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Although bubble pinch-off is an archetype of a dynamical sys-
tem evolving toward a singularity, it has always been described
in idealized theoretical and experimental conditions. Here, we
consider bubble pinch-off in a turbulent flow representative of
natural conditions in the presence of strong and random perturba-
tions, combining laboratory experiments, numerical simulations,
and theoretical modeling. We show that the turbulence sets the
initial conditions for pinch-off, namely the initial bubble shape
and flow field, but after the pinch-off starts, the turbulent time
at the neck scale becomes much slower than the pinching dynam-
ics: The turbulence freezes. We show that the average neck size,
d, can be described by d∼ (t− t0)α, where t0 is the pinch-off or
singularity time and α≈ 0.5, in close agreement with the axisym-
metric theory with no initial flow. While frozen, the turbulence
can influence the pinch-off through the initial conditions. Neck
shape oscillations described by a quasi–2-dimensional (quasi-2D)
linear perturbation model are observed as are persistent eccen-
tricities of the neck, which are related to the complex flow
field induced by the deformed bubble shape. When turbulent
stresses are less able to be counteracted by surface tension, a
3-dimensional (3D) kink-like structure develops in the neck, caus-
ing d to escape its self-similar decrease. We identify the geomet-
ric controlling parameter that governs the appearance of these
kink-like interfacial structures, which drive the collapse out of
the self-similar route, governing both the likelihood of escap-
ing the self-similar process and the time and length scale at
which it occurs.
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The breakup dynamics of bubbles and droplets are central to
many natural and engineering processes, playing a role in

heat, mass, and momentum transfer at the ocean–atmosphere
surface (1, 2), rain drops falling on solids and liquids (3), and
industrial liquid atomization and fragmentation (4). In such con-
figurations, the gas–liquid interface is often surrounded by a
violent turbulent flow characterized by perturbations of various
strengths at various scales. As a result, the external forcing can
strongly deform the bubble or droplet interface, leading to a
complex geometrical shape and various breaking scenarios (5, 6).
During the final instant of the collapse, the pinching dynamics
approach a finite-time singularity, which has been studied exten-
sively in idealized configurations in an attempt to identify such
singularities and their regularization by viscous forces (7, 8). For
these practical and fundamental reasons, the final pinching of a
gas bubble or liquid droplet continues to draw extensive research
interest.

In a quiescent fluid, starting from a purely axisymmetric fluid
neck, the dynamic eventually becomes independent of the initial
condition as it approaches the finite-time singularity correspond-
ing to the time of pinch-off. Experiments and theories for the
breakup of air bubbles or liquid droplets (8–14) have described
the interface neck diameter, d , thinning toward pinch-off by a
self-similar dynamic d ∝ (t0− t)α, where t is the time, t0 is the
pinch-off or singularity time, and α is the similarity exponent,
which depends on the driving forces. For a water droplet detach-
ing in air, an inertiocapillary collapse is observed with α=2/3,
while in the viscocapillary and inertioviscocapillary limits, α=1
(8). In the case of an air bubble in water, a purely inertial col-

lapse leads to a slowly evolving exponent close to α=1/2 (14),
with the reported experimental values between 0.54 and 0.57
(11, 12). Varying the density ratio allows the behavior to tran-
sition from the droplet to the bubble limit (15), while recently,
oscillations between viscous asymptotic pinch-off regimes have
been reported when perturbing the initial and boundary
conditions (16, 17).

A central assumption of the above description is the circular
shape of the neck at the start of pinch-off and the axisymmetry
of the surrounding flow field. Memory effects in bubble pinch-
off, evidenced by initial perturbations to the neck shape yielding
shape oscillations throughout the collapse, have been identified
and described (18–20) as have misalignments of the neck with
respect to gravity and the rapid injection of gas, which alter the
singularity (19, 21). These studies have extended our understand-
ing of pinch-off to controlled asymmetric situations, but they are
limited to idealized configurations in which background pertur-
bations are of a high degree of symmetry. Here, we investigate
the final pinch-off dynamics of a bubble in a fully developed
turbulent flow. This study can be seen as a prototype for under-
standing the route to singularities in realistic multiscale systems
where perturbations at multiple scales are inherently present.

