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Repurposing large health insurance claims data to
estimate genetic and environmental contributions
in 560 phenotypes

Chirag M. Lakhani', Braden T. Tierney ©'2, Arjun K. Manrai'3, Jian Yang ©®#>, Peter M. Visscher ®456*
and ChiragJ. Patel ©16*

We analysed a large health insurance dataset to assess the genetic and environmental contributions of 560 disease-related
phenotypes in 56,396 twin pairs and 724,513 sibling pairs out of 44,859,462 individuals that live in the United States. We esti-
mated the contribution of environmental risk factors (socioeconomic status (SES), air pollution and climate) in each phenotype.
Mean heritability (h?=0.311) and shared environmental variance (c2= 0.088) were higher than variance attributed to specific
environmental factors such as zip-code-level SES (var, = 0.002), daily air quality (var,, = 0.0004), and average temperature
(var,,,,, =0.001) overall, as well as for individual phenotypes. We found significant heritability and shared environment for a
number of comorbidities (h?>=0.433, ¢>=0.241) and average monthly cost (h*=0.290, ¢>=0.302). All results are available

using our Claims Analysis of Twin Correlation and Heritability (CaTCH) web application.

ute to many phenotypes in the same population has been

largely unfeasible to date. Most study designs consider a sin-
gle disease or environmental factor at a time. Administrative health
data, such as insurance claims and electronic health records, may
enable more comprehensive analyses of the roles of genetics and
shared environment in hundreds of phenotypes. Here, we analysed
a massive, individual-level claims dataset of 44,859,462 individu-
als to systematically partition phenotypic variance between genetic
and non-genetic factors across a large US population. Documenting
both the genetic and environmental contributions of phenotypic
variance is instrumental for major health studies, such as the United
States’ All of Us effort'” Furthermore, the use of genome sequence
data in medical decisionmaking is under debate’ and estimating
heritability in a ‘real-world’ setting can help to quantify the clinical
utility of genome sequencing’.

In human genetics, heritability is defined as the amount of phe-
notype or disease variation that can be attributed to genetic factors.
In family studies, other important quantities, such as ‘shared envi-
ronment’ and ‘non-shared environment, complement heritability
and describe variation in phenotype resulting from non-genetic
factors. Estimation of heritability and environmental components
of phenotypic variation have historically used family-based studies,
such as those involving twins that are concordant (and discordant)
for disease. However, building twin registries can be resource-
intensive in the ascertainment of both twin pairs and phenotypes.
What is missing are family-based studies that measure numerous
phenotypes across a large and diverse population that experience
a variety of environmental exposures. First, health administration
data enable such an approach because these data give a comprehen-
sive snapshot of health (for example, thousands of disease diagno-
ses and laboratory reports, in addition to the cost of healthcare),

D isentangling how genetic and environmental factors contrib-

and they enable family-based*® or twin-based studies across a large
number of diseases. Although twin-based analysis in such datasets
is difficult because of a lack of zygosity information, we employed
methodology® that utilizes sex information to differentiate between
identical and non-identical twin pairs.

Second, there has also been a great deal of interest in understand-
ing the contribution of one’s residence or ‘zip code' in their disease
state”®. Individual-level data with geographical and temporal infor-
mation (that is, patient mailing zip code and time of diagnosis) can
enable an understanding of the contribution of specific geographi-
cally linked environmental factors in phenotypic variation. To our
knowledge, only one study has attempted to quantify the relative
contribution of local environment and genetics’. In our analysis, we
quantify the relative contribution of local environment and genetics
by integrating individual-level data with zip code-level information
that serve as geographical indicators of the area’s SES, air pollution
quality level and weather/climate.

We estimated heritability and shared environmental variance for
560 phenotypes (based on diagnostic billing codes and laboratory tests)
in a cohort of 56,396 twin pairs born on or after 1985 (individuals that
are on their parent’s/guardian’s insurance plan) using an individual-
level claims dataset of 44,859,462 individuals from the United States.
We also estimated phenotypic correlation for same sex and opposite
sex siblings using a cohort of 724,513 sibling pairs (Supplementary
Note). We estimated the contribution of specific environmental risk
factors, such as SES, air pollution, and climate difference, to these phe-
notypes by linking individual claimants to external datasets via resi-
dential locations (Fig. 1d-g). In addition, we computed genetic and
environmental contributions to the cost of care utilization and total
comorbidities. Finally, we estimated the validity of our estimates for
heritability and shared environment through systematic comparison
of documented estimates in the published literature.
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Fig. 1| Geographic distribution of 56,396 twin pairs in CaTCH and an example of environmental data aggregation on a zip code basis. a, Count of twin
pairs in CaTCH for each state in the United States. b, Distribution of log of population density for the entire United States (based on Census American
Community Survey data) and twin pairs. ¢, Distribution of deprivation index for the entire United States and twin pairs. d, Time series for daily AQI for
Mecklenburg county. Black lines represent the years 2008 and 2014. e, Time series for average monthly temperature for NOAA sensor closest to zip code
28210. Black lines represent the years 2008 and 2014. f, Distribution of median family income distribution among residents of zip code 28210. Black line
represents the mean median income value. g, Map of county, zip code, and closest NOAA sensor for hypothetical twin pair residing in zip code 28210.
Background map image from OpenStreetMap licensed under the terms of the Creative Commons Attribution-ShareAlike 2.0 license (CC BY-SA). ACS,
American Community Survey; NOAA, National Oceanic and Atmospheric Administration.

Results a cohort of 56,396 twin pairs and 724,513 sibling pairs (Methods
Data overview. We utilized de-identified member claims data and Supplementary Note) that were members for at least 3 years in
from Aetna Inc., a national health insurance company, to assemble  the entire surveillance period between 01/01/2008 and 01/02/2016 .
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Table 1| Characteristic of ascertained insurance claims twin and
sibling cohorts

All pairs
56,396

FF pairs
17,835

MM pairs
17,919

MF pairs
20,642

Number of twin
pairs

Number of
sibling pairs

724,513 171,095 187,033 366,385

Median age 7 (3-13) 8 (3-14) 8 (3-13) 7 (2-12)
at start of
surveillance

(IQR) (twin)

Median age
at start of
surveillance
(IQR) (sibling)

Median months
of surveillance

(IQR) (twin)
Median months
of surveillance
(IQR) (sibling)
Median number
of ICD Codes
(IQR) (twin)
Median number
of ICD Codes
(IQR) (sibling)
Distinct number

of zip codes
(twin)

7(2-12) 7 (2-12) 7 (2-12) 7(2-12)

60 (45-84) 60 (45-84) 60 (45-84) 60 (45-84)

61(46-84) 61(46-84) 61(46-84) 61(46-84)

23(12-42) 23(12-41) 22 (11-41) 24 (13-44)

23(12-42) 24 (13-42) 22 (11-41) 23 (12-42)

11,666 7,302 7,235 7,466

Distinct number
of zip codes
(sibling)

Surveillance
period

24,703 17,324 17,606 21112

01/01/2008 - 01/02/2016

FF pairs, twin pairs where both individuals are female; MM pairs, twin pairs where both individuals
are male; MF pairs, twin pairs where one individual is male and the other is female; IQR,
interquartile range.

