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SUMMARY

Despite substantial interest in the species diversity of
the human microbiome and its role in disease, the
scale of its genetic diversity, which is fundamental
to deciphering human-microbe interactions, has not
been quantified. Here, we conducted a cross-study
meta-analysis of metagenomes from two human
body niches, themouth and gut, covering 3,655 sam-
ples from 13 studies. We found staggering genetic
heterogeneity in the dataset, identifying a total of
45,666,334 non-redundant genes (23,961,508 oral
and 22,254,436 gut) at the 95% identity level. Fifty
percent of all genes were ‘‘singletons,’’ or unique
to a single metagenomic sample. Singletons were
enriched for different functions (compared with
non-singletons) and arose from sub-population-spe-
cific microbial strains. Overall, these results provide
potential bases for the unexplained heterogeneity
observed in microbiome-derived human pheno-
types. One the basis of these data, we built a
resource, which can be accessed at https://
microbial-genes.bio.

INTRODUCTION

Recent studies have made great strides in deepening our under-

standing of the strain-level diversity within the human gut micro-

biome, and 150,000 and 92,143 distinct microbial strains in two

largemeta-analyses, respectively, have been identified since the

beginning of 2019 alone (Almeida et al., 2019; Pasolli et al.,

2019). Additionally, others have demonstrated the importance

of minute gene-level variation across strains in human health

and disease (Zeevi et al., 2019). However, the implications of

these discoveries for the overall microbial gene content of the

human microbiota remains unexplored. The field still does not

have a grasp on the scope of the microbiome’s genetic con-
Cell Host
tent—in the gut and otherwise—a question crucial for under-

standing microbial function in the context of host disease (San-

doval-Motta et al., 2017).

The total number of distinct genetic elements within all pro-

karyotes is currently unknown, and theoretical estimates start

at one billion genes (Wolf et al., 2016); (Lapierre and Gogarten,

2009) and range to maxima defined by permutations of nucleo-

tide arrangements or thermodynamic stability in the context of

protein folding (Lapierre and Gogarten, 2009). Specifically, in

the human microbiome, most metagenomic analyses and

methods that consider genes focus on core gene families

(Lloyd-Price et al., 2017; Truong et al., 2015), where a core

gene is defined as being present once, not a paralog, and

more similar to its orthologs than any other gene in any other

species (Young et al., 2006; Tettelin et al., 2005). Others have

addressed metagenomic gene content by producing ‘‘gene

catalogs,’’ the set of all genes identified via assembly across a

large number of samples. Within the human gut microbiome,

up to 10 million non-redundant genes have been identified by

major sequencing consortiums using de novo approaches

(Dusko Ehrlich and The MetaHIT Consortium, 2011; Forster

et al., 2016; Li et al., 2014; Nielsen et al., 2014; Qin et al.,

2010). These efforts have been almost exclusively associated

with the gut microbiome, are relatively limited in terms of sample

sizes, and do not focus on the overall rarity of genes across a

population.

Moreover, there is a need to link our understanding of metage-

nomics back to that of traditional microbial genetics. Microbial

genetic elements can be grouped into ‘‘pan-genomes,’’ which

describe the set of all genes found in all strains of a particular

species (Tettelin et al., 2005). The size of a pan-genome is

most influenced by its effective population size and ability to

migrate to new niches (McInerney et al., 2017). However, other

intermittently present genes contribute significantly to the size

and function of the pan-genome. In newly sequenced prokary-

otic isolate genomes, up to a third of these genes have no detect-

able homologs in other species (Daubin and Ochman, 2004; Yin

and Fischer, 2006). These ‘‘ORFans’’ are distinct from all open

reading frames (ORFs) in the genome and are hypothesized to

be neutral to selection pressure (i.e., ORFans are replaced at
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Table 1. Table of Definitions Used in the Paper

Term Definition

metagenome total genomic potential of amicrobial community (in this work, we use this term interchangeably with ‘‘sample’’

and ‘‘metagenomic sample’’)

singleton gene a gene detected in only one metagenomic sample across a defined collection of samples

non-singleton gene a gene detected in more than one metagenomic sample across a defined collection of samples

ORFan gene genes that have no detectable homologs in other species and are distinct from all open reading frames (ORFs)

in the genome

universe of genes the set of all non-redundant genetic elements across all communities of organisms in a given niche

gene rarefaction curve a curve tracking the accumulation of new genes as samples are incrementally added

gene discovery curve the derivative of the rarefaction curve (It estimates the rate at which new genes are added to the catalog when

samples are added incrementally, and it can be used to estimate the size and burden of sampling of the

universe of genes.)

singleton fraction curve a curve estimating the fraction of a gene catalog that consists of singletons versus non-singletons as samples

are added incrementally (It is used to estimate the total number of samples that would be required for all

singletons to be seen twice and thus no longer be singletons.)

mixture contig a contig from de novo assembly consisting of both singletons and non-singletons

singleton contig a contig from de novo assembly consisting of only singletons

non-singleton contig a contig from de novo assembly consisting of only non-singletons
the natural rate of DNA uptake, recombination, and loss) (Wolf

et al., 2016). With an increasing emphasis in the field on the

importance of strain-level variation in the gut microbiome

(Zhao et al., 2019), there is a need to identify the contribution

of ORFan-like genes to overall metagenome gene content. We

hypothesized, especially given the recent discoveries of massive

strain diversity in the gut, that these genes would increase vari-

ation in gene content of the human microbiome.

Here, we sought to build a multi-body site microbiome gene

catalog as a publicly available resource for the scientific commu-

nity. We further aimed to use this catalog to identify and taxo-

nomically and functionally document the metagenomic analogs

of ORFan genes. Then, with ORFans in mind, we attempted to

determine the scale of sequencing that would be required to suf-

ficiently sample the total genomic content—the universe of

genes—of each niche, therefore building a ‘‘complete’’ gene cat-

alog of the human microbiome.

RESULTS

A Pan-microbiome Genetic Database
Like prior gene catalog analyses, we utilized a de novo approach

(as, by design, reference-based approaches only detect genes

present in a reference database) to construct non-redundant

microbiome gene catalogs from publicly available short read

data. We aggregated 2,183 samples from 6 gut microbiome

studies. For the oral microbiome dataset, we retrieved 1,473

oral microbiome metagenomic samples from 7 studies, a cohort

~23 larger than the largest consortium effort to study this niche

(Lloyd-Price et al., 2017). For a table of definitions used in this

paper, please see Table 1.

We performed a meta-analysis of this aggregated metage-

nomic data, de novo assembling each metagenome (Figures

1A–1D; Table S1). This analysis uncovered a universe of prokary-

otic genes massive in scale. Extending existing approaches

(Li et al., 2014; Nielsen et al., 2014; Qin et al., 2012), we initially
284 Cell Host & Microbe 26, 283–295, August 14, 2019
defined a unique gene as being distinct from all other ORFs at

the 95% identity level. Overall, we predicted 157,241,550 ORFs

from the assembled oral data, compared with 136,672,846

from the gut data. Clustering at the 95% identity threshold,

the initial oral and gut catalogs contained 23,961,508 and

22,254,436 consensus genes, respectively. When these oral

and gut catalogs were clustered together at 95% identity, the

resultant, non-redundant catalog had 45,666,334 genes, given

that at this percent-identity cutoff 549,610 ORFs overlapped

(Figure 2A).

Using this final catalog, which is replete with functional and

taxonomic annotations, we built a publicly available and search-

able PostgresQL database with an associated front-end that

contains summary data (i.e., gene counts per body site, average

gene length, number of genes in each consensus gene cluster,

etc.) as well as information on our pipelines (Figure 1E). Our data-

base has 2,418 different gene EC Numbers (Bairoch, 2000),

222,308 unique gene annotations, and 15,746 NCBI taxonomies

annotated within it. We additionally report consensus gene se-

quences and the number of genes in each 95% identity cluster.

Finally, we also have made available for download MetaPhlAn2

(Truong et al., 2015) output for each sample and all of the gene

catalogs generated in the latter sections of this study.

The Oral and Gut Microbiomes Contain Vast and
Individual-Specific Genetic Content
We explored the reasons behind the substantial size of these

gene catalogs. We hypothesized this effect was driven by the

metagenomic equivalent of ORFan genes. As such, we sought

to determine the frequency of occurrence of each gene on a

sample-by-sample basis. Some genes assembled in multiple

metagenomic samples (non-singletons), whereas other genes

were found in exactly one sequencing sample (singletons). The

oral gene catalog contained 11,891,670 (49.6%) singletons and

12,069,838 (50.4%) non-singletons, whereas the gut gene cata-

log contained 12,621,933 (56.7%) singletons and 9,632,503
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Figure 1. Meta-analysis of the Oral and Gut Microbiomes

(A and B) We aggregated publicly available oral and gut short read data and assembled it into contigs (in this example, each contig comes from a single sample).

(C) Gene open-reading-frames (ORFs) are identified on assembled contigs.

(D) ORFs are clustered at 95% identity to identify a non-redundant gene catalog.

(E) Database content, description of backend, description of user interface (UI).

(F–K) Downstream singleton analytical pipeline. In (F), we identify singletons and non-singletons in our dataset and in (G) compare their functional annotations. In

(H), we then map genes to contigs, which we grouped into 3 categories: singleton-contigs (those consisting of only singletons), non-singleton contigs (those

consisting of only non-singletons), andmixture contigs (those consisting of both singletons and non-singletons). In (I), we filter short contigs and bin the remainder

according to the taxonomic classification of their gene content. We then attempted to identify the source of singletons as either (J) horizontal gene transfer (HGT)

and/or (K) rare, singleton-rich microbial strains.
(43.2%) non-singletons (Figure 2B). On average, 2.9% of the

genes in each sample were singletons (standard devia-

tion m3.5%).

