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Abstract The coastal temperate rainforests of South and North America are part of the most biomass dense for-
est biome on the planet. They are also subject to rapid climatic shifts and, subsequently, new disturbance processes
— snow loss-driven mortality and the emergence of fire in historically non-fire-exposed areas. Here, we compare
and contrast Southern and Northern Hemisphere coastal temperate rainforests of the Americas, two of the largest
examples of the biome, via synthesis of current literature, future climate expectations and new downscaling of a
global fire model. In terms of snow loss, a rapid decline in winter snow is leading to mass mortality of certain coni-
fer species in the Northern Hemisphere rainforests. High-elevation Southern Hemisphere forests, which are begin-
ning to see similar declines in snow, may be vulnerable in the future, especially bogs and high-water content soils.
Southern Hemisphere forests are seeing the invasion of fire as an ecological force at mid-to-high latitudes, a shift
not yet observed in the north but which may become more prominent with ongoing climate change. We suggest
that research should focus on the flammability of seral vegetation and bogs under future climate scenarios in both
regions. By comparing these two drivers of change across similar gradients in the Northern and Southern Hemi-
spheres, this work points to the potential for emerging change in unexpected places in both regions. There is a clear
benefit to conceptualising the coastal temperate rainforests of the Americas as two examples of the biome which
can inform the other, as change is proceeding in similar directions but at different rates in each region.

Abstract in Spanish is available with online material.
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INTRODUCTION (Krapek & Buma 2018). These changes may be

punctuated, resulting from the crossing of climatic
thresholds that drive major ecological changes related
to species physiological tolerances (e.g. Allen ez al.
2010). The existence of environmental thresholds
may also cause shifts in or intensification of distur-
bance regimes (Brooks ez al. 2004; Veblen er al

Climate change is affecting global forests in multiple
ways, often by altering the abiotic conditions forests
experience. Direct effects include increasing water
stress and associated drought-induced tree mortality
(Adams ez al. 2009; Holz er al. 2017), CO, fertilisa-

tion (Bolker er al. 1995) or lengthening of the grow-
ing season (Cleland ez al. 2007), with these effects
leading to altered productivity and/or range shifts
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2011; Buma 2015; Millar & Stephenson 2015),
which can lead to sudden changes in ecosystem type
when disturbance severity or frequency exceeds spe-
cies, community and ecosystem tolerances (Buma &
Wessman 2011). As a result, significant shifts in eco-
logical relationships — such as the establishment of
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novel functional relationships (Gilman et al. 2010) or
the formation of no-analogue communities (Williams
& Jackson 2007) — are widely anticipated.

Precipitation — including its phase, amount, intensity
and timing — is one such climate factor expected to
potentially drive significant, threshold-like change. The
phase of precipitation (snow or rain) represents only a
small shift in winter temperatures but results in a very
large change in the physical environment that forests
inhabit. For example, the loss of a winter snowpack
results in decreased soil insulation in winter (Groffman
et al. 2001), loss of nival habitat (Pauli ez al. 2013),
altered plant communities (Bannister ez al. 2005) and
reduced summer streamflows (e.g. Mote 2003), among
other factors. Changes in the amount and timing of
precipitation also have major impacts. Several research-
ers have focused on forest health in relation to precipi-
tation-associated physiological stress (Anderegg er al.
2013), winter high flow/summer low flow events (Sur-
fleet & Tullos 2013), and erosion and flooding severity
and timing (Klos er al. 2014).

Fire is also a well-known driver of rapid threshold-
like change. Fire is a major disturbance agent in most
of the world’s forests (Rundel 1981; Scott 2000),
burning ~348 Mha annually (Bowman et al. 2009;
Giglio er al. 2013) and influencing vegetation (He
et al. 2016), soil (Certini 2014), and a host of other
ecological aspects of forest ecosystems. Fire occur-
rence responds rapidly due to climate or anthro-
pogenic activity (Doerr & Santin 2016). Because of its
near ubiquity, fire can be difficult to disentangle from
the baseline functioning of the forest (Pausas & Keeley
2009). When excluded via modelling, it is apparent
that whole biome distributions likely result from the
presence (or absence) of fire (Bond ez al. 2005). Antic-
ipating changes to fire regimes — especially the emer-
gence of fire in areas where it was not historically
present, or rare enough to not be an evolutionary force
— is important for management, conservation and pre-
diction of future ecosystem dynamics and functioning.

Both snow loss and fire regime shifts are major con-
cerns to forest managers, conservationists, researchers
and culture bearers in forests worldwide. Here, we illus-
trate how the loss of snow and the emergence of fire
may act as important agents of change. We focus on
coastal temperate rainforests, a globally important biome
that holds an immense amount of carbon in relatively
intact forests (Keith ez al. 2009), where snow loss is pro-
ceeding faster than anywhere else globally and where the
fire regime is expected to intensify or even emerge in
areas where it was previously essentially absent.