The median age of twin and sibling pairs at the start of surveil-
lance was 7years (Table 1). The age range for twins and siblings
in this cohort was between 0 and 24 years. Using the claims data,
we mapped health claims codes to higher level phenotypes called
phenome-wide association studies (PheWAS) codes' (Methods).
Phenotypic filtering produced 551 PheWAS codes, seven quanti-
tative phenotypes, and two derived quantitative phenotypes. The
twin cohort was geographically heterogeneous. There were 38 states
with at least 100 twin pairs, whereas six states had no twin pairs
(Fig. 1a). Overall, the twin pairs resided in areas with higher income
and population density (Fig. 1b,c). The prevalence of PheWAS phe-
notypes among twin pairs was variable within and between differ-
ent functional domains (prevalence =0.30-73.2%) (Supplementary
Fig. 1). All results, including phenotype specific data, are available
using our CaTCH web application (see URLs).

Estimation of h*> and ¢* We used a twin-based method to esti-
mate the proportion of phenotypic variance resulting from additive
genetic factors (that is, the narrow-sense heritability, #?) and vari-
ance resulting from environmental factors shared between twins
(c?). Given the lack of zygosity information, we estimated h* and
¢? using the difference in correlation between same sex (7,,ss) and
opposite sex twin pairs (7,,,0s)> assuming that opposite sex pairs
are dizygotic and same sex twin pairs are a mixture of monozygotic
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and dizygotic twin pairs (Methods). We tested the validity of the
assumption that r,; o is a good proxy for same sex dizygotic twin
correlation (r;.nzss) Dy creating a non-twin sibling cohort and
estimating the correlation between same sex sibling correlation
(r4ss) and opposite sex sibling correlation (7o) for all 551 binary
phenotypes (Supplementary Note). We found r;s and r,05 were
highly correlated (r=0.978, 95% CI: 0.974, 0.981) (Supplementary
Fig. 2). Also, for 95% of phenotypes, 7, — Typos ranged between
—0.012 and 0.051 and r,¢ was, on average, 0.017 higher than r
(Supplementary Fig. 3), but for 23.5% of phenotypes ¢ — pos
followed the null distribution (pi, statistic''). We conclude that
Twinos 18 highly correlated with 7, for these 551 phenotypes.
However, we found that 7, is slightly lower, on average, than
Twinpzss- 1herefore, the estimates of 4 and ¢ will be slightly biased.
We also found 7,05 is, in general, larger than both s and g
(Supplementary Fig. 4). Therefore, using rys instead of 05
as a proxy for r,.pzss replaces one biased estimator for another
(Supplementary Note). We also found strong evidence to the valid-
ity of our assumption of Weinberg’s Rule (Supplementary Note).

Overall phenome-wide summary of h> and ¢ The inverse-variance
weighted mean estimate among all phenotypes was 0.316 (95% CI:
0.296, 0.335) for h? and 0.088 (95% CI: 0.074, 0.102) for ¢ (Fig. 2a).
In addition, among all phenotypes, the opposite and same sex cor-
relations for twins (¥,nss = 0.307, 95% CI: 0.297, 0.318, 7n0s = 0.240,
95% CI: 0.229, 0.251) were higher than for the siblings (r,;,,,=0.199,
95% CI: 0.192, 0.206, 7,05 =0.182, 95% CI: 0.175, 0.189). The 7,
estimate was highest because same sex twin pairs are a mixture of
monozygotic and dizygotic twin pairs. The higher value for 7,0
compared to both 7 and 05 was a result of larger twin shared
environment versus the sibling shared environmental effect.

Accounting for multiple hypotheses by controlling the false dis-
covery rate (FDR) at 5%, we found 326/560 (58.2%) phenotypes had
a non-zero heritability (h*>0) and 180/560 (32.1%) phenotypes
had non-zero shared environmental effects (¢*>0). Of these phe-
notypes, 225/560 (40%) h* estimates and 138/560 (24.6%) c* esti-
mates remained significant at a more stringent significance level by
Bonferroni-adjusted P < 0.05. We show a volcano plot of both 42 and
¢? estimates for all 560 phenotypes, where the dotted line represents
the FDR threshold for each statistic (Fig. 2b,c). The majority of age
(B.g) and sex (B,,,) fixed effects were also non-zero (Methods and
equation (2)). Controlling for multiple hypotheses using an FDR
threshold of 0.05 there were 487/560 (86.9%) phenotypes for f,,
and 281/560 (50.1%) phenotypes for f,., that were FDR significant,
respectively (see URLS).

Among functional domains with at least five phenotypes, the
domains with the highest h* were quantitative laboratory measures
(h*=0.799, 95% CI: 0.551,1.048, seven out of seven phenotypes
reached FDR threshold) and cognitive (h*=0.594, 95% CI: 0.355,
0.834, four out of five phenotypes reached FDR threshold) (Fig. 2a).
The lowest were connective tissue (h*=0.170, 95% CI: 0.108, 0.233,
2 out of 11 phenotypes reached FDR threshold) and environment
(h*=0.211, 95% CI: 0.161, 0.260, 24 out of 45 phenotypes reached
FDR threshold) (Fig. 2a).

The functional domains with the highest ¢> were ophthalmologi-
cal (?=0.183,95% CI: 0.147, 0.218, 27 out of 42 phenotypes reached
FDR threshold) and respiratory (¢=0.182, 95% CI: 0.151, 0.213, 34
out of 48 phenotypes reached FDR threshold) (Fig. 2a). The lowest
were reproduction (¢=-0.073 95% CI: —0.146, 0.000, three out of
18 phenotypes reached FDR threshold) and cognitive (¢*=—0.048,
95% CI: —0.145, 0.049, two out of five phenotypes reached FDR
threshold) (Fig. 2a)

From all 560 phenotypes in this study, there were 294 pheno-
types (52.5%) in which ¢? followed the null distribution (pi, statis-
tic'') (Methods), consistent with a model where twin resemblance
was solely a result of additive genetic variance.
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Fig. 2 | Estimates of twin statistics across functional domains and individual basis for 56,396 twin pairs in CaTCH among all 560 phenotypes. a, Barplot
of meta-analytic estimates of 105 Fwinss: 1% @nd ¢ among all 560 phenotypes and within functional domains (error bars represent 95% Cl). b-f, Volcano
plots for estimates of h?, ¢? varggs, var,g, and var,,, along with labels for phenotypes with top P values and large effect sizes for each estimate. Dashed red
lines represent the threshold for Benjamini-Yekutieli FDR adjusted P values passing significance (P=0.05) for each estimate.