We carried out substantial analysis on synthetic and real

data with different assemblers and parameters to determine

if singleton genes were artifacts of our analytic pipeline or

false positive or short or low coverage genes. We found that

singletons had modest associations with false positive genes,

low coverage genes or contigs, short genes or contigs, or

particular assemblers or assembly parameters compared

with non-singletons. (Table S2; Figures S1–S3). We addition-

ally sought to determine whether prior gene catalog analyses

contained singletons and found that the Metahit Integrated

Gene Catalog (Li et al., 2014) contained is 46% singletons

(out of a total of 9.9 million genes) (Figure S3F). Second, we
tested whether singleton identification could be explained by

low depth of sequencing. If that were universally true, single-

tons could be present in many samples just below the

threshold of detection by assembly. We were unable to iden-

tify a strong correlation (Spearman correlation: 0.22, p < .05)

between total read count and singleton gene count within a

sample (Figures S3G–S3J), implying depth alone is not driving

singleton presence. Finally, to confirm whether the parameters

for our choice of assembler, MEGAHIT, was supported by the

literature, we reviewed every study (n = 99, 67 of which we had

access to and were not dissertations or books) currently citing

the MEGAHIT publication and determined similar projects

used the same assembly settings (Table S3).

We next relaxed the gene catalog clustering identity threshold

to determine if ORFans (singletons) were artifacts of high percent
Cell Host & Microbe 26, 283–295, August 14, 2019 285
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Figure 2. The Genetic Diversity of the Oral and Gut Microbiomes

(A) The overlap in genetic content (95% identity level) between the oral and gut microbiomes.

(B) Distribution of ORF cluster sizes at 95% identity in our oral (blue) and gut (red) gene catalogs.

(C) Iterative clustering of our amino acid gene catalogs.

(D) Distribution of gene cluster sizes for amino acid gene catalogs generated at the 50% identity level.

(E) Sorensen-Dice index measuring dissimilarity in gene content between all pairs of individuals.

(F) Sorensen-Dice dissimilarity of individuals in terms of MetaPhlAn2-derived species content.
identities (Figure 2C). To circumvent computational limitations of

clustering in nucleic acid space, we first translated the nucleic

acid catalog to amino acids and lowered the clustering threshold

from 100% amino acid identity to the limit of reasonable compu-

tational feasibility, 50% identity. Although the catalog size shrank

with the lower identity thresholds as expected, the fraction of

singleton genes in the catalog remained approximately constant,

particularly at lower percent identities, reflecting that the high

proportion of singleton genes was not influenced by clustering

thresholds. At 50% identity, the oral microbiome gene catalog

contained 7,842,539 consensus genes, 3,255,115 (41.5%) of

which were singletons (compared with 10,465,169 genes,

49.9% singletons, in the gut) (Figure 2D).

Notably, although the oral gene catalog was larger at 95%

nucleotide identity and containedmore singletons, it was smaller

than the gut catalog (and contained fewer singletons) at 50%

identity, implying overall lesser overall sequence variation at

low percent identities in the former than the latter. For the

remainder of this manuscript, singleton, and non-singleton

genes will refer to those generated at the 50% clustering level,

unless otherwise specified.
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We next sought to determine whether subjects (human hosts)

with similar reference-based species content, which we identi-

fied using MetaPhlAn2, also had similar genetic content. We

found this not to be the case. Using Sorensen-Dice dissimilarity

(where 0 is identical and 1 is most dissimilar), we found that the

human microbiome exhibits more inter-individual similarity of

overall species content (mean Sorensen-Dice oral = 0.43,

mean Sorensen-Dice gut = 0.60) (Figure 2E) versus that of genes

(mean Sorensen-Dice oral = 0.85, mean Sorensen-Dice gut =

0.95) (Figure 2F). Moreover, we found that most samples were

equally dissimilar from each other, and the presence of single-

tons could not be explained by a few completely distinct sam-

ples in our dataset. Lastly, while genetic content varied between

samples, singleton genes were evenly distributed throughout the

sample population (Figures S3G and S3H; Table S1).

Singletons Are Functionally and Taxonomically Distinct
from Non-singletons
Further, we collapsed each gene annotated with EC numbers

(Bairoch, 2000) from Prokka into Minpath (Ye and Doak, 2009)

annotations. Overall, 12.8% of singletons in the mouth and
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Figure 3. The Known and Unknown Functional Diversity of the Oral and Gut Microbiomes

(A and B) Fractions of singletons (A) and non-singletons (B) functionally annotated in the oral and gut microbiomes. Genes labeled with pathway annotations were

used in the Minpath analyses.

(C) Sorensen-dice dissimilarity of individuals in terms of overall pathway content.
12.9% in the gut were functionally annotated by Prokka,

compared with 36.7% of oral non-singletons and 34.6% of gut

non-singletons (Figures 3A and 3B). While we were limited by

relatively scant functional annotation information, we sought to

test, using Sorensen-Dice dissimilarity, whether individual

samples had, on average, the same pathways. We found this

as well not to be the case (mean oral = 0.43, mean gut = 0.29)

(Figure S4A).

We sought to taxonomically and functionally characterize the

singletons that remained in the 50% identity amino acid catalog.

We compared the enrichment of functional annotations across

singleton and non-singleton genes (Figures 1F, 1G, and 4; Table

S4). We found non-singletons and singletons to have little over-

lap in their functional diversity. In the top 50 most enriched

Minpath classes for gut and oral non-singletons, 27 overlapped,

whereas only 9 of the top 50 oral and gut singleton enriched
pathways did. Overall, non-singletons were enriched for primary

metabolic processes, such as the Citric Acid Cycle and amino

acid biosynthesis, whereas singletons were enriched for a wide

range of diverse biosynthesis and degradation pathways.

In addition to a subset of singletons arising from genes with

divergence greater than 50% identity, we hypothesized that

singletons might arise from (1) horizontal gene transfer (HGT)

or (2) extremely rare microbial strains, or some combination of

the two. To test these hypotheses, we mapped genes back to

their original contigs and classified contigs that arose exclusively

from non-singletons (73M) (i.e., only containing non-singletons),

exclusively from singletons (2.5M), and contigs arising from both

(1M) (Figure 1H). 78.7% of singletons and 90.1% of non-single-

tons could be taxonomically annotated using NCBI’s refseq

database (Figures S4B and S4C). We grouped contigs (Figure 1I)

by using these gene-level annotations and searched the
Cell Host & Microbe 26, 283–295, August 14, 2019 287



Figure 4. Enrichment of Functions in Gut and Oral Niches for Singletons and Non-Singletons

Here, we display the top 50 most enriched pathways for oral singletons (A), oral non-singletons (B), gut singletons (C), and gut non-singletons (D). Bars represent

odds ratios from a Fisher’s Exact Test and include 95% confidence intervals. Blue bars are pathways enriched in both oral and gut non-singletons, red bars are

pathways enriched in both oral and gut singletons, and the green bar is a pathway enriched in both oral singletons and gut non-singletons.
resulting groups for evidence of horizontal gene transfer and

taxonomic variation between singleton and non-singleton con-

tigs (Figures 1J and 1K).

To test hypothesis (1) and screen for potential HGT, we

searched for contigs consisting of both non-singletons and sin-

gletons where the non-singletons were annotated as coming

from one species or genus and singletons were annotated to a

different species or genus. We found that HGT did not contribute

substantially to singleton presence. The genes on the contigs

that were a mixture of singletons and non-singletons tended to

emerge from the same species or genus. Only 8,557 (0.8%) of

all mixture contigs in the oral microbiome contained potential

cross-genus HGT. In the gut, there were 33,224 of these

cross-genus, mixture contigs, a total of 1.8%.

Singletons Arise from Rare, Sub-population Specific
Bacterial Strains
In testing our second hypothesis (highly uncommon microbial

strains as the source of singletons), we identified differences in

the taxa fromwhich singleton-contigs and non-singleton-contigs

originated. For each taxa, the singleton and non-singleton counts

were in some cases modest, and we observed some rare taxa

hadmore singleton than non-singleton contigs. The Pearson cor-

relation between singleton-contig and non-singleton-contig

counts for each taxa was 0.27 in the oral microbiome and 0.34
288 Cell Host & Microbe 26, 283–295, August 14, 2019
in the gut (Table S5; Figures S4D–S4L). We sought to identify

whether the bias toward particular taxonomies was being driven

by singletons arising from shorter contigs or contigs with fewer

ORFs. We found this not to be the case (Figure S5; Table S6). In

total, we found that contigs with greater than one gene mapped

to 2,071 and 2,476 species-level taxonomic annotations in the

oral and gut microbiomes, respectively. Of these, 1,155 (55%)

species in the mouth and 1,648 (67%) in the gut had more

singleton than non-singleton contigs. We refer to these contigs

as arising from ‘‘rare strains,’’ and from their presence concluded

that hypothesis (2) was more likely than hypothesis (1).

Having found that singletons were enriched in different taxa

than non-singletons, we sought to test whether singleton-only

contigs came from sub-population-specific strains. The alter-

native would be that species that contained singleton contigs

were evenly distributed across the population. To test this, we

compared the number of samples in which singleton and non-

singleton contigs with given taxonomic annotations appeared.

On average, in both the oral and gut microbiomes (Figure 5A),

we found singletons-contig-derived taxonomic annotations in

fewer samples (oral_mean = 6.7, gut_mean = 8.3, Wilcoxon

test p < .05) than non-singletons (oral_mean = 22.0,

gut_mean = 25.0, Wilcoxon test p < .05), demonstrating that

singleton-enriched taxa are uncommon with respect to the

entire population. We further tested to see whether even
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Figure 5. Singleton Taxa as Sub-population-Specific, Rare Strains

(A) Counts of taxonomic annotations for singleton and non-singleton contigs in the oral and gut microbiomes.

(B) Number of metagenomes singleton contigs and non-singleton contigs are present in for different taxonomies. Each point represents a different taxonomic

annotation.

(C) Examples of strain-specific ‘‘fingerprints.’’ Each pair of rows corresponds to singleton and non-singleton contigs containing at least two genes that were

binned into the same taxonomic annotation. Columns are different metagenomic samples (each corresponding to a different individual). Green boxes correspond

to singleton contigs. Red boxes correspond to non-singleton contigs.
when singleton and non-singleton contigs mapped to the

same taxonomies, singleton-rich strains still arose from spe-

cific individuals or sub-populations (Figure 5B). We found

this to be the case; for example, 28 singleton and 42

non-singleton contigs map to Eubacterium rectale; however

the singleton contigs come from 1 individual, whereas the

non-singleton contigs are from 39 different individuals

(Figure 5C).