Objectives

The objectives of this review are to (i) synthesise and
describe the significance of crossing precipitation and
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fire thresholds to the ecology and functioning of this
globally important forest biome; (i) discuss the spa-
tial pattern of potential change within the regions;
and (iii) use the analysis of drivers of the new distur-
bances in this ecosystem to anticipate new dynamics
in other temperate rainforest systems. We hope to
draw attention to the benefits of considering the
southern and northern coastal temperate rainforest as
two regions which can inform each other via direct
comparison.

COASTAL TEMPERATE RAINFORESTS: A
FRONTIER OF CHANGE

Coastal temperate rainforests (hereafter CTRFs) are
globally important as the most carbon-dense forested
areas on the planet, containing upwards of 1867 tons
Cha ' (Australian CTRFs, Keith er al. 2009), a
result of generally low rates of decomposition, low
water stress, moderate climate and relatively long
growing seasons. They provide a multitude of ecosys-
tem services, from significant cultural resources to
wildlife habitat, and function as the headwaters of
globally significant fisheries (Brandt er al. 2014;
Rodriguez-Echeverry er al. 2018). These regions are
also associated with high endemic biodiversity (e.g.
South American forests) in terms of nonvascular
plants and lichens (DellaSala 2011) and relatively
low levels of human development in many places.

Despite occurring across a wide range of latitudes
(~30° north to south), CTRFs have relatively consis-
tent, moderate climate conditions due to their close
proximity to the ocean (Alaback 1991; DellaSala
2011; Fig. 1). The mild, consistent climatic condi-
tions favour evergreen tree species, fine-scale, infre-
quent disturbances and generally older, late-
successional forests over much of the landscape.
Average annual temperatures range between 4 and
12°C, with annual precipitation from as low as 1.5 m
to as high as 5 m or more in some areas (DellaSala
2011). The historic disturbance regime was domi-
nated by relatively frequent tectonic activity, land-
slides, windstorms, fine-scale tree mortality and
infrequent fires (Veblen & Alaback 1996; Buma &
Barrett 2015; Holz et al. 2016). Although observed
and projected absolute warming rates in CTRFs are
not as high as in polar or high-latitude interior
regions, warming temperatures are crossing key cli-
matic and ecological thresholds (Veblen et al. 2011;
Shanley ez al. 2015), notably: (i) a phase change from
snow to rain as mean winter temperatures cross the
0°C threshold and (ii) the emergence or increased
role of fire on the landscape (e.g. see DellaSala ez al.
2018).

The snow-to-rain transition is an abrupt physical
threshold driven directly by temperature. This
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fundamental shift in hydrology influences a variety of
ecosystem properties and underlying processes,
including subnival habitat (Pauli er al. 2013) and
snow disturbance dynamics (Hennon er al. 2016).
Large areas of high-latitude CTRFs are at or near
the 0°C isotherm during winter, meaning that precip-
itation usually falls as snow. This climatological loca-
tion makes CTRF snow regimes especially vulnerable
to a loss of days below freezing given even minimal
warming (Meehl ez al. 2004), as illustrated by the
crossing of the snow-to-rain threshold already
reported in portions of the biome (Buma 2018).
Historically, fire in CTRFs was very infrequent,
although large in extent, at lower latitudes (~40°—
50°) but very rare at higher latitudes (>55°) due to
climatological constraints, especially the relatively wet
summer periods and limited natural ignition sources
(Veblen & Alaback 1996; Kitzberger er al. 2016).
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Areas with continuous human habitation had a more
frequent fire regime associated with land manage-
ment (Hoffman er al. 2016; Méndez et al. 2016),
though many mid- to high-latitude locations had fire
return intervals >1000-10 000 years (Veblen & Ala-
back 1996; Gavin er al. 2003). At lower latitudes, fire
was rare but a significant driver of landscape pattern
(e.g. Washington State, USA, Agee 1993; Gavin
et al. 2007). Paleoecological records from the higher
latitude portions of North America’s CTRF (>54° N)
have recorded essentially no charcoal since approxi-
mately 7500 years before present and no widespread
fires since the Holocene Climatic Optimum (Baichtal
et al. 2008). The anticipated general increase in fire
activity at temperate latitudes worldwide, where fuel
is abundant, is tied to lower moisture availability
resulting from predicted higher temperatures,
reduced precipitation and/or longer fire season
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Fig. 1. The North Pacific coastal temperate rainforest (panel a) and the South Pacific CTR (panel b). The focus of the
comparison is on the perhumid and seasonal zones of both forests. Biome map from DellaSala (2011).
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(Westerling er al. 2006; Bowman er al. 2009; Moritz
et al. 2012; Abatzoglou ez al. 2017). In addition,
increasing temperatures generate higher water deficits
(via increased evapotranspiration) even under poten-
tially increased rainfall at higher latitudes. The lack
of historical fire exposure combined with a likely
increase in future fire activity makes CTRFs poten-
tially vulnerable to novel change.

