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Disentangling how genetic and environmental factors contrib-
ute to many phenotypes in the same population has been 
largely unfeasible to date. Most study designs consider a sin-

gle disease or environmental factor at a time. Administrative health 
data, such as insurance claims and electronic health records, may 
enable more comprehensive analyses of the roles of genetics and 
shared environment in hundreds of phenotypes. Here, we analysed 
a massive, individual-level claims dataset of 44,859,462 individu-
als to systematically partition phenotypic variance between genetic 
and non-genetic factors across a large US population. Documenting 
both the genetic and environmental contributions of phenotypic 
variance is instrumental for major health studies, such as the United 
States’ All of Us effort1,2. Furthermore, the use of genome sequence 
data in medical decisionmaking is under debate2 and estimating 
heritability in a ‘real-world’ setting can help to quantify the clinical 
utility of genome sequencing3.

In human genetics, heritability is defined as the amount of phe-
notype or disease variation that can be attributed to genetic factors. 
In family studies, other important quantities, such as ‘shared envi-
ronment’ and ‘non-shared environment’, complement heritability 
and describe variation in phenotype resulting from non-genetic 
factors. Estimation of heritability and environmental components 
of phenotypic variation have historically used family-based studies, 
such as those involving twins that are concordant (and discordant) 
for disease. However, building twin registries can be resource-
intensive in the ascertainment of both twin pairs and phenotypes. 
What is missing are family-based studies that measure numerous 
phenotypes across a large and diverse population that experience 
a variety of environmental exposures. First, health administration 
data enable such an approach because these data give a comprehen-
sive snapshot of health (for example, thousands of disease diagno-
ses and laboratory reports, in addition to the cost of healthcare), 

and they enable family-based4,5 or twin-based studies across a large 
number of diseases. Although twin-based analysis in such datasets 
is difficult because of a lack of zygosity information, we employed 
methodology6 that utilizes sex information to differentiate between 
identical and non-identical twin pairs.

Second, there has also been a great deal of interest in understand-
ing the contribution of one’s residence or ‘zip code' in their disease 
state7,8. Individual-level data with geographical and temporal infor-
mation (that is, patient mailing zip code and time of diagnosis) can 
enable an understanding of the contribution of specific geographi-
cally linked environmental factors in phenotypic variation. To our 
knowledge, only one study has attempted to quantify the relative 
contribution of local environment and genetics9. In our analysis, we 
quantify the relative contribution of local environment and genetics 
by integrating individual-level data with zip code-level information 
that serve as geographical indicators of the area’s SES, air pollution 
quality level and weather/climate.

We estimated heritability and shared environmental variance for 
560 phenotypes (based on diagnostic billing codes and laboratory tests) 
in a cohort of 56,396 twin pairs born on or after 1985 (individuals that 
are on their parent’s/guardian’s insurance plan) using an individual-
level claims dataset of 44,859,462 individuals from the United States. 
We also estimated phenotypic correlation for same sex and opposite 
sex siblings using a cohort of 724,513 sibling pairs (Supplementary 
Note). We estimated the contribution of specific environmental risk 
factors, such as SES, air pollution, and climate difference, to these phe-
notypes by linking individual claimants to external datasets via resi-
dential locations (Fig. 1d–g). In addition, we computed genetic and 
environmental contributions to the cost of care utilization and total 
comorbidities. Finally, we estimated the validity of our estimates for 
heritability and shared environment through systematic comparison 
of documented estimates in the published literature.
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Results
Data overview. We utilized de-identified member claims data 
from Aetna Inc., a national health insurance company, to assemble 

a cohort of 56,396 twin pairs and 724,513 sibling pairs (Methods 
and Supplementary Note) that were members for at least 3 years in 
the entire surveillance period between 01/01/2008 and 01/02/2016 .  
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Fig. 1 | Geographic distribution of 56,396 twin pairs in CaTCH and an example of environmental data aggregation on a zip code basis. a, Count of twin 
pairs in CaTCH for each state in the United States. b, Distribution of log of population density for the entire United States (based on Census American 
Community Survey data) and twin pairs. c, Distribution of deprivation index for the entire United States and twin pairs. d, Time series for daily AQI for 
Mecklenburg county. Black lines represent the years 2008 and 2014. e, Time series for average monthly temperature for NOAA sensor closest to zip code 
28210. Black lines represent the years 2008 and 2014. f, Distribution of median family income distribution among residents of zip code 28210. Black line 
represents the mean median income value. g, Map of county, zip code, and closest NOAA sensor for hypothetical twin pair residing in zip code 28210. 
Background map image from OpenStreetMap licensed under the terms of the Creative Commons Attribution-ShareAlike 2.0 license (CC BY-SA). ACS, 
American Community Survey; NOAA, National Oceanic and Atmospheric Administration.
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The median age of twin and sibling pairs at the start of surveil-
lance was 7 years (Table 1). The age range for twins and siblings 
in this cohort was between 0 and 24 years. Using the claims data, 
we mapped health claims codes to higher level phenotypes called 
phenome-wide association studies (PheWAS) codes10 (Methods). 
Phenotypic filtering produced 551 PheWAS codes, seven quanti-
tative phenotypes, and two derived quantitative phenotypes. The 
twin cohort was geographically heterogeneous. There were 38 states 
with at least 100 twin pairs, whereas six states had no twin pairs  
(Fig. 1a). Overall, the twin pairs resided in areas with higher income 
and population density (Fig. 1b,c). The prevalence of PheWAS phe-
notypes among twin pairs was variable within and between differ-
ent functional domains (prevalence = 0.30–73.2%) (Supplementary 
Fig. 1). All results, including phenotype specific data, are available 
using our CaTCH web application (see URLs).