Estimating the Burden of Sequencing the Human
Microbiome
Given the size and heterogeneity of our gene catalog, we

sought to identify the amount of sequencing that would be

required to capture the entire ‘‘universe of genes’’ in the oral

and gut microbiomes. We used 10 rarefaction methods to es-

timate the rate of accumulation of unique genes at the 50%

identity level (Figures 6 and S6). We found imprecise esti-

mates of the total gene content of the human microbiome.

We claim this catalog is sampling between 8%–72% and

4%–50% of the total potential genetic richness of the gut
and oral microbiomes, respectively. Assuming a constant

rate of singleton accumulation with sampling, we estimate

that to achieve a point where only 1% of genes per sample

sequenced had not been seen before, we would need to

sequence on the order of 5,698 samples in the oral micro-

biome and 23,530 samples in the gut. However, given the

high variation associated with our extrapolations (which

ranged from on the order of 40 million to 200 million) in Fig-

ure S17, we emphasize that these estimates could be off by

up to an order of magnitude. Furthermore, they are dependent

on parameters that are challenging to optimize, such as gene

sequence percent identity threshold. Therefore, we can only

conclude that gene variation within the human microbiome

is vast and deeply uncertain in scope despite the relatively

large sample sizes of our meta-analysis.

DISCUSSION

We have built a large microbiome-gene database that incorpo-

rates multiple human body sites clustered at a range of percent
Cell Host & Microbe 26, 283–295, August 14, 2019 289



(legend on next page)

290 Cell Host & Microbe 26, 283–295, August 14, 2019



identities. We built this resource with a focus on the variation of

genomic content across the human microbiome, identifying an

order of magnitude more genes in both the oral and gut micro-

biomes than ever before. We also identified singletons, which

we propose are the metagenomic equivalent of ORFan genes.

On analysis of our catalog, we find that the genetic richness in

the human microbiome has been underestimated and under-

sampled, though estimating the degree and uncertainty of

undersampling was nontrivial, despite this large collection

of data.

In line with other recently published work (Almeida et al., 2019;

Pasolli et al., 2019), our results indicate substantial strain-level

diversity. For context, consider the following: suppose the

average prokaryote has 5,000 genes (Land et al., 2015) and

that 90% of genetic content is shared between genomes of a

single species (Zhu et al., 2015). To explain the size of the 95%

identity oral gene catalog (24 million genes), each of the 2,000

species we identified would require on the order of 20 sub-spe-

cies/strains. If we were to only consider the 788 species identi-

fied by reference-based methods, each species would require

on the order of 50 strains. Finally, outside of only showing diver-

sity in strains, we were additionally able to show that strains rich

in singletons can act as microbial fingerprints, tending to be

unique to sub-populations within this dataset and in some cases

even individuals.

Questions remain regarding best analytic practices for

de novo metagenomic studies and, in the future, meta-

analyses of metagenomic studies. Reference-genome-based

approaches are superior to gene catalog analyses in terms

of computational feasibility and interpretability; however, given

the lack of observed correlation between taxonomy and

genetic content, databases derived from primarily cultured

isolates might lack many functionally important genes. As

such, the successful biological interpretation of metagenomic

findings is contingent upon building resources and databases

with microbial genetic diversity in mind, considering both

ORFans and otherwise.

We found that singleton genes are enriched in functionality for

a variety of unrelated metabolic functions compared with non-

singletons, which were enriched in more conserved bacterial

processes. However, functions encoded by singletons are not

irrelevant. We identified a number of pathways (e.g., antibiotic

resistance and cell wall biosynthesis), that might affect both

the structure of the microbiome and host health. The limited

overlap in top enriched singleton functions between the oral

and gut, compared with non-singletons, implies that singletons

encode more niche-specific functions than non-singletons. As

such, given the functional variety encoded within singleton

genes, we propose that singletons form an evolutionary organ

within the microbiome, one that can be leveraged by microbes

to adapt readily to environmental conditions. It is possible that,

analogously to recent work done in the field of human genetics

(Wainschtein et al., 2019), ORFan genes might explain a large
Figure 6. Extrapolating the Gene Content of the Human Microbiome

(A and B) Extrapolation of the universe of genes using curves fit to our oral micro

sampling required to observe certain percentages of new singletons per sample. P

number of genes in the oral microbiome.

(C and D) Alternative, more conservative extrapolation methods for estimating to
portion of the currently unexplained variation in microbiome-

associated human disease states (Sandoval-Motta et al.,

2017). Recent work has demonstrated that this might be the

case. For example, sub-population specific and intransient

strains are associated with human disease and colonization

(Zeevi et al., 2019).

The definition of a singleton gene states that it was only

observed in a single sample. Therefore, a gene could feasibly still

be present in other samples in such low abundance that it cannot

be identified via assembly. Although computing relative abun-

dance is fraught with the challenge of spurious alignments, espe-

cially in the case of low abundance genes, it could partially

address this issue and is a reasonable future direction for this

work. However, given the low correlation identified between

sample depth and singleton presence (Figure S3), we posit

that forces other than undersampling are, at least in part, driving

singleton presence in our data.

Overall, we have built a resource intended for studying

gene-level variation across multiple human body sites and

samples. We also showed that the gene landscape of the hu-

man microbiome is immense and that its heterogeneity across

people is staggering. Moreover, we have quantified the need

to increase sequencing efforts to fully explore both the oral

and gut niches, as well as other body sites. Our findings imply

that an order of magnitude more sequencing data (than

currently exists) is necessary to sufficiently sample (with only

1% of genes being novel per metagenome) human micro-

biome sequence diversity and function at even the 50% iden-

tity level. That being said, clearly this estimation is immensely

challenging because of both the variation in available

modeling methods as well as the difficulty of sequence-iden-

tity-based microbial gene definitions (i.e., 95% versus 50%

would yield vastly different results). It is also worth noting

that despite large samples sizes, our cohorts are geographi-

cally constrained, with most of our data coming from Euro-

pean and American subjects. As such, future estimates human

microbiome gene content will likely be further improved by

capturing even greater geographic heterogeneity.

These results make a comprehensive genetic understanding

of the human microbiome, or even a compilation of its non-

redundant gene catalog, seem very challenging. However,

with greater focus on de novo assembled genes, we can avoid

oversimplified analytical approaches, such as those based

exclusively on taxonomy. Additionally, using extrapolated

data, we see a clear need to increase sample sizes in metage-

nomic studies to the orders of tens of thousands if we are to

adequately sequence the ‘‘genome’’ of the human micro-

biome. Incorporation of these large-scale gene level analyses

into currently existing technologies can add a genetic context

to the meaning of microbial species, allowing for more

meaningful studies rooted in microbial genetics. We hope

the scientific community will be able to use the set of re-

sources provided here to deepen the field’s understanding
biome data (A) and gut microbiome data (B). Yellow dashed lines demarcate

urple dashed line marks size of this study. Green dashed line is the asymptotic

tal gene content in the oral/gut niches.

Cell Host & Microbe 26, 283–295, August 14, 2019 291



of the relationship between taxonomy and microbial genetic

variation.
STAR+METHODS
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Gonzalez-Recio, O. (2019). Whole rumen metagenome sequencing allows clas-

sifying and predicting feed efficiency and intake levels in cattle. Sci. Rep. 9, 11.

Delsuc, F., Kuch, M., Gibb, G.C., Hughes, J., Szpak, P., Southon, J., Enk, J.,

Duggan, A.T., and Poinar, H.N. (2018). Resolving the phylogenetic position

of Darwin’s extinct ground sloth (Mylodon darwinii) using mitogenomic and nu-

clear exon data. Proc. Biol. Sci. 285, 20180214.

Dong, B., Yi, Y., Liang, L., and Shi, Q. (2017). High throughput identification of

antimicrobial peptides from fish gastrointestinal microbiota. Toxins (Basel)

9, E266.

Dusko Ehrlich, S.; The MetaHIT Consortium (2011). ‘‘MetaHIT: the european

union project on metagenomics of the human intestinal tract’’. In

Metagenomics of the Human Body (Springer), pp. 307–316.

Flota, J.J.M. n.d. ‘‘CONSULTINGSERVICESREPORT.’’ The-Alien-Project.com.

https://www.the-alien-project.com/wp-content/uploads/2018/12/ABRAXAS-

EN.pdf.

Forouzan, E., Shariati, P., Mousavi Maleki, M.S., Karkhane, A.A., and

Yakhchali, B. (2018). Practical evaluation of 11 de novo assemblers in metage-

nome assembly. J. Microbiol. Methods 151, 99–105.
Forster, S.C., Browne, H.P., Kumar, N., Hunt, M., Denise, H., Mitchell, A., Finn,

R.D., and Lawley, T.D. (2016). HPMCD: the database of humanmicrobial com-

munities from metagenomic datasets and microbial reference genomes.

Nucleic Acids Res. 44 (D1), D604–D609.

Georganas, E., Egan, R., Hofmeyr, S., Goltsman, E., Arndt, B., Tritt, A., Buluc,

A., Oliker, L., and Yelick, K. 2018. ‘‘Extreme Scale De Novo Metagenome

Assembly.’’ arXiv [cs.DC]. arXiv. http://arxiv.org/abs/1809.07014.

Gerner, S.M., Rattei, T., and Graf, A.B. (2018). Assessment of urban micro-

biome assemblies with the help of targeted in silico gold standards. Biol.

Direct 13, 22.

Graham, E., Heidelberg, J.F., and Tully, B. 2017. ‘‘Undocumented potential for

primary productivity in a globally-distributed bacterial photoautotroph.’’

bioRxiv. https://www.biorxiv.org/content/10.1101/140715v2.abstract.

