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Massive data sets are often regarded as a panacea to the underpowered studies of the past. At the same time, it is
becoming clear that in many of these data sets in which thousands of variables are measured across hundreds of thou-
sands or millions of individuals, almost any desired relationship can be inferred with a suitable combination of covariates
or analytic choices. Inspired by the genome-wide association study analysis paradigm that has transformed human
genetics, X-wide association studies or “XWAS” have emerged as a popular approach to systematically analyzing non-
genetic data sets and guarding against false positives. However, these studies often yield hundreds or thousands of as-
sociations characterized bymodest effect sizes andminisculeP values. Many of these associationswill be spurious and
emerge due to confounding and other biases. One way of characterizing confounding in the genomics paradigm is the
genomic inflation factor. An analogous “X-wide inflation factor,” denoted λX, can be defined and applied to published
XWAS. Effects that arise in XWAS may be prioritized using replication, triangulation, quantification of measurement
error, contextualization of each effect in the distribution of all effect sizes within a field, and pre-registration. Criteria like
those of BradfordHill need to be reconsidered in light of exposure-wide epidemiology to prioritize signals among signals.

big data; inflation factor; machine learning;P values; X-wide association study

Abbreviations: GWAS, genome-wide association study; Q-Q, quantile-quantile; SNP, single nucleotide polymorphism; XWAS, X-wide
association study.

It is currently common for investigators to amass data from
thousands to millions of individuals in observational epidemio-
logic investigations of large populations, health systems, or entire
countries. Consortia harmonize data across dozens of cohorts,
and institutional and national biobanks (1) aremerging patient re-
cords with biorepositories. In principle, these investigations may
transform discovery. However, the larger the data set, the greater
the chance of it being “overpowered” to detect small associations
that are of limited clinical significance or entirely spurious (2).

Agnostic analysis frameworks have emerged as away to guard
against spurious findings in massive parallel investigations by ad-
dressing issues of multiplicity, candidate variable selection, and
confounding. The classic example is the genome-wide associ-
ation study (GWAS), an approach in human genetic epidemiology
inwhich severalmillion common single nucleotide polymorphisms
(SNPs) are systematically tested for associations with a pheno-
type. SNPs are deemed genome-wide significant if they meet
stringent significance cutoffs (e.g., P < 5 × 10−8), and standard

methods exist to correct for confounding due to differences
between cases and controls in ancestry (population stratification).
Although the study design, predictive capability, and biological
relevance of GWAS have been debated (e.g., see Visscher et al.
(3) for a summary), one can also argue that the reproducible
genetic leads have dramatically improved (4).

Although nongenetic investigations, such as those in nutritional
or environmental epidemiology, have traditionally associated one
or a handful of variables at a time with an outcome, emerging
technologies are measuring more and more of the exposome,
the comprehensive set of exposures encountered from birth
to death (5). GWAS have inspired a range of X-wide association
studies (XWAS) (6) to deal with nongenetic data in a similarly
agnostic way. X denotes an entire domain of variables (e.g.,
environment-wide (7), nutrient-wide (8), medication-wide (9),
or sociodemographic-wide (10) variables) executed in a variety
of academic and industrial institutions with access to large data
sets, such as Stanford University (Stanford, California), Imperial
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College London (London, United Kingdom), Harvard Univer-
sity (Cambridge, Massachusetts), Columbia University (New
York, NY), Penn State University (State College, PA), and the
Marshfield Clinic (Marshfield, WI). In the big data setting, in
which power approaches 100%, XWAS often yield numerous
results that survive multiple testing and covariate adjustment.
A central challenge is identifying which signals among the many
hits are causal and therefore relevant and actionable for medicine
or public health.