Cost and comorbidities have significant h*> and ¢ We found
that average monthly cost had both significant />0 and >0
(Fig. 3b) in the twin pairs. Specifically, the estimate of h* was 0.290
(95% CI: 0.241, 0.339) and 0.433 (95% CI: 0.390, 0.477) for average
monthly cost and number of PheWAS comorbidities, respectively.
Estimates of ¢* were comparable; ¢*=0.302, 95% CI: 0.271, 0.332 for
average monthly cost and ¢>=0.241, 95% CI: 0.213, 0.268 for num-
ber of PheWAS comorbidities (Fig. 3b). The same and opposite sex
twin correlations (7,,;,ss and 7,,;,0s) for number of PheWAS comor-
bidities (s =0.549, 95% CI: 0.543, 0.556, 05 =0.458, 95% CI:
0.450, 0.465) were slightly higher than average monthly claims cost
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(Fuumss =0.508, 95% CI: 0.501, 0.515, 7,05 =0.447, 95% CI: 0.439,
0.455) (Fig. 3b).

Specific geocoded environmental factors. In the same model, we
estimated the proportion of variance in a phenotype attributable to
environmental risk factors (based on home zip code), including an
SES ‘index’ (Supplementary Note) (varg), median air quality index
exposure (var,q), and median monthly average temperature expo-
sure (var,,,) in addition to h* and ¢*. The variance components for
environmental risk factors were modest compared to h* and ¢ For
all phenotypes, vargs=0.002 (95% CI: 0.002, 0.002), var,q = 0.0001
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Fig. 3 | Comparison of h? estimates in CaTCH to published literature and
estimates for cost and comorbidities in CaTCH. a, Scatterplot of published
h? estimates from 56,396 twin pairs in CaTCH versus h? estimates from 81
published studies; vertical and horizontal error bars represent 95% Cl for
CaTCH and published estimates, respectively, black line is line with slope 1
and intercept O, blue line is line of best fit and grey shaded region is 95% Cl
for line of best fit. b, Barplot of estimates of h?, ¢, r,nos @nd Fyiss for the
phenotypes average monthly cost and number of PheWAS comorbidities
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(95% CI: 0.0003, 0.0005), and var,,,,=0.001 (95% CI: 0.001, 0.001)
were much smaller than the mean estimates of h* and ¢* described
earlier (Supplementary Fig. 5). Controlling for multiple hypotheses
using an FDR threshold of 0.05, we found 145/560 phenotypes for
vargs, 36/560 phenotypes for var,q, and 117/560 phenotypes for
Var,,, that passed FDR significance. Phenotypes with the largest
vargs were morbid obesity (varg=0.027, 95% CI: 0.014, 0.039)
and benign neoplasm of skin (varg=0.024, 95% CI: 0.022, 0.027).
Phenotypes with the largest var,,, were Lyme disease (var,o =0.008,
95% CI: 0.006, 0.011) and average monthly cost (var,,=0.006,
95% CI: 0.004, 0.009). Phenotypes with the largest var,,, were
lead poisoning (var,,,,=0.039, 95% CI: 0.029, 0.048) and influenza
(Var, o, = 0.036, 95% CI: 0.033, 0.039) (Fig. 2d-1).

Comparison to published literature. We compared our esti-
mates of h* and ¢? to a large meta-analysis of twin studies'” (meta-
analysis of twin correlations and heritability, MaTCH) containing
9,568 phenotypes from 5,169,879 twin pairs where monozygotic
and dizygotic correlations were reported. The two major dif-
ferences between CaTCH and MaTCH were that CaTCH stud-
ied 38 infectious diseases compared with MaTCH and that the
CaTCH cohort was younger than most of the studies in MaTCH
(Supplementary Note).

Comparing the CaTCH estimates to MaTCH estimates, we
observed that mean claims heritability (h*=0.315, 95% CI: 0.296,
0.334) was smaller than the mean MaTCH estimate (h*=0.593,
95%CI: 0.577, 0.608) (Fig. 4a). Furthermore, the mean CaTCH
shared environment (c>=0.088, 95% CI: 0.074, 0.102) was higher
than the mean MaTCH estimate (¢2=0.042, 95% CI: 0.028, 0.055)
(Fig. 4b)"?. Comparing CaTCH h? estimates with MaTCH h? esti-
mates along functional domains, we observed overlap between the
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95% CI from h? CaTCH estimates and 95% CI from h* MaTCH
estimates for 7 out of 21 functional domains, namely cognitive,
endocrine, environment, hematological, infection, psychiatric, and
reproduction functional domains (Fig. 4a). For ¢, the 95% CI from
CaTCH estimates overlapped with the 95% CI from the MaTCH esti-
mates for 11 out of 21 functional domains, namely cardiovascular,
dermatological, endocrine, gastrointestinal, hematological, immu-
nological, infection, metabolic, psychiatric, reproduction, and skel-
etal functional domains (Fig. 4b). In the MaTCH analysis, 69.1% of
phenotypes were consistent with a model where twin resemblance
was solely a result of additive genetic variance'? compared with
52.5% of phenotypes in CaTCH.

Although we observed differences in heritability between
CaTCH and MaTCH for aggregate phenotypic categories, we
observed concordance when comparing individual phenotypes. We
compared our CaTCH estimates to published estimates from the
literature on an individual phenotype basis (Supplementary Note).
We found that the correlation for 81 binary and quantitative phe-
notypes between CaTCH estimates and the published literature
was high, r=0.817 (95% CI: 0.493, 1.14) (Fig. 3a). We also found
that 67/81 (82.7%) of phenotypes had overlapping 95% confidence
intervals. Of the 81 phenotypes, 49/81 (60.5%) were higher in the
published literature.

