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In Brief

Tierney et al. presents a meta-analysis of
metagenomes covering 3,655 samples
from two body sites. They identify
45,666,334 non-redundant genes in the
human oral and gut microbiome, and half
of every person’s microbial gene content
is completely unique. These rare genes,
denotes singletons, predominantly arise
from extremely rare microbial strains.
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SUMMARY

Despite substantial interest in the species diversity of
the human microbiome and its role in disease, the
scale of its genetic diversity, which is fundamental
to deciphering human-microbe interactions, has not
been quantified. Here, we conducted a cross-study
meta-analysis of metagenomes from two human
body niches, the mouth and gut, covering 3,655 sam-
ples from 13 studies. We found staggering genetic
heterogeneity in the dataset, identifying a total of
45,666,334 non-redundant genes (23,961,508 oral
and 22,254,436 gut) at the 95% identity level. Fifty
percent of all genes were “singletons,” or unique
to a single metagenomic sample. Singletons were
enriched for different functions (compared with
non-singletons) and arose from sub-population-spe-
cific microbial strains. Overall, these results provide
potential bases for the unexplained heterogeneity
observed in microbiome-derived human pheno-
types. One the basis of these data, we built a
resource, which can be accessed at https://
microbial-genes.bio.

INTRODUCTION

Recent studies have made great strides in deepening our under-
standing of the strain-level diversity within the human gut micro-
biome, and 150,000 and 92,143 distinct microbial strains in two
large meta-analyses, respectively, have been identified since the
beginning of 2019 alone (Almeida et al., 2019; Pasolli et al.,
2019). Additionally, others have demonstrated the importance
of minute gene-level variation across strains in human health
and disease (Zeevi et al., 2019). However, the implications of
these discoveries for the overall microbial gene content of the
human microbiota remains unexplored. The field still does not
have a grasp on the scope of the microbiome’s genetic con-

tent—in the gut and otherwise—a question crucial for under-
standing microbial function in the context of host disease (San-
doval-Motta et al., 2017).

The total number of distinct genetic elements within all pro-
karyotes is currently unknown, and theoretical estimates start
at one billion genes (Wolf et al., 2016); (Lapierre and Gogarten,
2009) and range to maxima defined by permutations of nucleo-
tide arrangements or thermodynamic stability in the context of
protein folding (Lapierre and Gogarten, 2009). Specifically, in
the human microbiome, most metagenomic analyses and
methods that consider genes focus on core gene families
(Lloyd-Price et al., 2017; Truong et al., 2015), where a core
gene is defined as being present once, not a paralog, and
more similar to its orthologs than any other gene in any other
species (Young et al., 2006; Tettelin et al., 2005). Others have
addressed metagenomic gene content by producing “gene
catalogs,” the set of all genes identified via assembly across a
large number of samples. Within the human gut microbiome,
up to 10 million non-redundant genes have been identified by
major sequencing consortiums using de novo approaches
(Dusko Ehrlich and The MetaHIT Consortium, 2011; Forster
et al.,, 2016; Li et al., 2014; Nielsen et al., 2014; Qin et al.,
2010). These efforts have been almost exclusively associated
with the gut microbiome, are relatively limited in terms of sample
sizes, and do not focus on the overall rarity of genes across a
population.

Moreover, there is a need to link our understanding of metage-
nomics back to that of traditional microbial genetics. Microbial
genetic elements can be grouped into “pan-genomes,” which
describe the set of all genes found in all strains of a particular
species (Tettelin et al., 2005). The size of a pan-genome is
most influenced by its effective population size and ability to
migrate to new niches (Mclnerney et al., 2017). However, other
intermittently present genes contribute significantly to the size
and function of the pan-genome. In newly sequenced prokary-
otic isolate genomes, up to a third of these genes have no detect-
able homologs in other species (Daubin and Ochman, 2004; Yin
and Fischer, 2006). These “ORFans” are distinct from all open
reading frames (ORFs) in the genome and are hypothesized to
be neutral to selection pressure (i.e., ORFans are replaced at
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Table 1. Table of Definitions Used in the Paper

Term Definition

metagenome
and “metagenomic sample”)

singleton gene
non-singleton gene

ORFan gene
in the genome

universe of genes
gene rarefaction curve
gene discovery curve

total genomic potential of a microbial community (in this work, we use this term interchangeably with “sample”

a gene detected in only one metagenomic sample across a defined collection of samples
a gene detected in more than one metagenomic sample across a defined collection of samples
genes that have no detectable homologs in other species and are distinct from all open reading frames (ORFs)

the set of all non-redundant genetic elements across all communities of organisms in a given niche
a curve tracking the accumulation of new genes as samples are incrementally added
the derivative of the rarefaction curve (It estimates the rate at which new genes are added to the catalog when

samples are added incrementally, and it can be used to estimate the size and burden of sampling of the

universe of genes.)

singleton fraction curve

a curve estimating the fraction of a gene catalog that consists of singletons versus non-singletons as samples

are added incrementally (It is used to estimate the total number of samples that would be required for all
singletons to be seen twice and thus no longer be singletons.)

mixture contig
singleton contig
non-singleton contig

a contig from de novo assembly consisting of both singletons and non-singletons
a contig from de novo assembly consisting of only singletons
a contig from de novo assembly consisting of only non-singletons

the natural rate of DNA uptake, recombination, and loss) (Wolf
et al., 2016). With an increasing emphasis in the field on the
importance of strain-level variation in the gut microbiome
(Zhao et al., 2019), there is a need to identify the contribution
of ORFan-like genes to overall metagenome gene content. We
hypothesized, especially given the recent discoveries of massive
strain diversity in the gut, that these genes would increase vari-
ation in gene content of the human microbiome.

Here, we sought to build a multi-body site microbiome gene
catalog as a publicly available resource for the scientific commu-
nity. We further aimed to use this catalog to identify and taxo-
nomically and functionally document the metagenomic analogs
of ORFan genes. Then, with ORFans in mind, we attempted to
determine the scale of sequencing that would be required to suf-
ficiently sample the total genomic content—the universe of
genes—of each niche, therefore building a “complete” gene cat-
alog of the human microbiome.

RESULTS

A Pan-microbiome Genetic Database

Like prior gene catalog analyses, we utilized a de novo approach
(as, by design, reference-based approaches only detect genes
present in a reference database) to construct non-redundant
microbiome gene catalogs from publicly available short read
data. We aggregated 2,183 samples from 6 gut microbiome
studies. For the oral microbiome dataset, we retrieved 1,473
oral microbiome metagenomic samples from 7 studies, a cohort
~2x larger than the largest consortium effort to study this niche
(Lloyd-Price et al., 2017). For a table of definitions used in this
paper, please see Table 1.

We performed a meta-analysis of this aggregated metage-
nomic data, de novo assembling each metagenome (Figures
1A-1D; Table S1). This analysis uncovered a universe of prokary-
otic genes massive in scale. Extending existing approaches
(Li et al., 2014; Nielsen et al., 2014; Qin et al., 2012), we initially
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defined a unique gene as being distinct from all other ORFs at
the 95% identity level. Overall, we predicted 157,241,550 ORFs
from the assembled oral data, compared with 136,672,846
from the gut data. Clustering at the 95% identity threshold,
the initial oral and gut catalogs contained 23,961,508 and
22,254,436 consensus genes, respectively. When these oral
and gut catalogs were clustered together at 95% identity, the
resultant, non-redundant catalog had 45,666,334 genes, given
that at this percent-identity cutoff 549,610 ORFs overlapped
(Figure 2A).

