Taylor &Francis
Molecular Physics

An International Journal at the Interface Between Chemistry and
Physics

ISSN: 0026-8976 (Print) 1362-3028 (Online) Journal homepage: https://www.tandfonline.com/loi/tmph20

Alchemical molecular dynamics for inverse design

Pengji Zhou, James C. Proctor, Greg van Anders & Sharon C. Glotzer

To cite this article: Pengji Zhou, James C. Proctor, Greg van Anders & Sharon C. Glotzer (2019)
Alchemical molecular dynamics for inverse design, Molecular Physics, 117:23-24, 3968-3980, DOI:
10.1080/00268976.2019.1680886

To link to this article: https://doi.org/10.1080/00268976.2019.1680886

A
h View supplementary material &

ﬁ Published online: 23 Oct 2019.

N
CJ/ Submit your article to this journal &

||I| Article views: 89

A
& View related articles &'

@ View Crossmark data (&

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=tmph20


https://www.tandfonline.com/action/journalInformation?journalCode=tmph20
https://www.tandfonline.com/loi/tmph20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00268976.2019.1680886
https://doi.org/10.1080/00268976.2019.1680886
https://www.tandfonline.com/doi/suppl/10.1080/00268976.2019.1680886
https://www.tandfonline.com/doi/suppl/10.1080/00268976.2019.1680886
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2019.1680886
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2019.1680886
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2019.1680886&domain=pdf&date_stamp=2019-10-23
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2019.1680886&domain=pdf&date_stamp=2019-10-23

MOLECULAR PHYSICS
2019, VOL. 117, NOS. 23-24, 3968-3980
https://doi.org/10.1080/00268976.2019.1680886

Taylor & Francis
Taylor &Francis Group

CUMMINGS SPECIAL ISSUE

[ W) Check for updates

Alchemical molecular dynamics for inverse design

Pengji Zhou?*, James C. Proctor®*, Greg van Anders® <9 and Sharon C. Glotzer?-<-

3Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; bDepartment of Materials Science and Engineering,
University of Michigan, Ann Arbor, MI, USA; “Department of Physics, University of Michigan, Ann Arbor, MI, USA; Department of Physics,
Engineering Physics, and Astronomy, Queen’s University, Kingston, Ontario, Canada; ¢Biointerfaces Institute, University of Michigan, Ann Arbor,
MI, USA

ARTICLE HISTORY
Received 1 June 2019
Accepted 30 September 2019

ABSTRACT

We present a molecular dynamics (MD) implementation of an extended statistical mechanical
ensemble that includes ‘alchemical’ degrees of freedom describing particle attributes as thermody-
namic variables. We demonstrate the use of this alchemical MD method in inverse design simulations
of particles interacting via the Oscillating Pair Potential (OPP) and the Lennard-Jones-Gauss poten-
tial (LJG) - two general, previously studied models for which phase diagrams are known. We show
that alchemical MD can quickly and efficiently optimise pair potentials for target structures within
a specified design space in the low-temperature regime, where internal energy adequately repre-
sents the features of the alchemical free energy landscape. We show that alchemical MD can be also
used to inversely design pair potentials to achieve target materials properties (here, bulk modulus)
directly, without explicit knowledge of the structure-property relationship. Alchemical MD can eas-
ily be generalised and applied to any target materials properties or structures and used with any
differentiable interaction potential.
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1. Introduction . .
Here, we present an inverse design method for molecular

A holy grail of materials science is the ability to ‘inversely
design’ a material with any arbitrary set of properties
or behaviours [1-3]. This approach contrasts with tra-
ditional ‘forward” approaches that start by considering
atomic, molecular or nanoscale building blocks, then
predict thermodynamic structures from building block
attributes, and subsequently link structure to materials
properties [4]. Several recent investigations have intro-
duced techniques for inverse design that yield build-
ing blocks optimised for given target structures [5-14].

dynamics simulation based on digital alchemy [11] that
can be directly used to inversely design structures and
properties (see Figure 1 for an illustration).

Digital alchemy was first introduced as an alchemical
Monte Carlo (MC) algorithm that performed thermo-
dynamic optimisation of hard nanoparticle shapes for a
target colloidal crystal structure in an extended thermo-
dynamic ensemble where particle shape is treated as a
fluctuating thermodynamic variable [11,14,15]. Alchem-
ical MC is straightforward to implement; in addition to
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Figure 1. Traditional, forward, design starts from a material’s
basic atomic, molecular or nanoscale building blocks, then deter-
mines how those building blocks organise into a structure, and
then how that structure determines material properties. We
implement an ‘Alchemical’ Molecular Dynamics algorithm gives
the ‘inverse’ design of building blocks that form a material with a
target property.

particle translation and rotation moves, shape moves are
attempted (by randomly proposing a change in some
shape parameter «), and the newly generated microstate
similarly accepted or rejected by comparison with the
Boltzmann probability. When the conjugate ‘alchemical
potential’ i, is set to zero, the Boltzmann probability in
the NVTu, ensemble is either one or zero, just as it is
for an NVT ensemble of hard particles. Indeed, for hard
particles, the only criterion for accepting any attempted
change of microstate is that particles cannot overlap.
Beyond hard shape, inclusion of interparticle interactions
in alchemical MC is similarly straightforward.