XWAS has substantial differences from GWAS. First, nonge-
netic variables are more heterogeneous, densely correlated (11),
and time dependent and are oftenmeasured with substantial error
(12, 13). SNPs, by contrast, are static, locally and predictably
dependent (in “haploblocks” along the chromosome), and well-
measured. Second, confounding is often difficult to address in
XWAS. In GWAS, the primary source of confounding is popu-
lation stratification (14). Because ancestry is strongly tied to
genotype frequency, associations between genotypes and a
phenotype of interest are biased if ancestry is not balanced
between cases and controls. Methods that can infer ancestry
have made adjustment for population stratification routine
(14), although they have yet to penetrate all clinical applica-
tions (15). As we discuss below, confounding in XWAS pre-
sents thornier challenges.

THEGENOMIC INFLATION FACTORDETECTS
CONFOUNDING (ANDPOLYGENICITY)

Confounding in GWAS can be detected by examining the
distribution of test statistics (e.g., χ2 test statistics or P values)
to measure how it deviates from a null distribution (16), often
visualized as a quantile-quantile (Q-Q) plot of test statistics. In
these plots, test statistics are ranked from lowest to highest and
plotted against the corresponding test statistics under the null
(17). In GWAS, an assumption often used is that most geno-
types are not associated with the outcome. Thus, substantial
deviations from the diagonal imply systematic differences

between cases and controls or “polygenicity,” in which many
small genetic effects contribute to the phenotype (18, 19). The
degree of deviation is called the genomic inflation factor, denoted
by λG, and is the ratio of themedian observed test statistic divided
by the median test statistic under the null. A λG close to 1 sug-
gests acceptable control of confounding; a λG greater than 1 is
often indicative of systematic bias. After appropriate control,
for example, by applying principal components analysis (14),
GWAS Q-Q plots that initially showed sharp departures from
the diagonal are often corrected. However, it has been shown
(18) that even if confounding from population stratification
and cryptic relatedness is eliminated, λGmay still deviate from 1.
Specifically, it may deviate more when there is strong and com-
mon linkage disequilibrium among the tested genetic variants
and when there are more causal genetic factors and larger heri-
tability. Finally, λG increases with larger sample sizes.

THE X-WIDE INFLATION FACTOR LIKELY IMPLIES
MOSTLYMASSIVECONFOUNDINGANDCORRELATED
STATISTICAL TESTS

In conducting a Q-Q analysis in a typical nongenetic
XWAS, we observe that there is substantial departure from
the diagonal, often much more than what is typically seen in
GWAS (Figure 1). We define the X-wide inflation factor, de-
noted λX, as the ratio of median test statistics in a nongenetic
XWAS to that expected under the null, which can be calcu-
lated as:

λ = (− ( )) (− ( ))median log p /median log p .X 10 observed 10 null

Of note, in a GWAS, λG is usually computed as the median of
the χ2 test statistics observed across the SNPs as opposed to the
observed P values directly. Because XWAS use a range of statis-
tical models (e.g., Cox proportional hazards regression (20),
survey-weighted linear regression (21)), further work should
evaluate whether a robust analogue exists across XWAS. In
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Figure 1. Quantile-quantile (Q-Q) plots for X-wide association studies (XWAS). All XWASQ-Qplots showsubstantial deviation from the diagonal (solid black
line) expected under the null. Equivalently, theQ-Q plots haveX-wide inflation factors, defined as the (− ( )) (− ( ))median log p /median log p10 observed 10 null , that are
substantially greater than1.A)Q-Qplot forXWAScorrelating exposures, behaviors, andclinical variableswith telomere length inPatel et al. (20) (inflation factor
= 1.59; sample size = 20,997; number of associations tested = 461). B) Q-Q plot for medication-wide association study for breast cancer from Patel et al. (21)
(inflation factor = 2.18; sample size = 9,014,975; number of associations tested = 536). C)Q-Qplot frommedication-wideassociation study for prostate cancer
inPatel et al. (20) (inflation factor = 2.39; sample size = 9,014,975; number of associations tested = 528).
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existing XWAS, we have observed in practice that λX tends to
bemuch greater than 1. Figure 1 showsQ-Q plots of test statistics
from previous XWAS that associate a set of exposures, beha-
viors, and clinical variables with telomere length (21)
(Figure 1A) and a prescription-wide association study in breast
cancer (Figure 1B) and in prostate cancer (20) (Figure 1C).
The λX values are 1.59 (sample size N = 20,997; number of
tested associations = 461), 2.18 (N = 9,014,975; number of
tested associations = 536), and 2.39 (N = 9,014,975; num-
ber of tested associations = 528), respectively.

