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SECOND ORDER THRESHOLD DYNAMICS SCHEMES FOR
TWO PHASE MOTION BY MEAN CURVATURE

ALEXANDER ZAITZEFF*, SELIM ESEDOGLU*, AND KRISHNA GARIKIPATI!

Abstract. The threshold dynamics algorithm of Merriman, Bence, and Osher is only first order
accurate in the two-phase setting. Its accuracy degrades further to half order in the multi-phase
setting, a shortcoming it has in common with other related, more recent algorithms such as the
equal surface tension version of the Voronoi implicit interface method. As a first, rigorous step in
addressing this shortcoming, we present two different second order accurate versions of two-phase
threshold dynamics. Unlike in previous efforts in this direction, we present careful consistency
calculations for both of our algorithms. The first algorithm is consistent with its limit (motion by
mean curvature) up to second order in any space dimension. The second achieves second order
accuracy only in dimension two, but comes with a rigorous stability guarantee (unconditional energy
stability) in any dimension — a first for high order schemes of its type.

Key words. Threshold Dynamics; High order schemes; Mean curvature flow; Grain boundary
motion.
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1. Introduction. In this paper, we will describe new, second order accurate
in time versions of a popular algorithm for simulating the motion of interfaces by
mean curvature known as threshold dynamics. The original version of the algorithm,
which is only first order accurate in time in the two-phase setting, was proposed by
Merriman, Bence, and Osher in [4, 5]. Since then, many extensions of the algorithm
have been given, for instance to multiphase mean curvature motion, where it has
proven particularly useful and flexible. There have also been high order accurate
versions of the algorithm proposed in several previous studies, discussed in detail in
Section 2

For a (d — 1)-dimensional smooth interface I' C R? given as the boundary of a
set ¥ C RY, the original threshold dynamics algorithm generates a discrete in time
approximation to its motion by mean curvature as follows:

Algorithm 1.1 Original Threshold Dynamics of MBO’92

Fix a time step size dt > 0. Alternate the following steps:
1. Convolution:

P(x) = Gt * Lyn.

2. Thresholding:
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Here, G; is the Gaussian kernel:

1 e
Gét(x) = W@ 45t

Our goal in this paper is to take a step towards providing more accurate versions
of threshold dynamics. The accuracy issue is particularly acute in the multi-phase
setting, where it decreases to half-order in time due to the presence of junctions.
Here, we focus on the easier yet still challenging two-phase setting, to find a version
of Algorithm 1.1 that

e Maintains the simplicity and spirit of the original threshold dynamics Algo-
rithm 1.1,

e Achieves second order accuracy in time,

e Maintains the variational interpretation, and the resulting stability proper-
ties, given in [1] for the original Algorithm 1.1.

The paper is organized as follows:

e In section 2, we recall previous efforts in designing second order versions of
threshold dynamics.

e In section 3, we discuss necessary conditions for second order accuracy.

e In section 4, we present our first new algorithm: a natural two kernel ex-
trapolation method, applied to the original threshold dynamics algorithm, to
achieve second order accuracy in any space dimension.

e In section 5, we present our second new algorithm: a multi-step method that
is second order accurate in two space dimensions, and unconditionally energy
stable in any dimension.

e In section 6, we provide numerical verification of the advertised order of
accuracy for both of our new algorithms.

The code for section 6 is publicly available, and can be found at https://github.
com/AZaitzeff /secondorderTD.

2. Previous Work. In [8], Ruuth proposed the following method based on
Richardson extrapolation to jack up the order of accuracy of Algorithm 1.1 to second
order in time:

Algorithm 2.1 Ruuth’s Second Order Threshold Dynamics

Fix a time step size 6t > 0. Set ¢*(x) = 1x0(z). Alternate the following steps:
1. First half time step:

NN

Y= {95 : Goppo x " >

2. Second half time step:

1
22 = {l‘ : Gét/Q * 121 > 5}

3

3. Full time step:
Y3 = {x t Got % % >

DN =

4. Linear combination:
P =21y, — 1x,.
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Although numerical experiments indicate this version indeed improves the accu-
racy in time to second order for smooth interfaces undergoing two-phase motion by
mean curvature, the algorithm sacrifices an attractive simplicity of the original MBO
scheme: it no longer generates binary functions exclusively that can be naturally iden-
tified with sets. Perhaps more importantly, there appears to be no clear extension
of the variational interpretation given in [1] for the original Algorithm 1.1 to this
case. No comparison principle is expected to hold, as a non-positive weighted sum is
involved. Hence, there is no rigorous result indicating the stability of the algorithm
(or its convergence).

In [2], Grzhibovskis & Heinz propose another approach to improving the order of
accuracy of Algorithm 1.1 to second order. The idea is natural: To cancel out the lead-
ing order error in threshold dynamics by taking a linear combination of convolutions
with two different radially symmetric kernels:

Algorithm 2.2 Algorithm of Grzhibovskis & Heinz
1. Convolution step:

o(x) = (aK1 - ﬂKg) * 1y,
3

The coeflicients o and 8 are chosen so that the leading order correction to curvature
in the standard consistency calculation for the original threshold dynamics Algorithm
1.1 cancels out. Crucially, this necessitates that the resulting combined convolution
kernel changes sign, even when the individual kernels K; and K5 are positive. This
means that the resulting algorithm can violate the comparison principle. But far
more importantly, we show in section 3, that this algorithm does not give second
order accuracy in time; it merely achieves a more accurate evaluation of the mean
curvature term at every time step. In general, the dynamics generated is still only
first order accurate, at least without being much more specific and deliberate about
the choice of the kernels K7 and K» — which the authors do not specify. (For example,
in case both K; and K» are Gaussians — with potentially different mass and/or width
— no choice of the coefficients a and 3 results in a second or higher order accurate in
time scheme for motion by mean curvature.)