Discussion

Here we used a large insurance claims dataset to systematically
investigate the genetic and environmental contributions in phe-
notypic variation of 560 phenotypes, including specific environ-
mental risk factors, such as SES, pollution exposure, and climate.
Furthermore, we provide estimates of the contributions of genetics
and environment in aggregate health cost and comorbidity burden,
which are important for both biological research and policy imple-
mentation. We also quantified the contribution of one’s genetic code
and aspects of one’s zip code (SES, climate, and air pollution) on the
same scale of phenotypic variation for 551 disease-related pheno-
types by linking to external geographic databases.

A notable strength of our study was the creation of a large
twin cohort. To the best of our knowledge, we amassed the larg-
est twin cohort in the United States that is reflective of household,
geographic, and medical-service-based variation of the employed
US population. The largest known US twin registries are the Mid-
Atlantic Twin Registry (28,000 pairs) and Michigan State Twin
Study (15,924). The largest international twin registries are from
Sweden (97,000) and Denmark (85,000)"°. Our twin cohort is com-
parable in size to these large international twin registries. However,
unlike some of these registries, we lack zygosity status for these twin
pairs. Furthermore, because we are using insurance claims data,
our claims datasets contained the full transactional history between
all medical providers and the insurance company for a particular
patient. This includes all International Classification of Disease
(ICD) 9/10 billing codes sent from the medical provider to the
insurance company to be reimbursed. We claim that this provides
a comprehensive view into a patient’s medical history. In contrast,
electronic medical records, because they are a record of the medical
examination process, may have deeper phenotypic information (for
example, laboratory notes, radiology reports and X-ray images), but
will have an incomplete medical history if the patient sees multiple
medical providers.

Twin designs have lower sample size than other family-based
designs, but are better powered to estimate heritability'*. However,
leveraging the family-based design in a claims-based cohort is not
without disadvantages. First, a common issue in insurance data
includes a limited observational time window to ascertain pheno-
type. This can lead to ascertainment bias in phenotypes when sib-
lings are of different ages. This is further exacerbated with analysis
including parents and children where, as a result of age of onset,
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Fig. 4 | Comparison of h?/c? estimates from 56,396 twin pairs among 560 phenotypes in CaTCH to 5,169,880 twin pairs among 9,568 phenotypes

in MaTCH (Supplementary Table 1). a, Meta-analytic h? estimates for all phenotypes and functional domains between CaTCH and MaTCH; error bars
represent 95% Cl. Red values are the numbers of CaTCH phenotypes in each functional domain, and blue values are the numbers of MaTCH phenotypes
with twin correlation values within each functional domain. b, Meta-analytic ¢? estimates for all phenotypes and functional domains between MaTCH and
CaTCH; error bars represent 95% Cl. Red values are the numbers of CaTCH phenotypes in each functional domain, and blue values are the numbers of
MaTCH phenotypes with twin correlation values within each functional domain. Each category is annotated with the number of phenotypes in MaTCH

(Nm) and the insurance study (Nc).

the same phenotypic code may represent different disease sub-
types®. Second, in a family design, estimates of h* will be biased"
if all sources of familial environmental variation are unaccounted
(for example, spousal correlation and sibling correlation). Recent
family-based studies attempted to estimate some of this familial
environmental variation*’; however, limitations remain, such as the
lack of interpretability of multiple types of ‘shared environment’ *.
In contrast, twin studies have a simpler design, thereby allowing a
single parameter (c?) to account for all shared environment. Third,
claims data do not consider that non-biological relationships can
also occur when using next of kin information or subscriber rela-
tionships. There is a possibility that ‘ascertained’ nuclear families
may contain step-children, adoptions, or half-siblings; however, this
can be modeled using Census data and pedigree simulations®. By
using both the inferred sibling relationship and the fact that they
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must be born on the same day, we claim that there is a smaller
chance of twins being biologically unrelated.

A major component of our analysis was the ability to compare
variance components of specific environmental factors with stan-
dard measures used in family-based analysis such as heritability and
shared environmental variance. We note that each twin pair has the
same shared environment, but our analysis attempts to partition
phenotypic variance further with several identified shared environ-
mental factors (Methods and equation (6)) that are common among
groups of twin pairs. We believe partitioning the shared environ-
ment into identified environmental factors (indicators of local SES,
air pollution, and climate) is akin to analysis in partitioning heri-
tability among functional annotations'*'®. We found that variance
components resulting from specific environmental factors were
significantly lower than h? and ¢? overall and within each functional
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Table 2 | Quintiles for each environmental variance component

Quintile Deprivation index (PC1 Number of AQl scale Number of Average temperature (degrees Number of
component) pairs pairs Fahrenheit) pairs

1 (=7.516, —1.212) 2,652 (10.580, 33.048) 8,397 (26.190, 50.879) 7,282

2 (-1.212, —-0.210) 3,892 (33.048, 37.319) 12,21 (50.879, 55.241) 12,948

3 (=0.210, 0.666) 6,098 (37.319, 41.324) 12,420 (55.241, 60.517) 10,777

4 (0.666, 1.915) 10,838 (41.324, 45.602) 1,525 (60.517, 66.437) 7,844

5 (1.915, 9.601) 24,653 (45.602, 62.721) 3,580 (66.437, 81.295) 9,282

domain (Supplementary Fig. 5). Part of the reason could be a result
of choices in how to assess exposure of the environmental risk
variables for each particular twin as well as choices in discretizing
these variables. In our analysis, we selected environmental variables
based on an individual’s home residence postal code (zip code) ver-
sus individual-level exposure data, which may dilute the influence
of these variables on phenotypes. We are limited in our ability to
answer (1) how many additional measured shared environmental
or non-genetic factors contribute to phenotypic variation beyond
geocoded variables and (2) our method requires as input discretized
environmental factors. Furthermore, environmental factors may
also influence phenotypes through prolonged exposure. In our
study, we were underpowered to detect this signal given the young
age of our cohort. A natural extension of this research includes
approaches to consider continuous environmental variables in these
novel and large data streams.

Specific environmental factors had little role in variation of most
phenotypes, but we found intriguing results for a few phenotypes.
The phenotype with largest socioeconomic variance component was
morbid obesity (varg=0.027, 95% CI: 0.014, 0.039). For Lyme dis-
ease, the variance components of all three environmental risk factors
passed FDR significance for the phenotype (vargs=0.022, 95% CIL:
0.015, 0.028, var,y=0.006, 95%CI: 0.004, 0.009, varg,=0.028,
95% CI: 0.023, 0.033). For lead poisoning, var,,, was FDR signifi-
cant (var,,=0.029, 95% CI: 0.017, 0.042).