Estimation of h2 and c2. We used a twin-based method to esti-
mate the proportion of phenotypic variance resulting from additive 
genetic factors (that is, the narrow-sense heritability, h2) and vari-
ance resulting from environmental factors shared between twins 
(c2). Given the lack of zygosity information, we estimated h2 and 
c2 using the difference in correlation between same sex (rtwinSS) and 
opposite sex twin pairs (rtwinOS), assuming that opposite sex pairs 
are dizygotic and same sex twin pairs are a mixture of monozygotic 

and dizygotic twin pairs (Methods). We tested the validity of the 
assumption that rtwinOS is a good proxy for same sex dizygotic twin 
correlation (rtwinDZSS) by creating a non-twin sibling cohort and 
estimating the correlation between same sex sibling correlation 
(rsibSS) and opposite sex sibling correlation (rsibOS) for all 551 binary 
phenotypes (Supplementary Note). We found rsibSS and rsibOS were 
highly correlated (r = 0.978, 95% CI: 0.974, 0.981) (Supplementary 
Fig. 2). Also, for 95% of phenotypes, rsibSS − rsibOS ranged between 
−0.012 and 0.051 and rsibSS was, on average, 0.017 higher than rsibOS  
(Supplementary Fig. 3), but for 23.5% of phenotypes rsibSS − rsibOS 
followed the null distribution (pi0 statistic11). We conclude that 
rtwinOS is highly correlated with rtwinDZSS for these 551 phenotypes. 
However, we found that rtwinOS is slightly lower, on average, than 
rtwinDZSS. Therefore, the estimates of h2 and c2 will be slightly biased. 
We also found rtwinOS is, in general, larger than both rsibOS and rsibSS 
(Supplementary Fig. 4). Therefore, using rsibSS instead of rtwinOS 
as a proxy for rtwinDZSS replaces one biased estimator for another 
(Supplementary Note). We also found strong evidence to the valid-
ity of our assumption of Weinberg’s Rule (Supplementary Note).

Overall phenome-wide summary of h2 and c2. The inverse-variance 
weighted mean estimate among all phenotypes was 0.316 (95% CI: 
0.296, 0.335) for h2 and 0.088 (95% CI: 0.074, 0.102) for c2 (Fig. 2a). 
In addition, among all phenotypes, the opposite and same sex cor-
relations for twins (rtwinSS = 0.307, 95% CI: 0.297, 0.318, rtwinOS = 0.240, 
95% CI: 0.229, 0.251) were higher than for the siblings (rsibSS = 0.199, 
95% CI: 0.192, 0.206, rsibOS = 0.182, 95% CI: 0.175, 0.189). The rtwinSS 
estimate was highest because same sex twin pairs are a mixture of 
monozygotic and dizygotic twin pairs. The higher value for rtwinOS 
compared to both rsibSS and rsibOS was a result of larger twin shared 
environment versus the sibling shared environmental effect.

Accounting for multiple hypotheses by controlling the false dis-
covery rate (FDR) at 5%, we found 326/560 (58.2%) phenotypes had 
a non-zero heritability (h2 > 0) and 180/560 (32.1%) phenotypes 
had non-zero shared environmental effects (c2 > 0). Of these phe-
notypes, 225/560 (40%) h2 estimates and 138/560 (24.6%) c2 esti-
mates remained significant at a more stringent significance level by 
Bonferroni-adjusted P < 0.05. We show a volcano plot of both h2 and 
c2 estimates for all 560 phenotypes, where the dotted line represents 
the FDR threshold for each statistic (Fig. 2b,c). The majority of age 
(βage) and sex (βsex) fixed effects were also non-zero (Methods and 
equation (2)). Controlling for multiple hypotheses using an FDR 
threshold of 0.05 there were 487/560 (86.9%) phenotypes for βage 
and 281/560 (50.1%) phenotypes for βsex that were FDR significant, 
respectively (see URLs).

Among functional domains with at least five phenotypes, the 
domains with the highest h2 were quantitative laboratory measures 
(h2 = 0.799, 95% CI: 0.551,1.048, seven out of seven phenotypes 
reached FDR threshold) and cognitive (h2 = 0.594, 95% CI: 0.355, 
0.834, four out of five phenotypes reached FDR threshold) (Fig. 2a). 
The lowest were connective tissue (h2 = 0.170, 95% CI: 0.108, 0.233, 
2 out of 11 phenotypes reached FDR threshold) and environment 
(h2 = 0.211, 95% CI: 0.161, 0.260, 24 out of 45 phenotypes reached 
FDR threshold) (Fig. 2a).

The functional domains with the highest c2 were ophthalmologi-
cal (c2 = 0.183, 95% CI: 0.147, 0.218, 27 out of 42 phenotypes reached 
FDR threshold) and respiratory (c2 = 0.182, 95% CI: 0.151, 0.213, 34 
out of 48 phenotypes reached FDR threshold) (Fig. 2a). The lowest 
were reproduction (c2 = −0.073 95% CI: −0.146, 0.000, three out of 
18 phenotypes reached FDR threshold) and cognitive (c2 = −0.048, 
95% CI: −0.145, 0.049, two out of five phenotypes reached FDR 
threshold) (Fig. 2a)

From all 560 phenotypes in this study, there were 294 pheno-
types (52.5%) in which c2 followed the null distribution (pi0 statis-
tic11) (Methods), consistent with a model where twin resemblance 
was solely a result of additive genetic variance.

Table 1 | Characteristic of ascertained insurance claims twin and 
sibling cohorts

All pairs FF pairs MM pairs MF pairs

Number of twin 
pairs

56,396 17,835 17,919 20,642

Number of 
sibling pairs

724,513 171,095 187,033 366,385

Median age 
at start of 
surveillance 
(IQR) (twin)

7 (3–13) 8 (3–14) 8 (3–13) 7 (2–12)

Median age 
at start of 
surveillance 
(IQR) (sibling)

7 (2–12) 7 (2–12) 7 (2–12) 7 (2–12)

Median months 
of surveillance 
(IQR) (twin)

60 (45–84) 60 (45–84) 60 (45–84) 60 (45–84)

Median months 
of surveillance 
(IQR) (sibling)

61 (46–84) 61 (46–84) 61 (46–84) 61 (46–84)

Median number 
of ICD Codes 
(IQR) (twin)

23 (12–42) 23 (12–41) 22 (11–41) 24 (13–44)