In sum, the particular climate and disturbance
‘state space’ in CTRFs makes them an ideal biome
for studying how climate change-induced shifts in
winter precipitation phase and the emergence of fire
have direct and indirect, long-lasting consequences
for ecosystem structure and function. Coastal tem-
perate rainforests can serve as model systems for
developing predictions about future changes in other
forested regions, which are expected to undergo simi-
lar snow-to-rain and fire regime shifts in the future
(Bowman et al. 2014; Holz et al. 2016).

We take advantage of the fact that the two largest
examples of the biome, the North Pacific coastal
temperate rainforest (NPCTR) of North America
and the South Pacific coastal temperate rainforests
(SPCTR) of Chilean South America (27.3 and
12.5 million ha, respectively), together represent
50.7% of all global temperate rainforests (DellaSala
2011). We focus on the perhumid and seasonal
portions, which straddle the snow-rain and fire-pre-
sence/absence thresholds (Fig. 1; Veblen & Alaback
1996). Parallel characteristics result from adjacency
to the highly moderating, cool Pacific maritime
environment and continuously wet conditions that
favour dense, contiguous evergreen forests (needle-
leaf in the Northern Hemisphere and broadleaf in
the Southern Hemisphere) and a large abundance
of temperate, peat-accumulating wetlands in areas
of poor drainage. Both have high carbon (C)
stocks, with slightly more in the Northern than the
Southern Hemisphere (NPCTR: 568-794 tons
C ha !, SPCTR: 326-571 tons C ha™!; studies
synthesised in Keith er al. 2009). Both regions of
the CTRF exhibit a gradient of human impacts,
from significant development/land cover change at
lower latitudes to more intact landscapes at higher
latitudes (DellaSala 2011). While the higher lati-
tude areas are certainly impacted by extensive his-
torical logging, often targeting large trees and
vulnerable portions of the ecosystem (flood plain/ri-
parian zones; Albert & Schoen 2013) with impor-
tant negative impacts on fish, wildlife and habitat
(Beier et al. 2008a), they still retain relatively high
value in regard to cultural resources and biodiver-
sity among other ecosystem services (Brandt er al.
2014; Rodriguez-Echeverry et al. 2018). The long
north-south latitudinal extent of these CTRFs
means that climate change is asynchronous across
this gradient, with poleward regions warming faster
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and equatorward regions experiencing more rapid
precipitation changes (IPCC 2014).

In contrast to many other well-studied biomes
experiencing rapid changes in precipitation regimes
and fire dynamics (e.g. Serreze er al. 2000), CTRFs
are useful study systems in that climate change
impacts can be examined concurrently and compara-
tively in both the Northern and Southern Hemi-
spheres. A threshold may be crossed earlier in one
region than the other, providing insights into how the
slower changing area might respond. Comparative
studies can provide a more robust test for hypothe-
sised mechanisms and an indication of potential cli-
mate change impacts on local climatology and
ecosystem responses to these and to other distur-
bances (Alaback 1991). We take advantage of that
cross-comparison in the following discussion.

LOSS OF SNOW AND EMERGING FREEZE
DISTURBANCE

Among the most visible environmental changes asso-
ciated with a warming climate in these two regions
are the reduced depth, extent and persistence of
snow as average winter temperatures cross the rain—
snow threshold of 0°C (Fig. 2). In CTRFs, where
precipitation is ample year-round, precipitation phase
and subsequent routing of runoff play important
roles in forest functioning (Bisbing ez al. 2016); this
change in phase may be a more significant shift than
any absolute change in the overall amount or season-
ality. Because the CTRF regions have historically
occurred along the 0°C isotherm in winter, the num-
ber of snow-covered days, there is decreasing faster
than in any other biome (Meehl er al. 2004). Cur-
rently, the rain—snow boundary bisects the NPCTR,
starting at approximately 2000 m by 50° N and
reaching sea level around 57° N (Shanley et al
2015). The more maritime southern SPCTR in
Patagonia is generally already above this threshold at
low elevations, and snow is transient in those areas,
though areas at higher latitudes and elevations do
remain snow and ice covered. While, to our knowl-
edge, no research has been done on long-term
changes in snow persistence in those higher elevation
areas of the SPCTR, satellite-based observations in
the Andes just north of the region (from ~28° to
36.5° S) identified significant declines in duration of
snow persistence, approaching 2-3% per year, with
the rate of snow loss highest at higher latitudes
(Saavedra et al. 2018). Additionally, various ice caps
in the region have been retreating rapidly over the
last several decades, attributed to warming and sub-
sequent raising of the 0°C isotherm (Davies & Glas-
ser 2012), and this is expected to continue over the
next decades (Fig. 2). Thus, research of climate
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change effects on the rain—snow threshold in the
NPCTR may be instructive to the less studied snow
dynamic SPCTR.