In the United States, predictors of health care cost and chronically
ill patients are of particular importance'. In a recent analysis® of high-
cost patients, the researchers emphasized that prediction of high-cost
patients is important, yet current prediction methods do not include
any family history information. Our twin analysis concludes that 0.59
of variance for average monthly cost is explained by h? and ¢

Compared to the published literature (as reported by MaTCH)
the CaTCH cohort was both younger and had a different distribution
of phenotypes. First, in MaTCH, monozygotic correlation, dizygotic
correlation, heritability, and shared environmental variance were all
smaller, on average, for phenotypes ascertained after adolescence'.
When comparing h* estimates on an individual trait basis the cor-
relation was high (r=0.817, 95%CI: 0.493, 1.14). A prerequisite to
our analysis is selection of phenotypes with a minimum prevalence
threshold and removal of phenotypes with high gender imbalance.
Second, we were able to estimate genetic and environmental variance
in 38 infectious diseases, compared with only eight phenotypes in
MaTCH'% on the other hand, phenotypes in psychiatric, metabolic,
and cognitive domains accounted for 51% of all twin studies anal-
ysed in MaTCH". Such differences in both population and pheno-
typic selection possibly contribute to differences in estimates versus
MaTCH (while still maintaining high correlation for h* phenotypes
on an individual trait basis), but there may be other methodological
differences (such as lack of zygosity information) that may contribute
to differences. Our procedure provides an opportunity to investigate
phenotypes with large ¢?, such as lead poisoning and retinopathy of
prematurity (see URLs), whereas many twin studies select pheno-
types on the basis of a prior belief of a genetic contribution.

temp
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Data on patients from health claims lack zygosity information
that is typically ascertained in standard twin registries; however, by
amassing a large number of non-twin sibling pairs from the same
dataset, we found that the opposite sex twin correlation was close
to sibling correlations. For our method to be internally valid, we
make the following claims. First, we assume that phenotypic cor-
relation of opposite sex twin pairs (r,,,0s) is equivalent to dizygotic
same sex twin pairs (¥ympzss)- Second, we estimate the proportion of
same sex twin pairs are monozygotic by assuming opposite sex and
same sex dizygotic twin pairs are equally likely (Methods and equa-
tion 19). We tested the first claim by interrogating the concordance
between same sex and opposite sex sibling correlations. We found
that r,;¢s and r,05 were highly correlated (r=0.978, 95% CI: 0.974,
0.981), and, on average, r Was slightly higher than rgs (aver-
age Typss - Tapos = 0.017) for the 560 phenotypes passing our filtering
criterion (Supplementary Note) and for 23.5% of phenotypes rss_
7405 followed the null distribution. We conclude that, overall, 7,05
is a proxy for ry;.pzss. We note that r,;,05 was higher than r s and
Typss fOr most phenotypes, suggesting increased h? and decreased ¢? if
Tgbos OF Tpss Were substituted for 7,0 for those traits. We claim that
high correlation 7 and r,0s is primarily a result of two factors.
First, our phenotypic selection procedure eliminated phenotypes
with large imbalances of sex-specific prevalence. Second, we added
in sex as a covariate (‘fixed-effect’) to adjust for the mean differences
between males and females. If r,;,0s were replaced by r,;, then for
the majority of phenotypes the estimate of h*> would increase and
¢ would decrease, raising the possibility that the contribution of
the environment may change when assessing siblings rather than
twins. We also tested the assumption of using Weinberg’s Law, and
effect of in vitro fertilization had little to no effect on h?/c* estimates
(Supplementary Note).

In our analysis, we ascertained twin pairs between the ages of 0
and 24. This selection criterion eliminated our ability to study late-
onset diseases such as Parkinson’s and Alzheimer’s disease. As with
any administrative dataset, there may be errors in ascertainment of
phenotype; for example, doctors may not be sure whether a child
has type 1 diabetes or type 2 diabetes and therefore may bill for both
diseases and therefore the individual may be ascertained as having
both diseases. Such bias may be reduced by applying phenotyping
algorithms (for example, for diabetes®') for each phenotype; how-
ever, only a limited number of such algorithms exist.

In summary, our results provide a comprehensive picture of the
contribution of genetics and the environment to a large number of
phenotypes. We also estimated the contribution of specific envi-
ronmental risk factors in phenotype. Our estimates provide a use-
ful baseline for determining the potential of further genetic and/
or epidemiological research for a number of phenotypes of clini-
cal relevance, applicable and complementary to precision medicine
efforts, such as All of US'.

URLs. American Community Survey: https://factfinder.census.
gov/; EPA AQLI: https://ags.epa.gov/agsweb/airdata/download_files.
html#AQI; NOAA Monthly Temperature: https://www.ncdc.noaa.
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gov/data-access/land-based-station-data; International Society for
Twin Registries: http://www.twinstudies.org/information/twinreg-
isters/; ICD 10 Codes: https://www.cdc.gov/nchs/icd/icd10cm.htm;
CaTCH web application, http://apps.chiragjpgroup.org/catch/.
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Methods

Study population. We obtained our data from un-identifiable member claims
data from Aetna Inc, a national health insurance company. The claims dataset
contained the ICD 9/10 billing codes of 44,859,462 members with an Aetna
Insurance plan from January 2008 to February 2016 (Supplementary Fig. 6a). This
was a nationally representative dataset; 26,713 of 41,739 US mail zip codes have

at least 20 members. We extracted a twin and sibling cohort to estimate genetic
and environmental contribution in 560 phenotypes (Supplementary Fig. 6e-k).
The twin and sibling cohort focused on younger individuals born on or after 1985
because, under current US health care law, they qualified as dependents on their
parent’s insurance plans (Supplementary Fig. 6b). In all of our analysis we selected
members enrolled for at least 36 consecutive months to have a sufficient period of
time for the ascertainment of their phenotypes (Supplementary Fig. 6b).

Twin and sibling cohort creation. We created the twin cohort by extracting
primary subscribers and their dependents. Specifically, a primary subscriber would
add ‘dependents’ to his/her policy (approximately 26.19% are sole subscribers) and
dependent individuals were coded as ‘child;, ‘grandchild;, ‘spouse] ‘domestic partner’,
‘legal dependent;, and ‘student’ We ascertained family structure in this dataset
using the relationship between the primary subscriber and child dependents
(Supplementary Fig. 6f). We restricted family size to, at most, 15 members living
in the same zip code in order to reduce the chance multiple families are merged
together (average family size is 3.98) (Supplementary Fig. 6e). Once family units
were created, we further extracted twins by comparing the birthdate of child
subscribers that are linked to the same primary subscriber. We selected families
where there is only one twin pair and eliminated children that are part of a triplet
or greater because our estimation of h? and ¢? assumed twin pairs are independent
and not part of an extended pedigree (Supplementary Fig. 6g).