Median number 
of ICD Codes 
(IQR) (sibling)

23 (12–42) 24 (13–42) 22 (11–41) 23 (12–42)

Distinct number 
of zip codes 
(twin)

11,666 7,302 7,235 7,466

Distinct number 
of zip codes 
(sibling)

24,703 17,324 17,606 21,112

Surveillance 
period

01/01/2008 – 01/02/2016

FF pairs, twin pairs where both individuals are female; MM pairs, twin pairs where both individuals 
are male; MF pairs, twin pairs where one individual is male and the other is female; IQR, 
interquartile range.
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Cost and comorbidities have significant h2 and c2. We found 
that average monthly cost had both significant h2 > 0 and c2 > 0 
(Fig. 3b) in the twin pairs. Specifically, the estimate of h2 was 0.290 
(95% CI: 0.241, 0.339) and 0.433 (95% CI: 0.390, 0.477) for average 
monthly cost and number of PheWAS comorbidities, respectively. 
Estimates of c2 were comparable; c2 = 0.302, 95% CI: 0.271, 0.332 for  
average monthly cost and c2 = 0.241, 95% CI: 0.213, 0.268 for num-
ber of PheWAS comorbidities (Fig. 3b). The same and opposite sex 
twin correlations (rtwinSS and rtwinOS) for number of PheWAS comor-
bidities (rtwinSS = 0.549, 95% CI: 0.543, 0.556, rtwinOS = 0.458, 95% CI: 
0.450, 0.465) were slightly higher than average monthly claims cost 

(rtwinSS = 0.508, 95% CI: 0.501, 0.515, rtwinOS = 0.447, 95% CI: 0.439, 
0.455) (Fig. 3b).

Specific geocoded environmental factors. In the same model, we 
estimated the proportion of variance in a phenotype attributable to 
environmental risk factors (based on home zip code), including an 
SES ‘index’ (Supplementary Note) (varSES), median air quality index 
exposure (varAQI), and median monthly average temperature expo-
sure (vartemp) in addition to h2 and c2. The variance components for 
environmental risk factors were modest compared to h2 and c2. For 
all phenotypes, varSES = 0.002 (95% CI: 0.002, 0.002), varAQI = 0.0001 
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(95% CI: 0.0003, 0.0005), and vartemp = 0.001 (95% CI: 0.001, 0.001) 
were much smaller than the mean estimates of h2 and c2 described 
earlier (Supplementary Fig. 5). Controlling for multiple hypotheses 
using an FDR threshold of 0.05, we found 145/560 phenotypes for 
varSES, 36/560 phenotypes for varAQI, and 117/560 phenotypes for 
vartemp that passed FDR significance. Phenotypes with the largest 
varSES were morbid obesity (varSES = 0.027, 95% CI: 0.014, 0.039) 
and benign neoplasm of skin (varSES = 0.024, 95% CI: 0.022, 0.027). 
Phenotypes with the largest varAQI were Lyme disease (varAQI = 0.008, 
95% CI: 0.006, 0.011) and average monthly cost (varAQI = 0.006, 
95% CI: 0.004, 0.009). Phenotypes with the largest vartemp were 
lead poisoning (vartemp = 0.039, 95% CI: 0.029, 0.048) and influenza  
(vartemp = 0.036, 95% CI: 0.033, 0.039) (Fig. 2d–f).

Comparison to published literature. We compared our esti-
mates of h2 and c2 to a large meta-analysis of twin studies12 (meta-
analysis of twin correlations and heritability, MaTCH) containing 
9,568 phenotypes from 5,169,879 twin pairs where monozygotic 
and dizygotic correlations were reported. The two major dif-
ferences between CaTCH and MaTCH were that CaTCH stud-
ied 38 infectious diseases compared with MaTCH and that the 
CaTCH cohort was younger than most of the studies in MaTCH 
(Supplementary Note).

Comparing the CaTCH estimates to MaTCH estimates, we 
observed that mean claims heritability (h2 = 0.315, 95% CI: 0.296, 
0.334) was smaller than the mean MaTCH estimate (h2 = 0.593, 
95% CI: 0.577, 0.608) (Fig. 4a). Furthermore, the mean CaTCH 
shared environment (c2 = 0.088, 95% CI: 0.074, 0.102) was higher 
than the mean MaTCH estimate (c2 = 0.042, 95% CI: 0.028, 0.055) 
(Fig. 4b)12. Comparing CaTCH h2 estimates with MaTCH h2 esti-
mates along functional domains, we observed overlap between the 

95% CI from h2 CaTCH estimates and 95% CI from h2 MaTCH 
estimates for 7 out of 21 functional domains, namely cognitive, 
endocrine, environment, hematological, infection, psychiatric, and 
reproduction functional domains (Fig. 4a). For c2, the 95% CI from 
CaTCH estimates overlapped with the 95% CI from the MaTCH esti-
mates for 11 out of 21 functional domains, namely cardiovascular,  
dermatological, endocrine, gastrointestinal, hematological, immu-
nological, infection, metabolic, psychiatric, reproduction, and skel-
etal functional domains (Fig. 4b). In the MaTCH analysis, 69.1% of 
phenotypes were consistent with a model where twin resemblance 
was solely a result of additive genetic variance12 compared with 
52.5% of phenotypes in CaTCH.

Although we observed differences in heritability between 
CaTCH and MaTCH for aggregate phenotypic categories, we 
observed concordance when comparing individual phenotypes. We 
compared our CaTCH estimates to published estimates from the 
literature on an individual phenotype basis (Supplementary Note). 
We found that the correlation for 81 binary and quantitative phe-
notypes between CaTCH estimates and the published literature 
was high, r = 0.817 (95% CI: 0.493, 1.14) (Fig. 3a). We also found 
that 67/81 (82.7%) of phenotypes had overlapping 95% confidence 
intervals. Of the 81 phenotypes, 49/81 (60.5%) were higher in the 
published literature.