Frozen Turbulence during Pinch-Off
Fig. 1 shows a schematic of the bubble deformation and pinch-
off scenario in a turbulent flow. We blow air through needles with
inside diameter dn between 1.4 and 4.8 mm placed in the middle
of a 3-dimensional (3D) homogeneous and isotropic water turbu-
lent flow of variable intensity characterized by an integral length

Significance

As a bubble breaks apart, the final pinching culminates in a
singularity. We investigate the pinch-off of a bubble in turbu-
lence and demonstrate that the turbulent flow field freezes
during the pinching process, opening the route for a self-
similar collapse close to the one predicted for unperturbed
configuration. The role of the turbulent flow field is, there-
fore, to set the complex initial conditions, which can lead to
oscillations of the neck shape during the collapse and the
eventual escape from self-similarity with the appearance of a
kink-like interfacial structure. This work can be seen as a pro-
totype for understanding the route to finite-time singularities
in realistic multiscale systems where random perturbations are
present, with both fundamental and practical implications.

Author contributions: D.J.R. and L.D. designed research; D.J.R., W.M., S.P., and L.D. per-
formed research; D.J.R., W.M., and L.D. analyzed data; and D.J.R., W.M., S.P., and L.D.
wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y

Data deposition: Data and code to reproduce plots are available at http://arks.
princeton.edu/ark:/88435/dsp014f16c5691.y
1 To whom correspondence may be addressed. Email: ldeike@princeton.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1909842116/-/DCSupplemental.y

www.pnas.org/cgi/doi/10.1073/pnas.1909842116 PNAS Latest Articles | 1 of 6

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://arks.princeton.edu/ark:/88435/dsp014f16c5691
http://arks.princeton.edu/ark:/88435/dsp014f16c5691
mailto:ldeike@princeton.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1909842116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1909842116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1909842116
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1909842116&domain=pdf&date_stamp=2019-11-28


Fig. 1. Sketch of the bubble pinch-off scenario in a turbulent flow. The initial bubble shape is set by turbulent fluctuations, with the flow field evolving as
the bubble deforms. When a neck of millimetric size starts to form, its dynamics speed up, and the neck quickly collapses, leading to the singularity time, t0,
at which breakup occurs. The duration of the final pinching process, t0− t . 10 ms, is shorter than the turbulence fluctuation correlation time at the scale
of the neck, tturb∼ ε−1/3d2/3

τ ∼ 15 to 70 ms. As a consequence, the turbulent fluctuations freeze and stay frozen during the subsequent pinch-off process.

scale L≈ 13 mm, a Taylor microscale λ between 1.2 and 1.7 mm,
and a Kolmogorov scale lµ between 34 and 58 µm so that the bub-
ble size is within the inertial range (Materials and Methods). The
turbulence dissipation rate ε is between 600 and 5,400 cm2/s3.
The growth of the air bubble lasts from ∼ 5 to ∼ 100 ms, dur-
ing which the turbulent background deforms the bubble shape
continuously. When the bubble reaches a large-enough size, the
combined effect of buoyancy forces, surface tension, and turbu-
lent fluctuations triggers the formation of a neck, which begins
to collapse.

During the collapse in a quiescent fluid, the flow space
and timescales shrink to 0 with accelerating dynamics up to
the pinch-off singularity time t0. Notably, in the presence of
a turbulent background flow, the velocity fluctuations vturb
induced by the turbulence are relatively small compared with
the neck collapse speed vcoll. The characteristic velocity fluc-
tuations over a distance ∆r scale as vturb∼ (ε∆r)1/3 (6, 22).
For a power law collapse described by d = dτ [(t0− t)/τ ]α, with
the initial neck diameter dτ at time t0− t = τ , the speed of the
collapse is vcoll =αdτ (1/τ)α(t0− t)α−1. Comparing the turbu-
lence and collapse velocities, with ∆r = d , we have vcoll/vturb =

αd
1/α
τ τ−1ε−1/3d2/3−1/α, which →∞ as d→ 0 for α< 3/2.