Alchemical molecular dynamics is trickier, requir-
ing the derivation and implementation of an ‘alchemo-
stat’ allowing simulations in a fixed alchemical-potential
ensemble where particle attributes are allowed to fluc-
tuate, in analogy with a thermostat or barostat used for
simulations in the NVT or NPT thermodynamic ensem-
bles. Here we present an implementation of alchemical
MD (Alch-MD) and derive finite difference approxima-
tions of the equations of motion for interacting particles
in contact with an alchemical ‘bath’, or alchemostat, in
analogy with the Nosé-Hoover thermostat [16].

We then perform MD simulations in the NVTpu,
alchemical ensemble and demonstrate how this method
can be used to optimise an interaction potential both for
target structures and for target properties. As a simple but
instructional example problem, we target bulk modulus,
a measure of mechanical response and inversely design
a pair-wise interaction potential that can effectively tune
the bulk modulus of a crystal. We validate this predic-
tion via direct, brute-force computations. We show that a
few Alch-MD simulations can produce important design
information previously obtained via many simulations
in a grid sweep with fixed parameters. The Alch-MD
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method is extensible and generalisable to any system of
particles that can be modelled by interaction potentials.

And while this work focuses on a-priori investigations
of particle interaction in simulation, thus the phrase ‘digi-
tal alchemy’, the methodology can accommodate parallel
experimental research where such alchemical changes
(or ‘colloidal alchemy’) are physically achievable, e.g. in
colloidal systems where different manipulation of col-
loidal shape or size and effective interaction are possible
[17,18]. In such systems, (i, the thermodynamic conju-
gate of the alchemical parameter corresponds physically
to the energy cost of changing the effective interaction
and the resulting driving force in alchemical space. For
most physical systems, we don't expect this cost to be
zero, and we present in this work different examples
where (14 is zero or nonzero and showcase the different
applications with different 1.

2. Model and methods

We implement a Nosé-Hoover type thermostat which
incorporates alchemical variables in the particle-based
molecular simulation toolkit HOOMD-blue [19,20]. We
describe the derivation of such Alch-MD method and
the simulation protocols we used for inverse design with
Alch-MD in the Results section. Below we describe the
two families of interaction potentials used as example
model systems in this work, and the methods for bulk
modulus calculation and structure identification, which
are used for inverse design examples studied in this paper.

2.1. Models

While the Alch-MD framework is not limited to isotropic
pair potentials, their computational efficiency and ubiq-
uity make them an ideal candidate for the demonstration
of the utility of Alch-MD. Colloids and nanoparticles
with isotropic interactions have been demonstrated to
manifest a broad range of interesting behaviours in exper-
iments [21-24]. The ability to control the synthesis [25]
and interactions [23,26] of those particles is increas-
ing steadily. The development of methods for materials
property design in systems with isotropic interactions
is therefore crucial to guiding future synthesis. To illus-
trate the application of Alch-MD, we use two isotropic
pair potential families that have been shown to have rich
phase diagrams of diverse crystal structures in alchemical
space.

2.1.1. Oscillating pair potential
One model suitable for testing our inverse design
approach is provided by the oscillating pair potential
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(OPP) of the form

1 1
Vopp(r) = r1—5+r—3€05(k(r— D+¢), (1)

where the parameters k and ¢ control the frequency of
the oscillation and the phase shift, respectively. Although
Equation (1) was originally proposed in the context of
metals [27], these potentials have more recently been
used in exhaustive structural investigations that discov-
ered a multiplicity of complex crystals including icosahe-
dral quasicrystals [28,29]. Prior thorough investigations
of the OPP family facilitate the validation of our inverse
design approach.

We have fixed units of energy by setting the over-
all multiplicative constant for this potential to one. To
properly smooth the potential near the computational
cut-off radius, the XPLOR cut-off scheme is applied in
HOOMD to the OPP potential such that the actual poten-
tial becomes V(r) - S(r):

(rgut - r2)2 i (rgut + 2r% — 3r(2)n)

2
(rcut - r(z)n) 3

S(r) =

(fon <t < reut)-
(2)

Here ron = 2.5, reut = 3.0, 7on is the radius where the tail
smoothing XPLOR function S(r) starts to apply, and ry
is the radius where the potential and its first derivative are
set to zero.

2.1.2. Lennard-Jones-Gauss

Another suitable interaction potential is the Lennard-
Jones—Gauss (LJG) potential, which has been shown
to self-assemble a variety of 2D structures including
quasicrystals [30]. The LJG potential, Vijg(r), is a
double-well potential comprised additively of a simplified
Lennard-Jones potential and an attractive Gaussian:

1 2 N2 2
VLIG(r) = (}’1_2 - 7’_6 —ee 10 /20 ) €norm>  (3)

where rp and € correspond to the location of the second
well and its additive depth, respectively. o determines
the width of that well and, following previous studies,
is fixed at a value of 0.02. The variable €,orm sets the
energy units of the interaction potential. Setting €porm =
constant would, due to the nature of the parameterisa-
tion, result in a trivial optimisation solution for all sys-
tems to minimise their free energy by maximising the
depth of the second well. In Alch-MD, this would appear
as an ever increasing € value. Thus, to create a both
reasonable and differentiable energy scaling, the energy
normalisation is defined as the following functions of the
other variables to ensure that the attractive portion of the

potential always has unit area:

-1

(4)

€norm =

f ':jn VL] G

€norm=1

If we set the point at which the standard Lennard-Jones

potential first becomes attractive, rmin = 2(-1/0) we can
then define €porm simply as

/ —27' 12
€norm = z0’6 erf 1’0— +1)+ 25/6_
2 V20 55

-1

(5)

2.2. Bulk modulus quantification

We used the inverse design of bulk modulus as an exam-
ple for inverse property design using Alch-MD method.
To calculate bulk modulus, we used the virial stress and
pressure measurements implemented in HOOMD-blue
[19,20]. The virial stress calculation is given by [31]

N

1 _ —

‘L’,‘j = V E < — m(k)(ui(k) — ui)(uj(k) — uj)
keV
1 N
(O] (k)£ (kD

+ = X = xi)fj 5 6

5 ZE_I( i i) ) (6)

where k and [ denote different particles in the system, V' is
the volume of the system, m® is the mass of the particle
k, ui(k) is the ith component of the velocity of particle k,
uj is the jth component of the average velocity of particles
in the volume, x;® is the ith component of the position
of particle k and fj(kl) is the jth component of the force
applied on particle k by particle I. The bulk modulus is
obtained from the trace of the change in t in response to
an infinitesimal strain.

In an isotropic system at equilibrium the pressure is
given by [32]

1
pP= —gTr(r), (7)
and the bulk modulus is
dpP
B=-V—. 8
i (8)

We computed the virial stress for 255 self-assembled
nanocrystals produced via brute force non-AlchMD MD
simulations following the protocol described in Simu-
lation Protocol subsection, step 1. We found that the
anisotropy of the bulk modulus, as indicated by the dis-
tribution of diagonal elements of 7, remained below 5%
for the majority (>99%) of the self-assembled crystals
studied in this work. Therefore - and for computational



efficiency — we approximated the nanocrystals as having
an isotropic modulus and used Equation (8) to evaluate
the property bias in our implementation of Equation (17).
We used a second-order finite difference scheme with a
0.5% isotropic contraction and expansion:

dP P(V+dV) = P(V—dV)

9
av 2dV ©)

2.3. Structure identification methods

To identify the many self-assembled structures pro-
duced in this study, we used a machine learning method
described in [33] to automate the task. Briefly, this
method uses spherical harmonics Y;"(6, ¢) as a numer-
ical description of the neighbouring particle bonds to
describe the environment of each particle. A maximum
of 10 nearest neighbours and a maximum spherical har-
monic degree, I, of 10 were used to generate high dimen-
sional local environment descriptors. We used a set of
18 thermalised crystal structures from [33] (cP1-Po, cI2-
W, cF4-Cu, cP4-Li, cP8-Cr3Si, cI16-Si, cP20-Mn, cP54-
K4Si23, tI4-Sn, tP30-CrFe, hP1-Ca0.155n0.85, hP2-Mg,
hP2-X, t120-X, oP52-X, hP2-X, hP10-X, hP18-X), and
used Pythia [33,34] to train a feed-forward artificial neu-
ral network with one hidden layer to predict the local
structure around a particle based on its local environ-
ment descriptor using the Python library Keras [35].
The final reported structure of a nanocrystal was cho-
sen as the majority vote of structures identified for
each particle in the same nanocrystal. We also used
Bond Orientational Order Diagrams (BOODs) [36] as a
visual fingerprint to visualise the structural change of the
system.

For the 2D LJG simulations, local environment
descriptors were generated using Pythia with a maxi-
mum of 6-10 nearest neighbours. For both the distance
and angle calculations, a singular value representation of
the generated matrix was used for invariance to neigh-
bour order [34]. A stochastic gradient descent algorithm
was used to optimise a logistic regression [37] using
labelled structures following naming conventions of
Engel et al [30].

3. Results

Here we present a derivation of the alchemostat and
Alch-MD equations of motions used in this work. We
then demonstrate the use of Alch-MD in the inverse
design of targeted 3D and 2D structures for the OPP and
LJG systems, respectively, and targeted bulk modulus for
the OPP system.
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3.1. Derivation of Alch-MD equations of motion

To perform digital alchemy MD simulations in the
alchemically extended canonical NVT i, ensemble, we
develop in this section an alchemostat — a type of thermo-
stat that accounts for the fluctuating alchemical variables
of this extended ensemble. We follow the derivation of
the Nosé-Hoover thermostat as presented by Frenkel and
Smit [16].

We begin by defining the alchemical Hamiltonian, Ha,
of a system of point particles and a single alchemical
variable as

2 2 2
pi p; | L P
Hp = +U(ga)+ ==+ —Ins+ —=
; am TP T T T g,
+ P + g Na + La 1 (10)
o+ — Insy.
ZMSaZ Mo By o

In this expression, i indexes particles; p;, g; and m; are
particle momenta, positions and masses, respectively; U
is any defined energy function for the whole system as a
function of g and «; p is the alchemical potential ther-
modynamically conjugate to «; ps and Q are the momen-
tum and mass, respectively, of the Nosé-Hoover thermo-
stat; s is the Nosé—Hoover coordinate [16]; L is the num-
ber of canonical degrees of freedom (dimensionality of
the system times the number of particles plus one intro-
duced by the Nosé-Hoover thermostat); p, and M are
the momenta and mass, respectively, associated with the
alchemical variable; s, is the Nosé-Hoover coordinate
for the alchemostat; p;, and Q, are the corresponding
momentum and mass, respectively, of the alchemostat,
and Ly is the number of alchemical degrees of freedom
(equal to the number of the alchemical variables plus
one).