Using this final catalog, which is replete with functional and
taxonomic annotations, we built a publicly available and search-
able PostgresQL database with an associated front-end that
contains summary data (i.e., gene counts per body site, average
gene length, number of genes in each consensus gene cluster,
etc.) as well as information on our pipelines (Figure 1E). Our data-
base has 2,418 different gene EC Numbers (Bairoch, 2000),
222,308 unique gene annotations, and 15,746 NCBI taxonomies
annotated within it. We additionally report consensus gene se-
quences and the number of genes in each 95% identity cluster.
Finally, we also have made available for download MetaPhlAn2
(Truong et al., 2015) output for each sample and all of the gene
catalogs generated in the latter sections of this study.

The Oral and Gut Microbiomes Contain Vast and
Individual-Specific Genetic Content

We explored the reasons behind the substantial size of these
gene catalogs. We hypothesized this effect was driven by the
metagenomic equivalent of ORFan genes. As such, we sought
to determine the frequency of occurrence of each gene on a
sample-by-sample basis. Some genes assembled in multiple
metagenomic samples (non-singletons), whereas other genes
were found in exactly one sequencing sample (singletons). The
oral gene catalog contained 11,891,670 (49.6%) singletons and
12,069,838 (50.4%) non-singletons, whereas the gut gene cata-
log contained 12,621,933 (56.7%) singletons and 9,632,503
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Figure 1. Meta-analysis of the Oral and Gut Microbiomes

(A and B) We aggregated publicly available oral and gut short read data and assembled it into contigs (in this example, each contig comes from a single sample).

C) Gene open-reading-frames (ORFs) are identified on assembled contigs.

D) ORFs are clustered at 95% identity to identify a non-redundant gene catalog.

F-K) Downstream singleton analytical pipeline. In (F), we identify singletons and non-singletons in our dataset and in (G) compare their functional annotations. In
H), we then map genes to contigs, which we grouped into 3 categories: singleton-contigs (those consisting of only singletons), non-singleton contigs (those
consisting of only non-singletons), and mixture contigs (those consisting of both singletons and non-singletons). In (I), we filter short contigs and bin the remainder
according to the taxonomic classification of their gene content. We then attempted to identify the source of singletons as either (J) horizontal gene transfer (HGT)

(
(
(E) Database content, description of backend, description of user interface (Ul).
(
(

and/or (K) rare, singleton-rich microbial strains.

(43.2%) non-singletons (Figure 2B). On average, 2.9% of the
genes in each sample were singletons (standard devia-
tion p3.5%).

We carried out substantial analysis on synthetic and real
data with different assemblers and parameters to determine
if singleton genes were artifacts of our analytic pipeline or
false positive or short or low coverage genes. We found that
singletons had modest associations with false positive genes,
low coverage genes or contigs, short genes or contigs, or
particular assemblers or assembly parameters compared
with non-singletons. (Table S2; Figures S1-S3). We addition-
ally sought to determine whether prior gene catalog analyses
contained singletons and found that the Metahit Integrated
Gene Catalog (Li et al., 2014) contained is 46% singletons
(out of a total of 9.9 million genes) (Figure S3F). Second, we

tested whether singleton identification could be explained by
low depth of sequencing. If that were universally true, single-
tons could be present in many samples just below the
threshold of detection by assembly. We were unable to iden-
tify a strong correlation (Spearman correlation: 0.22, p < .05)
between total read count and singleton gene count within a
sample (Figures S3G-S3J), implying depth alone is not driving
singleton presence. Finally, to confirm whether the parameters
for our choice of assembler, MEGAHIT, was supported by the
literature, we reviewed every study (n = 99, 67 of which we had
access to and were not dissertations or books) currently citing
the MEGAHIT publication and determined similar projects
used the same assembly settings (Table S3).

We next relaxed the gene catalog clustering identity threshold
to determine if ORFans (singletons) were artifacts of high percent
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(A) The overlap in genetic content (95% identity level) between the oral and gut microbiomes.
(B) Distribution of ORF cluster sizes at 95% identity in our oral (blue) and gut (red) gene catalogs.

(C) Iterative clustering of our amino acid gene catalogs.

(D) Distribution of gene cluster sizes for amino acid gene catalogs generated at the 50% identity level.
(E) Sorensen-Dice index measuring dissimilarity in gene content between all pairs of individuals.
(F) Sorensen-Dice dissimilarity of individuals in terms of MetaPhlAn2-derived species content.

identities (Figure 2C). To circumvent computational limitations of
clustering in nucleic acid space, we first translated the nucleic
acid catalog to amino acids and lowered the clustering threshold
from 100% amino acid identity to the limit of reasonable compu-
tational feasibility, 50% identity. Although the catalog size shrank
with the lower identity thresholds as expected, the fraction of
singleton genes in the catalog remained approximately constant,
particularly at lower percent identities, reflecting that the high
proportion of singleton genes was not influenced by clustering
thresholds. At 50% identity, the oral microbiome gene catalog
contained 7,842,539 consensus genes, 3,255,115 (41.5%) of
which were singletons (compared with 10,465,169 genes,
49.9% singletons, in the gut) (Figure 2D).

Notably, although the oral gene catalog was larger at 95%
nucleotide identity and contained more singletons, it was smaller
than the gut catalog (and contained fewer singletons) at 50%
identity, implying overall lesser overall sequence variation at
low percent identities in the former than the latter. For the
remainder of this manuscript, singleton, and non-singleton
genes will refer to those generated at the 50% clustering level,
unless otherwise specified.
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We next sought to determine whether subjects (human hosts)
with similar reference-based species content, which we identi-
fied using MetaPhlAn2, also had similar genetic content. We
found this not to be the case. Using Sorensen-Dice dissimilarity
(where 0 is identical and 1 is most dissimilar), we found that the
human microbiome exhibits more inter-individual similarity of
overall species content (mean Sorensen-Dice oral = 0.43,
mean Sorensen-Dice gut = 0.60) (Figure 2E) versus that of genes
(mean Sorensen-Dice oral = 0.85, mean Sorensen-Dice gut =
0.95) (Figure 2F). Moreover, we found that most samples were
equally dissimilar from each other, and the presence of single-
tons could not be explained by a few completely distinct sam-
ples in our dataset. Lastly, while genetic content varied between
samples, singleton genes were evenly distributed throughout the
sample population (Figures S3G and S3H; Table S1).

Singletons Are Functionally and Taxonomically Distinct
from Non-singletons

Further, we collapsed each gene annotated with EC numbers
(Bairoch, 2000) from Prokka into Minpath (Ye and Doak, 2009)
annotations. Overall, 12.8% of singletons in the mouth and
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(C) Sorensen-dice dissimilarity of individuals in terms of overall pathway content.

12.9% in the gut were functionally annotated by Prokka,
compared with 36.7% of oral non-singletons and 34.6% of gut
non-singletons (Figures 3A and 3B). While we were limited by
relatively scant functional annotation information, we sought to
test, using Sorensen-Dice dissimilarity, whether individual
samples had, on average, the same pathways. We found this
as well not to be the case (mean oral = 0.43, mean gut = 0.29)
(Figure S4A).