Discussion
Here we used a large insurance claims dataset to systematically 
investigate the genetic and environmental contributions in phe-
notypic variation of 560 phenotypes, including specific environ-
mental risk factors, such as SES, pollution exposure, and climate. 
Furthermore, we provide estimates of the contributions of genetics 
and environment in aggregate health cost and comorbidity burden, 
which are important for both biological research and policy imple-
mentation. We also quantified the contribution of one’s genetic code 
and aspects of one’s zip code (SES, climate, and air pollution) on the 
same scale of phenotypic variation for 551 disease-related pheno-
types by linking to external geographic databases.

A notable strength of our study was the creation of a large 
twin cohort. To the best of our knowledge, we amassed the larg-
est twin cohort in the United States that is reflective of household, 
geographic, and medical-service-based variation of the employed 
US population. The largest known US twin registries are the Mid-
Atlantic Twin Registry (28,000 pairs) and Michigan State Twin 
Study (15,924). The largest international twin registries are from 
Sweden (97,000) and Denmark (85,000)13. Our twin cohort is com-
parable in size to these large international twin registries. However, 
unlike some of these registries, we lack zygosity status for these twin 
pairs. Furthermore, because we are using insurance claims data, 
our claims datasets contained the full transactional history between 
all medical providers and the insurance company for a particular 
patient. This includes all International Classification of Disease 
(ICD) 9/10 billing codes sent from the medical provider to the 
insurance company to be reimbursed. We claim that this provides 
a comprehensive view into a patient’s medical history. In contrast, 
electronic medical records, because they are a record of the medical 
examination process, may have deeper phenotypic information (for 
example, laboratory notes, radiology reports and X-ray images), but 
will have an incomplete medical history if the patient sees multiple 
medical providers.

Twin designs have lower sample size than other family-based 
designs, but are better powered to estimate heritability14. However, 
leveraging the family-based design in a claims-based cohort is not 
without disadvantages. First, a common issue in insurance data 
includes a limited observational time window to ascertain pheno-
type. This can lead to ascertainment bias in phenotypes when sib-
lings are of different ages. This is further exacerbated with analysis 
including parents and children where, as a result of age of onset, 
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Fig. 3 | Comparison of h2 estimates in CaTCH to published literature and 
estimates for cost and comorbidities in CaTCH. a, Scatterplot of published 
h2 estimates from 56,396 twin pairs in CaTCH versus h2 estimates from 81 
published studies; vertical and horizontal error bars represent 95% CI for 
CaTCH and published estimates, respectively, black line is line with slope 1 
and intercept 0, blue line is line of best fit and grey shaded region is 95% CI 
for line of best fit. b, Barplot of estimates of h2, c2, rtwinOS, and rtwinSS for the 
phenotypes average monthly cost and number of PheWAS comorbidities 
from 56,396 twin pairs; error bars represent 95% CI.
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the same phenotypic code may represent different disease sub-
types4. Second, in a family design, estimates of h2 will be biased15 
if all sources of familial environmental variation are unaccounted 
(for example, spousal correlation and sibling correlation). Recent 
family-based studies attempted to estimate some of this familial 
environmental variation4,5; however, limitations remain, such as the 
lack of interpretability of multiple types of ‘shared environment.’ 4. 
In contrast, twin studies have a simpler design, thereby allowing a 
single parameter (c2) to account for all shared environment. Third, 
claims data do not consider that non-biological relationships can 
also occur when using next of kin information or subscriber rela-
tionships. There is a possibility that ‘ascertained’ nuclear families 
may contain step-children, adoptions, or half-siblings; however, this 
can be modeled using Census data and pedigree simulations4. By 
using both the inferred sibling relationship and the fact that they 

must be born on the same day, we claim that there is a smaller 
chance of twins being biologically unrelated.

A major component of our analysis was the ability to compare 
variance components of specific environmental factors with stan-
dard measures used in family-based analysis such as heritability and 
shared environmental variance. We note that each twin pair has the 
same shared environment, but our analysis attempts to partition 
phenotypic variance further with several identified shared environ-
mental factors (Methods and equation (6)) that are common among 
groups of twin pairs. We believe partitioning the shared environ-
ment into identified environmental factors (indicators of local SES, 
air pollution, and climate) is akin to analysis in partitioning heri-
tability among functional annotations16–18. We found that variance 
components resulting from specific environmental factors were 
significantly lower than h2 and c2 overall and within each functional 
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Fig. 4 | Comparison of h2/c2 estimates from 56,396 twin pairs among 560 phenotypes in CaTCH to 5,169,880 twin pairs among 9,568 phenotypes 
in MaTCH (Supplementary Table 1). a, Meta-analytic h2 estimates for all phenotypes and functional domains between CaTCH and MaTCH; error bars 
represent 95% CI. Red values are the numbers of CaTCH phenotypes in each functional domain, and blue values are the numbers of MaTCH phenotypes 
with twin correlation values within each functional domain. b, Meta-analytic c2 estimates for all phenotypes and functional domains between MaTCH and 
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domain (Supplementary Fig. 5). Part of the reason could be a result 
of choices in how to assess exposure of the environmental risk 
variables for each particular twin as well as choices in discretizing 
these variables. In our analysis, we selected environmental variables 
based on an individual’s home residence postal code (zip code) ver-
sus individual-level exposure data, which may dilute the influence 
of these variables on phenotypes. We are limited in our ability to 
answer (1) how many additional measured shared environmental 
or non-genetic factors contribute to phenotypic variation beyond 
geocoded variables and (2) our method requires as input discretized 
environmental factors. Furthermore, environmental factors may 
also influence phenotypes through prolonged exposure. In our 
study, we were underpowered to detect this signal given the young 
age of our cohort. A natural extension of this research includes 
approaches to consider continuous environmental variables in these 
novel and large data streams.

Specific environmental factors had little role in variation of most 
phenotypes, but we found intriguing results for a few phenotypes. 
The phenotype with largest socioeconomic variance component was 
morbid obesity (varSES = 0.027, 95% CI: 0.014, 0.039). For Lyme dis-
ease, the variance components of all three environmental risk factors 
passed FDR significance for the phenotype (varSES = 0.022, 95% CI: 
0.015, 0.028, varAQI = 0.006, 95% CI: 0.004, 0.009, varSES = 0.028, 
95% CI: 0.023, 0.033). For lead poisoning, vartemp was FDR signifi-
cant (vartemp = 0.029, 95% CI: 0.017, 0.042).