Therefore, all self-similar collapse of droplets and bubbles in
turbulent flows will experience freezing of the turbulence, and
in practice, this occurs well before the Kolmogorov dissipative
scale is reached. The frozen nature of the turbulence in the later
stage of pinching can also be seen from a comparison between
2 timescales. The pinch-off dynamics occur in t0− t . 10 ms,
which in our experiment, is a duration shorter than the turbulent
timescale tturb∼ ε−1/3d

2/3
τ ∼ 15 to 70 ms at the needle scale.

This fundamental result implies that the turbulence only sets the
initial conditions for the pinching and remains frozen through
the process, opening the route toward a self-similar collapse.

Experimental Collapse with a Turbulent Background
Despite the divergence of the turbulence and pinching scales,
individual observations of pinch-off in a turbulent background
reveal rich dynamics absent with quiescent backgrounds. Among
the ∼ 300 experiments conducted in turbulence, we observe a
complex thinning process that suggests that the effects of the
turbulence persist beyond the turbulent scales: a large variabil-
ity in the pinch-off behavior is observed between experiments,
especially when considering the neck from a single vantage
point. While in the limit of minimal shape perturbations, the
neck maintains its circular shape, and the collapse resembles
that observed in quiescent backgrounds; when the frozen turbu-
lent field has deformed the bubble, the entirety of the collapse
is affected. Perturbations to the neck shape yield persistent
asymmetries or shape oscillations, which grow relative to the
collapsing neck and come to dominate the collapse dynamics.

Evidence of these memory effects in turbulent pinch-off is
given for an experimental observation in Fig. 2. We record the
bubble pinching off from a needle with 2 orthogonal high-speed
cameras, yielding the views of the neck region in the laboratory
x − z and y − z planes outlined in blue and green in Fig. 2 A
and B. An image processing algorithm is used to infer the ori-
entation of the neck axis z ′ and map the points imaged on the
neck to 3D space (Materials and Methods and Fig. 2 B and C).
The blue and green curves in Fig. 2C show the neck sizes dx
and dy , the widths of the neck measured in the 2 imaged planes,
each taken to pass through the pinch-off point and be perpen-
dicular to z ′. During the collapse, dx and dy oscillate about the
average neck size d = (dx + dy)/2, shown in red in Fig. 2C, indi-
cating that the neck shape is an oscillating ellipse with average
size that follows closely the unperturbed results described in the
literature, d ∝ (t − t0)α, with α≈ 0.55. The oscillatory behavior
is captured in the ∆r = (dx − dy)/2 signal shown in Fig. 2D. This
oscillation is characteristic of the Bell–Plesset collapse, which
describes an interface undergoing a prescribed acceleration. This
phenomenon was treated analytically by Bell (23) and Ples-
set (24); more recently, the temporal evolution of this collapse
was derived independently (18, 25) in the context of a col-
lapsing bubble neck subject to small-amplitude azimuthal shape
perturbations. A neck with a mode n perturbation has a cross-
section described by r(θ, t) = r(t) + bn(t) cos(nθ). When some
initial perturbation bn(0) is prescribed to a collapse with mean
dynamics that are described by r = d/2∼ (t0− t)α, the pertur-
bation scale bn(t) “chirps” as the singularity is approached,
oscillating with increasing frequency but nearly fixed ampli-
tude. This is described by an ordinary differential equation for
bn(t) (18),

b̈n +

(
2ṙ

r

)
ḃn +

(
(1−n)

r̈

r
+n(n2− 1)