The parameter X is introduced, defined by T, = XT
(or equivalently 8, = /X), so that the ratio of energy in
the alchemical and canonical degrees of freedom can be
set, where X is typically some relatively small value, i.e.
X « 1, in this work X = 10~

Because the current systems of interest are those
with constant interactions, the resulting design does not
include dynamics for the alchemical variables. With-
out these dynamics, many alchemical variables, such as
Qy and M, would not have a corresponding observ-
able and therefore convenient values can be imposed.
However, when modelling dynamic interactions in an
experimental system, appropriate tuning of these vari-
ables would be critical to matching the dynamics
observed.
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The equations of motion for a system defined by the
Hamiltonian in Equation (10) are

P
1= s
_ 9U(ga)

= %

(11)

. 1 P Loz
Ds, = 5 <Msa2 - ﬂ_a>

To allow for the simulation of canonical and alchemi-
cal degrees of freedom on separate timescales, following
Martyna and Klein [38], a Trotter factorisation is used
to derive the finite difference equations representing the
desired equations of motion. These intermediate steps
are detailed in the supporting information document. We
also simplify our notation by defining At = nét, where
3t is the canonical time step in the MD simulation and
the alchemical timestep, At can be any constant factor n
of ét. Following the Nosé-Hoover scheme, we define the
relation & = sp!,/Q for both thermostat and ‘alchemostat’
variables.

Incorporating the virtual variables for both the canon-
ical and alchemical degrees of freedom with the tra-
ditional Nosé-Hoover conventions (i.e. ' =t/s, p' =
p/s, ¢ =q and s =5s) we numerically integrate the
equations of motion of the in Alch-MD system as fol-
lows. The first step in the integration algorithm is to
update the alchemical variable and its corresponding

momentum:
At At p,,(0)
=" — /0 I ]
o ( 5 > a'(0) + M

At
o (7) — 5 0)(A2)

A 8Uq/0,o/0
X p/O(O)——t (—( ()/ ())+/LaN) .
(12)

We next update the particle positions, momenta and ther-
mostat variable, £. This update proceeds in three steps,
where for i from 1 to n we first update the momenta and

positions:

(2i — 1)dt StEQi 2(i — 1)8t
Y (T) _ o OEQG-1SE/2) |:p/( _ )
s [3U (q’ (2(i—21)8t> o (2(:‘—;)&))
2

aq’

C(28t\ (26— st +5t#(@)
T\2 )71 2 m '
(13)

Then, we update the thermostat variable which controls
the time scaling of the virtual system:

2ist\ (20— 15t
()= (57)

. 2
N _t o ((21—21)8t) ) £ "
Q m Bl

Next, we again update the momentum:

p ( ) =¢ p >

5t (aU(q’ (28,0’ (%))) (15)

e 5

2

To complete one full alchemical time step, we update
the alchemostat time scaling variable followed by the
alchemical variable and its conjugate momentum:

At [l (—A;)2 Lo X
o (AN = £,(0) + — [ =221 =%
&y (At) = £4(0) Qa( i 5

At
Pl (Af) = e~ (At/DE(aD (_)

? (16)
At (0U (4 (A1), o' (AD)
2 do’

(AR | Atp(An
ot(At)_oz<2>+2 Y

The addition of angular momentum, multiple alchemi-
cal variables and/or alchemical forces arising from addi-
tional constraints is straightforward and implemented
in code, but is not included here for brevity. Also not
included are the numerous alchemical variants of ther-
modynamic relations which are a product of the thermo-
dynamic rigor the Digital Alchemy framework provides,
but are not used directly in this work [11,15].

A useful feature of this Alch-MD implementation is
that we have the flexibility to incorporate different design
biases or constraints into the system Hamiltonian directly



during our optimisation, i.e. adding harmonic springs
attaching particles at specific crystal sites to bias a par-
ticular crystal structure or adding a measurement of the
system as an energy bias term to the Hamiltonian to bias
the system toward a certain property.

In an example in Section 3.2.2, we do this by introduc-
ing nonzero (i, values for the alchemical potential to bias
the system toward different regions of design space for
different structures. In another example, in Section 3.2.3,
we introduce a bias term, Upiys(g, ), to Equation (10) as
a part of the U(q, o) term. Here,

Ubias(q, @) = A(B(q, &) — Bo)?, (17)

where B(g, ) represents a physical property in this work,
bulk modulus of the system calculated during the simu-
lation in real time, By is the target value for the physical
property, and A is a free stiffness parameter.

In implementation, regarding the derivatives of
Ubias (g ), only 0 Upias (g, @) /0cx is calculated. The other
term, 0 Upias(g, @) /0, is ignored because the fact the per-
particle effect would be negligible since B is determined
as a collective result of all the particle positions.