In the United States, predictors of health care cost and chronically 
ill patients are of particular importance19. In a recent analysis20 of high-
cost patients, the researchers emphasized that prediction of high-cost 
patients is important, yet current prediction methods do not include 
any family history information. Our twin analysis concludes that 0.59 
of variance for average monthly cost is explained by h2 and c2.

Compared to the published literature (as reported by MaTCH) 
the CaTCH cohort was both younger and had a different distribution 
of phenotypes. First, in MaTCH, monozygotic correlation, dizygotic 
correlation, heritability, and shared environmental variance were all 
smaller, on average, for phenotypes ascertained after adolescence12. 
When comparing h2 estimates on an individual trait basis the cor-
relation was high (r = 0.817, 95% CI: 0.493, 1.14). A prerequisite to 
our analysis is selection of phenotypes with a minimum prevalence 
threshold and removal of phenotypes with high gender imbalance. 
Second, we were able to estimate genetic and environmental variance 
in 38 infectious diseases, compared with only eight phenotypes in 
MaTCH12; on the other hand, phenotypes in psychiatric, metabolic, 
and cognitive domains accounted for 51% of all twin studies anal-
ysed in MaTCH12. Such differences in both population and pheno-
typic selection possibly contribute to differences in estimates versus 
MaTCH (while still maintaining high correlation for h2 phenotypes 
on an individual trait basis), but there may be other methodological 
differences (such as lack of zygosity information) that may contribute 
to differences. Our procedure provides an opportunity to investigate 
phenotypes with large c2, such as lead poisoning and retinopathy of 
prematurity (see URLs), whereas many twin studies select pheno-
types on the basis of a prior belief of a genetic contribution.

Data on patients from health claims lack zygosity information 
that is typically ascertained in standard twin registries; however, by 
amassing a large number of non-twin sibling pairs from the same 
dataset, we found that the opposite sex twin correlation was close 
to sibling correlations. For our method to be internally valid, we 
make the following claims. First, we assume that phenotypic cor-
relation of opposite sex twin pairs (rtwinOS) is equivalent to dizygotic 
same sex twin pairs (rtwinDZSS). Second, we estimate the proportion of 
same sex twin pairs are monozygotic by assuming opposite sex and 
same sex dizygotic twin pairs are equally likely (Methods and equa-
tion 19). We tested the first claim by interrogating the concordance 
between same sex and opposite sex sibling correlations. We found 
that rsibSS and rsibOS were highly correlated (r = 0.978, 95% CI: 0.974, 
0.981), and, on average, rsibSS was slightly higher than rsibOS (aver-
age rsibSS − rsibOS = 0.017) for the 560 phenotypes passing our filtering 
criterion (Supplementary Note) and for 23.5% of phenotypes rsibSS − 
rsibOS followed the null distribution. We conclude that, overall, rtwinOS 
is a proxy for rtwinDZSS. We note that rtwinOS was higher than rsibOS and 
rsibSS for most phenotypes, suggesting increased h2 and decreased c2 if 
rsibOS or rsibSS were substituted for rtwinOS for those traits. We claim that 
high correlation rsibSS and rsibOS is primarily a result of two factors. 
First, our phenotypic selection procedure eliminated phenotypes 
with large imbalances of sex-specific prevalence. Second, we added 
in sex as a covariate (‘fixed-effect’) to adjust for the mean differences 
between males and females. If rtwinOS were replaced by rsibSS, then for 
the majority of phenotypes the estimate of h2 would increase and 
c2 would decrease, raising the possibility that the contribution of 
the environment may change when assessing siblings rather than 
twins. We also tested the assumption of using Weinberg’s Law, and 
effect of in vitro fertilization had little to no effect on h2/c2 estimates 
(Supplementary Note).

In our analysis, we ascertained twin pairs between the ages of 0 
and 24. This selection criterion eliminated our ability to study late-
onset diseases such as Parkinson’s and Alzheimer’s disease. As with 
any administrative dataset, there may be errors in ascertainment of 
phenotype; for example, doctors may not be sure whether a child 
has type 1 diabetes or type 2 diabetes and therefore may bill for both 
diseases and therefore the individual may be ascertained as having 
both diseases. Such bias may be reduced by applying phenotyping 
algorithms (for example, for diabetes21) for each phenotype; how-
ever, only a limited number of such algorithms exist.

In summary, our results provide a comprehensive picture of the 
contribution of genetics and the environment to a large number of 
phenotypes. We also estimated the contribution of specific envi-
ronmental risk factors in phenotype. Our estimates provide a use-
ful baseline for determining the potential of further genetic and/
or epidemiological research for a number of phenotypes of clini-
cal relevance, applicable and complementary to precision medicine 
efforts, such as All of US1.

URLs. American Community Survey: https://factfinder.census.
gov/; EPA AQI: https://aqs.epa.gov/aqsweb/airdata/download_files.
html#AQI; NOAA Monthly Temperature: https://www.ncdc.noaa.