We created a sibling cohort as a basis for comparison to our twin cohort.
Like the twin cohort, the sibling cohort utilized dependent information from the
primary subscriber in order to determine sibling pairs (Supplementary Fig. 6j).
The sibling cohort also included families where there were at most 15 members,
individuals must be born on or before 1985, individuals were enrolled as members
for at least 36 months, and each individual had at least one ICD9/10 code
(Supplementary Fig. 6b-d). The age difference between sibling pairs had to be at
least 11 months and no more than 36 months (Supplementary Fig. 6k). Also, for
each family, a single sibling pair that meet these conditions was selected at random
(Supplementary Fig. 6k).

Comparison of twin cohort to national population. We compare our twin
cohort to the general population using American Community Survey (ACS)
Census data. In particular, we ascertained all twins that were members, for at least
one year, between 2009-2013 and compared with the 2009-2013 ACS estimates.
Using Census data, we estimated a measure for SES for each zip code called the
deprivation index, a measure used in epidemiological literature® (Supplementary
Note). The deprivation index is a measure of SES for a zip code based on seven
Census variables that were extracted from the 2009-2013 ACS (see URLs). High
deprivation index values correspond to higher SES status and vice versa. For all
individuals in the 2009-2013 ACS, we estimated their population density (log
transform of number of people per square mile) and deprivation index based

on their home zip code and compare to the population density and deprivation
index of all twins, enrolled between 2009-2013, based on their home zip code. We
observed that more twin pairs live in high population density areas compared to
the general population (Fig. 1b). The SES status of twin pairs, based on their home
zip code, is slightly higher than the general US population (Fig. 1c).

Phenotype ascertainment. The claims dataset contained all ICD version 9/10
(hereafter ICD9/10, respectively) billing and diagnostic codes provided by the
healthcare provider to the insurance company (Aetna, Inc.) for transactional
purposes while the individual was a subscriber to the health plan. In practice, many
ICDY/10 codes may represent the same overarching phenotype, for example, ICD
250.00 represents type 2 diabetes that is controlled, while 250.02 is type 2 diabetes
that is uncontrolled. Thus, we used PheWAS code groupings'’. PheWAS codes are
a way of combining ICD9 codes, used for phenotype-wide association studies'.
Multiple ICD9/10 codes are combined into a single ‘phenotype’. Specifically, an
individual was identified as positively having a PheWAS phenotype if they had
at least one ICD 9/10 code from the PheWAS code grouping, for example, ICD
9 codes 250.00 and 250.02 both mapped to PheWAS code 250.2 type 2 diabetes.
For rarer phenotypes, we utilized the groupings found in Blair, Rzhetsky et al.”
(we will collectively refer to these phenotypes as PheWAS codes). In total, we
mapped Aetna subscriber ICD9/10 diagnostic codes to 1,900 PheWAS codes
(Supplementary Fig. 6¢). PheWAS mappings were originally constructed using
ICD9 codes, but the surveillance period for the insurance data spanned the
transition from ICD9 to ICD10. In order to accommodate ICD10 codes, we
utilized the United States Center for Disease Control and Prevention 2016 General
Equivalence Mapping of ICD10 (see URLs) codes to ICD9 and subsequently to
PheWAS codes.

For a subset of individuals, the claims dataset provided results of diagnostic
clinical laboratory tests (hereafter called ‘lab test’) conducted during the

NATURE GENETICS | www.nature.com/naturegenetics

individual’s medical care (Supplementary Fig. 6¢). Each lab test was identified

by a logical observation identifier name and code*. For only the twin cohort, we
ascertained all lab tests where twin pairs were measured on the same day. In our
analysis we included all laboratory tests where there were at least 2,000 twin pairs
that match our criterion. The phenotypes we analysed include common laboratory
tests such as low density lipoprotein cholesterol, high density lipoprotein
cholesterol, triglycerides, leukocyte counts and hemoglobin counts. If a twin pair
had multiple lab tests, then we randomly sampled a single lab test

event for analysis.

Out of a total of 1,900 binary phenotypes, we removed phenotypes with low
prevalence or where disparity in male and female prevalence was high (Supplementary
Fig. 6d) among twin pairs. In particular, for each phenotype, we imposed a filtering
criterion where the ratio of male prevalence to female prevalence (or female to male
prevalence) among twin pairs must be less than five (Supplementary Fig. 6d). In
addition, only phenotypes with a prevalence of at least 0.3% were kept, resulting in
phenotypes where at least 338 cases were expected and at least one concordant same
sex and opposite sex pair allowing for stable estimation of #* and ¢?, resulting in 551
binary phenotypes. In the case of the quantitative phenotypes, we analysed laboratory
values that had at least 2,000 twin pairs (Supplementary Fig. 6d). For the sibling pairs,
we ascertained only the 551 binary phenotypes.

For the twin cohort, in the claims dataset, we utilized an opportunity to derive
phenotypes based on aggregate claims, including the total number of PheWAS
codes per individual (or comorbidities) and the average monthly cost incurred per
individual (hereafter called ‘average monthly cost’). The number of PheWAS codes
was the number of distinct PheWAS codes ascertained for a patient during the time
of surveillance (at least 36 months) and can be thought of as the total number of
‘comorbidities’ coded for each individual. Average monthly cost was the total claim
costs divided by the months that the individual was a member of this insurance
company when the costs were incurred.

Specific environmental risk factors. For each twin pair we ascertained their
home zip code and linked to Census data deprivation index, daily air quality index
data, and monthly average temperature data. The deprivation index is a composite
score of SES for a zip code based on seven variables from the 2009-2013 ACS
(Supplementary Note). The Environmental Protection Agency used the air quality
index (AQI) to summarize air pollution level in a particular location. The AQI has
arange between 0 and 500. An AQI value between 0-50 is considered good air
quality, 50-100 is moderate air quality and above 100 is considered unhealthy air
quality. We downloaded all daily county-level AQI data provided by the EPA (see
URLs) and estimated the median AQI level exposure for each twin pair based on
the twin pairs dates of enrollment and closest county to their zip code (maximum
distance of 30km) (Fig. 1d). We also ascertained all monthly average temperature
data from sensors located throughout the United States from the National
Atmospheric and Oceanic Administration (NOAA) (see URLs). For each twin
pair, we found the closest NOAA sensor to their home zip code and extracted all
monthly average temperature data based on their months of enrollment within the
insurance claims dataset, then estimated the median monthly average temperature
based on those values (Fig. 1e). This linkage provided, for each twin pair, a
quantitative measurement for median family income, median AQI and median
monthly average temperature based on their home zip code. The quantitative
value for each environmental risk factor was binned into quintiles based on the
distribution of the quantitative value among the general US population (see Table 2
for the ranges and number of twin pairs in each quintile).