Observed effects of snow loss

The crossing of the rain—snow threshold can have
significant ecological effects, especially among species
adapted to reliable winter snow environments. In the
NPCTR, yellow-cedar (Callitropsis nootkatensis) is
experiencing extensive mortality over 9° of latitude
(>400 000 ha; Buma ez al. 2017). This species has a
competitive strategy of fine root growth in the early
spring when supplies of nitrogen are abundant in
upper soil layers (Hennon ez al. 2016); however, fine
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root death can occur during subfreezing weather
events when snow is no longer present (Hennon
et al. 2016). Snow is an effective insulator for soils,
buffering soil temperatures from atmospheric vari-
ability; a lack of snow generally leads to colder soils
in winter months (Groffman er al. 2001) and an
overall increase in soil temperature variability (Jungq-
vist et al. 2014). Even in a warming climate with less
snow, sporadic cold weather events have persisted in
portions of the NPCTR (Beier ez al. 2008b; Buma
2018), driving continued tree mortality. Ongoing
mortality is likely to lead to shifts in community com-
position to a smaller suite of species more tolerant of
snow-free winter conditions (Oakes ez al. 2014). But,
tree mortality is not the only effect of increasing soil
freezing. Mobilisation of contaminants (Mohanty

X
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Fig. 2. Anticipated shifts in winter snow threshold in the South Pacific CTR (SPCTR) and North Pacific coastal temperate
rainforest (NPCTR) using the HadGEM2-ES (RCP 8.5) climate model/emission scenario. No areas are expected to shift
from above to below freezing. Due to substantial lower elevation/slope areas in the NPCTR, the spatial extent of change is
large. In the SPCTR, shifts are likely along the higher altitudinal range edge throughout the forest, and the inset shows a sub-
section in detail to illustrate this pattern. Climate data from Hijmans er al. (2005) at 1-km resolution, HaddGEM2-ES GCM.
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et al. 2014) and microbial communities (Larsen er al.
2002) can drive significant changes to nutrient
cycling (Fitzhugh er al. 2001; Urakawa er al. 2014).
These changes, triggered by increasing freeze—thaw
dynamics in soils, may have significant downstream
effects as well.

There are multiple pathways by which snow loss
might cause continued plant mortality in the NPCTR
and at higher elevations in SPCTR forests. Climate
change is altering the phenology of forest species, lead-
ing to increased risk of cold-related damage in a war-
mer world (Gu er al. 2008; Rigby & Porporato 2008).
The general ecological strategy of early spring activity
as a means to gain competitive advantage is wide-
spread (Polgar & Primack 2011). Apart from root
freezing, warmer temperatures speed plant develop-
ment earlier each year, making them vulnerable to
frost (Gu er al. 2008). Increased cold damage associ-
ated with climate warming and earlier spring pheno-
logical development is well recognised (Gu ez al. 2008;
Inouye 2008) and is typically associated with above-
ground bud mortality. Broadscale damage to sensitive
bud tissue has already been noted in a variety of loca-
tions (Inouye 2008). The threat of root freezing due to
a lack of snow has not been generally quantified out-
side of NPCTR, but it is expected to be a significant
factor in areas where snow cover will shift from contin-
uous to transient in temperate zones (Bannister et al.
2005). The risk would be highest in areas of the land-
scape prone to shallow rooting habits (e.g. wetlands
and bogs). The most vulnerable species are likely to be
those adapted to early-onset seasonal growth that his-
torically occurred under reliable cover of snow.

It is possible that subfreezing-induced damages
could decline after the transitional period, when tem-
peratures rise above the freeze—thaw boundary
(Henry 2008, Buma 2018), but this is dependent on
freezing probability corresponding to average temper-
atures as they have in the past. Given the topography
of both regions, with significantly colder areas located
in close geographic proximity to these ecosystems
(on the eastern sides of the Andes in South America
and Coast Mountains of the United States and
Canada), it is unclear whether that relationship will
hold (Beier er al. 2008b). Areas of historically thin
snowpack and winter temperature slightly below
freezing in the SPCTR should be monitored for plant
stress, root mortality and other emerging dynamics
suggested by the NPCTR decline.