This gross deviation likely implies several features that char-
acterize nongenetic XWAS: 1) model misspecification and
residual confounding (much stronger in XWAS than in
GWAS), 2) densely correlated factors (exposures tend to be
much more widely correlated than genetic factors that are cor-
related through linkage disequilibrium), and/or 3) proportion-
ally more nongenetic factors that are causally associated with
outcomes and/or a larger proportion of the variance that is ex-
plained by nongenetic factors than by genetic factors. The lat-
ter explanation needs to be examined on a case-to-case basis
in each XWAS, but very often the impact of confounding and
dense correlation may be far more influential than the impact
of genuine causality (2, 11, 22, 23).

Even if causally related factors can be reliably identified, there
is an extra challenge to determine which of those are sizeable en-
ough to have clinical or public health impact, how easy it is to
modify them in real-life, and howwe can verify that their modifi-
cation yields the desired improvements. Regardless, unless we
can manage to select an initial set of factors that are enriched
in truly causal ones, these additional considerations remain moot
from the perspective of intervention. However, noncausal factors
may still be of some use in prognostic/predictivemodels.

THE X-WIDE INFLATION FACTORWILLGROWWITH
LARGEBIOBANKSTUDIES

Q-Q plots seen in XWAS to date are heralds of those that will
emerge from future nongenetic association studies from much
larger biobanks and other cohort data that are becoming com-
monplace around the world. Deviation for nongenetic associ-
ation studies (e.g., nutritional, clinical, and environmental

exposures) will increase in larger sample size regimens. Instead
of typical observational studies of exposures with several thou-
sands of subjects, current and future biobanks and observational
studies will include hundreds of thousands to millions of in-
dividuals, with thousands of measurements per individual.
We will be fully powered to detect tiny effects; however, most
will be spurious, and among those that are not spurious, only a
subset of yet unpredictable volume will be clinically important,
actionable, or even just biologically insightful.

As seen in GWAS, sample size influences the value and there-
fore the interpretation of λG. For example, in a case-control study
(24) of N/2 cases and N/2 controls that have a genetic distance f
(measured by the fixation index, or FST) from one another that,
uncorrected, would confound the association study, λG is given
by 1 + N × f. In other words, a λG of 1.3 with N = 300 is more
concerning than the same λG with N = 30,000 because f is 0.3/
300 = 0.001 in the former but 0.3/30,000 = 0.00001 in the latter.
Methods like linkage disequilibrium score regression (19) have
been developed to detect signals of polygenicity in large genetic
studies, and analogouswork for nongenetic XWASwould likely
be fruitful. The same principle should hold with λX. In settings in
which very large cohorts are involved, such as the SwedishCancer
Register Q-Q plot shown in Figure 1B and 1C, it is expected
that the inflation factor will be increased even given the same
degree of confounding and other things being equal.

Of note, test statistics in GWAS are routinely adjusted for the
stratification and genomic inflation. We argue that the corre-
sponding correction for the X-wide inflation factor should be
used also in XWAS. Given the large values of these inflation
factors, these correctionsmay be very consequential.

These observations call for both caution in the interpretation
of associations that stem from future large-scale XWAS and the
development of newmethods that can separate the “signals from
signals” and identify which of the thousands of statistically sig-
nificant associations are worth prioritizing.