Table 2 | Quintiles for each environmental variance component

Quintile Deprivation index (PC1 
component)

Number of 
pairs

AQI scale Number of 
pairs

Average temperature (degrees 
Fahrenheit)

Number of 
pairs

1 (−7.516, −1.212) 2,652 (10.580, 33.048) 8,397 (26.190, 50.879) 7,282

2 (−1.212, −0.210) 3,892 (33.048, 37.319) 12,211 (50.879, 55.241) 12,948

3 (−0.210, 0.666) 6,098 (37.319, 41.324) 12,420 (55.241, 60.517) 10,777

4 (0.666, 1.915) 10,838 (41.324, 45.602) 11,525 (60.517, 66.437) 7,844

5 (1.915, 9.601) 24,653 (45.602, 62.721) 3,580 (66.437, 81.295) 9,282
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gov/data-access/land-based-station-data; International Society for 
Twin Registries: http://www.twinstudies.org/information/twinreg-
isters/; ICD 10 Codes: https://www.cdc.gov/nchs/icd/icd10cm.htm; 
CaTCH web application, http://apps.chiragjpgroup.org/catch/.
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Methods
Study population. We obtained our data from un-identifiable member claims 
data from Aetna Inc, a national health insurance company. The claims dataset 
contained the ICD 9/10 billing codes of 44,859,462 members with an Aetna 
Insurance plan from January 2008 to February 2016 (Supplementary Fig. 6a). This 
was a nationally representative dataset; 26,713 of 41,739 US mail zip codes have 
at least 20 members. We extracted a twin and sibling cohort to estimate genetic 
and environmental contribution in 560 phenotypes (Supplementary Fig. 6e–k). 
The twin and sibling cohort focused on younger individuals born on or after 1985 
because, under current US health care law, they qualified as dependents on their 
parent’s insurance plans (Supplementary Fig. 6b). In all of our analysis we selected 
members enrolled for at least 36 consecutive months to have a sufficient period of 
time for the ascertainment of their phenotypes (Supplementary Fig. 6b).

Twin and sibling cohort creation. We created the twin cohort by extracting 
primary subscribers and their dependents. Specifically, a primary subscriber would 
add ‘dependents’ to his/her policy (approximately 26.19% are sole subscribers) and 
dependent individuals were coded as ‘child’, ‘grandchild’, ‘spouse’, ‘domestic partner’, 
‘legal dependent’, and ‘student’. We ascertained family structure in this dataset 
using the relationship between the primary subscriber and child dependents 
(Supplementary Fig. 6f). We restricted family size to, at most, 15 members living 
in the same zip code in order to reduce the chance multiple families are merged 
together (average family size is 3.98) (Supplementary Fig. 6e). Once family units 
were created, we further extracted twins by comparing the birthdate of child 
subscribers that are linked to the same primary subscriber. We selected families 
where there is only one twin pair and eliminated children that are part of a triplet 
or greater because our estimation of h2 and c2 assumed twin pairs are independent 
and not part of an extended pedigree (Supplementary Fig. 6g).

We created a sibling cohort as a basis for comparison to our twin cohort. 
Like the twin cohort, the sibling cohort utilized dependent information from the 
primary subscriber in order to determine sibling pairs (Supplementary Fig. 6j). 
The sibling cohort also included families where there were at most 15 members, 
individuals must be born on or before 1985, individuals were enrolled as members 
for at least 36 months, and each individual had at least one ICD9/10 code 
(Supplementary Fig. 6b–d). The age difference between sibling pairs had to be at 
least 11 months and no more than 36 months (Supplementary Fig. 6k). Also, for 
each family, a single sibling pair that meet these conditions was selected at random 
(Supplementary Fig. 6k).

Comparison of twin cohort to national population. We compare our twin 
cohort to the general population using American Community Survey (ACS) 
Census data. In particular, we ascertained all twins that were members, for at least 
one year, between 2009–2013 and compared with the 2009–2013 ACS estimates. 
Using Census data, we estimated a measure for SES for each zip code called the 
deprivation index, a measure used in epidemiological literature22 (Supplementary 
Note). The deprivation index is a measure of SES for a zip code based on seven 
Census variables that were extracted from the 2009–2013 ACS (see URLs). High 
deprivation index values correspond to higher SES status and vice versa. For all 
individuals in the 2009–2013 ACS, we estimated their population density (log 
transform of number of people per square mile) and deprivation index based 
on their home zip code and compare to the population density and deprivation 
index of all twins, enrolled between 2009–2013, based on their home zip code. We 
observed that more twin pairs live in high population density areas compared to 
the general population (Fig. 1b). The SES status of twin pairs, based on their home 
zip code, is slightly higher than the general US population (Fig. 1c).

Phenotype ascertainment. The claims dataset contained all ICD version 9/10 
(hereafter ICD9/10, respectively) billing and diagnostic codes provided by the 
healthcare provider to the insurance company (Aetna, Inc.) for transactional 
purposes while the individual was a subscriber to the health plan. In practice, many 
ICD9/10 codes may represent the same overarching phenotype, for example, ICD 
250.00 represents type 2 diabetes that is controlled, while 250.02 is type 2 diabetes 
that is uncontrolled. Thus, we used PheWAS code groupings10. PheWAS codes are 
a way of combining ICD9 codes, used for phenotype-wide association studies10. 
Multiple ICD9/10 codes are combined into a single ‘phenotype’. Specifically, an 
individual was identified as positively having a PheWAS phenotype if they had 
at least one ICD 9/10 code from the PheWAS code grouping, for example, ICD 
9 codes 250.00 and 250.02 both mapped to PheWAS code 250.2 type 2 diabetes. 
For rarer phenotypes, we utilized the groupings found in Blair, Rzhetsky et al.23 
(we will collectively refer to these phenotypes as PheWAS codes). In total, we 
mapped Aetna subscriber ICD9/10 diagnostic codes to 1,900 PheWAS codes 
(Supplementary Fig. 6c). PheWAS mappings were originally constructed using 
ICD9 codes, but the surveillance period for the insurance data spanned the 
transition from ICD9 to ICD10. In order to accommodate ICD10 codes, we 
utilized the United States Center for Disease Control and Prevention 2016 General 
Equivalence Mapping of ICD10 (see URLs) codes to ICD9 and subsequently to 
PheWAS codes.

For a subset of individuals, the claims dataset provided results of diagnostic 
clinical laboratory tests (hereafter called ‘lab test’) conducted during the 

individual’s medical care (Supplementary Fig. 6c). Each lab test was identified 
by a logical observation identifier name and code24. For only the twin cohort, we 
ascertained all lab tests where twin pairs were measured on the same day. In our 
analysis we included all laboratory tests where there were at least 2,000 twin pairs 
that match our criterion. The phenotypes we analysed include common laboratory 
tests such as low density lipoprotein cholesterol, high density lipoprotein 
cholesterol, triglycerides, leukocyte counts and hemoglobin counts. If a twin pair 
had multiple lab tests, then we randomly sampled a single lab test  
event for analysis.