THE EXPANSION OF FIRE

The combination of decreasing winter snowpack
resulting from precipitation phase change, earlier
snowmelt and thaw, and increasing spring—summer
evaporative demand (e.g. vapour pressure deficit) over
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longer, rainfall-free growing seasons is likely to result
in an increase in the prevalence of fire in certain por-
tions of CTRFs (Westerling er al. 2006; Littell ez al.
2010; Moritz er al. 2012). As noted, the historic
importance of fire in CTRFs has been relatively low,
ranging from a nearly nonexistent fire regime at higher
latitudes (Gavin er al. 2003) to infrequent, though
stand-replacing, fires at lower latitudes (Agee 1993;
Veblen & Alaback 1996; Holz et al. 2012; Walsh et al.
2015; Hoffman er al. 2016; Fig. 3). Although there is
a substantial amount of highly contiguous vegetation
that may act as fuel for a fire in CTRFs, vegetation is
typically too wet to burn, and natural ignitions are very
infrequent, as lighting is rare and generally accompa-
nied by rain. Overall, fire across both CTRF regions
has historically been driven by the confluence of atmo-
spheric circulation patterns cycling at multiple tempo-
ral scales (Whitlock er al. 2008; Littell ez al. 2010;
Holz er al. 2017) and human presence (Hoffman ez al.
2016; Méndez er al. 2016).

Under climate change projections, the poleward
portions (>55 °N and >50° S) of both the NPCTR
and the SPCTR are expected to experience signifi-
cant annual warming, lower snowpack, a potential
increase in spring-summer drought (Veblen ez al
2011) and increasing moisture deficits (40-50% at
~60°N; Haufler 2010). As a result, the equatorward
portions of CTRFs are expected to become more
flammable throughout the fire season (e.g. summer;
Fig. 4), leading to more flammable conditions (Littell
et al. 2010; Sheehan er al. 2015). Additionally, war-
mer coastal ocean temperatures are likely to create
the potential for more ignitions via increased light-
ning activity (Garreaud ez al. 2014). In several of the
drier and mountainous areas in the SPCTR,
increases in lightning-set fires have been observed in
recent decades (Veblen ez al. 2011), and increases in
the frequency of dry, warm periods have been linked
to global climate warming and ozone depletion in
Antarctica (Holz & Veblen 2011; Holz er al. 2017).
Recent research has identified the southern SPCTR
as an area where wildfires might ‘invade’ as soon as
~2039 if ignitions are provided (Moritz ez al. 2012).

Downscaled fire projections

Unlike global data related to the winter snow-rain
temperature threshold (e.g. Meehl ez al. 2004; Buma
et al. 2017), comparable, high spatial-resolution fire
modelling studies do not currently exist for northern
and southern CTRFs. For the purposes of this syn-
thesis, we used the global modelling framework of
Moritz et al. (2012) to evaluate changes in climate-
driven probability of fire across these regions. This
framework integrates global fire datasets (INASA
MODIS missions) and environmental covariates

© 2019 Ecological Society of Australia
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Fig. 3. Yearly burned area, cumulative burned area (per 0.25°) and per cent burned (mean fraction of each pixel burned per
0.25% from 1997 to 2016 in the South Pacific CTR and North Pacific coastal temperate rainforest. Fire statistics come from the

Global Fire Emissions Database version 4 (Giglio er al. 2013).

representing fire-conducive climate conditions over
the reference period 1971-2000 to determine fire—
climate relationships and assess the likelihood of fire
under ongoing climate change. We used the frame-
work to build spatial statistical models of relative
changes to fire probability that describe the long-
term potential of fire occurrence over the period
2071-2100. Using methods based on Moritz et al.
(2012), we used projected changes in temperature
seasonality, precipitation of the driest month and
annual precipitation to describe potential alterations
in the probability of fire over 0.5° latitudinal bands
across CTRFs (Fig. 5). Projected future climate
data were obtained from the WorldClim CMIP5
HadGEM2-ES (RCP 8.5; Hijmans ez al. 2005,
updated to CMIP5 in 2017) for the study region
(for full details, see Appendix S1-S3).

