
ing programmers to develop high-performance applications
using simple datastructure abstractions whose efficient and
complicated implementations are hidden from the program-
mer. MOD offers datastructure abstractions similar to those
in the STL, namely map, set, stack, queue and vector. For each
datastructure, MOD offers convenient failure-atomic update

and lookup operations with familiar STL-like interfaces such

as push_back for vectors and insert for maps.

New abstractions get wider adoption only if they per-
form well. For high performance, MOD datastructures use
shadow paging [15, 32] to minimize internal ordering in up-
date operations—one sfence per failure-atomic operation
in the common case. Specifically, we rely on out-of-place
writes to create a new and updated copy (shadow) of each
datastructure without overwriting the original data. As par-
tial updates are no longer a correctness concern, these out-
of-place writes do not need to be logged and can be flushed
with overlapping flushes to minimize flushing overheads.

To reduce the memory overhead introduced by shadow
paging, our datastructures use structural sharing optimiza-
tions found in purely functional datastructures [13, 36, 38, 41,
43]. With these optimizations, the updated shadow is built
out of the unmodified data of the original datastructure plus
modest new and updated state. Consequently, the shadow
incurs additional space overheads of less than 0.01% over
the original datastructure. On Intel Optane DCPMM, our
MOD datastructures improve the performance of map, set,
stack, queue microbenchmarks by 43%, hurts vector by 122%,
and speeds up application benchmarks by 36% as compared
to Intel PMDK v1.5. We also present a methodology to re-
purpose other existing purely functional datastructures into
new persistent datastructures.

Finally, MOD offers the ability to compose failure-atomic
updates to multiple durable datastructures. Only for such
use cases, we expose the underlying out-of-place update op-
erations to the programmer. Thus, programmers can update
multiple datastructures to generate new versions of these
datastructures. We provide a convenient Commit interface
to failure-atomically replace all original datastructures with
their respective updated versions.

We make the following contributions in this paper:

e We present the design, interfaces and implementation
of the MOD library of high-performance durable data-
structures with encapsulated persistence.

e We provide a recipe to create more MOD datastructures
from existing functional datastructures.

o We develop an analytical model for estimating the latency
of concurrent cacheline flushes on Optane.

e We release a C++ library of MOD datastructures, docu-
mented in the Artifact Appendix.

2 Background

We first provide basic knowledge of PM programming and
functional programming as required for this paper.

2.1 Persistent Memory System

We consider a system in which the physical address space
is partitioned into volatile DRAM and durable PM. While
the contents of PM are preserved in case of a system failure,

struct Node { void Prepend (
Data data; List* L, Data D) {

Node* next: Node *new_node = new Node();
} new_node->data = D;
new_node->next = L->head;
struct List {
Node* head;) return;
}

(a) (b)

List* PurePrepend (

List* L, Data D) {
Node *new_node = new Node();
new_node->data = D;
new_node->next = L->head;
List* shadowL = new List();
shadowL->head = new_node;
return shadowlL;

new_node

() (d)

Figure 1. For linked list defined in (a), implementation of prepend as (b) impure function with original list L modified and (c)
pure function where new updated shadowlL is created. (d) shadowL reuses nodes of list L for efficiency.

DRAM and other structures such as CPU registers and caches
are wiped clean. This system model is similar to most prior
work [5, 30, 33, 46] and representative of Optane DCPMM.
Recoverable PM software rely on hardware guarantees to
know when PM writes are persisted, i.e., when a write is guar-
anteed to be durable in PM. Writes are first stored in volatile
caches to exploit temporal locality of accesses and written
back to PM at a later time unknown to software, depending
on the cache replacement policy. Hence, PM systems support
two instructions for durability and/or ordering: a flush in-
struction to explicitly writeback a cacheline from the volatile
caches to PM, and a fence instruction to order subsequent
instructions after preceeding flushes become durable.

2.2 Persistent Memory Programming

Here, we discuss applications that rely on the persistence of
PM. Such applications are recoverable if they store enough
state in PM to successfully recover to a recent state and
without losing all progress after a system crash. There are
several challenges involved in programming recoverable
applications. Sufficient application data must be persisted in
PM to allow successful recovery to a consistent and recent
state. System crashes at inopportune moments could result
in partially updated and thus inconsistent datastructures that
cannot be used for recovery. As a result, programmers have
to carefully reason about the ordering and durability of PM
updates. Unfortunately, PM updates in program order can
be reordered by hardware including write-back caches and
memory controller (MC) scheduling policies.

To hide these programming challenges, researchers have
developed failure-atomic sections (FASEs) [5]. From a pro-
grammer's point of view, any PM writes contained in a FASE
are guaranteed to be atomic with respect to system failure.
For example, prepending to a linked list (Figure 1b) in a FASE
guarantees that either the linked list is successfully updated
with its head pointing to the durable new node or that the
original linked list can be reconstructed after a crash.

PM libraries [7, 19, 46] typically implement FASEs with
software transactions guaranteeing failure-atomicity and
durability. All updates made within a transaction are durable
when the transaction commits. If a transaction gets inter-
rupted due to a crash, write-ahead logging techniques are

typically used to allow recovery code to clean up partial up-
dates and return persistent data to a consistent state. Hence,
recoverable applications can be written by allocating data-
structures in PM and only updating them within PM transac-
tions. We discuss the performance bottlenecks of PM trans-
actions in Section 3.

2.3 Functional Programming Concepts

In this work, we leverage two basic concepts from functional
programming languages: pure functions and purely func-
tional datastructures. These ideas are briefly described below
and illustrated in Figure 1.

Pure Functions. A pure function is one whose outputs are
determined solely based on the input arguments and are
returned explicitly. Pure functions have no externally visible
effects (i.e., side effects) such as updates to any non-local
variables or I/O activity. Hence, only data that is newly al-
located within the pure function can be updated. Figure 1
shows how a pure and an impure function perform a prepend
operation to a list. The impure function overwrites the head
pointer in the original list L, which is a non-local variable
and thus results in a side effect. In contrast, the pure func-
tion allocates a new list shadowL to mimic the effect of the
prepend operation on the original list and explicitly returns
the new list. Note that the pure function does not copy the
original list to create the new list. Instead, it reuses the nodes
of the original list without modifying them.

Functional Datastructures. In functional languages, purely
functional or persistent datastructures are those that preserve
previous versions of themselves when modified [13]. We
refer to them only as functional datastructures to avoid con-
fusion with persistent (i.e., durable) datastructures for PM.

Once created, purely functional datastructures can not
be modified. To update such datastructures, a logically new
version is created without modifying the original. Thus these
datastructures are inherently multi-versioned.

To reduce space overheads and improve performance,
functional datastructures (even arrays and vectors) are often
implemented as trees [36, 38]. Tree-based implementations
allow different versions of a datastructure to appear logically
different while sharing most of the internal nodes of the
tree. For example, Figure 1 shows a simple example where

the original list L and the updated list shadowL share nodes
labeled 1, 2 and 3. This class of optimizations is referred to
as structural sharing.

3 Mitigating Performance Bottlenecks

Good performance typically aids the adoption of new ab-
stractions. Thus in this section, we seek to identify the main
performance bottlenecks in PM-STM workloads and under-
stand how to mitigate these overheads.