PRIORITIZING FINDINGSGOING FORWARD

Prioritization of XWAS signals is a related but distinct chal-
lenge from improving the overall reproducibility or replicability
of the scientific literature. For the latter, it is important, for

Table 1. Approaches to Prioritizing Signals Among theMany Significant Findings FromMassive Data Sets: Replication, Triangulation,
Contextualization, Error Quantification, and Pre-Registration

Approach Strengths Limitations

Replication: statistical consistency
across independent data sets

Often easy to do some version of replication
even using the original data set (e.g.,
cross-validation, held out data)

Can contain the same biases (e.g., confounding,
measurement error) if using the same data;
may not address residual confounding

Triangulation: assimilate findings
acrossmethodologies and data

Leverages differing approaches and data,
each with their own assumptions; moves
towards causality

May be expensive or difficult to achieve/
coordinate; subjective how to weigh
complementary but distinct approaches

Contextualization: assess associations
across a field of study

Allows for a relationship to be framed among
an entire field of similar investigations;
enablesmeta-analysis

Data hungry; may require investigators to “spend”
statistical power (in correcting for hypotheses
that may not be important)

Error quantification: estimate
misclassification of exposures and
outcomes

Potential to remove some of the bias that is
epidemic in some fields (e.g., nutritional
epidemiology)

Often difficult to execute or remeasure a
previously studied population; may be difficult
to get funding

Pre-registration: prespecify
hypotheses

Helpsmitigate publication and other
selective reporting biases

May be perceived of as reducing scientists’
creativity or independence
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example, to devise ways to enhance data and code sharing, as
well as collaborative team science (23). Nevertheless, in large bio-
banks and observational studies with thousands of significant as-
sociations, wemay havewidely shared data and code but still lack
a systematic approach with which we can identify robust and
clinically meaningful relationships.

Several stepsmight help going forward (Table 1). First, repli-
cation in both held out and independent data offers the opportu-
nity to test the stability of associations across different cohorts
and settings. We need more empirical data on how heteroge-
neous epidemiologic signals are in XWAS settings. Second, tri-
angulating a candidate association usingmultiple sources of other
evidence (25), each of which has its own strengths, weaknesses,
and biases, may help move beyond associations from an initial
large-scale analysis toward cause-and-effect relationships. Third,
considering individual association effect sizes and where they lie
in the distribution of all possible effects in addition to statistical
significance allows for richer analysis. The same effect size may
have different importance in a field in which most effect sizes are
as large compared with a field in which equally sizeable effects
are rare. Moreover, it is traditionally taught that large effects are
more reliable than small ones, but this needs to be revisited in the
XWAS setting, where (like in GWAS) very large effects may
point mostly to errors (26). Fourth, large measurement error for
many nongenetic studies (e.g., nutrition recall studies) may dwarf
other considerations. In these situations, careful consideration of
whether the measurement error is likely to be independent non-
differential or differential may help understand the impact ofmis-
classification on a large scale.Massive data and complex analyses
are unlikely to salvage error-laden data, much like a Lamborghini
engine may not help if placed on a wooden cart. Finally, even
when data and code are shared, it is often unclear what investi-
gations took place and remain unreported, including what mod-
els (e.g., which covariate combinations (27)) were explored and
discarded (e.g., as “negative”). Efforts to pre-register fully spec-
ified hypotheses might help reduce publication and selective
analysis bias. When a sizeable set of convincingly null associa-
tions is known (from strong mechanistic reasoning and prior
large-scale data), these sets of null associations can be used as
prespecified falsification endpoints (28) and new proposed dis-
coveries can be calibrated against them. A Q-Q plot could be
generated for the falsification endpoints to be used as guidance
for other tested associations. Other causality criteria of Bradford
Hill may also be considered, but they need to be probed for their
validity and perhaps recast in the XWAS setting (26). For
example, one Bradford Hill criterion includes strength or size of
association, where Hill writes “. . . we must not be too ready to
dismiss a cause and effect hypothesis merely on the grounds
that the observed observation appears to be slight . . .” (29, p.
296). In XWAS, all associations will be slight; therefore, asso-
ciations could be recast into comparing those slight sizes with
prior reported associations that leverage different methodol-
ogies or study designs (30).