In this paper, we will provide truly second order accurate in time versions of
Algorithm 1.1 that maintain its elegant and simple nature. Moreover, we will be able
to provide rigorous stability results for our new algorithms.

2. Threhsolding step:
D G

N | =

3. Second Order Motion by Mean Curvature. First, we need to identify
how far a surface travels under motion by mean curvature. In the vicinity of a point
of interest on the surface, which we take to be the origin, let the surface be given
as the graph of a smooth function f(z,y,t) : R? x [0,00) — R with £(0,0,0) = 0,
f2(0,0,0) = 0 and f,(0,0,0) = 0. Since the normal direction changes during the
evolution, it is easier to insist that the numerically generated solution intersects a
fixed line at nearly the same location as the true solution, at any given time. Thus,
we will calculate how far the surface travels along the z-axis under mean curvature
motion and under our algorithms. For a surface given as the graph of a function,
motion by mean curvature takes the following form:



fxx(l + f2) - 2f:8fyfxy + fyy(l + fz)

(3. fi= T

By a straightforward Taylor expansion we have for small ¢

(3.2)  £(0,0,t) = t{fm + fyy:|

1
+ 12 [Q(f:rmr + 2 frayy + Fyywy) — (fon + 3fl’frfx2y + 3fyyfa%y + 5’;,) +O(t?)

where the functions on the right hand side are evaluated at (0,0, 0). Over the course
of this paper, we will denote f(0,0,0) as f, f.(0,0,0) as f,, etc. for convenience.

It has been known and verified by Taylor expansion in previous publications (e.g.
Ruuth [8]) that standard threshold dynamics is 1st order accurate. We will include the
expansion of standard threshold dynamics (Algorithm 1.1) here as a simple example
of the method we use throughout this paper. Let X° = {(z,y,2) : 2 < f(x,y,0)}.
We work out the convolution of a Gaussian kernel with a characteristic function in
subsection 8.1 of the appendix where we had to keep many more terms than in previous
works to achieve our goals in this paper. Applying calculation 8.11 to our problem
we have:

1 3
Gy % 150(0,0,2) — B = 2;— 24\/2—t3/2 2&(.}%1 + fyy)

1= Jezea + 2fazyy + fyyyy) = (faz + fyy)

t3/2

(3.3) Ty

3 1
§f<4 2ot A g Fadu 12

S\F

t3/2

5 3 3
Next set (3.3) to zero and solve for z by using the ansatz z = 21t + 29t + remainder
and matching terms of the same order in ¢. Up to second order:

(34) z= t{fm + fyy]

£ B(fmm + 2 faayy + fyyyy) — %( o+ 3fwrf:3y + 3fyyf§y + 5;,) +0(t%).

Equation (3.4) gives the location of 93! along the z-axis. The equation (3.4) matches
the two dimensional version calculated by Ruuth [7]. Additionally, for three dimen-
sions some of the terms in (3.3) are calculated by Grzhibovskis & Heinz [3]. Their
paper, focusing on Willmore flow, did not require all the terms calculated in (3.3).

Comparing (3.4) to the location of the interface under mean curvature motion (3.2),
we see that threshold dynamics is only first order accurate in time. At this point, we
can also already see why Algorithm 2.2 of Grzhibovskis & Heintz cannot be second
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order accurate: It would merely move the surface by t(fyz + fyy) +O(t?), which would
still make it only a first order accurate approximation of the right hand side of (3.2).
In the next two sections, we will present two second order methods. For each method,
we will show that they do indeed match motion by mean curvature (3.2) up to second
order in the normal direction.

4. A More Natural Two Kernel Extrapolation. Our first method is a two
stage algorithm using two different Gaussian kernels with differing amplitudes and
widths. We detail the method in Algorithm 4.1.

Algorithm 4.1 Natural Two Kernel Extrapolation

Fix a time step size ot > 0. Alternate the following steps:
1. First stage:

_ 1
Y= {x D Ggox Ik 2> 5}

2. Second stage:

skl _ {x : V2G5t % 1, — Gy * 1w S 1}
V2-1 2

Whether Algorithm 4.1 is unconditionally stable is currently unknown. We will
devote the rest of the section to showing that Algorithm 4.1 is indeed second order.

4.1. Consistency of Algorithm 4.1. Once again let ¥° = {(z,y,2) : z <
f(z,y,0)} for f defined in section 3. First, we need to find the location and cur-
vature of ¥ along the z-axis. Let h(z,y) be defined by the requirement that G, /2 %
1so(z,y, h(z,y)) = %, so that £ = {(z,y,2) : 2 < h(z,y)}. From (3.4) we have that

(4.1)  h(0,0) = ;[fm + fyy:|

t2

1 2

4 3

Now we would like to find hy,(0,0) and hy,(0,0). From (8.17) in the appendix,
replacing h with f, z with h and ¢ with ¢/2, we have that h,,(0,0) satisfies

0=— + + +
/mt  A/Ttd/? 2Vt 22w

V2n® V2h 3 ., 1 2
42) Vi (15 3 3
t .
T oven (Zf:?z + ifmij + §f12£fyy + 6 frafoy + 3fyyf12y>
\/ihxar 3 2 3 2 1 2 \/ihh/a.ac