3.2. Application examples of Alch-MD

3.2.1. Inverse design of OPP for BCC structure

To validate the Alch-MD method and confirm that the
expected behaviour from the derived NVTu, ensem-
ble is observed in simulation, we first perform Alch-MD
at low temperature within a design region for a single
structure, at which condition it can be expected that
the potential energy will dominate any entropic terms
of the free energy within a single structure. Thus the
free energy minimising trajectories followed in alchem-
ical space should be closely approximated by those that
minimise the potential energy for a given structure. We
used the BCC forming region in the OPP design space
as a test case, the validation proceeded in two steps
for 255 simulations with 17 different initial values of
k ( 4-8, with Ak = 0.25) and 15 different initial values
of ¢ (0.17-1.57, with A¢ = 0.17).

Step 1 - Droplet assembly: We initialised a system of
4096 particles in a simple cubic lattice with number den-
sity 0.0569 (i.e. unit cell length a = 2.6) at temperature
T* = 3.0 with randomly initialised velocities based on
a Boltzmann distribution (here we report the reduced
temperature T* = kT /e, with units of energy ). We
randomised the particle positions by running for a few
iterations at high temperature, and then cooled the sys-
tem in two steps: first, a steep, linear cooling ramp from
T* = 3.0 to T* = 1.0 over 5 x 10° time steps, and then
a slow, linear cooling ramp from T* = 1.0 to T* = 0.1
over 9 x 107 time steps, all with §# = 0.005. During this
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cooling, we observed the system of particles self-assemble
into a larger nanocrystal with BCC crystal structure. We
then ran for an additional 5 x 10° time steps at T* = 0.1
to equilibrate the nanocrystal.

Step 2 - Alch-MD optimisation without property
bias: Following the simulations that produced a BCC
nanocrystal in step 1, Alch-MD simulations were run
over 6 x 10° time steps with 8¢ = 0.001, T* = 0.1 to find
the optimal interaction potential parameters for BCC
within the OPP design space, yielding the BCC nanocrys-
tal’s ‘eigenpotential’ within the potential constraints and
at the selected temperature.

We plot only the BCC-forming region, which is our
chosen design space, and the corresponding potential
energy per particle for each k and ¢ pair in Figure 2.

Starting with different self-assembled nanocrystals in
the BCC region, we ran Alch-MD to find the optimum
values of the alchemical variables corresponding to the
OPP parameters k and ¢ for the BCC structure (Step 2).
Eight randomly selected initial points from these simula-
tions are shown by the lines plotted in Figure 2(a). These
lines show the change of k and ¢ starting from different
initial conditions and the path they follow in alchemical
space to converge to the same optimum OPP potential,
with minor deviation arising from nanocrystal defects.
All data points converge around the optimum potential
for BCCwithk = 7.36 + 0.03and ¢ = (0.722 + 0.003)7
in this alchemical design space. Further comparison with
the brute force obtained energy landscape confirms that
the optimal potential energy is obtained with parameters
that correspond to the region of k and ¢ that yield the
BCC structure with the minimum energy, as shown in
Figure 2(b).

Among all the points converging around the optimum
(k, ¢) pair, we found the one with the lowest potential
energy at k, = 7.362 4+ 0.004, ¢, = (0.724 +0.001)7,
with a starting ko = 6.0 and ¢9 = 0.77. Nanocrystals
at this state point (ky, ¢,) have a per-particle potential
energy U = —3.461 £ 0.002.

The results discussed in Figure 2 indicate that in an
unbiased digital alchemy simulation (where pg) =0
and alchemical parameters are free to change without
any energy associated with it), we can effectively opti-
mise the potential to locate the regional optimum point,
in this case the optimum potential for the BCC structure.
While all these simulations are done with droplet systems
with 4096 particles where the surface has non-negligible
energy contribution to the whole system, we performed
similar simulations across a large range of droplet sizes
and showed that the effect of surface on optimal potential
parameter diminishes much faster than its effect on inter-
facial energy (SI Figure 1), and our system size is large
enough to obtain results close to the bulk system limit.
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Figure 2. Unbiased optimisation of the BCC structure in the OPP design space. (a) The self-assembly region of the BCC structure in the
OPP design space is shown in the background, the lines show the optimisation process of Alch-MD to find the optimum potential for BCC
and are coloured according to the observed potential energy during optimisation. (b) A potential energy heat map, obtained from the
results of the brute force self-assembly simulations depicted in the background of (a). The region with the lowest energy coincides with

the optimised values of (k, ¢) found via Alch-MD.

3.2.2. Inverse design of LJG potential for different
target crystal structures

Many systems, however, may not contain a large energy
basin in potential parameter design space of a structure
like that observed in the OPP system for BCC structure.
Here, we provide examples with a set of self-assembled
2D structures observed in previous work by Engel et al.
in the LJG system [30]. Many of these structures do not
have a local minimum in this extended energy land-
scape, as shown in Figure 3. This means that an unbiased
Alch-MD simulation will move the system away from
the corresponding self-assembly region and can allow the
system to transition into a different, lower energy, struc-
ture as seen in Figure 4(a). For this case, we introduced
nonzero alchemical potential 1, in our simulation and
studied how it could be used to add bias in potential
design space for different target crystal structures.