Graham, E.B., Crump, A.R., Kennedy, D.W., Arntzen, E., Fansler, S., Purvine,

S.O., Nicora, C.D., Nelson, W., Tfaily, M.M., and Stegen, J.C. (2018). Multi

’omics comparison reveals metabolome biochemistry, not microbiome

composition or gene expression, corresponds to elevated biogeochemical

function in the hyporheic zone. Sci. Total Environ. 642, 742–753.

Han, M., Yang, P., Zhong, C., and Ning, K. (2018). The human gut virome in hy-

pertension. Front. Microbiol. 9, 3150.

Hannigan, G.D., Duhaime, M.B., Koutra, D., and Schloss, P.D. (2018a).

Biogeography and environmental conditions shape bacteriophage-bacteria

networks across the human microbiome. PLoS Comput. Biol. 14, e1006099.

Hannigan, G.D., Duhaime, M.B., Ruffin, M.T., 4th, Koumpouras, C.C., and

Schloss, P.D. (2018b). Diagnostic potential and interactive dynamics of the

colorectal cancer virome. MBio 9, e02248-18. https://doi.org/10.1128/mBio.

02248-18.

Huang, W., Li, L., Myers, J.R., and Marth, G.T. (2012). ART: a next-generation

sequencing read simulator. Bioinformatics 28, 593–594.

Huang, P., Zhang, Y., Xiao, K., Jiang, F.,Wang, H., Tang, D., Liu, D., Liu, B., Liu,

Y., He, X., et al. (2018). The chicken gut metagenome and the modulatory ef-

fects of plant-derived benzylisoquinoline alkaloids. Microbiome 6, 211.

Hunter, J.D. (2007). Matplotlib: a 2D graphics environment. Comput. Sci. Eng.

9, 90–95.

Jackman, S.D., Vandervalk, B.P., Mohamadi, H., Chu, J., Yeo, S., Hammond,

S.A., Jahesh, G., Khan, H., Coombe, L., Warren, R.L., and Birol, I. (2017).

ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter.

Genome Res. 27, 768–777.

Kleiner, M., Thorson, E., Sharp, C.E., Dong, X., Liu, D., Li, C., and Strous, M.

(2017). Assessing species biomass contributions in microbial communities

via metaproteomics. Nat. Commun. 8, 1558.

Kroeger, M.E., Delmont, T.O., Eren, A.M., Meyer, K.M., Guo, J., Khan, K.,

Rodrigues, J.L.M., Bohannan, B.J.M., Tringe, S.G., Borges, C.D., et al.

(2018). New biological insights into how deforestation in amazonia affects

soil microbial communities using metagenomics and metagenome-assem-

bled genomes. Front. Microbiol. 9, 1635.

Kusy, D., Motyka, M., Bocek, M., Vogler, A.P., and Bocak, L. (2018). Genome

sequences identify three families of Coleoptera as morphologically derived

click beetles (Elateridae). Sci. Rep. 8, 17084.

Land, M., Hauser, L., Jun, S.-R., Nookaew, I., Leuze, M.R., Ahn, T.-H.,

Karpinets, T., Lund, O., Kora, G., Wassenaar, T., et al. (2015). Insights from

20 years of bacterial genome sequencing. Funct. Integr. Genomics 15,

141–161.

Lapierre, P., andGogarten, J.P. (2009). Estimating the size of the bacterial pan-

genome. Trends Genet. 25, 107–110.

Learman, D.R., Ahmad, Z., Brookshier, A., Henson, M.W., Hewitt, V., Lis, A.,

Morrison, C., Robinson, A., Todaro, E., Wologo, E., et al. (2019).

Comparative genomics of 16Microbacterium spp. that tolerate multiple heavy

metals and antibiotics. PeerJ 6, e6258.

Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and

comparing large sets of protein or nucleotide sequences. Bioinformatics 22,

1658–1659.

Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., Arumugam, M.,

Kultima, J.R., Prifti, E., Nielsen, T., et al.; MetaHIT Consortium; MetaHIT
Cell Host & Microbe 26, 283–295, August 14, 2019 293

http://refhub.elsevier.com/S1931-3128(19)30352-X/sref1
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref1
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref1
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref2
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref2
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref2
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref2
https://doi.org/10.7287/peerj.preprints.27332v1
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref4
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref4
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref5
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref5
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref6
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref6
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref6
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref6
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref7
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref7
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref8
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref8
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref8
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref8
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref8
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref9
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref9
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref9
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref10
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref10
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref10
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref10
http://etheses.whiterose.ac.uk/22247/
http://etheses.whiterose.ac.uk/22247/
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref12
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref12
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref12
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref12
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref13
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref13
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref14
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref14
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref14
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref15
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref15
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref15
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref15
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref16
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref16
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref16
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref17
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref17
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref17
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref17
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref17
https://www.the-alien-project.com/wp-content/uploads/2018/12/ABRAXAS-EN.pdf
https://www.the-alien-project.com/wp-content/uploads/2018/12/ABRAXAS-EN.pdf
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref19
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref19
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref19
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref20
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref20
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref20
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref20
http://arxiv.org/abs/1809.07014
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref22
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref22
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref22
https://www.biorxiv.org/content/10.1101/140715v2
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref24
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref24
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref24
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref24
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref24
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref25
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref25
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref26
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref26
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref26
https://doi.org/10.1128/mBio.02248-18
https://doi.org/10.1128/mBio.02248-18
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref28
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref28
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref29
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref29
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref29
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref30
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref30
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref31
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref31
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref31
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref31
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref32
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref32
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref32
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref33
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref33
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref33
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref33
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref33
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref34
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref34
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref34
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref35
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref35
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref35
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref35
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref36
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref36
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref37
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref37
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref37
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref37
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref38
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref38
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref38
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref39
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref39


Consortium (2014). An integrated catalog of reference genes in the human gut

microbiome. Nat. Biotechnol. 32, 834–841.

Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT: an

ultra-fast single-node solution for large and complex metagenomics assembly

via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.

Li, D., Luo, R., Liu, C.-M., Leung, C.-M., Ting, H.-F., Sadakane, K., Yamashita,

H., and Lam, T.-W. (2016). MEGAHIT v1.0: A fast and scalable metagenome

assembler driven by advanced methodologies and community practices.

Methods 102, 3–11.

Li, H.-Y., Wang, H., Wang, H.-T., Xin, P.-Y., Xu, X.-H., Ma, Y., Liu, W.-P., Teng,

C.Y., Jiang, C.L., Lou, L.P., et al. (2018). The chemodiversity of paddy soil dis-

solved organic matter correlates with microbial community at continental

scales. Microbiome 6, 187.

Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A.B.,

Brady, A., Creasy, H.H., McCracken, C., Giglio, M.G., et al. (2017). Strains,

functions and dynamics in the expanded Human Microbiome Project.

Nature 550, 61–66.

Luber, J.M., Tierney, B.T., Cofer, E.M., Patel, C.J., and Kostic, A.D. (2017).

Aether: leveraging linear programming for optimal cloud computing in geno-

mics. Bioinformatics (December). https://doi.org/10.1093/bioinformatics/

btx787.

Martin, R.M., Moniruzzaman, M., Mucci, N.C., Willis, A., Woodhouse, J.N.,

Xian, Y., Xiao, C., Brussaard, C.P.D., and Wilhelm, S.W. (2019).

Cylindrospermopsis raciborskii Virus and host: genomic characterization

and ecological relevance. Environ. Microbiol. 21, 1942–1956.

Maus, I., Rumming, M., Bergmann, I., Heeg, K., Pohl, M., Nettmann, E.,

Jaenicke, S., Blom, J., P€uhler, A., Schl€uter, A., et al. (2018). Characterization

of Bathyarchaeota genomes assembled from metagenomes of biofilms

residing in mesophilic and thermophilic biogas reactors. Biotechnol. Biofuels

11, 167.

McInerney, J.O., McNally, A., and O’Connell, M.J. (2017). Why prokaryotes

have pangenomes. Nat. Microbiol. 2, 17040.

Mizzi, J.E., Lounsberry, Z.T., Brown, C.T., and Sacks, B.N. (2017). Draft

genome of tule elk Cervus canadensis nannodes. F1000Res. 6, 1691.

Nielsen, H.B., Almeida,M., Juncker, A.S., Rasmussen, S., Li, J., Sunagawa, S.,

Plichta, D.R., Gautier, L., Pedersen, A.G., Le Chatelier, E., et al.; MetaHIT

Consortium; MetaHIT Consortium (2014). Identification and assembly of ge-

nomes and genetic elements in complex metagenomic samples without using

reference genomes. Nat. Biotechnol. 32, 822–828.

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. (2017).

metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27,

824–834.

O’Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R.,

Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., et al. (2016).

Reference sequence (RefSeq) database at NCBI: current status, taxonomic

expansion, and functional annotation. Nucleic Acids Res. 44 (D1), D733–D745.

P€arn€anen, K., Karkman, A., Tamminen, M., Lyra, C., Hultman, J., Paulin, L.,

and Virta, M. (2016). Evaluating the mobility potential of antibiotic resistance

genes in environmental resistomes without metagenomics. Sci. Rep. 6, 35790.

Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F.,

Beghini, F., Manghi, P., Tett, A., Ghensi, P., et al. (2019). Extensive

Unexplored Human Microbiome Diversity Revealed by Over 150,000

Genomes from Metagenomes Spanning Age, Geography, and Lifestyle.

Cell 176, 649–662.e20.

Patin, N.V., Pratte, Z.A., Regensburger, M., Hall, E., Gilde, K., Dove, A.D.M.,

and Stewart, F.J. (2018). Microbiome Dynamics in a Large Artificial

Seawater Aquarium. Appl. Environ. Microbiol. 84, e00179-18, https://doi.

org/10.1128/AEM.00179-18.