Plugging in h from (4.1) and solving for h,, in (4.2), using the ansatz hy, = ho +
thi + remainder, we have

t
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We can use similar steps to find h,,. Putting h,, and h,, together we arrive at

(4.3) oo + hyy = foo + fyy

Now we can solve for the location of ¥.! along the z-axis. From the expansion of
the Gaussian kernel convoluted with a characteristic function, (8.11), we have

2—-1
[\/iG(st/Q * 12 — th * 120}(07 0, Z) — \[2
z 23 h NG
= - —F — = = xT h
\F+6\/7rt3/2+f+2f( + hyy)
3/2 22 22 z 2
S\f( wzwz+2hwryy+hyyyy)_ 2ft3/2h_ 4m(hwr+hyy)+mh
z Z\[ 3 2 2 ]. 2 h3
h? \/ 3,0 1
’ 32 5 ., 5 3 2 3.2 2 2
4\/—(4}%3@ Zhyy + thhyy + thhyy + 3hazhyy + 3hyyhiy)
23 Vi

=+ 2r - 24ﬁt3/2 - f(fxx+fyy)
t3/2 ZQ
Z\[ 3

72\/7(4f$x+ fyy+ fzzfyy+facy)
32 5

+2f(4fzz+ fyy+ frxfyy+ fz:cfyy+3fxwfzy+3fyyfzy)+h0t

Note that the derivatives of h match the corresponding derivatives of f up to order
t (stated precisely in (8.12)). Substituting (4.1) for h, (4.3) for hyy + hy, and (8.12)
for the other other derivatives of h in (4.4), and simplifying, we have:

[\/iG(St/Q * 12 - th * lzk}(0,0 Z) - \/52_ !
z 23 3/2
=— 2\/7E+ 8ﬁt3/2 + f(fzmz‘FQfmyy‘f‘fyyyy)
3/2
_ét\/>(fz3z+3fwwf3y+3fyyf3y+f5y) &(fzw'kfyy)
(4.5) 3,2 3207

z z

— oo U + fuu) + o e+ )’

- L f)? - *}(fm I P+ 2184 5 eafn + 1)

£3/2

4\/>(4facz+ fyy+ fIIfyy+ facacfyy+3f11f:cy+3fyyfacy)+h0t
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Finally, we set (4.5) to zero and solve for z up to order t? to obtain:
(4.6) z=t {fm + fyy]

1 . .
+ t2 |:2(fﬂ”mm + szzyy + fyyyy) - ( 317 + 3fzzf12y + 3fyyf3y + 5y) + O(ts)'

Thus, up to second order, Algorithm 4.1 moves the interface in the normal direction
by the same amount as mean curvature motion (3.2).

The drawback to Algorithm 4.1 is that we do not know whether it is uncondi-
tionally stable. In the next section, we present an algorithm that is unconditionally
stable but is only guaranteed to be second order in two dimensions.

5. Unconditionally Stable Multistage Methods. In this section, we provide
a class of unconditionally stable threshold dynamics algorithms that are second order
in two dimensions. The original threshold dynamics algorithm (Algorithm 1.1) is
unconditionally energy stable, specifically:

(5.1) E,(SF) < EBy(ZF)

for energy

(5.2) E(X2) = / (1 —1%)Gy x 1xndzdy.
R2

Our class of methods preserves property (5.1) while at the same time achieving
second order accuracy. We describe our M-stage method in Algorithm 5.1.

Algorithm 5.1 M-Stage Unconditionally Stable Threshold Dynamics

m—

Fix a time step size 6t > 0 and a choice of 4’s such that Zi;017m,i = 1 for
m=1,2,...,M. Set T = §t/B1 s for B ar defined in (5.7) and set Xy = 2F.

Form=1,2,...,M:

m—1
(5.3) S = {m LG Y Amals, > %}
=0

Then set LA =%,

Unlike the previous algorithm, Algorithm 5.1 uses the same kernel at each stage.
As will be shown later, this will allow us to prove unconditional stability (5.1). In the
rest of the section, we will derive the consistency equations for ~, give the conditions
on v for unconditional stability to hold, and then give a particular choice of v that
makes Algorithm 5.1 unconditionally stable and second order. We conclude with a
discussion of one way to extend Algorithm 5.1 to higher dimensions.

5.1. Consistency Equations. Similar to in three dimensions, let f(z,t) : R x
[0,00) — R be a graph that is the interface of a set in R? with £(0,0) = 0, £,(0,0) = 0.
The distance the graph moves under mean curvature motion along the y-axis is:
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We now present the consistency equations for Algorithm 5.1

CrLAM 5.1. Let 3; be given in (5.3) and let

Ty =2k = {x:ng(ac,O)}

Define h; as ¥; = {m cx < hi(x)}, so ho(z) = f(x,0). The Taylor expansion of
h; at each stage has the same form as (5.4), namely:
(55) hz(o) = tﬁl,ifmx + t2(62,ifmxmx - /83,2f£z) + O(td)
Additionally, the Taylor expansion of the second derivative of h; has form
d? 3 2
(56) ﬁhl(o) = fzz + t(ﬁél,ifzzzz - /BS,ifa;z) + O(t )
The coefficients in (5.5) and (5.6) obey the following recursive relation:

510:520=530=,34,0=ﬂ5,0=0

m—1
Bl,m =(1+ Z Ym, 151 z:|
o =0
—1 m—1
,62,m = §+ TYm, 1521"' Z’Ym 1/64 z:|
- 1=0 1=0
—2 1 m—1 m—1
/63,m ==+ *( Ym, zﬁl z> - ( Ym, zﬁl 1) ( ’Ym,iﬁz,i)
©7) el > 2

+ % Z Vil + Z Ym,iBs,i + Z ’ymﬂﬂm}
=0 i=0 i=0
m—1
Bam = [1 + Z ’Ym,zﬂ4,z}
i=0
m—1
Bs,m = [2 + Z ’Ym,zﬂm}
i=0

Furthermore, the following conditions are necessary and sufficient for second order
accuracy of Algorithm 5.1:

Pom 1
Biv 2

(5.8) LM
BS,M -1
B m

Proof. We will prove (5.5) and (5.6) by induction. For hi, these equations are
the two dimensional version of equations (4.1) and (4.3) worked out in the previous
section.