© 2019 Ecological Society of Australia

Because the scope of this synthesis is focused on
relative changes, modelling was limited to the Hadley
climate projection. The Hadley model performed the
best in aggregate when compared to climate-precipi-
tation values for five other GCM’s at the seasonal
level for the North Pacific forest region (SNAP
2009). To check the assumption that the climate—fire
relationships quantified in Moritz et al. (2012) would
remain valid with the Hadley climatic dataset, corre-
lations between the WorldClim CMIP5 HadGEM2-
ES data (used here) and CMIP3 data used in Moritz
et al. (2012) were computed. We found very high
Spearman rank coefficients for the variables used in
the model (>0.9; Appendix S3) and considered the
climate-fire relationships from the Moritz et al
(2012) ensemble fire model suitable to assess poten-
tial relative alterations in the CTRFs’ likelihood of

doi:10.1111/aec.12751
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Fig. 4. Projected precipitation change. Relative change in summer precipitation (defined as warmest quarter of the year) by
2070 for the North Pacific coastal temperate rainforest (left) and the South Pacific CTR (right) using the HadGEM2-ES
(RCP 8.5) climate model/emission scenario. Climate data from Hijmans et al. (2005) at 1-km resolution, HadGEM2-ES

GCM (updated to CMIP5, see http://www.worldclim.org).

fire for the period 2071-2100 driven by HadGEM2-
ES climate projections. The purpose of this exercise
was not to predict absolute changes in fire probability
but rather to identify the portions of each region
likely to see the largest relative change. For further
details associated with this modelling methodology,
see Appendix S1 and Moritz et al. (2012).

While the frequency of dry, warm conditions
increases at low latitudes in both regions (where the
majority of fire modelling work has been concen-
trated, for example Littell ez al. 2010), the modelling
results suggest that the central latitude portions of
the biome in both hemispheres will see the largest
relative increase in climate-driven fire probability.
This is primarily due to projected changes in dry sea-
son precipitation (Fig. 5). The more equatorward
portions of the biome will likely have higher rates of

doi:10.1111/aec.12751

fire due to their higher baseline rates. However, a lar-
ger relative increase in fire activity indicates a more
substantial departure from historical norms and is
thus worth noting for future estimates of CTRF
dynamics.

It should also be noted that these models are based
on broadscale climatic trends and reflect general cli-
mate-fire relationships; the actual occurrence and
behaviour of fires at regional and local scales is a
result of finer scale weather patterns, topo-edaphic
gradients and vegetation-fire feedbacks as well.

Effects of fire regime changes in the NPCTR

Fires have occurred historically in the southern and
central portions of the NPCTR but with highly

© 2019 Ecological Society of Australia
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Fig. 5. Relative change in fire probability projected as a function of the major climate drivers in the North Pacific coastal tem-
perate rainforest (NPCTR; top) and the South Pacific CTR (SPCTR; bottom) using the 2070 HadGEM2-ES (RCP 8.5) climate
model/emission scenario. A negative (green or blue) value indicates the driver is expected to change in a direction that reduces
relative fire probability, and a positive value (orange or red) indicates an increase in fire probability. Agreement between predic-
tors: 100% indicates the three drivers had similar signs (i.e. all were positive), whereas 67% indicates that two-thirds were in
agreement for either an increase (I) or a decrease (D) in fire probability. In general, there is strong agreement that fire frequency
will increase throughout the SPCTR. Expectations are mixed in the NPCTR, but generally an increase is expected further north
than historical fires. The extreme southern portion of the NPCTR is not modelled due to a lack of climate data at the proper
scale; for climate locations used to create the probability graphs, see Fig. S1. Note differences of scale of axes and legends.
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variable return intervals (300-3000+ years, Fig. 4)
and spatial heterogeneity due to variable ignitions
and climatic conditions (Hoffman ez al. 2018). Thin-
barked, non-serotinous species dominate CTRFs,
and fire-adapted species are generally absent (Veblen
& Alaback 1996). In the southern NPCTR (<55° N),
where fire has an infrequent but more significant role
(Agee 1993; Tepley et al. 2013; Whitlock ez al
2014), a few seral thick-barked species occur (e.g.
Douglas-fir, Pseudotsuga menziesit) that can survive
low-to-moderate fire intensities (Agee 1993).

Anticipating the effects of both increasing and
emerging fire (at lower and higher latitudes, respec-
tively) is critical (Littell er al. 2010). Theory suggests
that in wet systems, where flammability declines as
forest structure develops, the introduction of fire-
conducive conditions can lead to a cycle of increasing
fire extents and subsequent widespread ecological
changes. This positive feedback occurs because
increases in the spatial extent and connectivity of the
more flammable, early seral vegetation after each fire
event lead, subsequently, to more extensive fires.
Given sufficient ignition opportunities and a climate
conducive to periodic fire (Perry et al. 2012), rapid
and persistent threshold-like changes can occur when
forests at the landscape scale cross critical flam-
mable-connectivity thresholds and any fire event is
likely to spread over the majority of the landscape.
Increased NPCTR flammability associated with early
successional species can lead to positive fire-vegeta-
tion feedbacks (Agee & Huff 1987) due to highly
flammable early successional fine fuels that dry
rapidly even in the relatively short fire season com-
mon to the region’s climate. Thus, the emergence or
acceleration of fire regimes is a significant concern
and changes projected here should be considered
conservative estimates. Recent events in mesic forest
stands in the southern portions of the NPCTR (e.g.
Eagle Creek Fire in the Columbia Gorge Scenic Area
in Oregon and Norse Peak Fire in Washington, from
a human ignition) remind us that the transformation
of these forests by fire is likely as a potential result of
the warming regional climate. To this point, the his-
torical and already-underway expansion of fire into
the SPCTR is instructive for the NPCTR.