Out of a total of 1,900 binary phenotypes, we removed phenotypes with low 
prevalence or where disparity in male and female prevalence was high (Supplementary 
Fig. 6d) among twin pairs. In particular, for each phenotype, we imposed a filtering 
criterion where the ratio of male prevalence to female prevalence (or female to male 
prevalence) among twin pairs must be less than five (Supplementary Fig. 6d). In 
addition, only phenotypes with a prevalence of at least 0.3% were kept, resulting in 
phenotypes where at least 338 cases were expected and at least one concordant same 
sex and opposite sex pair allowing for stable estimation of h2 and c2, resulting in 551 
binary phenotypes. In the case of the quantitative phenotypes, we analysed laboratory 
values that had at least 2,000 twin pairs (Supplementary Fig. 6d). For the sibling pairs, 
we ascertained only the 551 binary phenotypes.

For the twin cohort, in the claims dataset, we utilized an opportunity to derive 
phenotypes based on aggregate claims, including the total number of PheWAS 
codes per individual (or comorbidities) and the average monthly cost incurred per 
individual (hereafter called ‘average monthly cost’). The number of PheWAS codes 
was the number of distinct PheWAS codes ascertained for a patient during the time 
of surveillance (at least 36 months) and can be thought of as the total number of 
‘comorbidities’ coded for each individual. Average monthly cost was the total claim 
costs divided by the months that the individual was a member of this insurance 
company when the costs were incurred.

Specific environmental risk factors. For each twin pair we ascertained their 
home zip code and linked to Census data deprivation index, daily air quality index 
data, and monthly average temperature data. The deprivation index is a composite 
score of SES for a zip code based on seven variables from the 2009–2013 ACS 
(Supplementary Note). The Environmental Protection Agency used the air quality 
index (AQI) to summarize air pollution level in a particular location. The AQI has 
a range between 0 and 500. An AQI value between 0–50 is considered good air 
quality, 50–100 is moderate air quality and above 100 is considered unhealthy air 
quality. We downloaded all daily county-level AQI data provided by the EPA (see 
URLs) and estimated the median AQI level exposure for each twin pair based on 
the twin pairs dates of enrollment and closest county to their zip code (maximum 
distance of 30 km) (Fig. 1d). We also ascertained all monthly average temperature 
data from sensors located throughout the United States from the National 
Atmospheric and Oceanic Administration (NOAA) (see URLs). For each twin 
pair, we found the closest NOAA sensor to their home zip code and extracted all 
monthly average temperature data based on their months of enrollment within the 
insurance claims dataset, then estimated the median monthly average temperature 
based on those values (Fig. 1e). This linkage provided, for each twin pair, a 
quantitative measurement for median family income, median AQI and median 
monthly average temperature based on their home zip code. The quantitative 
value for each environmental risk factor was binned into quintiles based on the 
distribution of the quantitative value among the general US population (see Table 2 
for the ranges and number of twin pairs in each quintile).

Variance component model for twin data. Estimation of heritability (h2), and 
shared environmental variance (c2) all rely on the estimation of various variance 
component parameters on the observed scale. Following the convention in 
Visscher et al.25, the variance component model can be written:

∑β= + +
=

y X u e (1)
i

k

i
1

where y = 1 for individuals who had a PheWAS code and y = 0 for individuals 
who did not have a PheWAS code for a binary phenotype, y is a real-valued 
inverse normal rank transformation of the lab test or utilization trait values26 for 
quantitative phenotypes, Χβ are fixed effects that were sex, months of enrollment 
and age (average age during surveillance for PheWAS phenotypes and derived 
quantitative phenotypes or age of test for lab tests) in our model. The terms 
ui ∼ N(0, Vi) were random effects used to estimate all variance components for this 
analysis and e is the error term.

In the twin cohort, we used the variance component model to estimate h2, c2 
and environmental risk random effects. See Supplementary Note for estimation 
of opposite sex and same sex sibling correlation (Supplementary Note). All twin 
estimates relied on the model

β= + + +y X u u e (2)pair extraSS

where var(y) = Vpair + VextraSS + Ve. The random effect upair is common to a pair of both 
opposite sex and same sex twin pairs, while uextraSS is common to a pair of same sex 
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pairs but different for opposite sex pairs, thus the covariance between individuals i and 
j in a pair is cov(yi, yj) = Vpair for opposite sex pairs and cov(yi, yj) = Vpair + VextraSS for same 
sex pairs. Same sex and opposite sex variance components were estimated as follows:

= +V V V (3)twinSS pair extraSS

=V V (4)twinOS pair

= + +V V V V (5)tot pair extraSS res

This model was extended to include environmental risk random effects uSES, uAQI 
and utemp based on the quintiles (Table 2) for each environmental risk factor, written 
as follows:

β= + + + + + +y X u u u u u e (6)pair extraSS SES AQI temp

The random effects upair and uextraSS are the same as in equation (2), while the 
random effects uSES, uAQI and utemp will be common to all individuals belonging to 
the same deprivation index, AQI or temperature quantile bin, respectively.

Estimation of twin same sex and opposite sex correlation. We used variance 
components VtwinSS and VtwinOS to estimate h2 and c2 by first transforming them into 
correlation on the observed scale:

=r
V
V

(7)twinSS01
twinSS

tot

=r
V
V

(8)twinOS01
twinOS

tot

Conversion of binary phenotypes to liability scale. In the case of quantitative 
(real-valued) phenotypes, we used correlations rtwinSS01 and rtwinOS01 on the observed 
scale to estimate h2 and c2, but in the case of binary phenotypes we transformed 
these correlations onto the liability scale. The transformation of correlation from 
the observed scale to the liability scale was estimated as follows (opposite sex 
formulas are same as same sex)27:

=Φ −−T K(1 ) (9)1

=Φz T( ) (10)

=i z
K

(11)

= +Eb K
V
K

(12)twinSS
twinSS

=Φ −−T Eb(1 ) (13)twinSS
1

twinSS

=
− − − −

+ −

( )
r

T T T T

i T i T

( ) 1 ( ) 1

( )
(14)

T
i

twinSS
twinSS

2
twinSS
2

twinSS
2

K is the population prevalence for the phenotype (estimated from filtered 
population) and Φ was the standard normal distribution. The formulas for rtwinSS 
and rtwinOS accounted for the reduction of variance expected from the relatives of 
proband compared to the general population27.