Overheads in PM-STM Workloads. At a high level, PM-
STM implementations suffer from two main overheads: flush-
ing (required for durability of data) and logging (required
for failure-atomicity). We measured these overheads on Op-
tane DCPMMs by running recoverable PM workloads (Ta-
ble 2, Section 6) with Intel PMDK v1.5, a state-of-the-art
PM-STM implementation that uses hybrid undo-redo log-
ging. As shown in Figure 2, these applications spend on
average about 64% of their execution time performing flush-
ing and 9% performing logging operations. These PM-STM
implementations flush both log entries and data updates to
PM, and we consider the time spent in flushing log entries as
part of flushing overheads. Clearly, flushing overheads are
the biggest performance bottlenecks in these applications.

3 PMDK-other EZ3 PMDK-Flush T PMDK-Log

map set quene ggack gector vec-sWap bis \mm‘\m\“m“rﬂc\w\

7 v

Figure 2. Fraction of execution time spent logging and flush-
ing data in PM workloads using PMDK v1.5.

As we show in the rest of this section, the high flushing
overheads in PM-STM are caused by excessive ordering con-
straints (sfence) limit the overlapping of long-latency flush
instructions. Undo-logging techniques typically require 5-50
fences [33] per transaction. These fences mainly order log
updates before the corresponding data updates. In some im-
plementations, the number of fences per transaction scales
with the number of modified cachelines. In our workloads
with hybrid undo-redo logging, we observed 4-23 flushes and
5-11 fences per transaction (Figure 10 in Section 6). Conse-
quently, the median number of flushes overlapped per fence
is 1-2, resulting in high flush overheads.

Flushes on Test Machine. In this paper, we focus on the
clwb instruction that writes back a dirty cacheline but may
not evict it from the caches. This instruction commits in-
stantly but launches an asynchronous flush that is unordered
with other flushes to different addresses, as shown in Fig-
ure 3. Ordering points (sfence) stall the CPU until all inflight

Execution
Cacheline Flush Latency
—

(Mewsa | [|
Concurrent

@owee | [N] |
Qowse | | [N]

(4) sFence SFENCEissues | CPU
, andstallsCPU ; Time

Program

i

CLWBs issue SFENCE commits

and commit when inflight flushes
instantly "complete”

Parallel Serial -

Figure 3. Execution of concurrent flushes on Optane.

flushes are completed. Thus, ordering points degrade per-
formance by exposing the actual latency of asynchronous
flushes. On Optane (system configuration in Table 1), we
observed the latency of one clwb followed by one sfence
to be 353 ns, for a cacheline in the L1D cache. In this paper,
flushes refer to asynchronous flush instructions like clwb.
Effects of Ordering Points. To mitigate the high flush over-
heads, we must reduce the frequency of ordering points and
enable the overlap of multiple flushes. We evaluated the ef-
ficacy of this approach on Optane DCPMMs via a simple
microbenchmark. Our microbenchmark first allocates an
array backed by PM. It issues writes to 320 random cache-
lines (= 20KB < 32KB L1D cache) within the array to fault
in physical pages and fetch these cachelines into the private
L1D cache. Next, it measures the time taken to issue clwb
instructions to each of these cachelines. Fence instructions
are performed at regular intervals, e.g., one sfence after
every N clwb instructions. The total time (for 320 clwb +
variable sfence instructions) is divided by 320 to get the
average latency of a single cacheline flush. Figure 4 reports
the average flush latency for varying flush concurrency.
The blue line in Figure 4 shows that the average flush
latency can be effectively reduced by overlapping flushes,
up to a limit. Compared to a single un-overlapped flush
(clwb +sfence), performing 16 flushes concurrently reduces
average flush latency by 75%. However, overlapping more
than 16 flushes results in almost no further improvements
in flush latency.
Analytical Model of Flush Latencies. As a side note, while
Figure 4's blue line shows the empirical benefit of overlap-
ping flushes, it also seems to closely follow Amdahl's law [1].
In particular, the red line shows an Amdahl's law fit using
the Karp-Flatt metric [25] that has concurrent flushes acting
82% parallel and 18% serial. With the 18% serial component,
it is easy to understand the diminishing returns of many con-
current flushes. As the hardware is a black box, we do not

—&— observed —»— amdahl, f:(].82.

300 A

200 A

Flush Latency (in ns)

100 4 °

\ 4 —— @

L L L L L L L
0 5 10 15 20 25 30
Flush Concurrency: Flushes Overlapped per Fence

Figure 4. Average clwb latency observed on Optane and
estimated analytically (amdahl).

yet know what features cause the appearance of serialization
on Optane.

4 Minimally Ordered Durable
Datastructures

We address the high flushing costs with Minimally Ordered

Durable (MOD) datastructures that allow failure-atomic and

durable updates to be performed with one ordering point

in the common case. These datastructures significantly re-

duce flushing overheads that are the main bottleneck in

recoverable PM applications. We have five goals for these

datastructures:

1. Failure-atomic updates for recoverable applications.

2. Minimal ordering constraints to tolerate flush latency.

3. Simple programming interface that hides implementation
details for handling simple use cases.

4. Allow composition of failure-atomic updates to multiple
datastructures.

5. Support for common datastructures for application devel-
opers, i.e., set, map, vector, queue and stack.

6. No hardware modifications needed to enable high perfor-
mance applications on currently available systems.

We first introduce the Functional Shadowing technique
that is the key idea enabling MOD datastructures. Next, we
show a recipe to create MOD datastructures from existing
functional datastructures. Then, we describe MOD’s pro-
gramming interfaces.

4.1 Functional Shadowing

Functional Shadowing leverages shadow paging techniques
to minimize ordering constraints in updates to PM data-
structures and uses optimizations from functional program-
ming to reduce the overheads of shadow paging. As per
shadow paging techniques, we implement non-destructive

and out-of-place update operations for all MOD datastructures.

Accordingly, updates of MOD datastructures logically return
anew version of the datastructure without any modifications
to the original data. As shown in Figure 5, a push_back oper-
ation in a vector of size 7 would result in a new version of size

VectorPtr —————— > Vector [7]

push back (X)

VectorPtr ————— > Vector [7] shadowVector [8]

(b)

Shadow Paging
M Functional Optimizations
(Structural Sharing)

——— L shadowVector [8]

VectorPtr J

Figure 5. Functional Shadowing in action on (a) MOD vector.
(b) push_back operation creates a shadow that reuses data
from the original. (c) Application proceeds with shadow and
old data is reclaimed.

8 while the original vector of size 7 remains untouched. We
refer to the updated version of the datastructure as a shadow
in accordance with conventional shadow paging techniques.

There are no ordering constraints in creating the updated
shadow as it is not considered a necessary part of application
state yet. We do not log these writes as they do not overwrite
any useful data. In case of a crash at this point, recovery code
can reclaim memory corresponding to any partially updated
shadow in PM. Due to the absence of ordering constraints,
we can overlap flushes to all dirty cachelines comprising the
updated shadow to minimize flushing overheads. A single
ordering point is sufficient to ensure the completion of all
the outstanding flushes and guarantee the durability of the
shadow. Subsequently, the application must atomically re-
place the original datastructure with the updated shadow. In
case of a crash, our approach guarantees that the application
points to a consistent version of the durable datastructure,
albeit a stale version in some cases.