The simulation for the 2D L]G system proceeded in 2
steps:

Step 1 - Droplet assembly: Using a system of 1024 par-
ticles, nanocrystals were self-assembled at randomised
(rg, €) values chosen from each structure in the known
self-assembly design landscape from Engel et al. [30].
Beginning with randomised particle positions and veloc-
ity, a linear cooling ramp from T* = 3.0 to T* = 0.1 was
implemented over 5 x 107 time steps with 8¢ = 0.01. The
structures were then checked against the reported struc-
tures of Engel et al. to confirm the proper structure was
assembled.

Pen
DecRT
DodRT
Sqa
Hex
Hon
Rho

Figure 3. Alchemically extended potential energy landscape of
low energy 2D LJG structures. Plotted regions are determined
using the self-assembly phase diagram of Engel et al. The shading
illustrates that no structure contains a minimum in both alchemi-
cal parameters within the studied region.

Step 2 - Alch-MD optimisation for different target struc-
tures: Following the simulations in step 1, we further
ran Alch-MD simulations over 2 x 10° time steps with
8t = 0.001 at T* = 0.1 under three conditions: unbiased
e = 0, ite = ¢ where c is some constant, and under the
constraint of an energy penalty function that effectively
confines the system in a targeted region of the design
space.
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Figure 4. Alch-MD simulations of 2D LJG structures with different energy bias/alchemical potentials applied. (a) Alch-MD simulation
with e = 0 (no bias). (b) Alch-MD simulation with a constant ., value for each different structure in the format (structure:(tie, fir,) as
follows: Pen: (0.1,3.0); DecRT: (0.42,3.3); DodRT: (0.39,0.0); Sqa: (—0.02,0.0); Hex2: (0.2,0.0); Hex1: (0.0,0.0); Hon: (0.58,6.3); Rho: (0.9,—8.5).
(c) Alch-MD simulation with a harmonic energy bias evaluated by the distance to the self assembly phase boundary.

As expected, simulations that start from a self-
assembly region for a structure without a local minimum
often lead to phase transitions as shown in Figure 4(a)
with the open circles denoting these structural changes.
It can be observed that a stable behaviour in the location
of the second well is much more effective in prevent-
ing structural changes. Large movements in the relative
energy depths of the wells are much better tolerated by
systems.

In order to perform alchemical optimisations in these
more complex energy landscapes, some form of bias
must be introduced. The simplest form of bias is to
add a non-zero alchemical potential py, which assigns
an energy penalty to changes in the alchemical vari-
able. For the case of phase boundaries that are convex
in the relevant design space for a structure, a constant
value of the alchemical potential is sufficient to stabilise
these structures, as shown in Figure 4(b). The excep-
tions are those that exhibit saddle points, particularly the
square and rhombic structures. However, it can also be
noted that the quasicrystals, while stable, do not con-
verge. This is an effect of compressing all configuration
information to a single structure label as the energy
landscapes of these random-tiling/quasicrystal configu-
rations are much more complex than those of periodic
crystals.

When the underlying landscape is not convex, a more
complex bias term must be used. Because the region
of interest is known for each structure in this study,
a simple harmonic energy penalty was applied to the
systems based on the evaluated distance, d, from the
region boundary. Thus our energy bias term looks like
Upjas(@0) = Ad(c, B)> where Rt defines the region of
interest (in this case the phase boundary) and A is the

spring constant for the harmonic spring. The results of
this bounding bias can be seen in Figure 4(c).

When applied in parallel with an experimental system,
the region of interest can similarly reflect what is phys-
ically realisable with current techniques, materials and
desired application.

The relative success rates of the approaches in
Figure 4(a)-(c) at retaining the structure of the tested
self-assembled nanocrystals within the time of Alch-MD
simulation is 31.6%, 56.1% and 94.2%, respectively. How-
ever, if an infinite amount of time was allowed, it would
be found that only the hexagonal structure is thermo-
dynamically stable with no bias applied. This is because
the regions significantly outside the known self-assembly
region correspond to interaction potentials with only
single well, which, in 2D systems lacking pressure or
anisotropy, is expected to stabilise in the hexagonal struc-
ture. These stable structures and conditions are thus a
starting point for further complex optimisation, as dis-
cussed below for the case of property optimisation.

For many physical systems, it can be expected that
changing the interparticle interactions would not be free,
and thus pty # 0 is expected and it should be associated
with the cost of changing interaction. For example for a
system with tunable interaction, the alchemical poten-
tial should be considered as an additional parameter that
can be linked physically to the system variable, e.g. for a
system where interaction is tuned by changing magnetic
field, uy would be related to intensity of the field.