(
σ

ρr3

))
bn = 0, [1]

where inertia and surface tension σ set the oscillatory behav-
ior (18). Our data show that turbulence in the water can be the
source of this shape perturbation leading to the oscillation and
that, in many cases, the fundamental mode accurately describes
the logarithmic period of the perturbation’s oscillation as pre-
dicted by the model (18). Fig. 2 C and D shows, as dashed
lines, results from the azimuthal perturbation model, where an
n = 2 (elliptical shape) perturbation has been fit to the experi-
mental data. The model captures reasonably well the period of
oscillation, which is not a fitting parameter but is instead set by
the mean collapse dynamics r(t), showing that the collapse is
inertial and independent of the frozen turbulence in the back-
ground. The resolved amplitude of oscillation is ∼100 µm, and
the model no longer follows the experimental data when the
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Fig. 2. Reconstruction of the bubble pinch-off in a turbulent flow from
2 views, with dn = 2.7 mm and ε= 1, 500 cm2/s3. (A) Large-scale view of
the bubble in the first frame after pinch-off, where the green and blue
dashed regions indicate the 2 fields of view (separated by a 90◦ angle) in
the x − z and y − z planes. Colored lines indicate various vertical planes
used for the vertical analysis of the neck. (B) Close-up views at various times
showing that the thinnest neck position does not move vertically and that
both views exhibit necks of different sizes. Movie S1 shows the collapse.
(C) Neck diameters dx and dy in the 2 views during the pinch-off. The 2 do
not superpose, hence breaking the circular invariance. While the individual
time evolution of dx and dy does not exhibit self-similar pinch-off, the mean
diameter (red) follows a self-similar scaling, d ∝ (t0 − t)α, with α= 0.55
fitted to the data (black dotted line), which are very close to the values
observed for bubble pinch-off in still water and predicted theoretically.
(D) Difference Δr = (dx − dy )/2 as a function of time t0 − t. The oscillat-
ing behavior can be described up to t0 − t ≈ 0.1 ms by the dynamics of an
elliptical perturbation indicated in dashed lines [reconstructed using Eq. 1,
with b2(t = t0 − 10ms) =−24 μm and ḃ2(t = t0 − 10ms) =−3.2 mm/s]; this
is also shown in colored dashed lines in C. (E) Snapshots of the neck shape
reconstructed with Eq. 1 (orange; solid lines) and the mean circular shape
(black; dotted lines) during the collapse. (F) Difference Δr = (dx − dy )/2
as a function of the mean neck diameter d(t, z′) for the different verti-
cal neck planes z′, with the colors corresponding to the slices shown with
the similarly colored line in A. When plotted against the local average
neck size, different slices of the neck evolve in phase with each other
and exhibit similar oscillatory behavior, showing that no vertical dynamics
take place.

average size of the neck is d ≈ 400μm, at which point the small-
amplitude assumption used in Eq. 1 no longer holds. Moreover,
Fig. 2F shows that the oscillation phase is set by the local neck
size over a vertical range near the neck minimum. This sug-
gests that the perturbation from the cylindrical shape does not
vary significantly along the neck axis. Other examples of sim-
ilar oscillatory dynamics are shown in SI Appendix. In many
cases, oscillations occur about (dx − dy)/2 �=0, suggesting that
the mean shape of the neck is elliptical. Similar offsets have
been attributed to asymmetric external flows (19), which we
relate to deformed bubble shapes below. Further evidence for

initial turbulent perturbations inducing bubble shape oscillations
is obtained by performing direct numerical simulations using the
open source package Basilisk (26, 27) (Materials and Methods).
We initialize a bubble in a quiescent background with a neck
cross-section that is initially slightly elliptic (mode n =2 per-
turbation) and recover the oscillatory behavior of the pinch-off
described above (shown in SI Appendix).

Escape from Self-Similarity Close to Singularity
Next, we address the cases where the initial dynamics of the
average neck size are still described by the self-similar route to
finite-time singularity, but the neck thinning eventually escapes
self-similarity at some point before pinch-off. We observe that
such events arise more often for larger initial neck sizes and
stronger turbulence and that the escape from self-similarity can
be preceded by shape oscillations, such as those in Fig. 2, or
displacement of the thinnest portion of the neck in either the
vertical or horizontal direction, which indicates more complex
3D dynamics. A combination of the 2 perturbations has also
been observed. The final escape from self-similarity is accom-
panied by a kink structure appearing in the interface near the
neck minimum. We record the size of the neck, dk, when the first
indication of the ensuing abrupt change in curvature is visually
identified.