We reduce shadow paging overheads using optimizations
commonly found in functional datastructures. Conventional
shadow paging techniques incur high overheads as the orig-
inal data must be copied completely to create the shadow.
Instead, we use structural sharing optimizations to maximize
data reuse between the original datastructure and its shadow
copy. We illustrate this in Figure 5, where shadowVector
reuses 6 of 8 internal nodes from the original Vector and

only adds 2 internal and 3 top-level nodes. In the next sub-
section, we discuss a method to convert existing implemen-
tations of functional datastructures to MOD datastructures.

4.2 Recipe for MOD Datastructures

We provide a simple recipe for creating MOD datastructures

from existing functional datastructures:

1. First, we use an off-the-shelf persistent memory allocator
nvm_malloc [2] to manage PM allocations.

2. Next, we allocate the internal state of the datastructure
on the persistent heap.

3. Finally, we extend all update operations to flush all mod-
ified PM cachelines with unordered clwb instructions.
Ordering is performed in the Commit step described later.
While functional datastructures do not support durability

by default, they offer a suitable starting point from which to

generate MOD datastructures. They support non-destructive
update operations which are typically implemented through
pure functions. Thus, every update returns a new updated
version (i.e., shadow) of the functional datastructure without
modifying the original. They export simple interfaces such
as map, vector, etc. that are implemented internally as highly
optimized trees such as Compressed Hash-Array Mapped

Prefix-trees [42] (for map, set) or Relaxed Radix Balanced

Trees [43] (for vector). These implementations are designed

to amortize the overheads of data copying as needed to create

new versions on updates.

Optimized functional implementations also have low space
overheads via structural sharing to maximize data reuse be-
tween the original data and the shadow. Tree-based imple-
mentations are particularly amenable to structural sharing.
On an update, the new version creates new nodes at the
upper levels of the tree, but these nodes can point to (and
thus reuse) large sub-trees of unmodified nodes from the
original datastructure. The number of new nodes created
grows extremely slowly with the size of the datastructures,
resulting in low overheads for large datastructures. As we
show in our evaluation section, the additional memory re-
quired on average for an updated shadow is less than 0.01%
of the memory consumption of the original datastructure of
size 1 million elements.

Moreover, the trees are broad but not deep to avoid the
problem of ‘bubbling-up of writes’ [8] that plagues conven-
tional shadow paging techniques. This problem arises as the
update of an internal node in the tree requires an update
of its parent and so on all the way to the root. We find that
existing implementations of such functional datastructures
are commonly available in several languages, including C++
and Java.

We conjecture that the ability to create MOD datastructures
from existing functional datastructures is important for three
reasons. First, we benefit from significant research efforts

towards lowering space overheads and improving perfor-
mance of these datastructures [13, 36, 38, 41, 43]. Secondly,
programmers can easily create MOD implementations of ad-
ditional datastructures beyond those in this paper by using
our recipe to port other functional datastructures. Finally,
we forecast that this approach can help extend PM software
beyond C and C++ to Python, JavaScript and Rust, which
have implementations of functional datastructures.

4.3 Programming Interface

To abstract away the details of Functional Shadowing from

application programmers, we provide two alternative inter-

faces for MOD datastructures:

e A Basic interface that abstracts away the internal version-
ing and is sufficient for simple use cases.

e A Composition interface that exposes multiple versions
of datastructures for complex use cases, but still hides
other implementation details.

Composition Interface
/I BEGIN-FASE

Basic Interface
// BEGIN-FASE

Update(updateParams) dsPtrishadow =
/ END-FASE ->PureUpdate(...)
(a) dsPtr2shadow =
->PureUpdate(...)
® d)mmit (, dsPtrishadow,
, dsPtr2shadow,...)
/I END-FASE
" s are updated.
(b)

Figure 6. Failure-atomic Code Sections (FASEs) with MOD
datastructures using (a) Basic interface to update one data-
structure and (b) Composition interface to atomically update
multiple datastructures with (1) Update and (2) Commit.

4.3.1 Basic Interface. The Basic interface to MOD data-
structures (Figure 6a) allows programmers to perform in-
dividual failure-atomic update operations to a single data-
structure. With this interface, MOD datastructures appear
as mutable datastructures with logically in-place updates.
Programmers use pointers to datastructures (e.g., ds1 in Fig-
ure 6a), as is common in PM programming. Each update
operation is implemented as a self-contained FASE with one
ordering point, as described later in the next section. If the up-
date completes successfully, the datastructure pointer points
to an updated and durable datastructure. In case of crash dur-
ing the update, the datastructure pointer points to the origi-
nal uncorrupted datastructure. We expose common update
operations for datastructures such as push_back, update
for vectors, insert for sets/maps, push, pop for stacks and
enqueue, dequeue for queues, as in C++ STL.

The Basic interface targets the common case when a FASE
contains only one update operation on one datastructure.
This common case applies to all our workloads (see Sec-
tion 6.1) except vacation and vector-swaps. For instance,

// BEGIN-FASE (Vector-Append)

// BEGIN-FASE (Vector-Swap)

/I BEGIN-FASE (Multi-Vector-Swap)

@ VectorPtrShadow = vall = (*)lindex1] vall = (*)index1]
->push_back(X) val2 = (*)lindex2] val2 = (*)[index2]
® CommitSingle (s ® VectorPtrShadow = ® VectorPtriShadow =
VectorPtrShadow) ->update(index1, val2) ->update(index1, val2)
// END-FASE VectorPtrShadowShadow = VectorPtr2Shadow =
" now points to updated vector VectorPtrShadow->update(index2, val1) ->update(index2, val1)
CommitSingle (, VectorPtrShadow, ® CommitUnrelated (, VectorPtr1Shadow,
VectorPtrShadowShadow) , VectorPtr2Shadow)
// END-FASE // END-FASE
" points to doubly-updated vector 4 point to updated vectors
(@) (b) (c)

Figure 7. Using the Composition interface (1. Update, 2. Commit) for failure-atomically (a) appending an element to a vector,
(a) swapping two elements of a vector and (c) swapping two elements of two different vectors.

memcached uses one map as a cache, with FASEs comprising
atmost one insert.

4.3.2 Composition Interface. The Composition interface
to MOD datastructures (Figure 6b) is a more general program-
ming interface. It allows programmers to failure-atomically
perform updates on multiple datastructures or perform mul-
tiple updates to the same datastructure or any combination
thereof. For instance, moving an element from one queue to
another requires a pop operation on the first queue and a
push operation on the second queue, both performed failure-
atomically in one FASE. Complex operations such as swap-
ping two elements in a vector also require two update opera-
tions on the same vector to be performed failure-atomically.
In such cases, the Composition interface allows program-
mers to perform individual non-destructive update opera-
tions multiple datastructures to get new versions, and then
atomically replace all the updated datastructures with their
updated versions in a single Commit operation.

With this interface, programmers can build complex FASEs,
each with multiple update operations affecting multiple data-
structures. Each FASE must consist of two parts: Update and
Commit. In Update, programmers perform updates on one or
more MOD datastructures, whereby new versions of these
datastructures are created that are guaranteed to be durable
only after Commit. Thus, programmers are temporarily ex-
posed to multiple versions of datastructures. Programmers
use the Commit function to atomically replace all the original
datastructures with their latest updated and durable versions.
Our Commit implementation (described in Section 5.2) has
a single ordering point in the common case. We use this
interface in two workloads: vector-swaps and vacation.