Similar to the OPP nanocrystal system, we studied
simulations across a large range of droplet sizes for 2D
LJG system and confirmed that our system size used is
large enough to obtain results close to the bulk system
limit (details in SI Figure 2).
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3.2.3. Inverse design of OPP for property design
Following the structure optimisation described in the
previous sections, our bulk modulus design protocol
begins with the obtained optimised OPP potential for
the BCC nanocrystal. An additional step is applied to
optimise for a target bulk modulus:

Step 3 - Alch-MD optimisation with structure and prop-
erty bias: Continuing from the final configuration of
Step 2, an additional energy term is activated to bias the

Alch-MD simulation to satisfy the bulk modulus require-
ment. The system was kept at the same T* = 0.1 and
ran for an additional 3 x 10° time steps with §t = 0.0001
to allow the system to optimise for the target property
bias. We used the last 1 x 10° time steps to sample k
and ¢ for statistics. A stiffness constant, A that tunes the
energy penalty from the property bias, ranging from 0.1
to 0.5 and a set of targeted bulk moduli, By, ranging from
1.0 to 7.0 were used. All simulations were replicated at
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Figure 5. Designed systems with A = 0.1, targeting bulk modulus values By from 1 to 7. (@) Change of system bulk modulus with digital
alchemy for different target By. Blue data points indicate an effective tuning of the bulk modulus; the structure of the droplet remains
perfectly crystalline, as illustrated by the clear BOOD (right inset). Black data points (in the low bulk modulus region) suggest that the
target By is beyond the design limit for this system and the simulation distorts the crystal into multiple grains to achieve the target,
indicated by the BOOD (left inset). The red dotted line shows the By = Bline. Error bars in this plot show the statistical fluctuation of the
Bvalue at the end of simulation; error bars for the data points shown in black are very small and thus not visible in the plot. (b) Optimised
OPP for different target values By from low to high values, plotted in purple/blue/green/yellow colour, according to the depicted colour
bar. (c) Correlation between targeted bulk modulus and design parameter k and ¢, with > = 0.1 (targeting By between 3.0 and 7.0).



least once and no statistically significant difference was
observed in any of the three steps.

We started with the best optimised potential for BCC
without any property bias: Nanocrystals at this state
point (ks = 7.362 4 0.004, ¢.(0.724 £ 0.001)7r) have
bulk modulus B = 5.92 calculated from the last frame
of the crystal. We carried out Alch-MD simulations with
different target bulk modulus By and coupling constant A.
Detailed results for A = 0.1 are given in Figure 5. Other
values of A show no significant difference compared to
the results for A = 0.1; a summary of the results for all

Design with fixed k

Bo

Vorp

Vorp
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values of A is provided in the supplementary informa-
tion (SI Figure 3) and suggests that X has flexible working
range with negligible variation for values ranging from
0.1t00.5.

Figure 5(a) shows a clear monotonic relationship
between target bulk modulus, By, and the average bulk
modulus, B, in thermalised crystalline nanocrystals of
particles interacting via the designed isotropic pair
potential. Note that the measured values of B fall directly
on the design curve for By > 3.0 (within statistical error);
however, for By < 2.0, we observe deviations in the bulk
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Figure 6. Bulk modulus biased design with only one degree of freedom (k or ¢). (a) System bulk modulus after optimisation of ¢ across
different target values By. (b) ¢-optimised OPPs for different bulk moduli. The correlation between measured bulk modulus and the
design parameter ¢ (with fixed k = 7.3629) is shown in the inset. (c) System bulk modulus after optimisation of k across different target
values By. (d) k-optimised OPPs for different bulk moduli. The correlation between measured bulk modulus and the design parameter k

(with fixed ¢ = 0.72377) is shown in the inset.



3978 (&) P.ZHOUETAL.

modulus from the target value. We believe this devia-
tion occurs because those target values are approaching
the physical limit of the bulk modulus achievable in this
design space. Plots of the BOODs are inset in Figure 5(a);
all nanocrystals with 3.0 < By < 7.0 are BCC, but lower
structural quality and indications for polycrystallinity
are observed for By < 2.0. Figure 5(b) shows that the
pair potential changes systematically to accommodate
the change in bulk modulus.

Figure 5(c) indicates that the designed potentials
are localised in a very narrow band in k, 7.32 < k <
7.39, for A = 0.1 over all measured values of B. In
contrast, changes in ¢ are predominantly responsible for
determining the bulk modulus via a clear, monotonic
relation.

The design rules indicated by Figure 5(c) suggest pri-
mary control through ¢ and an insensitivity to k within
the narrow range previously noted. These findings raise
two questions:

(1) Can ¢ act as an effective control parameter for the
bulk modulus entirely on its own (or is the variation
in k small but important)?

(2) Iskuselessasa control parameter for the bulk modu-
lus, or is its impact simply small compared to effects

in ¢?

To answer these questions, we performed Alch-MD
simulations with A = 0.1 with (i) fixed k = k. and vari-
able ¢ and (ii) with fixed ¢ = ¢, and variable k. The
results are plotted in Figure 6. Figure 6(a) indicates that
Alch-MD with fixed k = ki is as successful as designing
with variable k. Figure 6(b) shows that the design rule for
¢ with fixed k = k, yields similar ¢ values to the variable
k results in Figure 5(b) and Figure 5(c). Note that, if plot-
ted in Figure 6(b), the optimised potentials for variable
k design are indistinguishable from fixed k. In contrast,
Figure 6(c) indicates that while fixed ¢ = ¢, design pro-
duces a consistent monotonic relationship between tar-
get and designed bulk modulus, it achieves much lower
fidelity. Figure 6(d) shows that for Alch-MD with fixed
¢ = ¢, design, the k design rule is drastically altered.
This suggests that k can be used to tune the bulk mod-
ulus over a limited range, but that ¢ is a more effective
control parameter.