We sought to taxonomically and functionally characterize the
singletons that remained in the 50% identity amino acid catalog.
We compared the enrichment of functional annotations across
singleton and non-singleton genes (Figures 1F, 1G, and 4; Table
S4). We found non-singletons and singletons to have little over-
lap in their functional diversity. In the top 50 most enriched
Minpath classes for gut and oral non-singletons, 27 overlapped,
whereas only 9 of the top 50 oral and gut singleton enriched

pathways did. Overall, non-singletons were enriched for primary
metabolic processes, such as the Citric Acid Cycle and amino
acid biosynthesis, whereas singletons were enriched for a wide
range of diverse biosynthesis and degradation pathways.

In addition to a subset of singletons arising from genes with
divergence greater than 50% identity, we hypothesized that
singletons might arise from (1) horizontal gene transfer (HGT)
or (2) extremely rare microbial strains, or some combination of
the two. To test these hypotheses, we mapped genes back to
their original contigs and classified contigs that arose exclusively
from non-singletons (73M) (i.e., only containing non-singletons),
exclusively from singletons (2.5M), and contigs arising from both
(1M) (Figure 1H). 78.7% of singletons and 90.1% of non-single-
tons could be taxonomically annotated using NCBI’s refseq
database (Figures S4B and S4C). We grouped contigs (Figure 11)
by using these gene-level annotations and searched the
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Figure 4. Enrichment of Functions in Gut and Oral Niches for Singletons and Non-Singletons

Here, we display the top 50 most enriched pathways for oral singletons (A), oral non-singletons (B), gut singletons (C), and gut non-singletons (D). Bars represent
odds ratios from a Fisher’s Exact Test and include 95% confidence intervals. Blue bars are pathways enriched in both oral and gut non-singletons, red bars are
pathways enriched in both oral and gut singletons, and the green bar is a pathway enriched in both oral singletons and gut non-singletons.

resulting groups for evidence of horizontal gene transfer and
taxonomic variation between singleton and non-singleton con-
tigs (Figures 1J and 1K).

To test hypothesis (1) and screen for potential HGT, we
searched for contigs consisting of both non-singletons and sin-
gletons where the non-singletons were annotated as coming
from one species or genus and singletons were annotated to a
different species or genus. We found that HGT did not contribute
substantially to singleton presence. The genes on the contigs
that were a mixture of singletons and non-singletons tended to
emerge from the same species or genus. Only 8,557 (0.8%) of
all mixture contigs in the oral microbiome contained potential
cross-genus HGT. In the gut, there were 33,224 of these
cross-genus, mixture contigs, a total of 1.8%.

Singletons Arise from Rare, Sub-population Specific
Bacterial Strains

In testing our second hypothesis (highly uncommon microbial
strains as the source of singletons), we identified differences in
the taxa from which singleton-contigs and non-singleton-contigs
originated. For each taxa, the singleton and non-singleton counts
were in some cases modest, and we observed some rare taxa
had more singleton than non-singleton contigs. The Pearson cor-
relation between singleton-contig and non-singleton-contig
counts for each taxa was 0.27 in the oral microbiome and 0.34
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in the gut (Table S5; Figures S4D-S4L). We sought to identify
whether the bias toward particular taxonomies was being driven
by singletons arising from shorter contigs or contigs with fewer
ORFs. We found this not to be the case (Figure S5; Table S6). In
total, we found that contigs with greater than one gene mapped
to 2,071 and 2,476 species-level taxonomic annotations in the
oral and gut microbiomes, respectively. Of these, 1,155 (55%)
species in the mouth and 1,648 (67%) in the gut had more
singleton than non-singleton contigs. We refer to these contigs
as arising from “rare strains,” and from their presence concluded
that hypothesis (2) was more likely than hypothesis (1).

Having found that singletons were enriched in different taxa
than non-singletons, we sought to test whether singleton-only
contigs came from sub-population-specific strains. The alter-
native would be that species that contained singleton contigs
were evenly distributed across the population. To test this, we
compared the number of samples in which singleton and non-
singleton contigs with given taxonomic annotations appeared.
On average, in both the oral and gut microbiomes (Figure 5A),
we found singletons-contig-derived taxonomic annotations in
fewer samples (oral_mean = 6.7, gut_mean = 8.3, Wilcoxon
test p < .05 than non-singletons (oral_mean = 22.0,
gut_mean = 25.0, Wilcoxon test p < .05), demonstrating that
singleton-enriched taxa are uncommon with respect to the
entire population. We further tested to see whether even
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Figure 5. Singleton Taxa as Sub-population-Specific, Rare Strains

Rothia sp. HMSC071B01 (Non-Singleton)

(A) Counts of taxonomic annotations for singleton and non-singleton contigs in the oral and gut microbiomes.
(B) Number of metagenomes singleton contigs and non-singleton contigs are present in for different taxonomies. Each point represents a different taxonomic

annotation.
C

Examples of strain-specific “fingerprints.” Each pair of rows corresponds to singleton and non-singleton contigs containing at least two genes that were

binned into the same taxonomic annotation. Columns are different metagenomic samples (each corresponding to a different individual). Green boxes correspond

to singleton contigs. Red boxes correspond to non-singleton contigs.

when singleton and non-singleton contigs mapped to the
same taxonomies, singleton-rich strains still arose from spe-
cific individuals or sub-populations (Figure 5B). We found
this to be the case; for example, 28 singleton and 42
non-singleton contigs map to Eubacterium rectale; however
the singleton contigs come from 1 individual, whereas the
non-singleton contigs are from 39 different individuals
(Figure 5C).

Estimating the Burden of Sequencing the Human
Microbiome

Given the size and heterogeneity of our gene catalog, we
sought to identify the amount of sequencing that would be
required to capture the entire “universe of genes” in the oral
and gut microbiomes. We used 10 rarefaction methods to es-
timate the rate of accumulation of unique genes at the 50%
identity level (Figures 6 and S6). We found imprecise esti-
mates of the total gene content of the human microbiome.
We claim this catalog is sampling between 8%-72% and
4%-50% of the total potential genetic richness of the gut

and oral microbiomes, respectively. Assuming a constant
rate of singleton accumulation with sampling, we estimate
that to achieve a point where only 1% of genes per sample
sequenced had not been seen before, we would need to
sequence on the order of 5,698 samples in the oral micro-
biome and 23,530 samples in the gut. However, given the
high variation associated with our extrapolations (which
ranged from on the order of 40 million to 200 million) in Fig-
ure S17, we emphasize that these estimates could be off by
up to an order of magnitude. Furthermore, they are dependent
on parameters that are challenging to optimize, such as gene
sequence percent identity threshold. Therefore, we can only
conclude that gene variation within the human microbiome
is vast and deeply uncertain in scope despite the relatively
large sample sizes of our meta-analysis.

DISCUSSION

We have built a large microbiome-gene database that incorpo-
rates multiple human body sites clustered at a range of percent
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identities. We built this resource with a focus on the variation of
genomic content across the human microbiome, identifying an
order of magnitude more genes in both the oral and gut micro-
biomes than ever before. We also identified singletons, which
we propose are the metagenomic equivalent of ORFan genes.
On analysis of our catalog, we find that the genetic richness in
the human microbiome has been underestimated and under-
sampled, though estimating the degree and uncertainty of
undersampling was nontrivial, despite this large collection
of data.