Figure 7 demonstrates the following use cases:

Single Update of Single Datastructure: While this case is
best handled by the Basic interface, we repeat it here to show
how this can be achieved with the Composition interface.
In Figure 7a, appending an element to VectorPtr results
in (VectorPtrShadow). The Commit step atomically modi-
fies VectorPtr to point to VectorPtrShadow. As a result of
this FASE, a new element is failure-atomically appended to
VectorPtr.

Multiple Update of Single Datastructure: Figure 7b shows
a FASE to swap two elements of a vector. The Update step in-
volves two vector lookups and two vector updates. The first

update results in a new version VectorPtrShadow. Then,

the new version is updated to get VectorPtrShadowShadow)

that possesses the effects of both updates. Finally, Commit

makes VectorPtr point to the latest version.

Single Updates of Multiple Datastructures: Figure 7c

shows how we swap elements from two different vectors

in one FASE. For each vector, we perform update operation

to get a new version. In Commit, both vector pointers are

atomically updated to point to the respective new versions.

Multiple Updates of Multiple Datastructures: The gen-
eral case is realized by combining previous use cases.

5 Implementation

We prioritize minimal ordering constraints in our implemen-
tation of the two interfaces to MOD datastructures.

5.1 Basic Interface

As shown in Figure 8a, the Basic interface is a wrapper
around the Composition interface to create the illusion of a
mutable datastructure. The programmer accesses the MOD
datastructure indirectly via a pointer. On a failure-atomic
update, we internally create an updated shadow of the data-
structure by performing the non-destructive update. Then,
using Commit, we ensure the durability of the shadow and
atomically update the datastructure pointer to point to the
updated and durable shadow. Thus, we hide FS details from
the programmer.

5.2 Composition Interface

The Composition interface can be used to build complex
multi-update FASEs, each with one ordering point in the
common case.

To support the Update step, MOD datastructure supports
non-destructive update operations. Within these update op-
erations, all modified cachelines are flushed using (weakly
ordered) clwb instructions and there are no ordering points
or fences. However, this step results in multiple versions of
the updated MOD datastructures.

(a) Basic Interface (b) CommitSingle

(dsPtr, updateParams) { (ds,

/I BEGIN-FASE dsShadow, ..., dsShadowN)

dsPtr = FENCE
->PureUpdate(updateParams) dsOld = ds

Commit* (, dsPtrshadow) ds = dsShadowN

// END-FASE FLUSH ds

Vi points to updated datastructure ~ Reclaim (dsOld, dsShadow, ...)

(c) CommitSiblings (d) CommitUnrelated
(parent, (ds1, dsShadow,
ds1, ds1Shadow, ds2, ds2Shadow, ...)
ds2, ds2Shadow, ...)

parentShadow = new Parent ds10ld = ds1
parentShadow->ds1 = ds1shadow ds20Id = ds2
parentShadow->ds2 = ds2shadow

FENCE

FLUSH parentShadow Begin-TX {

FENCE ds1 = ds1Shadow
parentOld = parent ds2 = ds2Shadow
parent = parentShadow } End-TX

FLUSH parent Reclaim (ds10ld, ds20ld, ..)

Reclaim (parentOld)

Figure 8. (a) Implementation of Basic interface as a wrapper around the Composition interface. Commit implementation
shown for multi-update FASEs operating on (b) single datastructure, (c) multiple datastructures pointed to by common parent

object, and (d) (uncommon) multiple unrelated datastructures.

The Commit step ensures the durability of the updated
versions and failure-atomically updates all relevant data-
structure pointers to point to the latest version of each data-
structure. We provide optimized implementations of Commit
for two common cases as well as the general implementation,
as shown in Figure 8. We discuss the memory reclamation
needed to free up unused memory in Section 5.4.

The first common case (CommitSingle in Figure 8b) oc-
curs when one datastructure is updated one or multiple times
in a FASE (e.g., Figure 7a,b). To Commit, we update the data-
structure pointer to point to the latest version after all up-
dates with a single 8B (i.e., size of a pointer) atomic write.
We then reclaim the memory of the old datastructure and
intermediate shadows, i.e., all but the latest shadow version.

The second common case (CommitSiblings in Figure 8c)
occurs when the application updates two or more MOD
datastructures that are pointed to by a common persistent
object (parent) in one FASE. In this case, we create a new
instance of the parent (parentShadow) that points to the
updated shadows of the MOD datastructures. Then, we use
a single pointer write to replace the old parent itself with its
updated version. We used this approach in porting vacation,
wherein a manager object has three separate recoverable
maps as its member variables. A commonly occurring parent
object in PM applications is the root pointer, one for each
persistent heap, that points to all recoverable datastructures
in the heap. Such root pointers allow PM applications to
locate recoverable datastructures in persistent heaps across
process lifetimes.

In these two common cases, our approach requires only
one ordering point per FASE. The single ordering point is
required in the commit operation to guarantee the durability
of the shadow before we replace the original data. The entire
FASE is a single epoch per the epoch persistency model [37].
Both of the common cases require an atomic write to a single
pointer, which can be performed via an 8-byte atomic write.
In contrast, PM-STM implementations require 5-11 ordering
points per FASE (Section 6.4).

For the general and uncommon case (CommitUnrelatedin
Figure 8d) where two un-related datastructures get updated
in the same FASE, we need to atomically update two or more
pointers. For this purpose, we use a very short transaction
(STM) to atomically update the multiple pointers, albeit with
more ordering constraints. Even in this approach, the major-
ity of the flushes are performed concurrently and efficiently
as part of the non-destructive updates. Only the flushes to
update the persistent pointers in the Commit transaction
cannot be overlapped due to PM-STM ordering constraints.

Thus, the Composition interface enables efficient FASEs
even when updating multiple datastructures.

5.3 Correctness

We provide a simple and intuitive argument for correct
failure-atomicity of MOD datastructures. The main correct-
ness condition is that there must not be any pointer from
persistent data to any unflushed or partially flushed data.
MOD datastructures support non-destructive updates that
involve writes only to newly allocated data and so there
is no possibility of any partial writes corrupting the data-
structure. All writes performed to the new version of the
datastructure are flushed to PM for durability. During Com-
mit, one fence orders the pointer writes after all flushes are
completed and updates are made durable. Finally, the pointer
writes in Commit are performed atomically. If there is a crash
before the atomic pointer writes in Commit, the persistent
pointers point to the consistent and durable original version
of the datastructure. If the atomic pointer writes complete
successfully, the persistent pointers points to the durable and
consistent new version of the datastructures. Thus, MOD
supports correct failure-atomic updates.

5.4 Memory Reclamation

Persistent memory leaks cannot be fixed by restarting a
program and thus are more harmful than leaks of volatile
memory. Such PM leaks can occur on crashes during the exe-
cution of a FASE. Specifically, allocations from an incomplete
FASE leak PM data that must be reclaimed by recovery code.

Additionally, our MOD datastructures must also reclaim the
old version of the datastructure on completion of a successful
FASE.

We use reference counting for memory reclamation. Our
MOD datastructures are implemented as trees. In these trees,
each internal node maintains a count of parent nodes that
point to it. We increment reference counts of nodes that
are reused on an update operation and decrement counts
for nodes whose parents are deleted on a delete operation.
Finally, we deallocate a node when its reference count hits 0.