For the induction step, assume (5.5) and (5.6) up to m — 1. We want to solve for

y such that |Gy * sz:_ol ’ym,ium} (0,y) = 3 Using (8.11) for two dimensions and the
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linearity of the convolution we arrive at:

m—1

(6% 3 | 00)
i=0

1 y Yy’

T2 ovml | 2A/ARR
t2 d4 yQ

1 % d? y

L sty & _hi’_hjdi _gia_w :
h h+4(d2l) 12t 4d2h’ 4hl(dx2 i) 4(dx2h’)

+ h.o.t.

1 y y®

RPN AN
1
2\/» Z Ym,i |:tﬂl zfzz +t ﬁZ zfzza:z -t 53 ’Lf;tz + tfzz +t 54 zfzza:cc t255,if:§z

t t

+ 3ti Tzx ﬂl thfzz - ﬂl thfzz - 351 ’Lt

fm — 775 fm] + h.o.t.

Setting the previous equation equal to a half and solving for y we have
m—1 1 m—1 m—1
Y =t foz [1 + g 'Ym,i/Bl,i:| + % foven [5 + g Ym,iB2,i + g 'Ym,i/84,i:|
e 1y sy e -
(5.9) —t" frw {g + 6( Z ’Ym,i/31,i) 1 ( Z ’Ym,zﬂl,i) ( Z Wm,zﬂ%,i)

m—1 m—1

Z'ymlﬂlz+27m¢63z+27mzﬂ5z:|+h0t

1=0 =0

Similarly, using (8.17) for two dimensions and the linearity of the convolution we
derive:

(5.10)
d2 m—1
L D EA [T
i=0
_ Yz +M
2v/mt  8y/mt3/?

1 f d4 yQ d2 y d2
2 s [Tm a2 T rm ™ sy ae )t amen

By (N k4, 3k (2 ’
4/t \ da? 8/mt3/2 du? A/mt \da2""
15 3 wah? oo d? 3 d2 ?
— Vi ﬁhxm + yiw + Yo hi jhi \/tym h'
8/ \ dz 8/mt3/2 4wt \dx sf

2
_T_ﬁﬁ :|+h0t
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Now substitute in (5.9), (5.5), (5.6) for y, h; and d%hi respectively in (5.10):

(5.11)

m—1
d2

& [Gt 2 Vm,mi} (2, y(@)) oo

m—1

_ Yza = Vit a )3
= 2\/7 + \/—< + Z Ym, 1/81 z) ya::cfzz 2\/—facx 2ﬁ( Z "Ym,z/34,z)fzz

Vit Vi
'sz/@E)z)fma:xm“F 2ffxmxx_ 8f<1+27m251 1) fzz

+
\&

=0

m—1
(1 + Z Ym, 1/61 z) (Z’Ym,i/@l,i)sz \\;; (1 + Z’}/m zBl L) fzz
m—1 2
( ZZ:: ’Ym,iﬂl,i) fzgz f ( Z Ym, 1131 ’L> f;vz - 1857\/\/7?2.)031

s%

<2

s 5

+
s 5

2
’Ym,iﬂl,i) yzzfggz 45» ( Z Ym, zﬂl z):’/azzfzz s{—yzazfzz

m—1
\[
1+ 'szﬂ z)( 'szﬁ z>yzzfzz_ (1+ ’szﬁ 7,>yz:1:fzq;
) (S o= 2L (14

5

k3

_|_
=
o

-+

Setting (5.11) to zero and solving for y,, we find

m—1 m—1

(5.12) Yoz = foa +1 [(1 + Z 7m,i,84,i> Jozow — (2 + Z ’Ym,iﬁss,i)sz] +0(t%).

=0 =0

Equations (5.9) and (5.12) give the recursive relations (5.7).

The consistency equations (5.8) follow by the change of variable 7 = t8; p for
har(0) and matching the Taylor expansion for motion by mean curvature (5.4). 0O

5.2. Unconditional Stability. Next, we give conditions on the +’s that pre-
serve unconditional stability in any dimension. Specifically, for energy

(513) Et(E) = / (1 — lg)Gt * ]_EdX‘

our algorithm has the property Ej(u,t1) < Ei(uy,). In [9], the authors prove condi-
tions for unconditional stability of the following class of linear M-stage algorithms:

M-1
(5.14) Uns1 = Uy = argmin E(u) + VMZ ||u — U2
“ i=0

where the intermediate stages U,,, for m > 1, are given by

(5.15) Un —argmmE Z mlHu—U||2
=0

for some energy F, fixed time step k£ and the stipulation Uy = u,. We state the
stability conditions from that paper below, and show that Algorithm 5.1 falls into the
desired class:
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THEOREM 5.2. (From [9]) Define the following auziliary quantities in terms of
the coefficients vy, ; of scheme (5.14) and (5.15):

~ ~ S m
(5.16) Ymyi = VYmyi — Yji Sj
j=m+1 353
m—1
(5.17) Sjm = Vji
i=0

If Sm,m > 0 form = 1,...,M, then scheme (5.18) ensures that for every n =
0,1,2,... we have E(upt1) < E(uy).