In line with other recently published work (Almeida et al., 2019;
Pasolli et al., 2019), our results indicate substantial strain-level
diversity. For context, consider the following: suppose the
average prokaryote has 5,000 genes (Land et al.,, 2015) and
that 90% of genetic content is shared between genomes of a
single species (Zhu et al., 2015). To explain the size of the 95%
identity oral gene catalog (24 million genes), each of the 2,000
species we identified would require on the order of 20 sub-spe-
cies/strains. If we were to only consider the 788 species identi-
fied by reference-based methods, each species would require
on the order of 50 strains. Finally, outside of only showing diver-
sity in strains, we were additionally able to show that strains rich
in singletons can act as microbial fingerprints, tending to be
unique to sub-populations within this dataset and in some cases
even individuals.

Questions remain regarding best analytic practices for
de novo metagenomic studies and, in the future, meta-
analyses of metagenomic studies. Reference-genome-based
approaches are superior to gene catalog analyses in terms
of computational feasibility and interpretability; however, given
the lack of observed correlation between taxonomy and
genetic content, databases derived from primarily cultured
isolates might lack many functionally important genes. As
such, the successful biological interpretation of metagenomic
findings is contingent upon building resources and databases
with microbial genetic diversity in mind, considering both
ORFans and otherwise.

We found that singleton genes are enriched in functionality for
a variety of unrelated metabolic functions compared with non-
singletons, which were enriched in more conserved bacterial
processes. However, functions encoded by singletons are not
irrelevant. We identified a number of pathways (e.g., antibiotic
resistance and cell wall biosynthesis), that might affect both
the structure of the microbiome and host health. The limited
overlap in top enriched singleton functions between the oral
and gut, compared with non-singletons, implies that singletons
encode more niche-specific functions than non-singletons. As
such, given the functional variety encoded within singleton
genes, we propose that singletons form an evolutionary organ
within the microbiome, one that can be leveraged by microbes
to adapt readily to environmental conditions. It is possible that,
analogously to recent work done in the field of human genetics
(Wainschtein et al., 2019), ORFan genes might explain a large

portion of the currently unexplained variation in microbiome-
associated human disease states (Sandoval-Motta et al.,
2017). Recent work has demonstrated that this might be the
case. For example, sub-population specific and intransient
strains are associated with human disease and colonization
(Zeevi et al., 2019).

The definition of a singleton gene states that it was only
observed in a single sample. Therefore, a gene could feasibly still
be present in other samples in such low abundance that it cannot
be identified via assembly. Although computing relative abun-
dance is fraught with the challenge of spurious alignments, espe-
cially in the case of low abundance genes, it could partially
address this issue and is a reasonable future direction for this
work. However, given the low correlation identified between
sample depth and singleton presence (Figure S3), we posit
that forces other than undersampling are, at least in part, driving
singleton presence in our data.

Overall, we have built a resource intended for studying
gene-level variation across multiple human body sites and
samples. We also showed that the gene landscape of the hu-
man microbiome is immense and that its heterogeneity across
people is staggering. Moreover, we have quantified the need
to increase sequencing efforts to fully explore both the oral
and gut niches, as well as other body sites. Our findings imply
that an order of magnitude more sequencing data (than
currently exists) is necessary to sufficiently sample (with only
1% of genes being novel per metagenome) human micro-
biome sequence diversity and function at even the 50% iden-
tity level. That being said, clearly this estimation is immensely
challenging because of both the variation in available
modeling methods as well as the difficulty of sequence-iden-
tity-based microbial gene definitions (i.e., 95% versus 50%
would vyield vastly different results). It is also worth noting
that despite large samples sizes, our cohorts are geographi-
cally constrained, with most of our data coming from Euro-
pean and American subjects. As such, future estimates human
microbiome gene content will likely be further improved by
capturing even greater geographic heterogeneity.

These results make a comprehensive genetic understanding
of the human microbiome, or even a compilation of its non-
redundant gene catalog, seem very challenging. However,
with greater focus on de novo assembled genes, we can avoid
oversimplified analytical approaches, such as those based
exclusively on taxonomy. Additionally, using extrapolated
data, we see a clear need to increase sample sizes in metage-
nomic studies to the orders of tens of thousands if we are to
adequately sequence the ‘“genome” of the human micro-
biome. Incorporation of these large-scale gene level analyses
into currently existing technologies can add a genetic context
to the meaning of microbial species, allowing for more
meaningful studies rooted in microbial genetics. We hope
the scientific community will be able to use the set of re-
sources provided here to deepen the field’s understanding

Figure 6. Extrapolating the Gene Content of the Human Microbiome

(A and B) Extrapolation of the universe of genes using curves fit to our oral microbiome data (A) and gut microbiome data (B). Yellow dashed lines demarcate
sampling required to observe certain percentages of new singletons per sample. Purple dashed line marks size of this study. Green dashed line is the asymptotic

number of genes in the oral microbiome.

(C and D) Alternative, more conservative extrapolation methods for estimating total gene content in the oral/gut niches.
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of the relationship between taxonomy and microbial genetic
variation.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCES TABLE
o LEAD CONTACT AND MATERIALS AVAILABILITY
e METHOD DETAILS

O Overview of the approach

O Synthetic data benchmarking of gene catalog pipeline

O Relevant code: synthetic_data_benchmarking/down-
load_homd_data.py

O Relevant code, for example parameters: synthetic_da-
ta_benchmarking/art_parameters_example.sh

O Relevant code: synthetic_data_benchmarking/run_-
synthetic_data_modeling.py.

O Relevant code: synthetic_data_benchmarking/run_-
synthetic_data_modeling.py.

O Identification of false positive genes

O Relevant code: synthetic_data_benchmarking/run_-
synthetic_data_modeling.py.

O Relevant code: synthetic_data_benchmarking/run_-
synthetic_data_modeling.py, synthetic_data_bench-
marking/compute_gene_contig_coverage.sh.

O Relevant code: statistical_analysis_and_figures/sum-
mary_data_analysis.R

O Relevant code: statistical_analysis_and_figures/gen-
e_by_gene_synthetic_analysis.R

O Relevant code: synthetic_data_benchmarking/run_-
synthetic_cdhit_analysis.py

O Relevant code: statistical_analysis_and_figures/gen-
e_by_gene_synthetic_singleton_analysis.R

O Relevant code: statistical_analysis_and_figures/gen-
e_by_gene_singleton_analysis_real_data_oral.R

O Relevant code: statistical_analysis_and_figures/gen-
e_by_gene_metaspades_megahit_real.R

O Relevant code: gene_catalog_construction/iterati-
ve_cdhit.sh, gene_catalog_construction/parse_iterati-
ve_cdhit.py

O Relevant code: gene_catalog_construction/soren-
sen.cpp

O Relevant code: statistical_analysis_and_figures/orfle-
ton_figures_both.Rmd

O Relevant code: gene_catalog_construction/full_con-
tig_parsing_and_singleton_hunting_pipeline.py

O Relevant code: contig_analysis/build_contig_data-
base.py, contig_analysis/bin_contigs_species.py