A key optimization is that reference counts are not stored
durably in PM. On a crash, all reference counts in the latest
version can be scanned and set to 1 as the recovered appli-
cation sees only one consistent and durable version of each
datastructure.

We rely on garbage collection during recovery to clean up
allocated memory from an incomplete FASE (on a crash). Our
performance results include the time spent in garbage collec-
tion. As our datastructures are implemented as trees, we can
perform a reachability analysis starting from the root node
of each MOD datastructure to mark all memory currently
referenced by the application. Any unmarked data remaining
in the persistent heap is a PM leak and can be reclaimed at
this point. A common solution for catching memory leaks
is to log memory allocator activity. However, this approach
reintroduces ordering constraints and degrades the perfor-
mance of all FASEs to prevent memory leaks in case of a rare
crash.

5.5 Automated Testing

While it is tricky to test the correctness of recoverable data-
structures, the relaxed ordering constraints of shadow up-
dates allow us to build a simple and automated testing frame-
work for our MOD datastructures. We generate a trace of all
PM allocations, writes, flushes, commits, and fences during
program execution. Subsequently, our testing script scans
the trace to ensure that all PM writes (except those in com-
mit) are only to newly allocated PM and that all PM writes
are followed by a corresponding flush before the next fence.
By verifying these two invariants, we can test the correctness
of recoverable applications as per our correctness argument
in Section 5.3.

6 Evaluation

In this work, we seek to provide a library of recoverable

datastructures with good abstractions and good performance.

We answer four questions in our evaluation:

1. Programmability: What was our experience program-
ming with MOD datastructures?

2. Performance: Do MOD datastructures improve the per-
formance of recoverable workloads?

3. Ordering Constraints: Do workloads with MOD data-
structures have fewer fences than with PM-STM?

4. Additional Overheads: What are the additional over-
heads introduced by MOD datastructures?

6.1 Methodology

Test System Configuration. We ran our experiments on
a machine with actual Persistent Memory—Intel Optane
DCPMM [22]—and upcoming second-generation Xeon Scal-
able processors (codenamed Cascade Lake). We configured
our test machine to be in 100% App Direct mode [17] and
use the default Directory protocol. In this mode, software
has direct byte-addressable access to PM. Table 1 reports rel-
evant details of our test machine. Finally, we measured read
latencies using Intel Memory Latency Checker v3.6 [45].

CPU
Type Intel Cascade Lake
Cores 96 cores across 2 sockets
Frequency 3.7 GHz (with Turbo Boost)
L1: 32KB Icache, 32KB Dcache
Caches

L2: IMB, L2: 33 MB (shared)

Memory System

2.9 TB (256 GB/DIMM)

PM Read Latency 302 ns (Random 8-byte read)
DRAM Capacity 376 GB

DRAM Read Latency 80 ns (Random 8-byte read)

Table 1. Test Machine Configuration.

PM Capacity

Hardware Primitives. Our workloads use clwb instruc-
tions (available on Cascade Lake) for flushing cachelines and
the sfence instructions to order flushes.

OS Interface for PM. Our test machine runs Linux v4.15.6.
The DCPMMs are exposed to user-space applications via the
DAX-filesystem interface [47]. Accordingly, we created an
ext4-dax filesystem on each PM DIMM. Our PM allocators
create files in these filesystems to back persistent heaps. We
map these PM-resident files into application memory with
flags MAP_SHARED_VALIDATE and MAP_SYNC [9] to allow direct
user-space access to PM.

PM-STM Implementation. We use the PM-STM imple-
mentation (libpmemobj) from Intel’s PMDK library [19] in
our evaluations. We choose PMDK as it is publicly available,
regularly updated, Intel-supported and optimized for Intel’s
PM hardware. Moreover, PMDK (v1.4 or earlier) has been
used for comparison by most earlier PM proposals [10, 29,
30, 39, 40]. We evaluate both PMDK v1.5 (released October
2018), which uses hybrid undo-redo logging techniques as
well as PMDK v1.4, which primarily relies on undo-logging.
Workloads. Our workloads include several microbench-
marks and two recoverable applications, consistent with
recent PM works [10, 26, 29, 30, 39, 40]. As described in
Table 2, our microbenchmarks involve operations on com-
monly used datastructures: map, set, queue, list and vector.

Benchmark Description Configuration

map Insert/Lookup random keys in map 8B key, 32B value

set Insert/Lookup random keys in set 8B key, 32B value
stack Push/Pop elements from top of stack 8B elements

queue Enqueue/Dequeue elements in queue 8B elements

vector Update/Read random indices in vector 8B element

vec-swap Swap two random elements in vector 8B element

bfs Breadth-First Search using recoverable 0.82M nodes, 9.84M

queue on Flickr graph [12] edges, 8B elements
Travel reservation system with four re- query range:80%, 55%
coverable maps user queries
memcached In-memory key value store using one re- 95% sets, 5% gets, 16B
coverable map key, 512B value

Table 2. Benchmarks used in this study. Workloads performs
1 million iterations of the operations described.

vacation

The vector-swaps workload emulates the main computa-
tion in the canneal benchmark from the PARSEC suite [3].
The baseline map datastructure can be implemented by ei-
ther hashmap or ctree from the WHISPER suite [33]. Here,
we compare against hashmap which outperformed ctree
on Optane DCPMM. Moreover, we also measured two re-
coverable applications from the WHISPER suite: memcached
and vacation. We modified these applications to use the
PMDK and MOD map implementations. Other WHISPER
benchmarks are not applicable for our evaluation as they are
either filesystem-based or do not use PM-STM. Instead, we
created the bf's workload that uses a recoverable queue for
breadth-first search on the large Flickr graph [12]. We ran
all workloads to completion.

6.2 Programmability

While the rest of this section presents quantitative perfor-
mance results, in this paragraph we qualitatively describe the
programmability of MOD datastructures. We demonstrated
the use of MOD datastructures in two existing applications:
vacation and memcached. With MOD datastructures as with
C++ STL, applications get access to datastructures via nar-
row, expressive interfaces but without access to the internal
implementation. However, memcached, like many PM ap-
plications, uses a custom datastructure (hashmap) whose
implementation is tightly coupled to the application logic.
Thus our main challenge was to decouple the code (i.e., appli-
cation logic) from the internal datastructure implementation.
We do not expect this to be an issue when building new
applications. For instance, vacation was easy to port as
its datastructure implementations were neatly encapsulated.
Also, vacation’s logic required composing failure-atomic
updates to multiple distinct maps that were members of the
same object, for which we used our Composition interface
with CommitSiblings.

6.3 Performance

Figure 9 shows the execution time (so smaller is better) of PM
workloads with PMDK transactions and MOD datastructures.
We make the following observations.

First, PMDK v1.5 with hybrid undo-redo logging [18] out-
performs undo-logging based PMDK v1.4 by 23%.

Second, MOD datastructures offer a speedup of 43% on
average for pointer-based datastructures (map, set, queue,
stack) over PMDK v1.5. The performance improvements are
attributed to lower flushing overheads (50% vs 66% of PMDK
v1.5 execution time) and no logging overheads (0% vs 13%).

Third, for only vector and vec-swap microbenchmarks,
the abstraction benefits of MOD datastructures come with a
performance cost, not benefit. This occurs due to the over-
head of moving from a dense 1-D array to a tree-based im-
plementation that functional datastructures use to facilitate
incremental updates. Future work can attempt to mitigate
this slowdown.