It is shown in [1] that each step of the original threshold dynamics, Algorithm 1.1,
can be written as

Yng1 = argmin/(l —19)Gyx 1 + /(12 —1y,)Gt x (1 — 1y,)) dx.
o\

Similarly observe that (5.3) can be written as

m—1

(5.18) Em = arg min/(l — lg)Gt * 1y + Z Ym,i /(12 — lii)Gt * (12 — 121,) dx.

= i=0
Moreover, as noted in [1], since Gy >0,
/uGt xu > 0dx

with equality holding if and only if w = 0. Thus, Algorithm 5.1 is of type (5.14) and
(5.15) with energy (5.13) and inner product (u,v) = [uG; * vdx, so that conditions
for unconditional stability identified in [9] apply.

In the next section, we give examples of v’s that satisfy the consistency equations
(Claim 5.1) as well as the hypothesis of Theorem 5.2 concurrently.

5.3. A Second Order Unconditionally Stable Example. In this section we
present a set of 4’s such that the second order consistency equations (5.8) and hypoth-
esis of unconditional stability Theorem 5.2 are satisfied simultaneously. We found the
~’s numerically and then sought a nearby algebraic solution to the consistency equa-
tions that still satisfied the conditions in Theorem 5.2. It can be shown that there
is no unconditionally energy stable second order two- or three-stage method of type
(5.3) for threshold dynamics. However, a four-step method exists with the following

v’s:

Y10 O 0 0 1 0 0 0

e e 0 0 | | 025 125 0 o0

G 7=t 0 4 e 0 | F| 083 —067 083 0
Yo Y1 iz Y4 073 05 —0.73 1.96

The exact values are in the appendix (subsection 8.2); they are all algebraic numbers
but with long representations. This choice of +’s that endows Algorithm 5.1 with
unconditional stability and second order accuracy is not unique. In fact, one could
find other choices of v that preserve additional desirable properties. We summarize
our results in the following theorem:
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THEOREM 5.3. Algorithm 5.1 with coefficients (5.19) is unconditionally energy
stable and first order accurate in any dimension. Moreover, it is second order accurate
in two dimensions.

5.4. Consistency In Higher Dimensions. Unfortunately, there does not exist
a choice of «’s such that Algorithm 5.1 is second order in three dimensions. Using
the Gaussian (or even a linear combination of Gaussian kernels) at every step in our
multistage algorithm leads to consistency equations incompatible with second order
mean curvature motion (3.2). Of course, one can choose a different kernel, denoted
by K, at each stage. The consistency equations will be different. On the other hand,
if the kernel has positive Fourier transform, K; > 0, Theorem 5.2 will hold for energy

Et*(E) = /(1 — lg)Kt * lgdx.
As an additional consideration, the energy induced by the kernel should have property

(5.20) lim E; () 5 cPer(X)

t—0+
for some constant c. (The Gaussian kernel has this property [6].) It is left to future
work to find a scheme with kernel and «’s such that unconditional stability, positive
Fourier transform, and property (5.20) hold, and that, furthermore, is second order
in three (and higher) dimensions.

6. Numerical Tests. In this section, we present highly accurate convergence
tests for the two new algorithms: Algorithm 4.1 and Algorithm 5.1. It is well known
that naive implementations of threshold dynamics on uniform grids introduces large
spatial discretization errors due to sampling characteristic functions. In fact, if the
time step size is sufficiently small compared to the spatial discretization, interfaces
can even get stuck. A very effective cure to this phenomenon is the adaptive im-
plementation of Ruuth [8], which entails fast convolution on non-uniform grids. In
practice, we recommend that the high order in time schemes introduced in this paper
be used in conjunction with such a spatial implementation.

Below, our focus is on numerically verifying the improvement in the convergence
rate in time of the new threshold dynamics schemes on a few smooth interfaces. To
ensure spatial errors are negligible in our experiments, for most of our experiments
below, we simply represent the interfaces as graphs of functions. This is, of course,
not meant as a practical implementation, but just as a very accurate and efficient way
to minimize spatial errors — it allows us to reach very high spatial resolutions and
accuracies — so that we can focus on time discretization errors. Section 6.1 explains
the details of the implementation, and Section 6.2 presents the results. The latter also
contains an experiment with the practical implementation of the new schemes (albeit
on uniform grids) to verify that no substantial qualitative difference is observed in
the handling of topological changes vs. the original threshold dynamics algorithm.

6.1. Highly Accurate Threshold Dynamics For Graphs. This section ex-
plains how Algorithm 4.1 and Algorithm 5.1 have been implemented in the special
case that the interface is given as the graph of a function for the purpose of numerical
convergence tests given in Section 6.2. We repeat that we are not advocating this
implementation as a practical method — it is just for numerical convergence tests on
smooth interfaces — but refer to Ruuth’s adaptive spectral implementation [8] to be
used in conjunction with our new algorithms.
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Let ¥ = {(x,2n)|xn < f(x)} for some function f(x). Recall the definition of the

Gaussian kernel Gs(x) = We’%. Then the convolution is
| (en—2p)?
Gs * In(x,2,) = G —X ——e @t dxdI,
ot * Iy (X, ) " st(x — X) N 47r5te XdT
(o1 11 fx)
X)—x
==+ = —x)erf [ =" )dx
2—|—2 Rd_lG&(x X)er < Wi ) X

where erf(-) is the error function. The latter integral is calculated numerically (e.g.
Gaussian quadrature) inside a region  C R"~! such that Joo Gst(x — X)dx < € for
some preset tolerance e.