Variance component model for twin data. Estimation of heritability (h?), and
shared environmental variance (c?) all rely on the estimation of various variance
component parameters on the observed scale. Following the convention in
Visscher et al.”*, the variance component model can be written:

k
y=Xﬂ+Zu,-+e (1)

i=1

where y=1 for individuals who had a PheWAS code and y=0 for individuals

who did not have a PheWAS code for a binary phenotype, y is a real-valued
inverse normal rank transformation of the lab test or utilization trait values® for
quantitative phenotypes, X/ are fixed effects that were sex, months of enrollment
and age (average age during surveillance for PheWAS phenotypes and derived
quantitative phenotypes or age of test for lab tests) in our model. The terms
u;~N(0, V;) were random effects used to estimate all variance components for this
analysis and e is the error term.

In the twin cohort, we used the variance component model to estimate /?, ¢
and environmental risk random effects. See Supplementary Note for estimation
of opposite sex and same sex sibling correlation (Supplementary Note). All twin
estimates relied on the model

Y=XP+ i+ Ueyrass € (2

where var(y) =V, + Vs + V. The random effect u,,;, is common to a pair of both

opposite sex and same sex twin pairs, while u/,,,,,; is common to a pair of same sex

‘pair
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pairs but different for opposite sex pairs, thus the covariance between individuals i and
jinapair is cov(y, y;) = V,,; for opposite sex pairs and cov(y, ;) = Vi, + Viyass for same

sex pairs. Same sex and opposite sex variance components were estimated as follows:

Viwinss = Vpair T Vextrass (3)
VtwinOS = Vpair (4)
Vtotz Vpair+ VextraSS+ Vres (5)

This model was extended to include environmental risk random effects ugg, 1y
and u,,,,, based on the quintiles (Table 2) for each environmental risk factor, written
as follows:

Y= XP A+ thpic + Yextrass + Usgs + Uaqr + Yiemp + € ©)

The random effects u4,,;, and u,,ss are the same as in equation (2), while the
random effects v, Uyq and u,,,,, Will be common to all individuals belonging to

the same deprivation index, AQI or temperature quantile bin, respectively.

Estimation of twin same sex and opposite sex correlation. We used variance
components Vs and Vi o5 to estimate h” and ¢? by first transforming them into
correlation on the observed scale:

Vi

_ Viinss
Tiwinss01 = Vn (7)
tot
_ VtwinOS
Towin0S01= "y, (®)

tot

Conversion of binary phenotypes to liability scale. In the case of quantitative
(real-valued) phenotypes, we used correlations s and 7,050 00 the observed
scale to estimate h? and ¢?, but in the case of binary phenotypes we transformed
these correlations onto the liability scale. The transformation of correlation from
the observed scale to the liability scale was estimated as follows (opposite sex
formulas are same as same sex)”’:

T=®"'(1-K) ©)
z=®(T) (10)
i== (1)

A/
Eb, . =K+ —WinsS. 12
twinSs X (12)
Toyinss = © " (1=Ebyyinss) (13)

(T~ Tyguse) | 1= (T~ T59) (1-7) (14)

i+ Toinss(i=T)

Ttwinss =

K is the population prevalence for the phenotype (estimated from filtered
population) and @ was the standard normal distribution. The formulas for r,;,ss
and r,,;,0s accounted for the reduction of variance expected from the relatives of
proband compared to the general population”’.

Similarly, the variance components for environmental risk factors (varggs, var,g
or Var,,,,,) on the liability scale were estimated as follows (var,,, for var,,, = varg,
var,q and vary,,.):

Ebyy, =K+ Yen (15)
K
Tenv= ¢71(1_Ebenv) (16)
T-T, ). [1=(T*=T2 )(1-F
var, = (T~ Ter) ( EHV)( ') 17)
o i+ T2 (i=T)

env

Estimation of heritability and shared environmental variance. In traditional
twin studies, where zygosity of twins were known, the 4* and ¢? of a phenotype
were calculated using the monozygotic (MZ) twin correlation r,,y, and dizygotic
(DZ) same sex twin correlation 7., as follows”:

2
h” =2 Mz ~ winpzss) (18)

2 .
€= 2finpzss ~ hwinMz (19)

In a health administration dataset, the zygosity status of twins is not known.
However, opposite sex twin pairs are dizygotic and same sex twin pairs are a
mixture of monozygotic and dizygotic pairs. Assuming the probability of a
dizygotic twin pair being same sex is 50% (Weinberg’s Rule”’), we estimated the
probability (p) of a pair being monozygotic given they are same sex is calculated as
follows®*:

PpMZ)=1-2p(0S)=1-2 % 19)
SS
p(SS)= N (20)
all
- _ bMZ)
p=pMZ|S8) = 2(59) 21

where N, was the total number of twin pairs, Nos was the number of opposite

sex pairs and Ny was the number of same sex pairs. Assuming 7,0 Was equal to
Teinpzss AN Tyyinss Was @ mixture of 7,75 and 7z then h? and ¢ were estimated
as follows:

Ttwin0$ = TtwinDZzs$ (22)
Towinss = PTawinmz + (1 = P)oinpzss (23)
2
2
b= ;(rtwinSS = Twinos) (24)

2= PF Diiainos = finss 25)
p
We estimated standard errors for ,,05 Toyinsss B> € Varggs, Var,q and var,,,,, via
bootstrap resampling (500 samples). In the analysis of binary phenotypes and
derived quantitative phenotypes, which use the full twin cohort, the parameter p
was 0.42. We estimated the parameter p for quantitative phenotypes, using equation
(21), based on the subset of twins that had that particular quantitative phenotype
(Supplementary Note). The p estimates for quantitative phenotypes ranged from
0.513 to 0.572.

Multiple comparisons. For all statistics (variance components h?, ¢, varggg, var,y
and var,,,, and fixed effects § _and g ) we estimated P values using a two-tail
z-test statistic and we accounteéd for multiple hypothesis testing by controlling

by estimating the FDR. In particular, we used the Benjamini-Yekutieli’* method
to estimate the FDR rate that assumes dependencies between phenotypes. We
estimated FDR adjusted P values for all statistics and report the number of
phenotypes, for each statistic, which achieved FDR < 5%.

We fit all random effects models with the Ime4’ package in R*. We wrote our
own bootstrapping procedure in order to estimate standard errors for all statistics
presented in this paper. We used the p.adjust function in the base stats R package™
for FDR correction.