For our applications, MOD datastructures show an aver-
age speedup of 36% over PMDK v1.5. Here, the performance
improvements arise from lower flushing overheads (25% vs
50% of PMDK v1.5 execution time) and no logging over-
heads. vacation shows a lower speedup of 13% as we have
to copy and flush the parent object in our approach (with
CommitSiblings), while PMDK updates in-place.

6.4 Flushing Concurrency

Figure 10 illustrates ordering (x-axis) and flushing frequency
(y-axis) for datastructure update operations with PMDK v1.5
and MOD. We omit lookup operations as they do not require
flushes or fences.

Lower ordering constraints enable lower flushing over-
heads, if the number of flushed cachelines is comparable.
PMDK workloads typically exhibit a high number of fences
per operation. In our evaluated workloads, MOD datastructures
always have only one fence per operation. While MOD data-
structures copy and flush additional data than PMDK, there
are no log entries to be flushed. For map and set implemen-
tations, the amount of flushed data is comparable in both
approaches. Pop operations in the MOD queue occasionally
require a reversal of one of the internal linked lists result-
ing in greater flushing activity than PMDK on average. The
reduction in flushes comes from the absence of log entries
as well as implementation differences. However, writes and
swaps to the MOD vector require significantly more cache-
lines to be flushed as compared to the PMDK vector. This
explains the performance degradation observed previously.

6.5 Additional Overheads

MOD datastructures introduce two new overheads: space
overheads and increased cache pressure. First, extra memory
is allocated on every update for the shadow, resulting in addi-
tional space overheads. Secondly, functional datastructures
(including vectors and arrays) are implemented as pointer-
based datastructures with little spatial locality.

Space Overheads. In Table 3, we report the increase in mem-
ory consumption on doubling the capacity of datastructures,

1.5 1.8 22

2.2

1.4

1.2 1

1]

/1 4 m

Al

PMDK14-other
PMDK14-Flush
PMDK14-Log
PMDXK15-other
PMDK15-Flush
PMDK15-Log
MOD-other
MOD-Flush

REAROBRD

Execution Time Normalized to PMDKv1.5

map

quene stack yector

Jec-swWap bis

"acavo“memck\d‘ed

Figure 9. Execution Time of PM workloads, normalized to PMDK v1.5 implementation of each workload.

innpfinsorr
25 ecswap)
Set-insert) map-ingert
g vector-write
£ 20)
§ set-insert
5] X
&
- 154)é]uou@—push
- sstack-push
£ 104
Z yecswap
= Kueue-pop
54 ueue-push tack
Jucshon s8Rt
Stack-pop e MOD x PMDK
0 0 2 4 6 8 10 12

Fences per Operation

Figure 10. Flush and fence frequency in PM workloads.

i.e., inserting an additional 1 million elements in a data-
structure of size 1 million elements. On average for most
of our workloads (except vector), the memory consumption
of MOD datastructures only grows 21% faster than PMDK
datastrucures. More importantly, every individual update
operation only requires 0.00002-0.00004X extra memory be-
yond the original version, as compared to 2X extra memory
in naive shadow paging. Thus, structural sharing in our data-
structure implementations minimizes the FS space overheads.

map set stack queue vector
MOD 1.87X 2.08X 2.25X 1.67X 131X
PMDK 1.78X 1.75X 1.50X 1.50X 2X
Table 3. Increase in memory consumption when data-
structure grows from 1M to 2M elements.

Cache Pressure. While our MOD datastructures typically
perform better than PMDK datastructures, interestingly they
also exhibit greater cache misses. Unfortunately, it was not
possible to separate cache misses to PM and DRAM in our

experiments on real hardware, but we expect most of the
cache accesses to be for PM cachelines in our workloads.

Due to pointer-chasing accesses, MOD datastructures have
more cache misses in the small L1D cache, as seen in Fig-
ure 11. This is evident in case of map, set and vector work-
loads, which show 2.8-4.6x the cache misses with MOD
datastructures than with PMDK. The PMDK implementa-
tions of map, set and vector involve arrays contiguously laid
out in memory, offering greater spatial locality by avoiding
pointer-chasing patterns.

MOD implementations of stack, queue and bf's show low
cache miss ratios, comparable to the PMDK implementations.
These results to be expected as push and pop operations in
these datastructures only operate on the head or the tail,
resulting in high temporal locality.

6.0% .
3 PMDK v1.5 B MOD
5.0% A
.
(=}
Z 1.0%
2 3.0%
2.0% 1
q
-
1.0% 1 I
0.0% -

map set quene gtack gector oo gwap bis mcat\ou“‘mx\c-ac\\et\

Figure 11. L1D Cache miss ratios for PM workloads.

7 Related Work

Prior research mainly consists of PM-STM optimizations and
datastructure-specific optimizations for PM.

7.1 PM-STM Optimizations.

Among software proposals, Mnemosyne [46], SoftWrap [14],
Romulus [10] and DudeTM [29] rely on redo logging, NV-
Heaps [7] employs undo logging techniques and PMDK [19]
recently switched from undo logging to hybrid undo-redo
log [20]. Each of these approaches requires 4+ ordering
points per FASE. Most undo-logging implementations re-
quire ordering points proportional to the number of contigu-
ous data ranges modified in each transaction and can have as
many as 50 ordering points in a transaction [33]. In contrast,
redo-logging implementations require relatively constant
number of ordering points regardless of transaction size and
are better for large transactions. However, redo logging re-
quires load interposition to redirect loads to updated PM
addresses, resulting in slow reads and complexity.

Romulus and DudeTM propose novel mechanisms based
on redo-logging and shadow paging to reduce ordering con-
straints. Romulus uses a volatile redo-log with shadow data
stored in PM while DudeTM uses a persistent redo-log with
shadow data stored in DRAM. Both approaches double the
memory consumption of the application as two copies of
the data are maintained. This is a greater challenge with
DudeTM as the shadow occupies DRAM capacity, which
is expected to be much smaller than available PM. MOD
datastructures only have two versions during an update op-
eration, with significant data reuse between the two versions.
Moreover, DudeTM and Romulus incur logging overheads
and require store redirection, unlike MOD datastructures.
Finally, better hardware primitives for ordering and dura-
bility have also been proposed. For instance, DPO [27] and
HOPS [33] propose lightweight ordering fences that do not
stall the CPU pipeline. Efficient Persist Barriers [24] move
cacheline flushes out of the critical path of execution by
minimizing epoch conflicts. Speculative Persist Barriers [40]
allow the core to speculatively execute instructions in the
shadow of an ordering point. Forced Write-Back [35] pro-
poses cache modifications to perform efficient flushes with
low software overheads. All these proposals lower the over-
heads of ordering points in PM applications, whereas we
reduce the number of ordering points in these applications.
Moreover, these proposals require core microarchitecture or
cache modifications.

7.2 Recoverable Datastructures.

While our work converts existing functional datastructures
into recoverable ones, the following papers demonstrate the
value of handcrafting recoverable datastructures. Dali [34]
is a recoverable prepend-only hashmap that is updated non-
destructively while preserving the old version. Updates in
both MOD and Dali are logically performed as a single
epoch to minimize ordering constraints. However, our data-
structures are optimized to reuse data between versions,
while the Dali hashmap uses a list of historical records for

each key. The CDDS B-tree [44] is a recoverable datastructure
that also relies on versioning at a node-granularity for crash-
consistency. Extending such fine-grained versioning to other
datastructures beyond B-trees does not seem to be trivial.