Fig. 3A shows an example of the appearance of a kink associ-
ated with a vertical displacement of the thinnest neck position.
In this case, the kink structure first appears on the left side
of the x − z plane view (colored purple in Fig. 3A) and corre-
sponds to the first inflection point in dx at t0− t ≈ 500μs and the
increase in the collapse velocity of this side of the neck (shown in
Fig. 3A, Inset). The kink next appears in the 2 sides of the neck
viewed in the y − z plane, coinciding with the change in slope
in dy and increase in the corresponding collapse velocities at
t0− t ≈ 300μs, and finally, it is seen in the right side of the x − z
plane view at t0− t ≈ 90μs. Fig. 3B shows that the axial position
of the thinnest point of the neck changes as the kink develops
so that the final pinch-off point is clearly distinct from the initial
neck. As evidence for the complex 3D structure of the pertur-
bation, the axial locations of the minimum dx and dy values are
also shown in blue and green, respectively, in Fig. 3B: these oscil-
late about the average. Plotting the oscillation signal (dx − dy)/2
for various slices through the neck in Fig. 3B as a function of
the local neck thickness, we see that various slices of the neck no
longer share the same oscillation characteristics as had been the
case in Fig. 2. In other cases, shape oscillations are not observed,
but there is a persistent horizontal displacement of the thinnest
part of the neck related to a large asymmetry, leading to different
sides of the neck collapsing at consistently different rates. Such
configurations, together with additional cases similar to Fig. 3 A
and B, are shown in SI Appendix, all of which display a kink
that forms and causes the collapse to escape self-similarity in
its final stages.

To show that this 3D behavior responsible for escaping self-
similarity can be induced only by the initial bubble shape itself,
we perform direct numerical simulations of an asymmetric bub-
ble collapsing due to surface tension. We initialize an asymmetric
bubble shape resembling a dumbbell with an off-center circular
axis, shown in Fig. 3C, and a quiescent initial condition. The
result is an elliptical neck shape with asymmetry that persists
through the pinch-off without oscillation, evidenced by the plots
of dx and dy shown as dashed and dotted lines in Fig. 3C. The
asymmetry is further understood by considering the motion of 4
separate points on the neck interface, the collapse velocities of
which are shown in Fig. 3C, Insets: one side of the neck consis-
tently moves away from the neck center during the collapse, as
the side opposite to it collapses much more quickly. Eventually,
a kinked structure appears in the neck region. Given the initially
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Fig. 3. Bubble pinch-off in a turbulent flow, with the dynamics escaping the self-similar behavior close to the finite-time singularity, associated with a
kink-like structure. (A) Experimental snapshots and neck-thinning curves from a bubble collapse with dn = 2.7 mm and ε= 600 cm2/s3, showing that the
thinnest neck position moves vertically and that the neck is systematically bigger in the x direction than in the y direction. The mean diameter (red) steepens
after the kink-like structure appears (star). This coincides with rapid variation in the neck collapse velocity, shown in Inset, in which the 4 colors and markers
correspond to the 4 sides of the neck marked in the snapshots. (B) Oscillation of the neck shape for various vertical planes below the pinch-off plane (mapped
to z′ in Inset). Contrary to the case presented in Fig. 2, a phase shift is observed between the different planes, showing that the perturbation structure has
a vertical dependence. The vertical displacement of the thinnest neck position is shown in Inset; it moves upward as the kink grows. (C) A 3D simulation
of an asymmetric bubble pinching off in a quiescent fluid, with the initial shape in Upper Left Inset. Snapshots of the neck region and kink structure are
provided, showing the leftward motion of the neck induced by the asymmetric shape. The collapse velocity of 4 points in the pinch-off plane is in Lower
Right Inset, showing the asymmetric manner in which the bubble pinches off. (Sides of the neck are colored as they are in A; the green and yellow curves
overlap due to the symmetry about the x− z plane.) (D) Size of the neck when the kink appears, dk, against the maximum asymmetry observed in the neck
prior to the kink (and after d reaches dn/3 for the experiments), where black and gray markers are the ∼ 200 experiments in which a kink is observed and
red markers are numerical simulations with shapes similar to those shown in C. For the gray experimental markers, dk is taken as dx at the kink formation,
since the formation time t0− tk is below the temporal resolution of the slower camera measuring dy . The Pearson correlation for all of the experimental
points is 0.748; this calculation is explained in SI Appendix. Movies S2 and S3 show examples of such collapses.