With this tool in hand, we can implement the original threshold dynamics (Algo-
rithm 1.1) by tracking the interface at fixed points x throughout the evolution. We
describe this in Algorithm 6.1. The two version of threshold dynamics we proposed
in this paper,Algorithm 4.1 and Algorithm 5.1, are implemented similarly.

Algorithm 6.1 Highly Accurate Threshold Dynamics For Graphs

: Fix total evolution time T', time step size &¢, and points {x’ £i1 € D c R4 L
: Set X0 = {(x,z,)|zn < f(x,0)} and K = T/6t.

: for k< 1to K do

For each x; find 4* such that

%wwu

1 o
5 = Gét * ]lzk—l (Xz’yz)

using e.g. the secant method, estimating the right hand side using (6.1).
5: Set f(x', két) = y* and XF = {(x,z,) |z, < f(x,k6t)}.

6.2. Numerical Results. In this section, we will test Algorithm 4.1 and Al-
gorithm 5.1 on a couple of two phase mean curvature motion evolution problems to
demonstrate their accuracy.

In R? we run our algorithms on the ‘Grim Reaper Wave.” The interface is given
by f(x,t) = arcsinh(exp(—t) cos(x)). We run the evolution with initial data f(z,0) =
arcsinh(cos(z)) to T' = 1 on domain x = [0, 7] with homogeneous Neumann boundary
conditions. We track 4000 points and report the L? error between final interface
and f(z,1). We include the errors for the original threshold dynamics in Table 1
for comparison. The error for Algorithm 4.1 is reported in Table 2 and the error for
Algorithm 5.1, with ’s given in (5.19), is tabulated in Table 3.

Number of
time steps 8 16 32 64 128 256
L? error 5.4e-03 | 2.6e-03 | 1.3e-03 | 6.7e-04 | 3.3e-04 | 1.7e-04
Order - 1.0 1.0 1.0 1.0 1.0

Table 1: Ordinary Threshold Dynamics, Algorithm 1.1, on the ‘Grim Reaper Wave.’
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Number of
time steps 8 16 32 64 128 256
L? error | 1.9e-04 | 3.4e-05 | 8.4e-06 | 2.1e-06 | 5.1e-07 | 1.3e-07
Order - 2.5 2.0 2.0 2.0 2.0

Table 2: Algorithm 4.1 on the ‘Grim Reaper Wave.’

Number of
time steps 8 16 32 64 128 256
L? error 6.6e-05 | 1.6e-05 | 4.1e-06 | 1.0e-06 | 2.6e-07 | 6.3e-08
Order - 2.0 2.0 2.0 2.0 2.0

Table 3: Algorithm 5.1 with 4’s given in (5.19) on the ‘Grim Reaper Wave.’

In three dimensions, we run mean curvature evolution tests with initial interface
f(z,y,0) = cos(my) cos(mz) + 3 cos(my) to T = 1/10 on (z,y) € [-1,1] x [-1,1]
with periodic boundary conditions. We generate the ‘true’ solution by forward Euler
discretization of the PDE for mean curvature motion (3.1) using very small time
steps and a very high spatial resolution. We tabulate the L? error between the ‘true’
interface and the output of Algorithm 4.1 in Table 4.

Number of
time steps 4 8 16 32 64
L2 3.3e-03 | 6.5e-04 | 1.3e-04 | 2.7e-05 | 6.3e-06
Order - 2.4 2.4 2.2 2.1

Table 4: Algorithm 4.1 on an interface in R?

As an additional test in three dimensions, we use Algorithm 4.1 to evolve a dumb-
bell by mean curvature motion using the practical implementation of Algorithm 4.1,
albeit on a uniform grid. The system goes through a topological change where the
connected set breaks off into two components. In Figure 1, we show the original
threshold dynamics Algorithm 1.1 and Algorithm 4.1 at time steps near the pinch off.
There is a slight difference between the two algorithms at the temporal and spatial res-
olutions we have chosen. Presumably, this difference will shrink as we further refined
our temporal and spatial resolution. Regardless, Algorithm 4.1 behaves reasonably
during the pinch off.

7. Conclusion. We have presented second order threshold dynamic methods
for simulating two phase mean curvature flow. Unlike the previous method, Algo-
rithm 2.1, our methods represent the phases via a binary function at every step.
Additionally, we present an unconditionally stable method in two dimensions. We
have demonstrated the methods and their advertised accuracy on examples in two
and three dimensions.

Finding a method that is second order in three and higher dimensions and un-
conditionally stable in the case of two phases is a topic of future investigation.

8. Appendix.



TD 15

0.8

0.4
0.2

02
04 |

08

a1

Fig. 1: The original threshold dynamics Algorithm 1.1 and Algorithm 4.1 evolving a dumbbell by
mean curvature motion. Top: the initial dumbbell. Center: Algorithm 1.1 before and after the
topological change. Bottom: Algorithm 4.1 before and after the topological change at the same time
values as the center row.