O Relevant code: contig_analysis/bin_contigs_spe-
cies.py

O Construction of disaggregated sample-based rarefac-
tion curves

O Creation of the gene discovery curve from the rarefac-
tion curve

O Determining a fitness function for the gene discov-
ery curve
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O Determining the marginal sample s that yields a
maximum number or percentage of new genes
O Relevant code: extrapolation/RollingSpeciesEstima-
tor.r, extrapolation/species_estimator.py
O Relevant code: extrapolation/RollingSpeciesEstima-
tor.r, extrapolation/species_estimator.py
O Relevant code: extrapolation/RollingSpeciesEstima-
tor.r, extrapolation/species_estimator.py
O Relevant code: extrapolation/RollingSpeciesEstima-
tor.r, extrapolation/species_estimator.py
O Figure generation
o QUANTIFICATION AND STATISTICAL ANALYSIS
e DATA AND CODE AVAILABILITY
o ADDITIONAL RESOURCES

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.
chom.2019.07.008.
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Database of results https://microbial-genes.bio

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources, software, and data sharing should be directed to and will be fulfilled by the Lead
Contact, Aleksandar Kostic (Aleksandar.Kostic@joslin.harvard.edu).

METHOD DETAILS

Overview of the approach

We aggregated 3,655 publically available oral and gut microbiome metagenomes used de novo assembly, Open-Reading-Frame
(ORF) calling, and sequence-based clustering via CD-HIT (Li and Godzik, 2006) to identify a set of 45,666,334 non-redundant genes
within them. We found 23,961,508 and 22,254,436 non-redundant genes in the oral and gut cavities, respectively. To enable access
to our data by the broader research community, we built a public-facing interface, queryable PostgresQL database, and data repos-
itory hosted on Figshare.

To validate our gene-calling pipeline, we performed extensive analysis on synthetic and real data. Synthetic read data were
generated with Art (Huang et al., 2012) from complete oral microbe isolate genomes downloaded from the Human Oral Micro-
biome Database. We assembled our synthetic metagenomes with metaSPAdes (Forouzan et al., 2018) and MEGAHIT running a
variety of settings (Li et al., 2015). We called ORF’s and checked the false discovery rate of each assembler as well as the
correlation with genes of different prevalence (i.e., incidence in multiple samples or just one) with coverage and length of
genes/contigs.

We quantified the distribution of genes across samples within our dataset, undertaking an in-depth analysis as to the number, fre-
quency, taxonomic, and functional classifications of these genes. We quantified taxonomy by alignment to NCBI’s NR database with
Diamond that had been indexed with NCBI’s taxon mapping files (available at ftp://ftp.ncbi.nim.nih.gov/pub/taxonomy/). Functional
classifications were carried out as part of our ORF calling process, which leverages information from UniProt, Pfam, TIGRFAMs, and
NCBI’'s RefSeq to classify genes ab initio. We were able to identify 2,418 discrete pathway ECiDs (out of 222,308 unique gene an-
notations) as well as confidently map to 15,746 microbial NCBI ID’s. We have additionally made these results available as part of our
resource, which can be searched by gene name, gene annotation, or taxonomy, if need be.

Further, we clustered our gene catalog at a variety of percent identities (down to 50% amino acid identity) to study the rate of clus-
tering of different genes. We have made these available as downloadable links in our dataset as well.

We provide example scripts for each phase in our pipeline at https://github.com/kosticlab/universe_of_genes_scripts.

Synthetic data benchmarking of gene catalog pipeline
An outline of our methodological pipeline can be viewed in Figure S1.

We attempted to address if singletons are likely to be false positive genes. Due to the gene-level focus in our data we do not analyze
misassemblies, as contigs are an intermediate stage in our analysis. We felt it more prudent to search for predictors of success in our
primary endpoints: genes. Our confidence in this analytic decision was further increased by our literature-review-based analysis
yielding that MEGAHIT and metaSPAdes have been shown in other publications to yield equivalent numbers of misassemblies
when compared head-to-head (see “Literature search for comparisons between MegaHit and other assemblers, including
metaSPAdes” in the Star Methods).
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This in mind, we carried out an extensive analysis of the performance of different assemblers at different levels of coverage on syn-
thetic metagenomic data in order to answer four questions:

1
2
3
4

Is there a best assembler in terms of false discovery rate and singleton discovery at varying coverages?

Are low coverage contigs/genes usually false positives?

Are short contigs/genes usually false positives?

Can we identify optimal quality filtering parameters such that we minimize false positive genes and maximize true positive
genes- a minimum contig length/coverage or gene length/coverage?

===

Aggregation of complete microbial genomes
We downloaded all 467 complete, circularized genomes, as well as their corresponding Open-Reading-Frame predictions, from the
Human Oral Microbiome Database (www.homd.org).

Relevant code: synthetic_data_benchmarking/download_homd_data.py

Construction of synthetic read data

Weran Art (Huang et al., 2012) to create synthetic read data at 1X coverage for each genome (parameters: art_illumina -ss HS25 -sam
-i input_genome -p -1 150 -f 1 -m 200 -s 10 -o paired_dat, where input_genome is a fasta file containing the complete genome as-
sembly). These are the recommended parameters in Art’s README for generating synthetic lllumina sequencing data.

Relevant code, for example parameters: synthetic_data_benchmarking/art_parameters_example.sh

Construction of synthetic metagenomes

We found from our MetaPhlAn2 output, on average, there were 95 species per sample in our oral microbiome data. As such, we
randomly picked 95 of the 467 genomes to be combined into a synthetic metagenome at varying levels of coverage. We randomly
selected a value X (where X > 0) between a specific coverage range for each of the 95 metagenomes. If the value were greater than 1,
we combined X copies of the 1X coverage synthetic read file for that genome into the metagenome. If it were less than 1, we sub-
sampled that fraction of reads from each of the fastq files using seqtk (parameters: -s X)

Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py.
Assembly and gene calling parameters
We assembled with the following parameters:

1. MEGAHIT (parameter descriptions taken from http://www.metagenomics.wiki/tools/assembly/megahit):
meta ‘-min-count 2-k-list 21,41,61,81,99’

(generic metagenomes, default)

meta-sensitive ‘~min-count 2-k-list 21,31,41,51,61,71,81,91,99’

(more sensitive but slower)

meta-large ‘-min-count 2—k-list 27,37,47,57,67,77,87’

(large & complex metagenomes, like soil)

2. metaSPAdes (used default parameters):

metaSPAdes.py —1 synthetic_metagenome_1.fq.gz —2 synthetic_metagenome_2.fq.gz-only-assembler -o output
3. Prokka

prokka—outdir prokka_output-addgenes—-metagenome—-cpus 0-mincontiglen 1 assembly_output

Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py.

Coverage ranges

We ran our pipeline at three coverage ranges. Each of the 95 organisms in each metagenome was added to said metagenome at a
level of coverage within a specific range.In the recent Pasolli et al. used a minimum coverage cutoff of 10X for genome extraction from
metagenomic data, they — S s such, we chose to test coverage ranges centered around this value. We performed 10 iterations (i.e.,
generated 10 synthetic metagenomes) for each range. The ranges we chose were low coverage (0-1X), low-medium coverage
(0-10X) and medium-high coverage (10-20X).