Pedron, R., Esposito, A., Bianconi, I., Pasolli, E., Tett, A., Asnicar, F.,

Cristofolini, M., Segata, N., and Jousson, O. (2019). Genomic and metage-

nomic insights into the microbial community of a thermal spring. Microbiome

7, 8.

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen,

T., Pons, N., Levenez, F., Yamada, T., et al.; MetaHIT Consortium (2010). A hu-
294 Cell Host & Microbe 26, 283–295, August 14, 2019
man gut microbial gene catalogue established by metagenomic sequencing.

Nature 464, 59–65.

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y.,

Shen, D., et al. (2012). A metagenome-wide association study of gut micro-

biota in type 2 diabetes. Nature 490, 55–60.

Rebollar, E.A., Gutiérrez-Preciado, A., Noecker, C., Eng, A., Hughey, M.C.,

Medina, D., Walke, J.B., Borenstein, E., Jensen, R.V., Belden, L.K., and

Harris, R.N. (2018). The Skin Microbiome of the Neotropical Frog Craugastor

fitzingeri: Inferring Potential Bacterial-Host-Pathogen Interactions From

Metagenomic Data. Front. Microbiol. 9, 466.

Rengasamy, V. (2018). Engineering High Performance Workflows for End-to-

End Acceleration of Genomic Applications (The Pennsylvania State

University).

Rengasamy, V., Medvedev, P., and Madduri, K. (2017). ‘‘Parallel and

Memory-Efficient Preprocessing for Metagenome Assembly’’. In 2017 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pp. 283–292. ieeexplore.ieee.org.

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., and

M€uller, M. (2011). pROC: an open-source package for R and S+ to analyze

and compare ROC curves. BMC Bioinformatics 12, 77.

Roux, S., Emerson, J.B., Eloe-Fadrosh, E.A., and Sullivan, M.B. (2017).

Benchmarking viromics: an in silico evaluation of metagenome-enabled

estimates of viral community composition and diversity. PeerJ 5, e3817.

Royalty, T., and Steen, A.D. (2018). Simulation-Based Approaches to

Characterize Metagenome Coverage as a Function of Sequencing Effort and

Microbial Community Structure. bioRxiv. https://doi.org/10.1101/356840.

Sandoval-Motta, S., Aldana, M., Martı́nez-Romero, E., and Frank, A. (2017).

The Human Microbiome and the Missing Heritability Problem. Front. Genet.

8, 80.

Schulz, F., Alteio, L., Goudeau, D., Ryan, E.M., Yu, F.B., Malmstrom, R.R.,

Blanchard, J., and Woyke, T. (2018). Hidden diversity of soil giant viruses.

Nat. Commun. 9, 4881.

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation.

Bioinformatics 30, 2068–2069.

Shiller, A.M., Chan, E.W., Joung, D.J., Redmond, M.C., and Kessler, J.D.

(2017). Light rare earth element depletion during Deepwater Horizon blowout

methanotrophy. Sci. Rep. 7, 10389.

Sørensen, T. (1948). {A Method of Establishing Groups of Equal Amplitude in

Plant Sociology Based on Similarity of Species and Its Application to

Analyses of the Vegetation on Danish Commons}. Biol. Skr. 5, 1–34.

Souvorov, A., Agarwala, R., and Lipman, D.J. (2018). SKESA: strategic k-mer

extension for scrupulous assemblies. Genome Biol. 19, 153.

Steven, B., and Kuske, C.R. (2018). Resuscitation of intact and disturbed bio-

logical soil crusts in response to a wetting event characterized by metatran-

scriptomic sequencing. Frontiers in Microbiology https://www.osti.gov/

servlets/purl/1479950.

Sutton, T.D.S., Clooney, A.G., Ryan, F.J., Ross, R.P., and Hill, C. (2019).

Choice of assembly software has a critical impact on virome characterisation.

Microbiome 7, 12.

Tettelin, H., Masignani, V., Cieslewicz, M.J., Donati, C., Medini, D., Ward, N.L.,

Angiuoli, S.V., Crabtree, J., Jones, A.L., Durkin, A.S., et al. (2005). Genome

analysis of multiple pathogenic isolates of Streptococcus agalactiae: implica-

tions for the microbial ‘‘pan-genome’’. Proc. Natl. Acad. Sci. USA 102,

13950–13955.

Titus Brown, C., Moritz, D., O’Brien, M.P., Reidl, F., Reiter, T., and Sullivan,

B.D. (2019). ‘‘Exploring Neighborhoods in Large Metagenome Assembly

Graphs Reveals Hidden Sequence Diversity’’. bioRxiv. https://doi.org/10.

1101/462788.

Truong, D.T., Franzosa, E.A., Tickle, T.L., Scholz, M., Weingart, G., Pasolli, E.,

Tett, A., Huttenhower, C., and Segata, N. (2015). MetaPhlAn2 for enhanced

metagenomic taxonomic profiling. Nat. Methods 12, 902–903.

Tschitschko, B., Erdmann, S., DeMaere, M.Z., Roux, S., Panwar, P., Allen,

M.A., Williams, T.J., Brazendale, S., Hancock, A.M., Eloe-Fadrosh, E.A., and

http://refhub.elsevier.com/S1931-3128(19)30352-X/sref39
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref39
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref40
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref40
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref40
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref41
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref41
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref41
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref41
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref42
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref42
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref42
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref42
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref43
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref43
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref43
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref43
https://doi.org/10.1093/bioinformatics/btx787
https://doi.org/10.1093/bioinformatics/btx787
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref45
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref45
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref45
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref45
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref46
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref46
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref46
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref46
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref46
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref46
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref46
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref47
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref47
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref48
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref48
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref49
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref49
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref49
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref49
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref49
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref50
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref50
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref50
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref51
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref51
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref51
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref51
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref52
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref52
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref52
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref52
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref52
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref53
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref53
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref53
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref53
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref53
https://doi.org/10.1128/AEM.00179-18
https://doi.org/10.1128/AEM.00179-18
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref55
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref55
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref55
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref55
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref56
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref56
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref56
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref56
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref57
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref57
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref57
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref58
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref58
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref58
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref58
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref58
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref59
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref59
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref59
http://ieeexplore.ieee.org
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref61
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref61
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref61
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref61
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref62
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref62
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref62
https://doi.org/10.1101/356840
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref64
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref64
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref64
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref65
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref65
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref65
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref66
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref66
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref67
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref67
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref67
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref68
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref68
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref68
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref69
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref69
https://www.osti.gov/servlets/purl/1479950
https://www.osti.gov/servlets/purl/1479950
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref71
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref71
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref71
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref72
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref72
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref72
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref72
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref72
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref72
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref72
https://doi.org/10.1101/462788
https://doi.org/10.1101/462788
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref74
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref74
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref74
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref75
http://refhub.elsevier.com/S1931-3128(19)30352-X/sref75


Cavicchioli, R. (2018). Genomic variation and biogeography of Antarctic hal-

oarchaea. Microbiome 6, 113.

Tully, B.J., Sachdeva, R., Graham, E.D., and Heidelberg, J.F. (2017). 290

metagenome-assembled genomes from the Mediterranean Sea: a resource

for marine microbiology. PeerJ 5, e3558.

Tully, B.J., Graham, E.D., and Heidelberg, J.F. (2018). The reconstruction of

2,631 draft metagenome-assembled genomes from the global oceans. Sci.

Data 5, 170203.

Tyagi, A., Singh, B., Billekallu Thammegowda, N.K., and Singh, N.K. (2019).

Shotgun metagenomics offers novel insights into taxonomic compositions,

metabolic pathways and antibiotic resistance genes in fish gut microbiome.

Arch. Microbiol. 201, 295–303.

Ugland, K.I., Gray, J.S., and Ellingsen, K.E. (2003). The Species-Accumulation

Curve and Estimation of Species Richness. J. Anim. Ecol. 72, 888–897.

Vasconcellos, A.F., Silva, J.M.F., de Oliveira, A.S., Prado, P.S., Nagata, T., and

Resende, R.O. (2019). Genome sequences of chikungunya virus isolates circu-

lating in midwestern Brazil. Arch. Virol. 164, 1205–1208.

Verbruggen, H., Marcelino, V.R., Guiry, M.D., Cremen, M.C.M., and Jackson,

C.J. (2017). Phylogenetic position of the coral symbiont Ostreobium

(Ulvophyceae) inferred from chloroplast genome data. J. Phycol. 53, 790–803.

Wainschtein, Pierrick, Jain, Deepti P., Yengo, Loic, Zheng, Zhili, TOPMed

Anthropometry Working Group, Trans-Omics for Precision Medicine

Consortium, Adrienne Cupples, L., et al. (2019). Recovery of Trait Heritability

from Whole Genome Sequence Data. bioRxiv. https://doi.org/10.1101/

588020.

Wang, J., Tang, L., Zhou, H., Zhou, J., Glenn, T.C., Shen, C.-L., and Wang,

J.-S. (2018a). Long-term treatment with green tea polyphenols modifies the

gut microbiome of female sprague-dawley rats. J. Nutr. Biochem. 56, 55–64.

Wang, X., Xiong, X., Cao, W., Zhang, C., Werren, J., and Wang, X. (2018b).

‘‘Genome Assembly of the A-Group Wolbachia in Nasonia Oneida and

Phylogenomic Analysis of Wolbachia Strains Revealed Genome Evolution

and Lateral Gene Transfer.’’ bioRxiv. https://www.biorxiv.org/content/10.

1101/508408v1.abstract.

Ward, L.M., McGlynn, S.E., and Fischer, W.W. (2017a). Draft Genome

Sequence of Chloracidobacterium sp. CP2_5A, a Phototrophic Member of

the Phylum Acidobacteria Recovered from a Japanese Hot Spring. Genome

Announc. 5, e00821-17. https://doi.org/10.1128/genomeA.00821-17.