Similarly, the variance components for environmental risk factors (varSES, varAQI 
or vartemp) on the liability scale were estimated as follows (varenv for varenv = varSES, 
varAQI and vartemp):

= +Eb K
V
K

(15)env
env

=Φ −−T Eb(1 ) (16)env
1
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Estimation of heritability and shared environmental variance. In traditional 
twin studies, where zygosity of twins were known, the h2 and c2 of a phenotype 
were calculated using the monozygotic (MZ) twin correlation rtwinMZ and dizygotic 
(DZ) same sex twin correlation rtwinDZSS as follows28:

= −h r r2( ) (18)2
twinMZ twinDZSS

= −c r r2 (19)2
twinDZSS twinMZ

In a health administration dataset, the zygosity status of twins is not known. 
However, opposite sex twin pairs are dizygotic and same sex twin pairs are a 
mixture of monozygotic and dizygotic pairs. Assuming the probability of a 
dizygotic twin pair being same sex is 50% (Weinberg’s Rule29), we estimated the 
probability (p) of a pair being monozygotic given they are same sex is calculated as 
follows6,30,31:

= − = −p p
N
N

(MZ) 1 2 (OS) 1 2 (19)OS

SS

=p
N
N

(SS) (20)SS

all

= ∣ =p p
p
p

(MZ SS)
(MZ)
(SS)

(21)

where Nall was the total number of twin pairs, NOS was the number of opposite 
sex pairs and NSS was the number of same sex pairs. Assuming rtwinOS was equal to 
rtwinDZSS and rtwinSS was a mixture of rtwinDZSS and rtwinMZ then h2 and c2 were estimated 
as follows:

=r r (22)twinOS twinDZSS

= + −r pr p r(1 ) (23)twinSS twinMZ twinDZSS

= −h
p
r r2 ( ) (24)2
twinSS twinOS

=
+ −

c
p r r

p
( 1)

(25)2 twinOS twinSS

We estimated standard errors for rtwinOS, rtwinSS, h2, c2, varSES, varAQI and vartemp via 
bootstrap resampling (500 samples). In the analysis of binary phenotypes and 
derived quantitative phenotypes, which use the full twin cohort, the parameter p 
was 0.42. We estimated the parameter p for quantitative phenotypes, using equation 
(21), based on the subset of twins that had that particular quantitative phenotype 
(Supplementary Note). The p estimates for quantitative phenotypes ranged from 
0.513 to 0.572.

Multiple comparisons. For all statistics (variance components h2, c2, varSES, varAQI 
and vartemp and fixed effects βage and βsex) we estimated P values using a two-tail 
z-test statistic and we accounted for multiple hypothesis testing by controlling 
by estimating the FDR. In particular, we used the Benjamini–Yekutieli32 method 
to estimate the FDR rate that assumes dependencies between phenotypes. We 
estimated FDR adjusted P values for all statistics and report the number of 
phenotypes, for each statistic, which achieved FDR < 5%.

We fit all random effects models with the ‘lme4’ package in R33. We wrote our 
own bootstrapping procedure in order to estimate standard errors for all statistics 
presented in this paper. We used the p.adjust function in the base stats R package34 
for FDR correction.

Matching of PheWAS codes to functional domains from MaTCH. We sought to 
compare how h2 and c2 estimates compared to the published literature. To enhance 
comparison, we downloaded h2 and c2 estimates from a large and recent meta-
analysis of twin studies12. We mapped PheWAS codes into functional domains as 
determined by the MaTCH study12. Each functional domain constituted a subset 
of chapters and subchapter levels from either the International Classification of 
Functioning, Disability and Health or International Statistical Classification of 
Diseases and Related Health Problems (ICD-10). In the claims dataset, we mapped 
each PheWAS code to their constituent ICD9 code and then mapped again to 
the corresponding ICD10 chapters and subchapters. If the associated chapter or 
subchapter from a PheWAS code overlapped with a functional domain then we 
considered it part of the domain. We estimated the mean h2 and c2 for each domain 
with an inverse-variance weighting estimate. We also estimated the number of 
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phenotypes that follow a model due to additive genetic variance and not non-
additive genetics (including dominance) or shared environmental variance, which 
was estimated by the number of phenotypes that follow 2rtwinDZSS = rtwinMZ. This 
was equivalent to the number of phenotypes that follow the null hypothesis (pi0 
statistic11) c2 = 0, which was directly estimated in our study.

Overall and functional domain values of h2 and c2 were calculated with the 
‘metafor’35 R package by using the DerSimonian–Laird36 estimator to calculate estimates 
and standard errors. The pi0 statistic was estimated using the ‘qvalue’37 R package.

Comparison of h2 estimates to published literature. In our analysis, we 
compared h2 estimates from the published literature to h2 estimates from 
CaTCH (Supplementary Note). The correlation between CaTCH h2 estimates 
and published h2 estimates used a correlation estimator37 that also incorporated 
standard errors. We used jackknife resampling in order to estimate the standard 
error for this estimator, as suggested by the authors of this method37.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data Availability
The data that support the findings of this study are available from Aetna Insurance, 
but restrictions apply to the availability of these data, which were used under 
licence for the current study, and so are not publicly available. Please contact N. 
Palmer (nathan_palmer@hms.harvard.edu) for inquiries about the Aetna dataset. 
Summary data are, however, available from the authors upon reasonable request 
and with permission of Aetna Insurance. Code for analysis, generation of figures 
and figure files is available at https://github.com/cmlakhan/twinInsurance.
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