Identification of false positive genes

We identified false positive predicted genes by aligning our predicted genes back to the Open-Reading-Frames found in the 95
complete genomes we initially put into the synthetic metagenome. We aligned with Diamond (Buchfink et al., 2015) (additional
parameters:—-max-target-segs 1-id 0.95). Genes in the predicted gene set that did not align to the “ground truth” genes were marked
as false positives.
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Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py.

Computing coverage for each gene/contig

We computed coverage of each gene/contig by aligning raw reads back to the predicted gene/contig output files, respectively, using
BBMap (parameters: bbmap/bbwrap.sh ref = $reference in = $f1 in2 = $f2 out = output kfilter = 22 subfilter = 15 maxindel = 80). We
based these parameters based on those recommended in the MEGAHIT wiki for computing contig coverage (https://github.com/
voutcn/megahit/wiki/An-example-of-real-assembly). We computed average coverage per contig/gene, as well as average percent
of contig/gene covered.

Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py, synthetic_data_benchmarking/
compute_gene_contig_coverage.sh.

Summary-level analysis

We carried out linear regression and correlational analyses on summary- level data, which consisted of averaged statistics across all
the genes/contigs . We computed average false discovery rate for a given iteration/coverage level, average contig/gene coverage
(total percent covered as well as fold coverage), and average contig/gene length. Using base-R’s glm function, we ran the regression
False discovery rate =~ Assembler type, where Assembler Type is a categorical variable consisting of the four different assembly pa-
rameters we used. Further, we used the stat_comp function from the ggpubr package to compute correlations false discovery rate
and gene/contig fold coverage/length.

Relevant code: statistical_analysis_and_figures/summary_data_analysis.R

Gene-by-gene false positive analysis

We used base-R’s glm function to run the following two logistic regressions, using contig-level and gene-level summary statistics,
respectively:

1. False positive gene”Gene length(perisd) + Geneavg fold coverage (peri1sd)+ Assembler type + Genome coverage range
2. False positive gene”Contig length (per 1sd)+ Contig avg fold coverage (per 1sd) + Assembler type + Genome coverage range

We computed two different regressions to avoid including highly correlated variables (gene length/coverage and contig
length/coverage) in the same model.

a. false_positive = a given gene is a false positive (1) or a true positive (0)
b. fold_coverage_contig = the fold coverage for the contig a particular gene arose from
c. fold_coverage_gene = the fold of coverage for a gen
d. length_contig = the length of a contig a particular gene arose from
e. length_gene = the length of a gene

f. assembler_type = which of the 4 assembly parameters were used (megahit large, megahit sensitive, megahit default,

metaSPAdes)
g. coverage_range = which coverage range a given gene came from (0 to 1, 0 to 10, 10 to 20)

We plotted the distributions of gene/contig length/coverage by false positive/singleton status in Figure S2. Judging from the re-
lationships displayed in these distributions, we hypothesized that shorter genes would have a higher probability of being a false
positive.

Total number of false positive genes assembled by MEGAHIT default was 514,446 (15.3%). Gene length ranged from 61 to 2,448
bases with a mean of 267.2 and a median of 243.0. Contig length ranged from 64 to 5,905 bases with a mean of 480.4 and a median of
430.4. Gene average fold coverage ranged from 0 to 3722.385 reads with a mean of 23.458 and a median of 19.609. Contig average
fold coverage ranged from 0 to 3646.935 reads with a mean of 23.185 and a median of 20.397. In order to aid in interpretability of our
analysis, we normalized each of these variables by their standard deviations for each regression they were used in (gene length SD:
128.22 bases, contig length SD: 202.70 bases, gene average fold coverage SD: 21.16 reads, contig average fold coverage SD: 19.03
reads). By doing this, our odds ratios could be interpreted as change in odds for a gene being a false positive given a 1 standard
deviation change in length/coverage.

Relevant code: statistical_analysis_and_figures/gene_by_gene_synthetic_analysis.R

Clustering and identification of singleton genes

We additionally clustered all the metagenomes within each assembler parameter/type group (so across all coverage ranges) into four
separate non-redundant gene catalogs, so we could identify how singleton status of a given gene associated with coverage statistics
and assembly method. To do so, we grouped all 10 iterations within a given coverage range and used CD-HIT to cluster the genes
therein (parameters: cdhit/cd-hit -n 3 -i all_genes_for_cdhit-T0-M 0-s 0.9 -aS 0.9 -c 0.5 -o cdhit_output_50perc) at the 50% identity
level. We chose 50% identity to mimic the analysis that we had done in much of the paper.
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Relevant code: synthetic_data_benchmarking/run_synthetic_cdhit_analysis.py

Gene-by-gene singleton analysis

We used base-R’s glm function to run the following two logistic regressions, using contig-level and gene-level summary statistics,
respectively:

1. Singleton gene ~ False positive gene + Gene length (per 1sd) + Gene avg fold coverage (per 1sd) +  Assembler
type + Genome coverage range

2. Singleton gene ~ False positive gene + Contig length (per 1sd) + Contig avg fold coverage (per 1sd) + Assembler
type + Genome coverage range

The parameter definitions are the same as above with the addition of singleton_status, which refers to if, after clustering, a gene
was a singleton (1) or a non-singleton (0). We computed area under the curve (AUC) estimates using using the roc function in the
pROC package (Robin et al., 2011).

Relevant code: statistical_analysis_and_figures/gene_by_gene_synthetic_singleton_analysis.R
Benchmarking of gene catalog pipeline on real data
Modeling singleton gene status and oral microbiome contig coverage/length, gene length, and read counts

We used the following regressions to find associations between contig coverage/gene length/contig length/depth of sequencing
and singleton status in our oral microbiome data. We computed AUC estimates using using the roc function in the pROC package
(Robin et al., 2011).

a. Singleton gene ~ Gene length (per 1sd) + Total reads (per 1sd)
b. Singleton gene ~ Contig length (per 1sd) + Contig avg fold coverage (per 1sd) + Total reads (per 1sd)

One drawback of the synthetic data analysis is that due to small sample size compared to our actual study, the singleton gene
fraction was higher than we would have expected (i.e., some non-singletons may have been classified as singletons). As such,
we modeled our real data as well. In this case, we lack information on true/false positive genes, but we have larger sample sizes
and a lower overall fraction of singleton genes.

We used bbMap once again to compute contig-by-contig coverage for each predicted element that was identified by PROKKA.
For this analysis, we opted initially not to compute gene-by-gene coverage (or contig-by-contig coverage for the gut microbiome) due
to the 1) additional time and monetary cost that would be required and 2) the similarity between the gene/contig results in the syn-
thetic data analysis.

Given the similar distribution of singleton/non-singleton genes in association with our independent variables of interest Figure S3),
we hypothesized our regressions would yield small effect sizes and minimal changes in the probability of a gene being a singleton
compared to baseline. We found modest in effect size but statistically significant associations between singleton genes and
coverage of the contig from which a gene came, gene length, and contig length (Table S2). The total number of singletons was
3,183,181 (2.0%). Contig length ranged from 200 to 1,041,740 base pairs with a mean of 1,343 and a median of 2,390. Contig
coverage, in terms of average number of reads aligning to each base of a contig, ranged from 0 to 98,048.39 reads with a mean
of 16.58 and a median of 5,910. Gene length ranged from 66 to 31,656 with a mean of 671 and a median of 513. As with our synthetic
data analysis, in our regressions we normalized each continuous variable by its standard deviation (Gene length SD: 547.15 bases,
Contig length SD: 40,924.06 bases, Contig average fold coverage SD: 59.10 reads, Total reads SD: 83,030,393 reads).