quiescent state of the simulation, the complex pinching dynam-
ics can be attributed to the bubble’s initial asymmetric shape.
Fig. 3D shows, for the experimental and numerical cases in which
a kink is observed, the size of the neck at kink formation dk as
a function of the maximum asymmetries in the neck region prior
to kinking max(|dx − dy |/2). The positive correlation suggests
that larger asymmetries in the neck shape promote earlier kink
development, when the average neck size is larger. Correlation
metrics are given in SI Appendix.

As shown in Figs. 2 and 3, the averaged neck thinning in
turbulence initially follows the unperturbed results described
in the literature, d ∝ (t − t0)α, with α≈ 0.5. This behavior is
highly reproducible over the various observed cases, even those
for which Eq. 1 does not capture the neck evolution. In some
cases, these dynamics are followed until the end of the observ-
able time window (Fig. 2), while in other cases, the collapse
escapes self-similarity (Fig. 3). Fig. 4A shows the normalized
ensemble-averaged mean neck diameter, 〈d/dn〉, which follows
〈d〉∝ [(t0− t)/tturb]α with α≈ 0.5, the ensemble-averaged data
being in good agreement with the theoretical axisymmetric self-
similar pinch-off of an underwater bubble. The distribution of
power law slopes measured in turbulence, shown in Fig. 4A, Inset,
is also centered around α≈ 0.5.

Control of Kink Formation by the Turbulence
In Fig. 3, we showed that the escape from self-similarity by kink-
ing is controlled by the asymmetry in the neck shape induced
by the pinching dynamics. Here, we relate this asymmetry to
the turbulent initial conditions by considering the competi-
tion between turbulent stresses and surface tension, which sets
the initial bubble shape. This is parameterized by the ratio of the
needle size, dn, to the Hinze scale, dH = (σ/ρ)3/5ε−2/5/2, the
scale at which the 2 factors are in equilibrium (6). The Hinze
scale is relevant to any process in which turbulence acts against
surface tension to break apart bubbles or droplets (28), setting,
for example, the size distribution of bubbles produced by break-
ing waves (1, 29). We find that dn/dH determines the pinching
behavior: at larger dn/dH, turbulence induces more pronounced
deformations to the bubble shape, leading to a higher degree of
neck asymmetry during the collapse and an earlier kink. Fig. 4B
shows the likelihood of a kink being resolved (up until the exper-
imental limit of t0− t = 10µs) at each experimental condition.
The likelihood of kink formation increases with dn/dH, going
from 0 for dn/dH→ 0 (the no turbulence condition) up to almost
100% for dn/dH> 1. Furthermore, as shown in Fig. 4C, dn/dH
controls the point of kink formation, the kink forming earlier
(and becoming larger) when dn/dH increases, with the data being
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Fig. 4. Role of the turbulence in kink formation. (A) Ensemble average of
the normalized average neck diameter 〈d/dn〉 over all experiments for var-
ious needles and levels of turbulence, with the time until pinch-off normal-
ized by the turbulent timescale at the needle length scale, tturb = (d2

n/ε)1/3.
The shaded area indicates the standard deviation, and the black line indi-
cates the α= 1/2 inertial power law scaling. Inset shows the distribution of
the exponent α obtained by fitting d ∝ (t0 − t)α for each experiment (Mate-
rials and Methods). The distribution is centered around 0.5. (B) The portion
of cases with a resolved kink at each experimental condition as a function
of dn/dH, with kinks rarely appearing at low dn/dH but almost always being
resolved as the ratio approaches 1. (C) The neck size when the kink appears,
dk, as a function of dn/dH, which exhibits a power law relation (dk/dH) ∼
(dn/dH)β , with β= 2.1 obtained by a fit (which is shown in green). (D) Snap-
shots of the bubble at t0 − t = 1 ms (Upper) and 2/3 of the way between kink
formation and pinch-off (Lower) for cases at 3 different dn/dH, with the
background shading mapped to the color bar in B. When dn/dH increases,
larger initial deformations lead to earlier and larger kink formation.
(Scale bar: 1 mm.)

described by dk/dH∝ (dn/dH)
β with β≈ 2.1 fitted to the data.