Matching of PheWAS codes to functional domains from MaTCH. We sought to
compare how h? and ¢? estimates compared to the published literature. To enhance
comparison, we downloaded h? and ¢? estimates from a large and recent meta-
analysis of twin studies'>. We mapped PheWAS codes into functional domains as
determined by the MaTCH study'”. Each functional domain constituted a subset
of chapters and subchapter levels from either the International Classification of
Functioning, Disability and Health or International Statistical Classification of
Diseases and Related Health Problems (ICD-10). In the claims dataset, we mapped
each PheWAS code to their constituent ICD9 code and then mapped again to

the corresponding ICD10 chapters and subchapters. If the associated chapter or
subchapter from a PheWAS code overlapped with a functional domain then we
considered it part of the domain. We estimated the mean h? and ¢? for each domain
with an inverse-variance weighting estimate. We also estimated the number of
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phenotypes that follow a model due to additive genetic variance and not non-
additive genetics (including dominance) or shared environmental variance, which
was estimated by the number of phenotypes that follow 27,255 = Twinvz- This
was equivalent to the number of phenotypes that follow the null hypothesis (pi,
statistic'') ¢?=0, which was directly estimated in our study.

Overall and functional domain values of /? and ¢? were calculated with the
‘metafor’ R package by using the DerSimonian-Laird* estimator to calculate estimates
and standard errors. The pi, statistic was estimated using the ‘qvalue’™” R package.

Comparison of h? estimates to published literature. In our analysis, we
compared h?* estimates from the published literature to h* estimates from
CaTCH (Supplementary Note). The correlation between CaTCH h? estimates
and published /? estimates used a correlation estimator’’ that also incorporated
standard errors. We used jackknife resampling in order to estimate the standard
error for this estimator, as suggested by the authors of this method”.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data Availability

The data that support the findings of this study are available from Aetna Insurance,
but restrictions apply to the availability of these data, which were used under
licence for the current study, and so are not publicly available. Please contact N.
Palmer (nathan_palmer@hms.harvard.edu) for inquiries about the Aetna dataset.
Summary data are, however, available from the authors upon reasonable request
and with permission of Aetna Insurance. Code for analysis, generation of figures
and figure files is available at https://github.com/cmlakhan/twinInsurance.

References

22. Krieger, N. et al. Choosing area based socioeconomic measures to monitor
social inequalities in low birth weight and childhood lead poisoning: the
public health disparities geocoding project (US). J. Epidemiol. Community
Health 57, 186-199 (2003).

NATURE GENETICS | www.nature.com/naturegenetics

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

Blair, D. R. et al. A nondegenerate code of deleterious variants in Mendelian
loci contributes to complex disease risk. Cell 155, 70-80 (2013).

Huff, S. M. et al. Development of the logical observation identifier names and
codes (LOINC) vocabulary. . Am. Med. Inform. Assoc. 5, 276-292 (1998).
Visscher, P. M., Benyamin, B. & White, I. The use of linear mixed models to
estimate variance components from data on twin pairs by maximum
likelihood. Twin. Res. 7, 670-674 (2004).

Beasley, T. M., Erickson, S. & Allison, D. B. Rank-based inverse normal
transformations are increasingly used, but are they merited? Behav. Genet. 39,
580-595 (2009).

Reich, T., James, J. W. & Morris, C. A. The use of multiple thresholds in
determining the mode of transmission of semi-continuous traits. Ann. Hum.
Genet. 36, 163-184 (1972).

Falconer, D. S. & Mackay, T. C. Introduction to Quantitative Genetics (John
Wiley & Sons. Inc., New York,, 1989).

Weinberg, W. Beitrige zur Physiologie und Pathologie der Mehrlingsgeburten
beim Menschen. Pflugers Arch. Gesamte Physiol. Menschen Tiere 88,
346-430 (1901).

Neale, M. C. A finite mixture distribution model for data collected from
twins. Twin. Res. 6, 235-239 (2003).

Scarr-Salapatek, S. Race, social class, and IQ. Science 174, 1285-1295 (1971).
Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in
multiple testing under dependency. Ann. Stat. 29, 1165-1188 (2001).

Bates, D., Michler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects
models using lme4. J. Stat. Softw. 67, 1-48 (2015).

R. C. Team R: A language and environment for statistical computing

(R Foundation for Statistical Computing, 2014).

Viechtbauer, W. Conducting meta-analyses in R with the metafor package.

J. Stat. Softw. 36, 1-48 (2010).

DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. Control. Clin.
Trials 7, 177-188 (1986).

Qi, T. et al. Identifying gene targets for brain-related traits using
transcriptomic and methylomic data from blood. Nat. Commun. 9,

2282 (2018).


https://github.com/cmlakhan/twinInsurance
http://www.nature.com/naturegenetics

I I al l I r‘ researc | I Corresponding author(s): ChiragJ Patel and Peter M Visscher

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main
text, or Methods section).

Confirmed

>
~
Q

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[X] A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X| A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

O 00X 0O OO 00 ol

X XX X

Clearly defined error bars
State explicitly what error bars represent (e.g. SD, SE, Cl)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection All claims data was stored in a Microsoft SQL Server 2014 database. We wrote scripts consisting of SQL queries to extract data from raw
insurance data into a form suitable for analysis. SQL scripts are not publicly available due to sensitivity in exposing proprietary insurance
information, but can be made available to reviewers upon request.

Data analysis We performed all data analysis using R version 3.3.2 and libraries therein. In particular data processing used tools from the tidyverse
(1.1.1) library and random effects modeling used the Ime4 library (version 1.1-14). R scripts used to perform our analysis can be found in
our github repo (https://github.com/cmlakhan/twininsurance).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

=
Q
=3
C
=
@)
=
(D
W
()
Q
=
(@)
o
=
o)
o
[}
=
2
(@]
(2]
c
3
3
Q
=
S




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The data that support the findings of this study are available from Aetna Insurance but restrictions apply to the availability of these data,
which were used under license for the current study, and so are not publicly available. Summary data are however available from the authors upon
reasonable request and with permission of Aetna Insurance.

Field-specific reporting

=
Q
=3
C
=
@)
=
(D
W
()
Q
=
(@)
o
=
o)
o
[}
=
2
(@]
(2]
c
3
3
Q
=
S

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We are repurposing an existing dataset therefore our sample size was determined based on all individuals that fit our filtering criterion. Our
filtering criterion is described in the Online Methods section of our manuscript.

Data exclusions  We repurposed an existing dataset which was not meant for twin studies. Therefore, we applied multiple filtering criterion in order to best
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