Relevant code: statistical_analysis_and_figures/gene_by_gene_singleton_analysis_real_data_oral.R

Comparison between MEGAHIT and metaSPAdes in identification of singleton genes

We ran our assembly, gene calling, and gene catalog construction pipeline on a subset of 10 randomly selected samples, computing
gene-by-gene and contig-by-contig coverage (as above) and identifying singletons. We computed AUC estimates using using the
roc function in the pROC package. (Robin et al., 2011) We ran the following regressions for our analysis:

a. Singleton gene ~Assembler type

Relevant code: statistical_analysis_and_figures/gene_by_gene_metaspades_megahit_real.R

Meta-analytic data collection

We identified 13 publications (Table S1) with shotgun sequencing metagenomic data taken from any human oral and gut
microbiomes. We used 2,182 gut samples and 1,473 oral samples. We downloaded relevant study data from either the National
Center for Biotechnology Information (NCBI), the European Bioinformatics Institute (EBI), the metagenomics RAST server
(MG-RAST), or the Human Oral Microbiome Database (HOMD).

Raw read filtering and quality control

If reads had not been trimmed or had human sequences filtered out in their respective studies, we used KneadData(https://bitbucket.
org/biobakery/humann2/wiki/Home) to do so prior to assembly. This pipeline involves two primary steps. 1) Aligning raw reads back
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to the human genome reference (GRCh37/hg19) to filter out human contaminants (settings:—very-sensitive). 2) Using Trimmomatic to
remove adaptor contamination (settings: SLIDINGWINDOW 4:20, MINLEN 50).

Open-reading-frame prediction and initial functional annotation

We ran Prokka (Seemann, 2014) (version: 1.12, settings:-metagenome-addgenes-mincontiglen 1) on the raw contigs from our de
novo assembly to predict genes.

Assembly, gene calling, and construction of non-redundant gene catalog

We assembled raw reads into contiguous sequences (or, contigs) using MEGAHIT (Li et al., 2016) V1.1.2 (parameters:—default-mem-
flag 2). We removed contigs under 200 base pairs in length. We used Prokka (Seemann, 2014) V1.12 to annotate genes from the
MEGAHIT output (settings:—cpus 0—addgenes—-metagenome-mincontiglen 1). We used the default databases installed with Prokka
(UniProt, Pfam, TIGRFAMs, and NCBI’s RefSeq) for functional annotation. We then ran CD-HIT-EST (Li and Godzik, 2006) V4.6.8 with
a 95% identity cutoff (-n 10-c 0.95 -aS 0.9 -S 0.9 -M 0 -T 0). We removed genes under 100 bases in length that did not align to any
sequence NR reference database at 95% identity. For any other gene catalogs we made we either used CD-HIT or CD-HIT-EST with
varying percent identity and word length (according to the instructions in the CD-HIT user’s manual https://github.com/weizhongli/
cdhit/blob/master/doc/cdhit-user-guide.pdf)

Iterative gene catalog construction

We translated our nucleic acid gene catalog into amino acids with Python’s Biopython (Cock et al., 2009) package. We ran CD-HIT
V4.6.8 with the same parameters as above on the translated gene catalog with progressively lower percent identities, starting at
100% and decreasing in increments of 5 down to 50%. For example, we fed the output of CD-HIT run at 100% identity into another
CD-HIT run with the -c flag changed to 0.95, the output of which was run through CD-HIT again at -c 0.9, and so on.

Relevant code: gene_catalog_construction/iterative_cdhit.sh, gene_catalog_construction/parse_iterative_cdhit.py
Reference-based species identification

We ran MetaPhlAn2(Truong et al., 2015) V2.1.0 with the default settings to identify the species content in each sample. To create
incidence data from the MetaPhlAn output, which we used to in our cross-sample dissimilarity calculations, we collapsed the raw
output into a relative abundance matrix, where the columns were samples and the rows were species. We then created an incidence
matrix by recoding non-zero cells as having values of 1.

Calculation of cross-sample dissimilarity

Similarity metrics were calculated using Sorenson-Dice (Serensen, 1948) similarity, which is simply Bray-Curtis Dissimilarity applied
to prevalence rather than abundance data. To speed up data processing, we used a custom, parallelized, c++ implementation.

Relevant code: gene_catalog_construction/sorensen.cpp

MinPath annotation

We ran MinPath(Ye and Doak, 2009) V1.4 (command: python ../MinPath1.2.py -any ecid_mapping -map ec2path -report ec.report
-details ec.details) on the set of all EcID’s captured in each gene catalog to identify a mapping between gene, EcID, and parsimonious
pathway annotation.

Functional enrichment analysis

We identified pathways enriched in singletons or non-singletons for the gut and oral microbiomes using a Fisher’s Exact test, where
we compared the ratio of counts of singletons and non-singletons of any given pathway to the overall ratio of singletons to non-sin-
gletons across all populations. We adjusted for False-Discovery Rate using Benjamini-Yekutieli(Benjamini and Yekutieli, 2001)
correction. For the plots in Figure 4, we reported the top 50 most enriched pathways in the gut microbiome and oral microbiome
for singletons and non-singletons. For the plot in Figures S13-S14, we show the top 25 most enriched species/genera using the
same methods.

Relevant code: statistical_analysis_and_figures/orfleton_figures_both.Rmd

Gene-level taxonomic annotation

We used Diamond’s(Buchfink et al., 2015) taxonomic annotation configuration (which uses NCBI’s taxon nodes and taxonmap files in
conjunction with the Lowest Common Ancestor algorithm) to align against NCBI's RefSeq non-redundant protein database, which
we downloaded from ftp://ftp.ncbi.nim.nih.gov/blast/db/FASTA/nr.gz. After combining the separate files, we configured the dia-
mond database with the command “diamond makedb-in nr.gz-db nr-taxonnodes nodes.dmp-taxonmap prot.accession2taxid.gz
” We used Diamond’s default cutoff, a minimum e-value of 0.0001, to identify confident hits.

Relevant code: gene_catalog_construction/full_contig_parsing_and_singleton_hunting_pipeline.py

Gene-based taxon contig binning

We mapped genes onto the contigs from which they originated, and we binned contigs into a particular taxonomic group if at least
75% of the genes on a given contig had the same taxonomic annotation. To increase our confidence in our annotations, we filtered
out contigs with fewer than two genes on them, as well as those that were binned at a taxonomic level above genus (kingdom,
phylum, class, order, family levels).
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Relevant code: contig_analysis/build_contig_database.py, contig_analysis/bin_contigs_species.py

Identification of horizontal gene transfer

We tested of horizontal gene transfer was noticeably giving rise to singletons by examining in mixture-contigs, those consisting of
both non-singletons and singletons. We searched for where the discordant species or genus taxonomic annotations of singletons(s)
and non-singleton(s), excluding those annotations that were unable to be ascribed to any specific microbe. Out of concern of being
biased by low resolution annotations, we only classified HGT as possibly having occurred when the taxonomic bins of the singleton(s)
and the non-singleton(s) were of different genera.