Ward, L.M., McGlynn, S.E., and Fischer, W.W. (2017b). Draft Genome

Sequences of a Novel Lineage of Armatimonadetes Recovered from

Japanese Hot Springs. Genome Announc. 5, e00820-17. https://doi.org/10.

1128/genomeA.00820-17.

Ward, L.M., Hemp, J., Shih, P.M., McGlynn, S.E., and Fischer, W.W. (2018a).

Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene

Transfer. Front. Microbiol. 9, 260.

Ward, L.M., McGlynn, S.E., and Fischer, W.W. (2018b). Draft Genome

Sequences of Two Basal Members of the Anaerolineae Class of Chloroflexi
from a Sulfidic Hot Spring. Genome Announc. 6, e00570-18. https://doi.org/

10.1128/genomeA.00570-18.

Wolf, Y.I., Makarova, K.S., Lobkovsky, A.E., and Koonin, E.V. (2016). Two

fundamentally different classes of microbial genes. Nat. Microbiol. 2, 16208.

Xing, X., Liu, J.S., and Zhong,W. (2017). MetaGen: reference-free learningwith

multiple metagenomic samples. Genome Biol. 18, 187.

Ye, Y., and Doak, T.G. (2009). A parsimony approach to biological pathway

reconstruction/inference for genomes and metagenomes. PLoS Comput.

Biol. 5, e1000465.

Yin, Y., and Fischer, D. (2006). On the origin of microbial ORFans: quantifying

the strength of the evidence for viral lateral transfer. BMC Evol. Biol. 6, 63.

Young, J.P., Crossman, L.C., Johnston, A.W., Thomson, N.R., Ghazoui, Z.F.,

Hull, K.H., Wexler, M., Curson, A.R., Todd, J.D., Poole, P.S., et al. (2006).

The genome of Rhizobium leguminosarum has recognizable core and acces-

sory components. Genome Biol. 7, R34.
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Contact, Aleksandar Kostic (Aleksandar.Kostic@joslin.harvard.edu).

METHOD DETAILS

Overview of the approach
We aggregated 3,655 publically available oral and gut microbiome metagenomes used de novo assembly, Open-Reading-Frame

(ORF) calling, and sequence-based clustering via CD-HIT (Li and Godzik, 2006) to identify a set of 45,666,334 non-redundant genes

within them. We found 23,961,508 and 22,254,436 non-redundant genes in the oral and gut cavities, respectively. To enable access

to our data by the broader research community, we built a public-facing interface, queryable PostgresQL database, and data repos-

itory hosted on Figshare.

To validate our gene-calling pipeline, we performed extensive analysis on synthetic and real data. Synthetic read data were

generated with Art (Huang et al., 2012) from complete oral microbe isolate genomes downloaded from the Human Oral Micro-

biome Database. We assembled our synthetic metagenomes with metaSPAdes (Forouzan et al., 2018) and MEGAHIT running a

variety of settings (Li et al., 2015). We called ORF’s and checked the false discovery rate of each assembler as well as the

correlation with genes of different prevalence (i.e., incidence in multiple samples or just one) with coverage and length of

genes/contigs.

We quantified the distribution of genes across samples within our dataset, undertaking an in-depth analysis as to the number, fre-

quency, taxonomic, and functional classifications of these genes. We quantified taxonomy by alignment to NCBI’s NR database with

Diamond that had been indexed with NCBI’s taxon mapping files (available at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/). Functional

classifications were carried out as part of our ORF calling process, which leverages information from UniProt, Pfam, TIGRFAMs, and

NCBI’s RefSeq to classify genes ab initio. We were able to identify 2,418 discrete pathway ECiDs (out of 222,308 unique gene an-

notations) as well as confidently map to 15,746 microbial NCBI ID’s. We have additionally made these results available as part of our

resource, which can be searched by gene name, gene annotation, or taxonomy, if need be.

Further, we clustered our gene catalog at a variety of percent identities (down to 50% amino acid identity) to study the rate of clus-

tering of different genes. We have made these available as downloadable links in our dataset as well.

We provide example scripts for each phase in our pipeline at https://github.com/kosticlab/universe_of_genes_scripts.

Synthetic data benchmarking of gene catalog pipeline
An outline of our methodological pipeline can be viewed in Figure S1.

We attempted to address if singletons are likely to be false positive genes. Due to the gene-level focus in our data we do not analyze

misassemblies, as contigs are an intermediate stage in our analysis. We felt it more prudent to search for predictors of success in our

primary endpoints: genes. Our confidence in this analytic decision was further increased by our literature-review-based analysis

yielding that MEGAHIT and metaSPAdes have been shown in other publications to yield equivalent numbers of misassemblies

when compared head-to-head (see ‘‘Literature search for comparisons between MegaHit and other assemblers, including

metaSPAdes’’ in the Star Methods).
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This in mind, we carried out an extensive analysis of the performance of different assemblers at different levels of coverage on syn-

thetic metagenomic data in order to answer four questions:

1) Is there a best assembler in terms of false discovery rate and singleton discovery at varying coverages?

2) Are low coverage contigs/genes usually false positives?

3) Are short contigs/genes usually false positives?

4) Can we identify optimal quality filtering parameters such that we minimize false positive genes and maximize true positive

genes– a minimum contig length/coverage or gene length/coverage?

Aggregation of complete microbial genomes

We downloaded all 467 complete, circularized genomes, as well as their corresponding Open-Reading-Frame predictions, from the

Human Oral Microbiome Database (www.homd.org).

Relevant code: synthetic_data_benchmarking/download_homd_data.py
Construction of synthetic read data

We ran Art (Huang et al., 2012) to create synthetic read data at 1X coverage for each genome (parameters: art_illumina -ss HS25 -sam

-i input_genome -p -l 150 -f 1 -m 200 -s 10 -o paired_dat, where input_genome is a fasta file containing the complete genome as-

sembly). These are the recommended parameters in Art’s README for generating synthetic Illumina sequencing data.

Relevant code, for example parameters: synthetic_data_benchmarking/art_parameters_example.sh
Construction of synthetic metagenomes

We found from our MetaPhlAn2 output, on average, there were 95 species per sample in our oral microbiome data. As such, we

randomly picked 95 of the 467 genomes to be combined into a synthetic metagenome at varying levels of coverage. We randomly

selected a value X (where X > 0) between a specific coverage range for each of the 95metagenomes. If the value were greater than 1,

we combined X copies of the 1X coverage synthetic read file for that genome into the metagenome. If it were less than 1, we sub-

sampled that fraction of reads from each of the fastq files using seqtk (parameters: -s X)

Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py.
Assembly and gene calling parameters

We assembled with the following parameters:

1. MEGAHIT (parameter descriptions taken from http://www.metagenomics.wiki/tools/assembly/megahit):

meta ‘–min-count 2–k-list 21,41,61,81,99’

(generic metagenomes, default)

meta-sensitive ‘–min-count 2–k-list 21,31,41,51,61,71,81,91,99’

(more sensitive but slower)

meta-large ‘–min-count 2–k-list 27,37,47,57,67,77,87’

(large & complex metagenomes, like soil)

2. metaSPAdes (used default parameters):

metaSPAdes.py �1 synthetic_metagenome_1.fq.gz �2 synthetic_metagenome_2.fq.gz–only-assembler -o output

3. Prokka

prokka–outdir prokka_output–addgenes–metagenome–cpus 0–mincontiglen 1 assembly_output
Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py.
Coverage ranges

We ran our pipeline at three coverage ranges. Each of the 95 organisms in each metagenome was added to said metagenome at a

level of coveragewithin a specific range.In the recent Pasolli et al. used aminimum coverage cutoff of 10X for genome extraction from

metagenomic data, they – S s such, we chose to test coverage ranges centered around this value. We performed 10 iterations (i.e.,

generated 10 synthetic metagenomes) for each range. The ranges we chose were low coverage (0-1X), low-medium coverage

(0-10X) and medium-high coverage (10-20X).

Identification of false positive genes
We identified false positive predicted genes by aligning our predicted genes back to the Open-Reading-Frames found in the 95

complete genomes we initially put into the synthetic metagenome. We aligned with Diamond (Buchfink et al., 2015) (additional

parameters:–max-target-seqs 1–id 0.95). Genes in the predicted gene set that did not align to the ‘‘ground truth’’ genes were marked

as false positives.
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Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py.
Computing coverage for each gene/contig

We computed coverage of each gene/contig by aligning raw reads back to the predicted gene/contig output files, respectively, using

BBMap (parameters: bbmap/bbwrap.sh ref = $reference in = $f1 in2 = $f2 out = output kfilter = 22 subfilter = 15 maxindel = 80). We

based these parameters based on those recommended in the MEGAHIT wiki for computing contig coverage (https://github.com/

voutcn/megahit/wiki/An-example-of-real-assembly). We computed average coverage per contig/gene, as well as average percent

of contig/gene covered.

Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py, synthetic_data_benchmarking/
compute_gene_contig_coverage.sh.
Summary-level analysis

We carried out linear regression and correlational analyses on summary- level data, which consisted of averaged statistics across all

the genes/contigs . We computed average false discovery rate for a given iteration/coverage level, average contig/gene coverage

(total percent covered as well as fold coverage), and average contig/gene length. Using base-R’s glm function, we ran the regression

False discovery rate ee Assembler type, where Assembler Type is a categorical variable consisting of the four different assembly pa-

rameters we used. Further, we used the stat_comp function from the ggpubr package to compute correlations false discovery rate

and gene/contig fold coverage/length.