4. Discussion and conclusion

We developed and implemented digital alchemy in
molecular dynamics simulation (Alch-MD). We demon-
strated that Alch-MD can serve as an inverse design
approach that produces particle interactions leading to

materials with a targeted structure and/or bulk modulus
as an example physical property.

First, a new thermostat was derived and implemented
to allow Alch-MD simulations to be performed in the
NVTu, ensemble. Alch-MD was utilised to efficiently
determine the optimal set of interaction potential param-
eters within an extended free energy landscape basin.
Using self-assembled structures, the optimal parameters
that Alch-MD revealed were shown to be only depen-
dent on the structure and the alchemical potential if the
simulation stayed within the same free energy basin. We
validated our simulation method with two model pair
potentials, OPP and LJG, using both brute force simu-
lations and data from previous publications, and showed
that our method can find the optimal potential parame-
ters for a desired structure. To validate the optimal poten-
tial, we evaluated the potential energy as a proxy for free
energy. We expect that the entropy contribution within a
simulation should be relatively small and nearly constant
due the restriction of simulations at low temperature and
single structure, respectively.

While we only focus on low temperature cases in this
work, where known potential energy landscape can be
a good proxy for free energy, applying Alch-MD to sys-
tems at higher temperature where entropy is relevant, is
straightforward. The validation of Alch-MD simulations
at these temperatures becomes difficult, however, due to
the difficult task of computing the extended free energy
landscape which covers all degrees of freedom. For this
reason in particular, we consider digital alchemy meth-
ods an exciting tool given that it samples appropriately in
both the configuration and alchemical spaces. This ther-
modynamically rigorous approach binds Alch-MD to the
relevant free energy landscape and we therefor think this
could be a rich field for followup work.

We then applied our inverse design approach to prop-
erty design in the OPP model system. In this system,
we showed that the BCC structure can be optimised
with zero alchemical potential and is both self-assembled
and stable over a large region of the design space. The
design constraint of a target bulk modulus was then intro-
duced as a simple energy penalty via an external energy
parameter in Alch-MD to bias the system away from its
unconstrained optimal point while obtaining the targeted
property value.

We showed that — within statistical error — the assem-
bled nanocrystals exhibit bulk moduli that fall precisely
on the design curve over a range of target values, and
that deviations only become appreciable as target val-
ues approach physical system limits. Carrying out this
design process for several target bulk moduli yields a set
of clear design rules indicating which design parameters
are most relevant to the target property, and what values



the design parameters should take for the chosen target
physical response.

This work focused on systems of particles which
assemble into nanocrystals not large enough to span the
simulation volume in a NVT 11, simulations, so changing
interaction potential allows for changing lattice spacings
and the system is free to explore different configura-
tion and density. If a crystal was to span the box in any
dimension, it would impose artificial constraints. While
this means the system will have non-negligible surface
effect in many ways, our simulations were performed at
sizes sufficiently large to approximate the constant sur-
face effect of larger and larger nanocrystals, based on our
testing detailed in the SI Figures 1 and 2. Comparing
these results to those obtained for truly bulk crystals with
the NPT 11, ensemble is an interesting direction for future
work.

This investigation was intended as a proof-of-principle;
the Alch-MD approach can be extended in several ways.
We restricted our investigation to monoatomic inter-
acting via two families of isotropic pair potentials with
two parameters. We chose the two pair potential fami-
lies LJG and OPP because both have been exhaustively
investigated elsewhere [27-30], and therefore we had
access to reference data for validation. Extensions to
potentials with more than two parameters, potentials
for anisotropic, patchy interactions or multiple species
of particles, are straightforward. Alch-MD can also be
utilised to study unknown design spaces, as trajectories
will locally track the gradient of the free energy sur-
face in alchemical space. By running many trajectories,
we can map out attractors and saddles in alchemical
space.

Here we designed for the system’s bulk modulus, how-
ever, extensions to other physical properties are limited
only by the cost of computing the relevant property. Alch-
MD is particular apt for designing dynamic properties
because it is backed by the defined timescales of molecu-
lar dynamics. Note that, especially for high-dimensional
design spaces, this method can still be very computation-
ally effective even if the cost of calculating a property is
high, because a single Alch-MD simulation can eliminate
the need to blanket the design space with Edisonian
simulations.

While using Alch-MD to guide materials design
in experiments, in cases where the optimal alchemi-
cal parameters cannot be reached, non-zero alchemi-
cal potential can be effectively confine our alchemical
‘search’ to a physically relevant design space. While we
focused on the case in which Alch-MD can be used for
the inverse design of particles with constant interactions
and the resulting properties in this work, experimentally
realisable systems with dynamic interactions could also
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fit well into the Alch-MD framework. The application
of our alchemostat to these systems is trivial if the nor-
malisation and alchemical potential accurately reflect all
experienced states at the relevant temperatures and the
energy cost of the associated changes, respectively. In this
case, the alchemical potential would have a physical inter-
pretation as the force with which the process driving the
dynamics exerts in the alchemical space.

We believe that future work extending this approach
along the above-stated directions, as well as work-
ing closely with experimentally achievable ‘colloidal
alchemy’ examples, will give concrete steps toward
achieving synthesisable colloidal and other materials
with tailored properties.
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