Relevant code: contig_analysis/bin_contigs_species.py

Preparing data for functional and taxonomic enrichment scatterplots

In order to display enrichment within singletons and non-singletons (Figure S1B and S1F) while accounting for sample size, prior to
plotting we normalized the counts of number of genes/contigs in particular pathway/taxa by dividing by the total number of singletons
or non-singletons for a given niche. For example, if 10 singletons and 10 non-singletons aligned to a pathway and a total of 100 sin-
gletons and 10000 non-singletons were found to align to any pathway at all, we divided 10/100 and 10/10000 to get normalized values
of 0.1 and 0.001, respectively, for said pathway.

Construction of disaggregated sample-based rarefaction curves
We create an R-by-S disaggregated sample-based rarefaction matrix D (where d,s is the expected number of r-tons when s samples
are drawn from a set of S samples), starting from a binary G-by-S incidence matrix W (where wys =1 if the gene g was found in sample
s). The rarefaction curve can be solved analytically using hypergeometric distributions, and depends only on the frequency in which
each gene is found (Ugland et al., 2003).

First, we calculate the frequency y, that gene g appears in all the samples, as the row sum of the incidence matrix W (1), then calcu-
late the incidence frequency count gy (2) where gy is the number of times that genes appear k times in the sample S, and /() = 1 if its
argument is true.

yg:ZWgs (1)

G
Q= Z/<yg= :k> @

Second, let R denote the maximum value of kK where g, # 0. Then, the expected number of r-tons accumulated after s random
samples collected without replacement d, ; is calculated as follows:

R
dr‘s = quh(s,sﬂ’, k) (3)
k=1

where the hypergeometric function (4), h(s, S, r, k) returns the probability of drawing exactly r out of k possible units when sampling s
times without replacement out of a set S. For example, suppose we have a collection of 20 samples. The probability of finding exactly
3 incidences in a 10-ton set if we choose at random 12 of the 20 samples, is h(712, 20, 3, 10) and is calculated using binomial coef-

ficients as follows:
(K) (S - k)
h(s,S,r k)=~ /S =1/ @)

)

Finally, the r-ton sample-based rarefaction curves are plotted from the r*" line of D using the Python matplotlib (Hunter, 2007) pack-
age. The aggregated sample-based rarefaction curve is the expected number of unique genes d2%9 when s samples are collected
without replacement:

R
a0 =3 dy 5)
r=1

Creation of the gene discovery curve from the rarefaction curve
The gene discovery curve Q is the derivative of the rarefaction curve, where gs is the number of new genes discovered on sample s:

Qs =P% — % ®

r-1s
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Determining a fitness function for the gene discovery curve
The gene discovery curve gs from (6) is used to extrapolate gene richness in the microbiome pangenome by polynomially fitting gs.
We used the function curve_fit from the Python package scipy.optimize to fit the discovery curve to a function. Because the dis-
covery curve is derived from a rarefaction curve, the chosen function must, on the positive x axis, be continuous, non-increasing, and
convex. Further, as there are combinatorial limits on genes, the function must asymptotically reach 0. Finally, it must fit g5 with high-
fidelity, especially at the right tail, in order to get the best estimator. As none of the usual eligible candidate functions (e.g., negative
exponential, negative power curves) adequately fit the discovery curve at the right tail, it was necessary to select our own.
As the g5 appeared curved in logarithmic space, we applied a 2nd degree polynomial regression on logarithm-transformed data
(i.e., fitting a curve after remapping the axes to and x = loglog s :

f(x,a,b,c) = ax> +bx +c @

where a, b, and c are the regression parameters. Note that if a = 0, the fitting function becomes a power curve.

Determining the marginal sample s that yields a maximum number or percentage of new genes
We determined the marginal sample s required to contain less than a fraction of new genes 27#°. As f(s, a, b, ¢) is not trivial to invert in
logarithmic space, we use the root function from scipy.optimize in Python to solve for s:

0= ef(log(s)‘a,b‘z:)/(:’1 _ zfrac (8)
Similarly, the same root finding algorithm is used to find the marginal sample s that yields less than z™™ new genes, by solving:

0= ef(/og (s) abec) _ Zm (9)

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py
Gene richness estimation of oral/gut microbiome pangenomes s
As the area under the gene discovery curve function is finite for a < 0 and s > 0, we integrate / gfllog (5).ab¢) 1q extrapolate the rare-

faction curve for an arbitrary value of s, by using the scipy.integrate function from Python. The richness of oral and gut genes asymp-
totically reaches 91,439,476 and 238,585,237 genes, respectively, when s = infinity.

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py

Estimating the number of singletons in the extrapolated rarefaction curve

A function that extrapolates the number of singletons as a function of samples collected must meet certain properties: the function
must be continuous for s > 0, represent a non-increasing fraction of the rarefaction curve, ideally be the same value as the rarefaction
curve ats = 1, asymptotically reach zero, and fit d; s with high-fidelity, especially at the right tail, in order to get the best estimator. As
none of the functions that we attempted fit the above criteria, we decided to regress the fraction of singletons in logarithmic space to
the fitting function (7) while setting a = 0, then multiply it with the extrapolated rarefaction curve.

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py

Gene richness estimation of oral microbiome pangenome via the Chao2 and Chao-Bunge estimator

From the disaggregated rarefaction curve D, we estimate the gene richness of the oral microbiome by using estimators available in
the SPECIES R package. Rolling estimates using Chao2, Chao-Bunge, Jackknife, and Chao-Lee were produced as samples were
collected.

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py

Cloud Computing

All analyses were carried out entirely in the cloud on a combination of Amazon Web Services (AWS) and Microsoft Azure resources.
We ran our initial assemblies on AWS spot instances using Aether(Luber and Tierney et al., 2017) and stored the resulting data on
Azure’s cloud storage. We used Azure, Linux-based virtual machines running Ubuntu 16.04 for the remainder of our analyses.

Figure generation

All plotting, except for that done for the rarefaction curves, was done in R using the packages “ggplot2” and “cowplot” (https://cran.
r-project.org/web/packages/cowplot/index.html). Rarefaction analysis and extrapolation was done using Python’s “Matplotlib”
(Hunter, 2007) package. Figures were assembled in Adobe lllustrator (https://www.adobe.com/products/illustrator.html).
QUANTIFICATION AND STATISTICAL ANALYSIS

We used Fisher’s exact tests, linear, and logistic regression to quantify associations between various covariates across the manu-

script. We controlled for multiple hypothesis testing with Benjamini-Yekutieli p value adjustment.
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DATA AND CODE AVAILABILITY

Example scripts for each step of this analytical pipeline are publicly accessible at https://github.com/kosticlab/
universe_of_genes_scripts. When relevant, each section of the methods section below refers to script in this repository used for
that particular analysis. The post-assembly pipeline, which includes non-redundant gene catalog construction, gene catalog quality
control, gene-level taxonomy mapping, iterative gene catalog construction, binary gene incidence matrix generation, and Sorenson-
Dice dissimilarity calculation, is run by “gene_catalog_construction/full_contig_parsing_and_singleton_hunting_pipeline.py.”
We built our public facing database using Microsoft Azure’s Database for PostgreSQL service. We built our website with a Flask API.

ADDITIONAL RESOURCES

We additionally present a database of our results at https://microbial-genes.bio.
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