8.1. Taylor Expansion of Characteristic Function with a Gaussian Ker-
nel. In this section of the appendix, we work out the Taylor expansion of the convo-
lution of a Gaussian kernel with a characteristic function. A simpler version of the
following calculation is worked out in two dimensions by Ruuth [7] and up to first
order in arbitrary dimensions by Grzhibovskis & Heinz [2]. First, let us introduce the
following notation for the 1D Gaussian for convenience,

gi(z) = 2%/% exp [— it} and let Gi(z,y, 2) = gi(v)g:(y)g¢(2).-

Now take a function h(z,y) with the following properties:
h(0,0) = O(¢)

(8.1) hz(0,0) = O(t)
hy(0,0) = O(t)
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The papers mentioned above ([2],[7]) use the assumption that

(8.2) h(0,0) = h;(0,0) = hy(0,0) = 0.

These simpler assumptions are sufficient for their calculation of the Taylor expansion
for a single step of threshold dynamics. However, after the first stage, the interface

may no longer satisfy (8.2). So we required the more general conditions given by (8.1)
for Taylor expansions of the interface after the first stage.

Now let ¥ = {(z,y,2) : 2 < h(z,y)}. The goal is to see how {Gt * ]lz:| (x,y,2)

behaves along the z-axis near the origin. First, we simplify [Gt * ]lg] (z,9,2):

[Gt * ]12:| (z,y,2)

oy — Dgr(x — 7) / gz — 2)1s (2,5, 3)dsdidy
R2 — 00

-
/

0
/ 9:(y — ) ge(x — m)/ gt(z — 2)dzdzdy
R2 oo

2

h(Z,9)
9t(y — 9)ge(x — w)/ g¢(z — 2)dzdzdy

=

(8.3)

h(Z,5)
+ / 9:(y — 9)ge(x — @) / gt(z — 2)dzdzdy
R2 0

1z 2 . o [ 5)dzdids
T2 2v/ Tt + 24/t + /Rz gi(x = B)gnly - y)/o ge(e — Z)dzdzdg
+ h.o.t.

Setting x = y = 0, we will now simplify the last term of (8.3),

h(z,9)
(8.4) /R oo~ Dy~ 9) /0 g1z — 3)dzddy.

First note that, near z = 0,

h(Z,7) h(z, y) z _ z)
8.5 z—2Z)dz = — ~——*-dZ+h.o.t.
(5 R =

Substituting approximation (8.5) into (8.4) and integrating,
(8.6)
1 h(3,9)
N [ o@a@ [ - 2iziia
1 MED (5 - 5)?
= T g 1-— dzdzdy + h.o.t.
e /Rz gt(w)gt(y)/o 5 4#dEdy +h.o

:2%/5/11@2 9:(%)9:(7) {h(i,g)—k —3h(Z,9)" +3(h§2t D)% = (@] 44545 1 ot




TD 17

Denote the Taylor expansion of h(Z,§) around (0,0) as P[h](Z,9):

(8.7)
L @ ] g
P[h](Z,9) = h + Tha + Ghy + 2 hm + Efhay + L hyy + T hase + =5 haay + = hayy
~3 ~4 ~3 ~ ~2 ~2 ~~3 ~4
z ry Ty zy Yy

Where h = h(0,0), hy = h;(0,0), etc. in order to simplify notation. Now substitute
the Taylor expansion of h(Z,y) about (0,0) into (8.6):

h(z,9)
68 5= [La@a@ [ etz -
2\}5 /R 9:(#)9:(9) P[h](fc,y)—%P[h]( 9P+ ! (Pl 9)"

f%%(P[h]( 9)*|dzdg + hot.

Now we can integrate (8.8). For a non-negative integer n we have:

oS @2n)! /2
=t x for n even
8.9 z"gi(x)dx = !
(®.9) /_oo 9:(x) {O for n odd

Using (8.9), we simplify (8.8)

(8.10)
L Do) [ 5)dzdEd]
s Lo @a) [ e - 2yazazay =
h Vit
s+ o+ )
t3/2 22 52 )
4f( caze T 2haayy + hyyyy) - 8ft3/2h - 8\/7?(hm + h’yy 8\ft3/2h
z Z\[ 3 2 2 1 2 h3
+ mh(hzz + hyy) + 2f(4hm + - hyy + 2hzzhyy + hay) — PYNCTEE
h? N 1
_ 8\F(hm + hyy) — 2fh(4hm + = hyy + thhyu + hzy)
32 5 4 2 3 2 2 2
2\F(4h” + hyy + - hmh wy + thhyy + 3haehyy + 3hyyhz,) + hoo.t.

Now substituting (8.10) for the last term of (8.3) we arrive at the expansion of |G} *
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Ilg:| (0,0, 2) near z = 0:

(8.11)
{Gt % 12} (0,0,2) =

1 z 23 h Vit
. haw + h
5 2Ft+24ﬁt3/2+2%+2ﬁ( + hyy)
e h h A S S Z__p
Trrx 2 xTT - - xTxT o —,a/0
+4ﬁ( + vy + hyyyy) B /mt3/2 8\/E( + hyy) + SR
z Z\/E 3 2 3 2 1 2 h3
o ee + huy) o2 (Gl + Ghyy + Shechu +hey) = 5o
h? VvVt .3 3 1
= g e ) = ﬁh(ihiz + S hyy + haahyy + hiy)
t3/2 5 5 3 3
_ 2ﬁ(zhfm + thy + thhiy + Zhfmhyy + Bhaghly, + 3hyyhs,) + hoo.t

In this paper, we use the previous calculation to find the location of an interface
along the z-axis after thresholding, i.e. finding z such that {Gt * Ilg:| (0,0,2) = %
)