Other proposals have targeted recoverable B+-trees used
in storage systems. NV-Tree [48] achieves significant perfor-
mance improvement by storing internal tree nodes in volatile
DRAM and reconstructing them on a crash. wB+-Trees [6]
uses atomic writes and bitmap-based layout to reduce the
number of PM writes and flushes for higher performance.
These optimizations cannot be directly extended to other
datastructures. MOD datastructures are all implemented as
trees, and could allow these optimizations to apply across
datastructures with further research.

8 Conclusion

MOD provides programmers of PM recoverable applications
with a middle ground between the expert work of handcraft-
ing recoverable datastructures and performance overhead of
STM. Future work includes implementing additional MOD
datastructures, incorporating non-temporal writes, and han-
dling concurrency.

Acknowledgments

We thank the Wisconsin Multifacet group for their feedback.
We thank Sanjay Kumar for his support with the Intel AEP
early access program. This work was supported by the Na-
tional Science Foundation (CCF-1617824 and CNS-1815656)
and Hill’s John P. Morgridge Chair. Haria and Swift have
significant financial interests in Google and Microsoft re-
spectively.

References

[1] Gene M. Amdahl. 1967. Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities. In Proceedings of the
April 18-20, 1967, Spring Joint Computer Conference (AFIPS).
Tim Berning. 2017. nvm malloc: Memory Allocation for NVRAM.
https://github.com/hyrise/nvm_malloc.
Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT).
Adrian M. Caulfield, Joel Coburn, Todor Mollov, Arup De, Ameen Akel,
Jiahua He, Arun Jagatheesan, Rajesh K. Gupta, Allan Snavely, and
Steven Swanson. 2010. Understanding the Impact of Emerging Non-
Volatile Memories on High-Performance, I0-Intensive Computing. In
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC).
Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.
Atlas: Leveraging Locks for Non-volatile Memory Consistency. In
Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA).
[6] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in Non-volatile
Main Memory. Proceedings of the VLDB Endowment 8 (February 2015).
[7] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:

[2

—

[3

[t

[4

[}

[5

—

https://github.com/hyrise/nvm_malloc

Making Persistent Objects Fast and Safe with Next-generation, Non-
volatile Memories. In Proceedings of the 16th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[8] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
Through Byte-addressable, Persistent Memory. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP).

[9] Jonathan Corbet. 2017. Two more approaches to persistent-memory
writes. https://Ilwn.net/Articles/731706/.

[10] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romu-
lus: Efficient Algorithms for Persistent Transactional Memory. In Pro-
ceedings of the 30th on Symposium on Parallelism in Algorithms and
Architectures (SPAA).

[11] cppreference. 2018. Containers Library. https://en.cppreference.com/
w/cpp/container.

[12] Tim Davis. [n.d.]. The university of florida sparse matrix collection.
http://www.cise.ufl.edu/research/sparse/matrices.

[13] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.
1989. Making Data Structures Persistent. J. Comput. System Sci. 38
(1989).

[14] E.R. Giles, K. Doshi, and P. Varman. 2015. SoftWrAP: A lightweight
framework for transactional support of storage class memory. In 2015
31st Symposium on Mass Storage Systems and Technologies (MSST).

[15] Jim Gray, Paul McJones, Mike Blasgen, Bruce Lindsay, Raymond Lorie,
Tom Price, Franco Putzolu, and Irving Traiger. 1981. The Recovery
Manager of the System R Database Manager. ACM Computing Surveys
(CUSR) 13, 2 (June 1981).

[16] Swapnil Haria. 2019. Architecture and Software Support for Persis-
tent and Vast Memory. Ph.D. Dissertation. University of Wisconsin-
Madison.

[17] Alper Ilkbahar. 2018. Intel Optane DC Persistent Memory Operating
Modes Explained. https://itpeernetwork.intel.com/intel-optane-dc-
persistent-memory-operating-modes/.

[18] Intel. [n.d.]. New release of PMDK. https://pmem.io/2018/10/22/
release-1-5.html.

[19] Intel. [n.d.]. Persistent Memory Development Kit. http://pmem.io/
pmdk.

[20] Intel. [n.d.]. PMDK issues: introduce hybrid transactions. https://
github.com/pmem/pmdk/pull/2716.

[21] Intel. 2018. Intel Optane DC Persistent Memory Readies for Wide-
spread Deployment. https://newsroom.intel.com/news/intel-optane-
dc-persistent-memory-readies-widespread-deployment.

[22] Intel. 2019. Intel Optane DC Persistent Memory. https:
//www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html.

[23] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. 2019. Basic Performance
Measurements of the Intel Optane DC Persistent Memory Module.
arXiv preprint arXiv:1903.05714 (2019). http://arxiv.org/abs/1903.05714

[24] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015.
Efficient Persist Barriers for Multicores. In Proceedings of the 48th
International Symposium on Microarchitecture (MICRO).

[25] Alan H. Karp and Horace P. Flatt. 1990. Measuring Parallel Processor
Performance. Communications of the ACM (CACM) 33 (May 1990).

[26] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Pe-

ter M. Chen, Satish Narayanasamy, and Thomas F. Wenisch. 2017.

Language-level Persistency. In Proceedings of the 44th Annual Interna-

tional Symposium on Computer Architecture (ISCA).

Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven

Pelley, Sihang Liu, Peter M. Chen, and Thomas F. Wenisch. 2016. Del-

egated Persist Ordering. In Proceedings of the 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO).

[27

—

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Dong Li, Jeffrey S. Vetter, Gabriel Marin, Collin McCurdy, Cristian
Cira, Zhuo Liu, and Weikuan Yu. 2012. Identifying Opportunities for
Byte-Addressable Non-Volatile Memory in Extreme-Scale Scientific
Applications. In Proceedings of the 2012 IEEE 26th International Parallel
and Distributed Processing Symposium (IPDPS).

Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei
Wu, Weimin Zheng, and Jinglei Ren. 2017. DudeTM: Building Durable
Transactions with Decoupling for Persistent Memory. In Proceedings
of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).
Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H.
Noh, and Changhee Jung. 2018. iDO: Compiler-Directed Failure Atom-
icity for Nonvolatile Memory. In 2018 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO).

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan.
2019. PMTest: A Fast and Flexible Testing Framework for Persistent
Memory Programs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

Raymond A. Lorie. 1977. Physical Integrity in a Large Segmented
Database. ACM Transactions on Database Systems (TODS) 2, 1 (March
1977).

Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris
Volos, and Kimberly Keeton. 2017. An Analysis of Persistent Memory
Use with WHISPER. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III,
Dhruva R. Chakrabarti, and Michael L. Scott. 2017. Dali: A Periodically
Persistent Hash Map. In 31st International Symposium on Distributed
Computing (DISC).

M. A. Ogleari, E. L. Miller, and J. Zhao. 2018. Steal but No Force: Effi-
cient Hardware Undo+Redo Logging for Persistent Memory Systems.
In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA).

Chris Okasaki. 1998. Purely Functional Data Structures. Ph.D. Disserta-
tion. Carnegie Mellon University.

Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory
Persistency. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture (ISCA).

Juan Pedro Bolivar Puente. 2017. Persistence for the Masses: RRB-
vectors in a Systems Language. Proceedings of the ACM on Programming
Languages 1 (September 2017).

Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan
Solihin. 2017. Proteus: A Flexible and Fast Software Supported Hard-
ware Logging Approach for NVM. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
Seunghee Shin, James Tuck, and Yan Solihin. 2017. Hiding the Long
Latency of Persist Barriers Using Speculative Execution. In Proceedings
of the 44th Annual International Symposium on Computer Architecture
(ISCA).

Michael Steindorfer. 2017. Efficient Immutable Collections. Ph.D. Dis-
sertation. University of Amsterdam.

Michael J. Steindorfer and Jurgen J. Vinju. 2015. Optimizing Hash-
array Mapped Tries for Fast and Lean Immutable JVM Collections.
In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA).

Nicolas Stucki, Tiark Rompf, Vlad Ureche, and Phil Bagwell. 2015.
RRB Vector: A Practical General Purpose Immutable Sequence. In
Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming (ICFP).

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,
and Roy H. Campbell. 2011. Consistent and Durable Data Structures

https://lwn.net/Articles/731706/
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
http://www.cise.ufl.edu/research/sparse/matrices
https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
https://pmem.io/2018/10/22/release-1-5.html
https://pmem.io/2018/10/22/release-1-5.html
http://pmem.io/pmdk
http://pmem.io/pmdk
https://github.com/pmem/pmdk/pull/2716
https://github.com/pmem/pmdk/pull/2716
https://newsroom.intel.com/news/intel-optane-dc-persistent-memory-readies-widespread-deployment
https://newsroom.intel.com/news/intel-optane-dc-persistent-memory-readies-widespread-deployment
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
http://arxiv.org/abs/1903.05714

for Non-volatile Byte-addressable Memory. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies (FAST).

[45] Vish Viswanathan. 2018. Intel Memory Latency Checker. https://
software.intel.com/en-us/articles/intelr-memory-latency-checker.

[46] Haris Volos, Andres J. Tack, and Michael M. Swift. 2011. Mnemosyne:
Lightweight Persistent Memory. In Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

[47] Matthew Wilcox. 2014. DAX: Page cache bypass for filesystems on
memory storage. https://lwn.net/Articles/618064/.

[48] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost
for NVM-based Single Level Systems. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST).

A Artifact Appendix
A.1 Abstract

This artifact description provides information to recreate
the experiments from Section 6 of this paper. Accordingly,
six microbenchmarks and three workloads (described in Ta-
ble 2 in the main paper) are provided that use either our
library of Minimally Ordered Durable (MOD) datastructures
or the Intel PMDK library. In this appendix, we describe the
compilation and execution process for these libraries and
benchmarks. Note that while the experiments in Section 6
were performed on a system with Intel Optane DC Persistent
Memory Modules (DCPMM), the publicly released artifacts
do not depend on DCPMMs to enable functional reproduc-
tion and use with simulators. Moreover, we provide a list of
changes required to accurately reproduce the experiments
on DCPMM (see Notes).

A.2 Artifact check-list (meta-information)

Program: MOD library and benchmarks.
Compilation: GCC with support for C++14.

Data set: Provided.

Hardware: Intel system with Optane DCPMM.
Metrics: Execution Time.

Output: Execution Time in log files.

How much disk space required? 16 GB.

How much time is needed to complete experiments? 60
mins.

e Publicly available? Yes.

e Archived (provide DOI)?: 10.5281/zenodo.3563186

A.3 Description
A.3.1 How delivered. We have uploaded all the necessary soft-

ware as a compressed archive at https://doi.org/10.5281/zenodo.3563186.

A.3.2 Hardware dependencies. The libraries and benchmarks
provided by us can only be compiled and executed on modern Intel
architectures that support either clwb or cl1flushopt instructions.

A.3.3 Software dependencies. The main software dependency
is Intel’s Persistent Memory Development Kit v1.5. A version of
PMDK v1.5 is provided in the available artifact with modifications
to optionally disable logging activities. Other dependencies include:

e GCC compiler with support for C++14 and -mclflushopt compile
flag (tested with GCC v7.4.0).

o PMDK dependencies: autoconf, pkg-config, libndctl-devel, libdaxctl-
devel.

o memcached depencies: libevent-dev, memslap driver.

o msr-tools (optional) for controlling hardware prefetchers.

A.3.4 Data sets. The microbenchmarks and vacation generate
their input datasets randomly. Memcached requires the publically
available memslap driver to generate the inputs and a sample input
graph is provided for bfs.

A.4 Installation

Decompress the tar.gz archive while preserving the directory struc-
ture.

Compile pmdk:

$ cd pmdk; bash compile.sh

Compile nvm_malloc:

$ cd nvm_malloc; bash compile.sh

Compile vacation with pmdk:

$ cd vacation-pmdk; bash compile.sh

Compile memcached with pmdk:

$ cd memcached-pmdk; bash compile.sh

Compile vacation, memcached with mod:

$ cd Immutable-Datastructure-c++; bash compile.sh
Compile bfs with pmdk and mod:

$ cd graph-algo; bash compile.sh

Compile microbenchmarks:

$ cd benchmarks; bash compile.sh

Copy the memslap binary from the libmemcached dependency into
the memslap folder.

A.5 Experiment workflow

We have provided a bash script ’run.sh’ that executes all mi-
crobenchmarks and applications assuming that the original direc-
tory structure is maintained and the above installation steps are
followed.

A.6 Evaluation and expected result

From the top-level directory, execute the run script with one pa-
rameter, a path to a new folder to be created on PM or disk (for
functional evaluation).

$ bash run.sh <PATH-to-new-folder>

The run script will display progress markers and the names of log
files containing the results:

Creating new directory: temp/

Deleting old logs

Check error.log for any errors!

Running MOD workloads, results in ...

Running MOD workloads w/o flushing, results in ...
Running PMDK workloads, results in ...

Running PMDK workloads w/o flushes, results in ...
Running PMDK workloads w/o flushing or ...

For each benchmark, configuration details and execution time (la-
tency) will be reported:

Backing file:temp/bench

Implementation:immer

Datastructure:map

Percent writes:50Number of elements:1000000

https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://lwn.net/Articles/618064/

Number of operations: 1000000 A.7 Notes

To accurately reproduce our results on Intel Cascade Lake (or newer)
systems with Optane DCPMMs, instructions are provided in the
text file PMEM_NOTES’ in the archive.

Latency: 1208305587 ns

	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Memory System
	2.2 Persistent Memory Programming
	2.3 Functional Programming Concepts

	3 Mitigating Performance Bottlenecks
	4 Minimally Ordered Durable Datastructures
	4.1 Functional Shadowing
	4.2 Recipe for MOD Datastructures
	4.3 Programming Interface

	5 Implementation
	5.1 Basic Interface
	5.2 Composition Interface
	5.3 Correctness
	5.4 Memory Reclamation
	5.5 Automated Testing

	6 Evaluation
	6.1 Methodology
	6.2 Programmability
	6.3 Performance
	6.4 Flushing Concurrency
	6.5 Additional Overheads

	7 Related Work
	7.1 PM-STM Optimizations.
	7.2 Recoverable Datastructures.

	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Notes