The expansion of fire in the SPCTR

The expansion of fire is well documented in the
SPCTR. Historically, humans were the ignition
source for most SPCTR fires (Holz er al. 2016), with
ignitions occurring primarily at the warmest and dri-
est equatorward edge. Since the 1970s, there has
been an increase in lightning-ignited fires in the
northern and central regions of the SPCTR (Veblen
et al. 2011), attributed to environmental shifts
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associated with climate change (Thompson ez al
2011, IPCC 2014, Garreaud er al. 2014). As biomass
is not limiting and the climate is becoming more
conducive to fire, the occurrence of fire is increas-
ingly ignition limited (Paritsis ez al. 2013). Emerging
fires tied to climate change and increasing variability
in climate have already been transforming ecological
composition, structure and function, particularly in
fire-sensitive Pilgerodendron forests (Holz & Veblen
2009; Bannister et al. 2012). These species are
mostly fire sensitive, and the landscape has been rela-
tively nonflammable historically — but is becoming
less so today.

In addition to climate change driving increases in
fire probability, tree plantations in the SPCTR have
the potential to increase fire risk. Pine and euca-
lypts plantations, like other plantations in the
southern NPCTR (Zald & Dunn 2018), facilitate
fire spread due to homogeneous patch structure
and connectivity, which in turn can result in higher
fire frequency and severity (McWethy ez al. 2018;
Paritsis ez al. 2018). While many historical and
recent large fires in Chile occurred just north of
the CTRF region in the more Mediterranean cen-
tral valley, there are plantations of Eucalypts in the
SPCTR as far south as 42° on Isla Chiloé, and at
the Patagonian dry forest/steppe ecotone lodgepole
pine (Pinus contorta var. latifolia), a fire-associated
species has established from plantations even fur-
ther south (at least 45.5° Taylor eral 2017).
There are concerns that invasion by fire-adapted
species may alter the water balance, fuel type (Tng
et al. 2012) and fuel structures (Cobar-Carranza
et al. 2014) of the region.

When fires do occur, they can cause significant
changes to forests and have the potential to initiate
positive feedbacks that drive further increases in fire
frequency (e.g. Paritsis er al. 2013; Taylor er al
2017). In the SPCTR, invasion of shade intolerant
Sphagnum species can result in subsequent waterlog-
ging of the habitat due to an overall decline in evapo-
transpiration (Diaz er al. 2007). Sphagnum mosses,
which dominate wetlands in the NPCTR as well,
acidify substrates, outcompete tree seedlings, trans-
form the plant community and potentially lock the
system into an alternative stable state (Kitzberger
et al. 2016; Zaret & Holz 2016). Preliminary results
suggest that: (i) water table and substrate interact
and best explain patterns in post-fire tree seedling
abundance and plant community; (ii) small seedling
abundance is best explained by water-table height
and plant community type (Zaret & Holz 2016); and
(i) fine-fuel fibric peats are more likely to support a
high-frequency, low-severity fire regime given an
amenable climate for fire resulting in a positive feed-
back between fire and vegetation flammability (Holz
2009, Kitzberger er al. 2016).
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This observation of a rapid ecosystem shift trig-
gered by the emergence of fire and explained by the
expansion of more flammable, early seral vegetation
coupled with increasingly favourable climates for fire
is clearly instructive to the NPCTR. It also echoes
observations from paleoecological reconstructions in
temperate New Zealand (Perry et al. 2012) and
recent events in Tasmanian temperate rainforests,
where unprecedented fires in 2015 and 2016 burned
fire-sensitive trees as well as vast tracks of peatland
and alpine vegetation (~105 000 ha) during the driest
season on record (Marris 2016). That the largest rel-
ative change in fire probability is not anticipated at
the equatorward edge of the biome, but rather in the
middle and at higher latitudes, is an unexpected find-
ing and suggests research should consider emerging
fire regimes beyond the drier, equatorward extents
typically considered where adaptations to fire are
minimal and resilience potentially low. The story of
fire emergence clearly illustrates the value of linking
the NPCTR and the SPCTR in a single analysis, as
physical drivers are changing in similar directions,
but at different times, in both areas — the emergence
of fire in the south is a valuable case study for the
forests in the north.