The role of dn/dH is shown qualitatively in 3 representative cases
shown in Fig. 4D. At small dn/dH, the bubble largely retains
its unperturbed shape, despite potentially being stretched away
from the needle by a passing eddy of size 
 dn. This leads to
small neck deformations and a small, late kink structure. As
dn/dH is increased, the initial bubble shape becomes more and
more deformed, leading to earlier and larger kink structures.
We note experimentally that the kink lifetime resembles closely
the capillary timescale (t0− tk)∼ (ρ/σ)1/2d

3/2
k (SI Appendix),

suggesting that capillarity governs the kink development.
The kink dynamics presented are very unlikely to be caused

by turbulence intermittency given the high velocity of the kink’s
development (which is faster than velocities measured in the
tails of velocity fluctuation distribution as shown in SI Appendix).
Previous literature suggests that similar kinked structures are
indicative of an n =3 azimuthal shape perturbation (19), but

we were unable to find a satisfactory fit of Eq. 1 with n =3.
A formalized description of the kink formation would likely
entail both axial and azimuthal perturbations to the neck shape
in a fully 3D analysis similar to that in ref. 23 as well as the effects
of rotational motion near the neck, which can modify the collapse
process (25). Such a description is still incomplete.

Conclusion
We present experiments on bubble pinch-off in turbulence and
demonstrate that the effect of the turbulent background flow
can be reduced to its role in setting the initial conditions. We
show that the turbulent fluctuations freeze after the pinch-off
process starts (i.e., the turbulent timescale at the scale of the
neck is much slower than the pinching dynamic). The frozen
turbulence sets the stage for complex behavior, such as neck
shape oscillations, during the collapse. We identify a controlling
nondimensional parameter, dn/dH, which compares the initial
neck size with a length scale characterizing the ability of the
turbulence to deform it. When dn/dH increases, we observe an
escape from self-similarity at the final instant of pinching involv-
ing a kink-like interfacial structure, which grows faster than the
power law collapse. The size of the structure and the time of its
appearance before pinch-off increase with dn/dH. At high tur-
bulence Reynolds numbers, we suggest that self-similarity will
always break down during a bubble collapse, as a kink naturally
forms on the route to the singularity. This study paves the way
for a deeper understanding of systems approaching finite-time
singularities in natural situations where strong perturbations
are present.

Materials and Methods
Experimental Setup and Analysis. Turbulence in the water is created by 8 sub-
merged pumps with outlets that are attached via flexible tubing to nozzles
arranged at the vertices of a 28-cm cube and pointed toward the cube’s cen-
ter. A sketch of the experimental setup is provided in SI Appendix. Inspired
by refs. 30 and 31, this setup induces a largely homogeneous, isotropic flow
in the cube center. A needle in the range 1.4 mm ≤ dn ≤ 4.8 mm is sus-
pended in the center of the cube. Pinch-off is recorded over 4 values of
turbulent dissipation rate ε between 0 and 5,400 cm2/s3 (ε= 0 being the
quiescent state, corresponding to dH →∞), with each ε characterized with
planar 2D particle image velocimetry (PIV) (32) in the absence of bubbles.
PIV data and processing details are shown in SI Appendix. For the 3 increas-
ing values of non-0 ε, the Kolmogorov microscale is 58, 47, and 34 μm,
respectively, and the Taylor microscale is 1.7, 1.7, and 1.2 mm, respectively.
This is comparable with the initial size of the neck as pinch-off begins so
that the bubble is initially within the turbulence inertial subrange. The inte-
gral length scale is estimated to be ≈ 1.3 cm from an integral of the spatial
autocorrelation function.

