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Abstract

Many performance-critical applications traverse bitstreams
with bitwise computations for better performance or higher
space efficiency, such as multimedia processing and bitmap
indexing. However, when these bitwise computations carry
dependences, the entire bitstream traversal becomes serial,
fundamentally limiting the scalability.

In this work, we show that bitstream-carried dependences
are actually “breakable” in many cases, with the adoption of
a systematic treatment — principled bitwise speculation
(PBS). The core idea of PBS stems from an analogy drawn
between bitstream programs and sequential circuits, both of
which transform binary sequences. In this new perspective,
it becomes natural to model the dependences in bitstream
programs with finite-state machines (FSM), a basic model for
sequential circuits. To achieve this, PBS features an assembly
of static analyses that reason about bitstream programs down
to the bit level to identify the bits causing dependences, then
it treats the value combinations of dependent bits as states to
construct FSMs. The modeling, for the first time, enables the
use of FSM speculation techniques to parallelize bitstream
programs. Basically, by leveraging the state convergence of
FSMs, the values of dependent bits can be predicted with
much higher accuracies. In cases the prediction fails, PBS
tries to directly “rectify” the wrong outputs based on bitwise
logic, minimizing the mis-speculation costs. In addition, FSM
shows even higher execution efficiency than the original
program in some cases, making itself an optimized version
to accelerate serial bitstream processing. We prototyped PBS
using LLVM. Evaluation with real-world bitstream programs
confirms the effectiveness of PBS, showing up to near-linear
speedup on multicore/manycore machines.
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1 Introduction

Bitstream processing manipulates binary values with bitwise
operators (e.g., logical XOR and shift <<) over long sequences
of bits. It plays critical roles in many important applications
for better performance or higher space efficiency, such as
bitmap indexing [24], pattern matching [5], parsing [14, 27,
28], image compression [6, 50], and voice decoding [32]. For
example, in bitstream-based text pattern matching [5], a
text stream is first transposed into a set of bitstreams, then
searched with bitwise manipulations. Thanks to the high
efficiency of bitwise operations and bitwise parallelism, the
bitwise text pattern matching shows significant performance
improvements over the conventional “one character at a time”
pattern matching schemes. Similar treatments have also been
applied to semi-structured data (e.g., XML and JSON) to
accelerate the querying in document data stores [27, 28].

Despite the benefits, a fundamental challenge arises when
the processing of the current bits depends on the processing
results of prior bits over the course of bitstream processing,
referred to as bitstream-carried dependences, a special case of
loop-carried dependence. As a result to the dependences, the
entire bitstream(s) have to be traversed in serial, seriously
limiting the scalability. Unfortunately, such bitstream-carried
dependences can be easily introduced with commonly used
bitwise and non-bitwise operators, such as the left shift <<
that defines the current bit with a bit to the right and the
arithmetic addition + which may create a carry propagating
over the calculations of the following bits.

Figure 1 shows an example bitstream program called long
bitstream addition (LBSAdd [4]). It adds two arbitrarily long
bitstreams and put the result into a new bitstream. Note that,
rather than adding the two streams bit-by-bit, this program
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1 ¢c=0;

2 /* bitstream traversal */ ...10111101010011 A
3 for i = 0 to N +

4 a=A[i]; b =B[i]; ...01101110011010 B
5 psum = a + b; n

6 ...00101011101101 C
7 if psum == Oxff then

8 bubble = ¢ & 1;

9 else

10 bubble = ¢ & 0;

11

12 ta =a>> 7; tb=Db>>7; tp = psum >> 7;
13 tc = (ta & tb) | ((ta | tb) & (tp " 1));

14 C[i] = psum + c;

15 c = tc | (bubble & 1);

Figure 1. Bitstream Processing Example (LBSAdd [4]).

leverages bitwise parallelism to perform byte-level addition !,
which can significantly improve the efficiency. However, the
inherent dependences regarding the carry remains through
out the entire bitstream processing (more discussions later).

State of The Art. Existing efforts in optimizing bitstream
processing mainly focus on fine-grained vectorization with
SIMD intrinsics (e.g., SSE2 and AVX512) [5, 14, 27, 28]. In
spite of performance gains, there are limitations that hinder
the productivity and efficiency of SIMD-based optimizations.
First, coding with low-level SIMD intrinsics is notoriously
difficult. It becomes even worse when the processing carries
dependences. Take LBSAdd as an example, because the SIMD
intrinsics adds numbers SIMD lane-wise, programmers have
to manually resolve potential carries across SIMD lanes [4].
Second, these fine-grained dependence handling techniques
cannot be extended to the coarse-grained level naturally,
that is, partitioning the bitstream(s) across CPU cores, where
the size of a bitstream partition goes far beyond the SIMD
width, making the dependence handling a daunting task.
For example, existing long bitstream addition can add up to
4096 bits [4]. In sum, existing bitstream processing heavily
relies on programmers for fine-grained parallelism and fails
to exploit the coarser-grained parallelism in the presence of
dependences, restricting their scalability.