Massive data sets offer the promise of achieving amore com-
prehensive understanding of human health and disease through
simultaneous systematic analyses across thousands of variables.
XWAS can move beyond piecemeal candidate studies on
diverse exposures and outcomes, but now the challenge shifts to
prioritizing select signals among the multitude of those deemed
significant.

ACKNOWLEDGMENTS

Author affiliations: Computational Health Informatics
Program, Boston Children’s Hospital, BostonMassachusetts
(Arjun K.Manrai); Department of Biomedical Informatics,
HarvardMedical School, Boston,Massachusetts (Arjun K.
Manrai, Chirag J. Patel); Department of Pediatrics, Harvard
Medical School, Boston,Massachusetts (Arjun K.Manrai);
Stanford Prevention Research Center, Department ofMedicine,
Stanford University, Stanford, California (John P. A.
Ioannidis); Department of Health Research and Policy,
Stanford University, Stanford, California (John P. A.
Ioannidis); Department of Biomedical Data Science, Stanford
University, Stanford, California (John P. A. Ioannidis); and
Department of Statistics, Stanford University, Stanford,
California (John P. A. Ioannidis).

This work was supported by the Laura and John Arnold
Foundation, the National Institute of Environmental Health
Sciences (grants R00 R00ES023504 and R21
R21ES025052), the National Institute of Allergy and
Infectious Diseases (grant R01127250), the National
Science Foundation (grant 1636870), and the National
Heart, Lung, and Blood Institute (grant K01HL138259).

The funding agencies had no role in the study design and
opinions here.

Conflict of interest: none declared.

REFERENCES

1. Hsing AW, Ioannidis JP. Nationwide population science:
lessons from the Taiwan National Health Insurance Research
Database. JAMA Intern Med. 2015;175(9):1527–1529.

2. KhouryMJ, Ioannidis JP. Medicine. Big data meets public
health. Science. 2014;346(6213):1054–1055.

3. Visscher PM, BrownMA,McCarthyMI, et al. Five years of
GWAS discovery. Am J HumGenet. 2012;90(1):7–24.

4. Visscher PM,Wray NR, Zhang Q, et al. 10 years of GWAS
discovery: biology, function, and translation. Am J HumGenet.
2017;101(1):5–22.

5. Wild CP. The exposome: from concept to utility. Int J
Epidemiol. 2012;41(1):24–32.

6. Fallin MD, KaoWHL. Is “X”-WAS the future for all of
epidemiology? Epidemiology. 2011;22(4):457–459.

7. Patel CJ, Bhattacharya J, Butte AJ. An environment-wide
association study (EWAS) on type 2 diabetes mellitus. PLoS
One. 2010;5(5):e10746.

8. Tzoulaki I, Patel CJ, Okamura T, et al. A nutrient-wide
association study on blood pressure.Circulation. 2012;
126(21):2456–2464.

9. Ryan PB, Madigan D, Stang PE, et al. Medication-wide
association studies. CPT Pharmacometrics Syst Pharmacol.
2013;2(9):1–12.

10. Patel CJ, Bhattacharya J, Ioannidis JP, et al. Systematic
identification of correlates of HIV infection: an X-wide
association study. AIDS. 2018;32(7):933–943.

11. Patel CJ, Manrai AK. Development of exposome correlation
globes to map out environment-wide associations. Pac Symp
Biocomput. 2015;231–242.

12. Ioannidis JP, Loy EY, Poulton R, et al. Researching genetic
versus nongenetic determinants of disease: a comparison and
proposed unification. Sci Transl Med. 2009;1(7):7ps8.