The imaging of the pinch-off is done with a 2-camera setup similar to
that in refs. 18 and 21, which provides a measure of the neck’s asymmetry
with views from 2 orthogonal angles. One camera (Phantom v2012) films
at 1/Δt = 1,00,000 fps and a pixel size Δx = 22 μm, while the other (Phan-
tom VEO 440-L) films at 1/Δt= 24,000 to 29,000 fps and Δx = 29 μm. The
pinch-off time t0 is identified independently from each recording as the first
frame in which the neck is no longer connected. An image-processing algo-
rithm written in Python is used to infer the 3D orientation of the bubble in
time and map pixel locations to 3D space. The size of the neck in each view
is calculated by intersecting the pinch-off plane with the image plane, with
the pinch-off plane fixed through the pinch-off point but potentially rotat-
ing at a constant rate in accordance with the frozen turbulent flow. These
processing methods are explained in detail in SI Appendix.

Approximately 300 cases of turbulent bubble pinch-off were imaged with
the 2-camera setup, and a further ∼ 40 were measured without turbulence.
The comparison with the model in Fig. 2 is done by first fitting d(t) with a
power law fit, calculating r and its derivatives for use in Eq. 1, and finding
the initial conditions b2 and ḃ2 that yield the best fit to the experimental
data when dx and dy are extracted synthetically from the model. To do this,
we calculate the (x, y) location of many points on the neck slice and define
dx = max(x) − min(x) and dy = max(y) − min(y). Fig. 4A shows the ensemble
average of d/dn obtained by averaging all of the turbulent cases together.
The probability density function of the exponent α in Fig. 4B is obtained by
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choosing the time range over which the power law fit is performed inde-
pendently for each case to maximize the fit coefficient of determination.
Here, we enforce that the chosen range of (t0− t) spans at least 1 order
of magnitude in time before the kink occurs. The portion of cases exhibit-
ing a resolved kink (which appears before t0− t = 10 µs) shown in Fig. 4B
is computed for each combination of needle size and turbulence dissipa-
tion rate, which defines the ratio dn/dH. The ensemble-averaged size of
the neck at the kink formation for each condition is found by averaging
the value of dk over each experimental condition after setting dk = 0 for
cases that do not have resolved kinks, with the notion that they kink at
subresolution scales. When using smaller needles than those presented in
this study, unsteady air injection compounded by the fluctuating pressure
imposed by the turbulence at the needle outlet creates high-speed air-
flow through the neck, inducing a Bernoulli suction effect that dominates
the pinching (13).

Direct Numerical Simulations. We perform direct numerical simulations with
the open source package Basilisk (26, 27), solving the 3D 2-phase Navier–
Stokes equations with surface tension using an air-water density ratio of 850
and a viscosity ratio of 5.12 on an adaptive octree mesh. This solver has been
extensively validated for complex multiphase flow processes with interface
topological changes and reconnection (1, 33–35). To validate our configu-
ration, we perform a 3D simulation of axisymmetric bubble pinch-off and

recover the pinching dynamics expected from the theoretical and exper-
imental results, the neck size following d∝ (t0− t)α, with α≈ 0.5. Grid
convergence is verified at high resolution, and we adaptively maintain ∼6
to 10 points per neck diameter throughout the pinch-off process, allowing
the neck diameter to shrink to 250 to 450 times smaller than its initial thick-
ness. To further confirm the frozen turbulence hypothesis, we reproduce the
dynamical behavior observed in Fig. 2 by initializing a small-amplitude ellip-
tical perturbation (mode n = 2), and we recover an oscillatory behavior as
predicted theoretically and observed experimentally. The role of the initial
asymmetry on the kink formation is examined numerically by a set of simu-
lations performed with various initial asymmetries (Fig. 3). Details of these
simulations are provided in SI Appendix.

Data Availability. Data and code to reproduce plots are available at http://
arks.princeton.edu/ark:/88435/dsp014f16c5691 (36).
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