Relevant code: statistical_analysis_and_figures/summary_data_analysis.R
Gene-by-gene false positive analysis

We used base-R’s glm function to run the following two logistic regressions, using contig-level and gene-level summary statistics,

respectively:

1. False positive geneeGene lengthðper1sdÞ+Geneavg fold coverage ðper1sdÞ+ Assembler type + Genomecoverage range

2. False positive geneeContig length ðper 1sdÞ+Contig avg fold coverage ðper 1sdÞ+ Assembler type+Genomecoverage range

We computed two different regressions to avoid including highly correlated variables (gene length/coverage and contig

length/coverage) in the same model.

a. false_positive = a given gene is a false positive (1) or a true positive (0)

b. fold_coverage_contig = the fold coverage for the contig a particular gene arose from

c. fold_coverage_gene = the fold of coverage for a gen

d. length_contig = the length of a contig a particular gene arose from

e. length_gene = the length of a gene

f. assembler_type = which of the 4 assembly parameters were used (megahit large, megahit sensitive, megahit default,

metaSPAdes)

g. coverage_range = which coverage range a given gene came from (0 to 1, 0 to 10, 10 to 20)

We plotted the distributions of gene/contig length/coverage by false positive/singleton status in Figure S2. Judging from the re-

lationships displayed in these distributions, we hypothesized that shorter genes would have a higher probability of being a false

positive.

Total number of false positive genes assembled by MEGAHIT default was 514,446 (15.3%). Gene length ranged from 61 to 2,448

bases with amean of 267.2 and amedian of 243.0. Contig length ranged from 64 to 5,905 baseswith amean of 480.4 and amedian of

430.4. Gene average fold coverage ranged from 0 to 3722.385 reads with a mean of 23.458 and a median of 19.609. Contig average

fold coverage ranged from 0 to 3646.935 reads with a mean of 23.185 and a median of 20.397. In order to aid in interpretability of our

analysis, we normalized each of these variables by their standard deviations for each regression they were used in (gene length SD:

123.22 bases, contig length SD: 202.70 bases, gene average fold coverage SD: 21.16 reads, contig average fold coverage SD: 19.03

reads). By doing this, our odds ratios could be interpreted as change in odds for a gene being a false positive given a 1 standard

deviation change in length/coverage.

Relevant code: statistical_analysis_and_figures/gene_by_gene_synthetic_analysis.R
Clustering and identification of singleton genes

We additionally clustered all themetagenomes within each assembler parameter/type group (so across all coverage ranges) into four

separate non-redundant gene catalogs, so we could identify how singleton status of a given gene associated with coverage statistics

and assembly method. To do so, we grouped all 10 iterations within a given coverage range and used CD-HIT to cluster the genes

therein (parameters: cdhit/cd-hit -n 3 -i all_genes_for_cdhit -T 0 -M 0 -s 0.9 -aS 0.9 -c 0.5 -o cdhit_output_50perc) at the 50% identity

level. We chose 50% identity to mimic the analysis that we had done in much of the paper.
e3 Cell Host & Microbe 26, 283–295.e1–e8, August 14, 2019

https://github.com/voutcn/megahit/wiki/An-example-of-real-assembly
https://github.com/voutcn/megahit/wiki/An-example-of-real-assembly


Relevant code: synthetic_data_benchmarking/run_synthetic_cdhit_analysis.py
Gene-by-gene singleton analysis

We used base-R’s glm function to run the following two logistic regressions, using contig-level and gene-level summary statistics,

respectively:

1. Singleton gene e False positive gene + Gene length ðper 1sdÞ + Gene avg fold coverage ðper 1sdÞ + Assembler

type + Genome coverage range

2. Singleton gene e False positive gene + Contig length ðper 1sdÞ + Contig avg fold coverage ðper 1sdÞ + Assembler

type + Genome coverage range

The parameter definitions are the same as above with the addition of singleton_status, which refers to if, after clustering, a gene

was a singleton (1) or a non-singleton (0). We computed area under the curve (AUC) estimates using using the roc function in the

pROC package (Robin et al., 2011).

Relevant code: statistical_analysis_and_figures/gene_by_gene_synthetic_singleton_analysis.R
Benchmarking of gene catalog pipeline on real data

Modeling singleton gene status and oral microbiome contig coverage/length, gene length, and read counts

We used the following regressions to find associations between contig coverage/gene length/contig length/depth of sequencing

and singleton status in our oral microbiome data. We computed AUC estimates using using the roc function in the pROC package

(Robin et al., 2011).

a. Singleton gene e Gene length ðper 1sdÞ + Total reads ðper 1sdÞ
b. Singleton gene e Contig length ðper 1sdÞ + Contig avg fold coverage ðper 1sdÞ + Total reads ðper 1sdÞ

One drawback of the synthetic data analysis is that due to small sample size compared to our actual study, the singleton gene

fraction was higher than we would have expected (i.e., some non-singletons may have been classified as singletons). As such,

we modeled our real data as well. In this case, we lack information on true/false positive genes, but we have larger sample sizes

and a lower overall fraction of singleton genes.

We used bbMap once again to compute contig-by-contig coverage for each predicted element that was identified by PROKKA.

For this analysis, we opted initially not to compute gene-by-gene coverage (or contig-by-contig coverage for the gutmicrobiome) due

to the 1) additional time and monetary cost that would be required and 2) the similarity between the gene/contig results in the syn-

thetic data analysis.

Given the similar distribution of singleton/non-singleton genes in association with our independent variables of interest Figure S3),

we hypothesized our regressions would yield small effect sizes and minimal changes in the probability of a gene being a singleton

compared to baseline. We found modest in effect size but statistically significant associations between singleton genes and

coverage of the contig from which a gene came, gene length, and contig length (Table S2). The total number of singletons was

3,183,181 (2.0%). Contig length ranged from 200 to 1,041,740 base pairs with a mean of 1,343 and a median of 2,390. Contig

coverage, in terms of average number of reads aligning to each base of a contig, ranged from 0 to 98,048.39 reads with a mean

of 16.58 and a median of 5,910. Gene length ranged from 66 to 31,656 with a mean of 671 and a median of 513. As with our synthetic

data analysis, in our regressions we normalized each continuous variable by its standard deviation (Gene length SD: 547.15 bases,

Contig length SD: 40,924.06 bases, Contig average fold coverage SD: 59.10 reads, Total reads SD: 83,030,393 reads).

Relevant code: statistical_analysis_and_figures/gene_by_gene_singleton_analysis_real_data_oral.R
Comparison between MEGAHIT and metaSPAdes in identification of singleton genes

We ran our assembly, gene calling, and gene catalog construction pipeline on a subset of 10 randomly selected samples, computing

gene-by-gene and contig-by-contig coverage (as above) and identifying singletons. We computed AUC estimates using using the

roc function in the pROC package. (Robin et al., 2011) We ran the following regressions for our analysis:

a. Singleton gene eAssembler type
Relevant code: statistical_analysis_and_figures/gene_by_gene_metaspades_megahit_real.R
Meta-analytic data collection

We identified 13 publications (Table S1) with shotgun sequencing metagenomic data taken from any human oral and gut

microbiomes. We used 2,182 gut samples and 1,473 oral samples. We downloaded relevant study data from either the National

Center for Biotechnology Information (NCBI), the European Bioinformatics Institute (EBI), the metagenomics RAST server

(MG-RAST), or the Human Oral Microbiome Database (HOMD).

Raw read filtering and quality control

If reads had not been trimmed or had human sequences filtered out in their respective studies, we used KneadData(https://bitbucket.

org/biobakery/humann2/wiki/Home) to do so prior to assembly. This pipeline involves two primary steps. 1) Aligning raw reads back
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to the human genome reference (GRCh37/hg19) to filter out human contaminants (settings:–very-sensitive). 2) Using Trimmomatic to

remove adaptor contamination (settings: SLIDINGWINDOW 4:20, MINLEN 50).

Open-reading-frame prediction and initial functional annotation

We ran Prokka (Seemann, 2014) (version: 1.12, settings:–metagenome–addgenes–mincontiglen 1) on the raw contigs from our de

novo assembly to predict genes.

Assembly, gene calling, and construction of non-redundant gene catalog

We assembled raw reads into contiguous sequences (or, contigs) usingMEGAHIT (Li et al., 2016) V1.1.2 (parameters:–default–mem-

flag 2). We removed contigs under 200 base pairs in length. We used Prokka (Seemann, 2014) V1.12 to annotate genes from the

MEGAHIT output (settings:–cpus 0–addgenes–metagenome–mincontiglen 1). We used the default databases installed with Prokka

(UniProt, Pfam, TIGRFAMs, and NCBI’s RefSeq) for functional annotation.We then ran CD-HIT-EST (Li andGodzik, 2006) V4.6.8 with

a 95% identity cutoff (–n 10–c 0.95 -aS 0.9 -S 0.9 -M 0 -T 0). We removed genes under 100 bases in length that did not align to any

sequence NR reference database at 95% identity. For any other gene catalogs wemade we either used CD-HIT or CD-HIT-EST with

varying percent identity and word length (according to the instructions in the CD-HIT user’s manual https://github.com/weizhongli/

cdhit/blob/master/doc/cdhit-user-guide.pdf)

Iterative gene catalog construction

We translated our nucleic acid gene catalog into amino acids with Python’s Biopython (Cock et al., 2009) package. We ran CD-HIT

V4.6.8 with the same parameters as above on the translated gene catalog with progressively lower percent identities, starting at

100% and decreasing in increments of 5 down to 50%. For example, we fed the output of CD-HIT run at 100% identity into another

CD-HIT run with the -c flag changed to 0.95, the output of which was run through CD-HIT again at -c 0.9, and so on.

Relevant code: gene_catalog_construction/iterative_cdhit.sh, gene_catalog_construction/parse_iterative_cdhit.py
Reference-based species identification

We ran MetaPhlAn2(Truong et al., 2015) V2.1.0 with the default settings to identify the species content in each sample. To create

incidence data from the MetaPhlAn output, which we used to in our cross-sample dissimilarity calculations, we collapsed the raw

output into a relative abundance matrix, where the columns were samples and the rows were species. We then created an incidence

matrix by recoding non-zero cells as having values of 1.

Calculation of cross-sample dissimilarity

Similarity metrics were calculated using Sorenson-Dice (Sørensen, 1948) similarity, which is simply Bray-Curtis Dissimilarity applied

to prevalence rather than abundance data. To speed up data processing, we used a custom, parallelized, c++ implementation.