Am J Epidemiol. 2019;188(5):846–850

Prioritizing Nongenetic Associations in Massive Data Sets 849

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article-abstract/188/5/846/5381892 by H

arvard C
ollege Library, C

abot Science Library user on 21 April 2020



13. Manrai AK, Cui Y, Bushel PR, et al. Informatics and data
analytics to support exposome-based discovery for public
health. Annu Rev Public Health. 2017;38:279–294.

14. Price AL, Patterson NJ, Plenge RM, et al. Principal
components analysis corrects for stratification in genome-wide
association studies.Nat Genet. 2006;38(8):904–909.

15. Manrai AK, Funke BH, RehmHL, et al. Genetic misdiagnoses
and the potential for health disparities. N Engl J Med. 2016;
375(7):655–665.

16. Pearson TA,Manolio TA. How to interpret a genome-wide
association study. JAMA. 2008;299(11):1335–1344.

17. Duncanson A, Barrett JC, Burton PR, et al. Genome-wide
association study of 14,000 cases of seven common diseases and
3,000 shared controls.Nature. 2007;447(7145):661–678.

18. Yang J,WeedonMN, Purcell S, et al. Genomic inflation factors
under polygenic inheritance. Eur J HumGenet. 2011;19(7):
807–812.

19. Bulik-SullivanBK, Loh PR, FinucaneHK, et al. LDScore
regression distinguishes confounding from polygenicity in
genome-wide association studies.NatGenet. 2015;47(3):291–295.

20. Patel CJ, Ji J, Sundquist J, et al. Systematic assessment of
pharmaceutical prescriptions in association with cancer risk:
a method to conduct a population-wide medication-wide
longitudinal study. Sci Rep. 2016;6:31308.

21. Patel CJ, Manrai AK, Corona E, et al. Systematic correlation of
environmental exposure and physiological and self-reported

behaviour factors with leukocyte telomere length. Int J
Epidemiol. 2017;46(1):44–56.

22. Patel CJ, Ioannidis JP. Studying the elusive environment in
large scale. JAMA. 2014;311(21):2173–2174.

23. Ioannidis JP. How to make more published research true. PLoS
Med. 2014;11(10):e1001747.

24. Price AL, Helgason A, Palsson S, et al. The impact of
divergence time on the nature of population structure: an
example from Iceland. PLoS Genet. 2009;5(6):e1000505.

25. Munafò MR, Davey Smith G. Robust research needs many
lines of evidence. Nature. 2018;553(7689):399–401.

26. Ioannidis JP. Exposure-wide epidemiology: revisiting
Bradford Hill. Stat Med. 2016;35(11):1749–1762.

27. Patel CJ, Burford B, Ioannidis JP. Assessment of vibration of
effects due to model specification can demonstrate the
instability of observational associations. J Clin Epidemiol.
2015;68(9):1046–1058.

28. Prasad V, Jena AB. Prespecified falsification end points: can
they validate true observational associations. JAMA. 2013;
309(3):241–242.

29. Hill AB. The environment and disease: association or
causation? Proc R Soc Med. 1965;58:295–300.

30. Fedak KM, Bernal A, Capshaw ZA, et al. Applying the
Bradford Hill criteria in the 21st century: how data integration
has changed causal inference in molecular epidemiology.
Emerg Themes Epidemiol. 2015;12:14.

Am J Epidemiol. 2019;188(5):846–850

850 Manrai et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article-abstract/188/5/846/5381892 by H

arvard C
ollege Library, C

abot Science Library user on 21 April 2020


	Signals Among Signals: Prioritizing Nongenetic Associations in Massive Data Sets
	THE GENOMIC INFLATION FACTOR DETECTS CONFOUNDING (AND POLYGENICITY)
	THE X-WIDE INFLATION FACTOR LIKELY IMPLIES MOSTLY MASSIVE CONFOUNDING AND CORRELATED STATISTICAL TESTS
	THE X-WIDE INFLATION FACTOR WILL GROW WITH LARGE BIOBANK STUDIES
	PRIORITIZING FINDINGS GOING FORWARD
	ACKNOWLEDGMENTS
	REFERENCES