We also need to find how the derivatives of our interface, given by z(0,0), 2,(0,0
222(0,0) etc., relate to the derivatives of the original interface given by h(z,y). The
derivatives of z match the derivatives of h to order ¢:

)

m-+n am+n
Z(I, y) | (z,y)=(0,0) —

(812) h(xvy)|(w,y)=(070) + O(t)

axnym 8xnym
Note that z,(0,0) and z,(0,0) are of O(t) for h having properties (8.1). For our
calculations, we also need to find z,,(0,0) and z,,(0,0) to O(t?). So we also include

the calculation of 86—;2 [Gt * ]lg] (@, y, 2(2, Y)| (2,)=(0,0):

(8.13)

0
@ |:Gt * 12:| (1}, Y, Z(CL‘7 y))‘(m,y):(0,0)

Zow | 32°Zaa +62(22)° / o /h(g’c,g) RN R
— 2\/ﬁ + 24ﬁt3/2 + o gt(l')gt(y) ; gt(z z) yTe + 5
(G—2)%22 (F—2)2ee 23] ...,
— =2 1dzdzdg + h.o.t.
4¢2 + o o 2Zdx y+ fe)

2
The terms 42\/(7%2 7z and

PN J2E=2)2e  (B—2)222 221 _ .
/ gt(x)gt(y)/ gt(ZZ)|: ( ) +( )2 2—; dzdzdy
R2 0

2t2 4¢2

turn out to be O(t3/2), which is higher than the order needed for the calculations in
this paper. We will simplify the two remaining terms in the integrand, starting with

“31;2%. As in the previous calculation substitute in the approximation (8.5)

the term



TD

and integrate:

h(&.9) 2 -2t
/ 9+(2)g:(9) / gi(z — 2)———dzdzdj
R2 0 4t

1 1
s 5= [ e@a@)| PR - L PHED:
1 2 1 3|3 —
+ (PR)(Z,9))" 2 5 (PR)(Z,9)) yTe dﬂcdy +h.o.t.
Then use (8.9) to further simplify (8.14):
h'acac \/E
22
(8.15) 2 .

~ 57t = f( h2, + hmhw + hzy>

\/E 15 3 3 2
h hmh

We now turn to the

%hizhyy + 6hoghl, + 3hyyhiy) +h.o.t

% term, following the same steps:

(8.16) -
. . &y (= 2)zwn . -
/}R2 gt (w)gt(y)/o gi(z — Z)szdxdy

1 - ~ - 2
= Plhl(z,y) — —P h
5= L, @@ | PG D) — ;P52
+ L@ ) - L (em@ 9)* | Eo25 didg + not.
4t ’ 12t ’ 2t
Zew | B 3t t zh z
72\/> |:4t + h(hm + hyy) + Z(hiz + h’zQ/y) + §hmhyy + thiy - % - §(hm + hyy)
+ h.o.t.

Substituting (8.15) and (8.16) into (8.13), we arrive at the simplification

82
527 |G le} (%, 9, 2(2, 9))] (2,4)=(0,0)

2
Zox 2% 20 hea Vit
2v/ 7t + 8/t3/2 + 2/ 7t + 2ﬁ( * w)

2

z 3 5 1 2
zz hhl‘fl) 7hxx *hzzh h’a:
BENCE 4ft3/2 tovm (2 + g fealiyy + y)

h? h

- st 2ff( K2, + hmhyy n hzy)
N
BN

27“;/% { + —h(has + hyy) + Z(hiz +hi,) + 5 haahyy + th?,

4t 2
zh  z
-5 Q(h” + hyy)] + h.o.t.

(8.17)

3

(15hi,c + 3hmh§y +2 hfmh yy -+ 6hazhly, + 3hyyh§.y)
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Finding 8%22 Gi*ls| (2,9, 2(2,9))|(2,4)=(0,0) is similar. We use both (8.11) and (8.17)
in several calculations throughout the course of the paper.

8.2. The ~s that render the four-step threshold dynamic scheme to
be second order accurate. We record here the exact values for the coefficients
in the four-stage, second order accurate scheme introduced in subsection 5.3. They
are algebraic numbers, but the representations of some of them are quite long and
therefore we have approximated them above. With the exact values given below,
we can rigorously state that the Algorithm 5.1 is second order while maintaining
unconditional energy stability. The matrix of values is:

1 0 0 0
1 5
-3 2 0 0
=1 s s
6 3 6
V4,0 5 74,2 743

Y4,2 :( %/73547857887405865499600064 133495318877644714344377 — 23474745371243059566207357648855848671

5551049511730043591353151

%/73547857887405865499600064 133495318877644714344377 — 23474745371243059566207357648855848671

- 455109196575) /3627134098848

4,3 :( — 5586815667458

X 573547857887405865499600064 133495318877644714344377 — 23474745371243059566207357648855848671
2/3

+ (73547857887405865499600064 133495318877644714344377 — 23474745371243059566207357648855848671)
31012690382968488487137089701456460158

%/73547857887405865499600064 133495318877644714344377 — 23474745371243059566207357648855848671
30814150681678355363112149018994128529535197628801

2/3

(73547857887405865499600064 133495318877644714344377 — 23474745371243059566207357648855848671)

+ 7974522440634228925392639) /18386964471851466374900016

1
Ya,0 =1— 5 742 7743

It can be checked that these ~ys satisfy the inequalities in the hypothesis of Theorem 5.2
for stability, and the consistency equations in Claim 5.1 for second order exactly.
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