Relevant code: gene_catalog_construction/sorensen.cpp
MinPath annotation

We ran MinPath(Ye and Doak, 2009) V1.4 (command: python ../MinPath1.2.py -any ecid_mapping -map ec2path -report ec.report

-details ec.details) on the set of all EcID’s captured in each gene catalog to identify amapping between gene, EcID, and parsimonious

pathway annotation.

Functional enrichment analysis

We identified pathways enriched in singletons or non-singletons for the gut and oral microbiomes using a Fisher’s Exact test, where

we compared the ratio of counts of singletons and non-singletons of any given pathway to the overall ratio of singletons to non-sin-

gletons across all populations. We adjusted for False-Discovery Rate using Benjamini-Yekutieli(Benjamini and Yekutieli, 2001)

correction. For the plots in Figure 4, we reported the top 50 most enriched pathways in the gut microbiome and oral microbiome

for singletons and non-singletons. For the plot in Figures S13–S14, we show the top 25 most enriched species/genera using the

same methods.

Relevant code: statistical_analysis_and_figures/orfleton_figures_both.Rmd
Gene-level taxonomic annotation

WeusedDiamond’s(Buchfink et al., 2015) taxonomic annotation configuration (which usesNCBI’s taxon nodes and taxonmap files in

conjunction with the Lowest Common Ancestor algorithm) to align against NCBI’s RefSeq non-redundant protein database, which

we downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz. After combining the separate files, we configured the dia-

mond database with the command ‘‘diamond makedb–in nr.gz–db nr–taxonnodes nodes.dmp–taxonmap prot.accession2taxid.gz

’’ We used Diamond’s default cutoff, a minimum e-value of 0.0001, to identify confident hits.

Relevant code: gene_catalog_construction/full_contig_parsing_and_singleton_hunting_pipeline.py
Gene-based taxon contig binning

We mapped genes onto the contigs from which they originated, and we binned contigs into a particular taxonomic group if at least

75% of the genes on a given contig had the same taxonomic annotation. To increase our confidence in our annotations, we filtered

out contigs with fewer than two genes on them, as well as those that were binned at a taxonomic level above genus (kingdom,

phylum, class, order, family levels).
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Relevant code: contig_analysis/build_contig_database.py, contig_analysis/bin_contigs_species.py
Identification of horizontal gene transfer

We tested of horizontal gene transfer was noticeably giving rise to singletons by examining in mixture-contigs, those consisting of

both non-singletons and singletons. We searched for where the discordant species or genus taxonomic annotations of singletons(s)

and non-singleton(s), excluding those annotations that were unable to be ascribed to any specific microbe. Out of concern of being

biased by low resolution annotations, we only classified HGT as possibly having occurredwhen the taxonomic bins of the singleton(s)

and the non-singleton(s) were of different genera.

Relevant code: contig_analysis/bin_contigs_species.py
Preparing data for functional and taxonomic enrichment scatterplots

In order to display enrichment within singletons and non-singletons (Figure S1B and S1F) while accounting for sample size, prior to

plotting we normalized the counts of number of genes/contigs in particular pathway/taxa by dividing by the total number of singletons

or non-singletons for a given niche. For example, if 10 singletons and 10 non-singletons aligned to a pathway and a total of 100 sin-

gletons and 10000 non-singletonswere found to align to any pathway at all, we divided 10/100 and 10/10000 to get normalized values

of 0.1 and 0.001, respectively, for said pathway.

Construction of disaggregated sample-based rarefaction curves
We create an R-by-S disaggregated sample-based rarefaction matrix D (where drs is the expected number of r-tons when s samples

are drawn from a set ofS samples), starting froma binaryG-by-S incidencematrixW (wherewgs = 1 if the gene gwas found in sample

s). The rarefaction curve can be solved analytically using hypergeometric distributions, and depends only on the frequency in which

each gene is found (Ugland et al., 2003).

First, we calculate the frequency yg that gene g appears in all the samples, as the row sumof the incidencematrixW (1), then calcu-

late the incidence frequency count qk (2) where qk is the number of times that genes appear k times in the sample S, and I() = 1 if its

argument is true.

yg =
XS
s= 1

wgs (1)
G
 

qk =
X
g= 1

I yg = = k

!
(2)

Second, let R denote the maximum value of k where qk s 0. Then, the expected number of r-tons accumulated after s random

samples collected without replacement dr,s is calculated as follows:

dr;s =
XR
k = 1

qkhðs;S; r; kÞ (3)

where the hypergeometric function (4), h(s, S, r, k) returns the probability of drawing exactly r out of k possible units when sampling s

times without replacement out of a set S. For example, suppose we have a collection of 20 samples. The probability of finding exactly

3 incidences in a 10-ton set if we choose at random 12 of the 20 samples, is h(12, 20, 3, 10) and is calculated using binomial coef-

ficients as follows:

hðs;S; r; kÞ=

�
k

r

��
S� k

s� r

�
�
S

s

� (4)

Finally, the r-ton sample-based rarefaction curves are plotted from the rth line ofD using the Pythonmatplotlib (Hunter, 2007) pack-

age. The aggregated sample-based rarefaction curve is the expected number of unique genes dagg
s when s samples are collected

without replacement:

dagg
s =

XR
r = 1

drs (5)

Creation of the gene discovery curve from the rarefaction curve
The gene discovery curve Q is the derivative of the rarefaction curve, where qs is the number of new genes discovered on sample s:

qs =dagg
r;s � dagg

r�1;s (6)
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Determining a fitness function for the gene discovery curve
The gene discovery curve qs from (6) is used to extrapolate gene richness in the microbiome pangenome by polynomially fitting qs.

We used the function curve_fit from the Python package scipy.optimize to fit the discovery curve to a function. Because the dis-

covery curve is derived from a rarefaction curve, the chosen functionmust, on the positive x axis, be continuous, non-increasing, and

convex. Further, as there are combinatorial limits on genes, the function must asymptotically reach 0. Finally, it must fit qs with high-

fidelity, especially at the right tail, in order to get the best estimator. As none of the usual eligible candidate functions (e.g., negative

exponential, negative power curves) adequately fit the discovery curve at the right tail, it was necessary to select our own.

As the qs appeared curved in logarithmic space, we applied a 2nd degree polynomial regression on logarithm-transformed data

(i.e., fitting a curve after remapping the axes to and x = loglog s :

fðx; a;b; cÞ = ax2 +bx + c (7)

where a, b, and c are the regression parameters. Note that if a = 0, the fitting function becomes a power curve.

Determining the marginal sample s that yields a maximum number or percentage of new genes
We determined the marginal sample s required to contain less than a fraction of new genes zfrac. As f(s, a, b, c) is not trivial to invert in

logarithmic space, we use the root function from scipy.optimize in Python to solve for s:

0= efðlogðsÞ;a;b;cÞ�q1 � zfrac (8)

Similarly, the same root finding algorithm is used to find the marginal sample s that yields less than znum new genes, by solving:

0= efðlog ðsÞ ;a;b;c Þ � znum (9)

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py
Gene richness estimation of oral/gut microbiome pangenomes

As the area under the gene discovery curve function is finite for a < 0 and s > 0, we integrate

Z s

0+

efðlog ðsÞ; a;b;c Þ to extrapolate the rare-

faction curve for an arbitrary value of s, by using the scipy.integrate function from Python. The richness of oral and gut genes asymp-

totically reaches 91,439,476 and 238,585,237 genes, respectively, when s = infinity.

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py
Estimating the number of singletons in the extrapolated rarefaction curve

A function that extrapolates the number of singletons as a function of samples collected must meet certain properties: the function

must be continuous for s > 0, represent a non-increasing fraction of the rarefaction curve, ideally be the same value as the rarefaction

curve at s = 1, asymptotically reach zero, and fit d1,swith high-fidelity, especially at the right tail, in order to get the best estimator. As

none of the functions that we attempted fit the above criteria, we decided to regress the fraction of singletons in logarithmic space to

the fitting function (7) while setting a = 0, then multiply it with the extrapolated rarefaction curve.

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py
Gene richness estimation of oral microbiome pangenome via the Chao2 and Chao-Bunge estimator

From the disaggregated rarefaction curve D, we estimate the gene richness of the oral microbiome by using estimators available in

the SPECIES R package. Rolling estimates using Chao2, Chao-Bunge, Jackknife, and Chao-Lee were produced as samples were

collected.

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py
Cloud Computing

All analyses were carried out entirely in the cloud on a combination of Amazon Web Services (AWS) and Microsoft Azure resources.

We ran our initial assemblies on AWS spot instances using Aether(Luber and Tierney et al., 2017) and stored the resulting data on

Azure’s cloud storage. We used Azure, Linux-based virtual machines running Ubuntu 16.04 for the remainder of our analyses.

Figure generation
All plotting, except for that done for the rarefaction curves, was done in R using the packages ‘‘ggplot2’’ and ‘‘cowplot’’ (https://cran.

r-project.org/web/packages/cowplot/index.html). Rarefaction analysis and extrapolation was done using Python’s ‘‘Matplotlib’’

(Hunter, 2007) package. Figures were assembled in Adobe Illustrator (https://www.adobe.com/products/illustrator.html).

QUANTIFICATION AND STATISTICAL ANALYSIS

We used Fisher’s exact tests, linear, and logistic regression to quantify associations between various covariates across the manu-

script. We controlled for multiple hypothesis testing with Benjamini-Yekutieli p value adjustment.
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DATA AND CODE AVAILABILITY

Example scripts for each step of this analytical pipeline are publicly accessible at https://github.com/kosticlab/

universe_of_genes_scripts. When relevant, each section of the methods section below refers to script in this repository used for

that particular analysis. The post-assembly pipeline, which includes non-redundant gene catalog construction, gene catalog quality

control, gene-level taxonomymapping, iterative gene catalog construction, binary gene incidence matrix generation, and Sorenson-

Dice dissimilarity calculation, is run by ‘‘gene_catalog_construction/full_contig_parsing_and_singleton_hunting_pipeline.py.’’

We built our public facing database using Microsoft Azure’s Database for PostgreSQL service. We built our website with a Flask API.

ADDITIONAL RESOURCES

We additionally present a database of our results at https://microbial-genes.bio.
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