THE EMERGING BIOME EDGE

Much of the concern regarding climate change-dri-
ven mortality centres on changes at the trailing
(lower latitude or elevation; Parmesan & Yohe 2003)
or leading edges (higher latitude or higher elevation;
Mason er al. 2015) of species and biome distribu-
tions. Generally, discussion in temperate regions has
focused on increasing temperatures and declining
precipitation on the southern boundary, as both are
known to strongly structure species range edges and
biome extents. At broad scales, species and biomes
do generally track long-term climate conditions such
as mean winter temperatures or annual water bal-
ance, though there may be lag after major climatic
shifts (e.g. Ice Ages) due to slow migration rates
(Krapek & Buma 2018). In the future, however,
there is the potential for thresholds in species’ toler-
ances to be crossed elsewhere within the current
range of a forest ecosystem, because climate warming
and precipitation changes are not synchronous and
occur at different rates. ‘Edges’ of climatic tolerance
may emerge within central portions of a range due to
the intersection of climatic trends with important
physical thresholds or biological tolerances.

The NPCTR and SPCTR regions demonstrate sig-
nificant, climate change-driven changes occurring near
the geographic middle of a biome — not just on the
lower latitude portions. Loss of snow is causing the
most significant ecological changes in the geographic
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middle of the NPCTR, where snow was reliably pre-
sent but winter mean temperatures were near 0°
(Buma er al. 2017). Higher elevations of the SPCTR
and surrounding ecosystems are likely to be similarly
susceptible in the future, as snow loss (although mini-
mal in absolute terms) is reported in the central por-
tion (Fig. 2). Further research on the role of snowpack
changes in determining species ranges is a significant
need (Pauli er al. 2013), either via direct mortality as
in the case of yellow-cedar or via interactions with
other stressors and disturbance agents (e.g. Poulos
2014). Similarly, the highest increase in relative fire
likelihood is in the geographic middle latitudes of the
biome in both hemispheres, where fire was historically
rare and species are not well adapted to fire (this anal-
ysis, Fig. 5). Fire may emerge in unexpected loca-
tions, and the emergence — rather than simple
intensification — is also a major research need, espe-
cially in landscapes where theory suggests rapid trans-
formations due to seral changes in flammability.

Temperate rainforests, by virtue of their long lati-
tudinal extent, exemplify these emerging edge phe-
nomena at both the species and ecosystem levels.
This suggests that climate change monitoring in a
variety of regions should focus not only on leading or
lagging edges, but also emerging edges driven by cli-
matic shifts like precipitation phase.

CONCLUSIONS

The objectives of this synthesis and review were to
draw attention to emerging disturbance phenomena
in the coastal temperate rainforests of the Pacific
Coast, discuss the causes and effects of those phe-
nomena and utilise the cross-hemispheric comparison
to enable more general predictions about change
than can be done from single-system studies. This
comparative examination of climate—ecosystem rela-
tionships across hemispheres of the CTRFs provides
a framework within which to hypothesise the nature,
geographic location and potential effects of emergent
disturbances within similar systems.

The counter-intuitive nature of the processes being
observed — root freezing due to warming and fire in
wet forests — makes their prediction more difficult but
the broad nature of the changes underway underlines
the significance of these emergent trends. In particu-
lar, the sensitivity of forests to root freezing mortality
in areas where snow will become transient should be
investigated in other systems, especially those prone
to late spring cold events. Emergence of fire, or
increases in fire frequency and/or intensity, may con-
strain survival and self-replacement of dominant spe-
cies, leading to long-lasting shifts in community
composition or landscape structure, or the establish-
ment of alternative ecosystem states. Both are
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resulting in community simplification by acting as fil-
ters — selective removal of freeze-susceptible trees and
selection for more fire-tolerant species; longer term
implications of this shift clearly need more research.

Temperate rainforests are undergoing novel change
largely driven by climate change. Change in these
systems is particularly important given the two
regions we examined are well recognised for their
global biodiversity importance and relative intactness,
which provides opportunities to proactively respond
to emerging conditions relative to highly disturbed
areas. Their role as major storehouses of carbon at
the global scale underlines the importance of these
shifts. Finally, the use of coastal temperate rainforests
as early indicators of change is valuable and can lead
to predictive capabilities for similar functional groups
and responses in forests elsewhere.
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online in the supporting information tab for this
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Appendix S1. Fire modelling.

Appendix S2. Red dots depict the x—y coordinates
used to extract the values of each bioclimatic variable
in each region.

Appendix S3. Spearman rank correlation coeffi-
cient between WorldClim CMIP5 HadGEMZ2-ES
(RCP8.5; Hijmans et al. 2005) and the CMIP3 cli-
mate projections used to build the ensemble fire mod-
els in the Moritz et al. (2012) global fire framework.
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