Overview of This Work. Complementary to the prior efforts,
this work challenges the sequential bitstream processing
with an automatic approach that enables speculative and
coarse-grained parallelism for both non-SIMD and SIMD
bitstream programs — principled bitwise speculation (PBS).
The basic idea of PBS is inspired by an analogy that compares
bitstream programs to sequential circuits in hardware (see
Figure 2), both of which transform binary sequences (bits
versus pulses). The memory in sequential circuits resembles
the loop-carried dependences in bitstream programs, which
are implicitly dictated by the program structures. These close

ILarger granularities (like int or long) can also be used. Without loss of
generality, we use byte for easier illustration in this running example.
ZFor the lack of supports for bit arrays, programmers often use unsigned
integer or char arrays to store bitstreams.
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Figure 2. Bitstream Programs v.s. Sequential Circuits.

correspondences motivate us to model the dependences in
bitstream programs with finite-state machines (FSMs), a basic
way to model sequential circuits. Note that, this modeling is
often impossible for general programs whose computations
can exceed the capability of FSMs. To facilitate the modeling
and minimize the sizes of FSMs, PBS leverages a series of
static analyses to reason about the minimum set of dependent
bits in the bitstream programs. With the dependent bits, PBS
constructs the FSM by treating the value combinations of
dependent bits as states and examining different input-output
pairs to reveal the state transitions. This reverses the FSM-
to-truth table process in the sequential circuit design. For
cases where the FSM is too large to construct, PBS offers
partial or virtual FSM constructions. The former consists of
only “hot transitions” that are frequently visited; while the
latter bypasses the FSM generation, relying on the bitstream
program to mimic the FSM state transitions on the fly.

A key benefit brought by the FSM-based modeling is the
possibility of adopting speculative FSM parallelization [21,
29,36, 52, 53] to bitstream processing. By leveraging the state
convergence properties of FSMs, PBS can effectively predict
future values of dependent bits, thus enabling speculative
parallelism for bitstream processing. In cases the prediction
fails, PBS offers a fast recovery mechanism that directly
“rectifies” the wrong outputs with bitwise logic, instead of
reprocessing the inputs, which reduces the mis-speculation
costs. Besides prediction, we also observe that, in some cases,
the constructed FSM runs more efficiently than the original
bitstream program. In this way, even the serial bitstream
processing can get performance improvement.

We prototyped PBS on LLVM infrastructure and evaluated
it with a set of bitstream kernels extracted from real-world
applications, covering semi-structured data processing, text
pattern matching, and multimedia processing. Our results
show that PBS can precisely identify the dependent bits.
With speculative bitstream processing, PBS brings up to 60X
speedup on a 64-core machine. To demonstrate the end-to-
end benefits, we also apply PBS to a state-of-the-art regular
expression engine, called icgrep [5]. Results show that, with
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PBS, icgrep can generate data-parallel bitstream kernels to
effectively leverage all the CPU cores, yielding over 20X
end-to-end speedups on a 64-core machine.

Contributions. In sum, this work makes the following major
contributions to bitstream processing.

o First, it offers a new perspective to sequential bitstream
processing, bringing FSM-based dependence modeling
to bitstream programs (Section 5).

e Second, it introduces a static analysis to rigorously find
out the dependent bits in bitstream programs (Section 4).

o Third, it adopts FSM speculation to bitstream processing
with customized mis-speculation handling (Section 6).

o Finally, it prototypes a speculation framework on LLVM,
and confirms its effectiveness in accelerating real-world
bitstream applications (Sections 7 and 8).

Next, we first provide the background of this work.

2 Background

This section introduces bitstream processing, including the
dependences that the computations may carry.

Bitstream Processing. Informally, bitwise computations are
computations involving bitwise operators. Commonly used
bitwise operators include logical operators (e.g., &, |, ", 7),
shift operators (e.g., <<, >>, and >>>), and some specialized
operators (e.g., population count popcnt and count leading
or trailing zero CLZ/CTZ). Correspondingly, there are also
SIMD versions of these operators provided as the low-level
intrinsics in instruction set extensions, such as SSE2, AVX2,
and AVX512. For example, _mm256_and_si256(s1,s2) from
AVX2 performs AND operation between 256-bit vectors.

In many applications, the inputs to bitwise computations
are long binary sequences (i.e., bitstreams), such as, an audio
record in multimedia processing [6, 32, 50], or a piece of
encrypted file in cryptography [8]. In fact, even textual data
can be converted into bitstreams to take advantages of SIMD
intrinsics and bitwise parallelism. The idea is illustrated in
Figure 3. Each byte of the textual data stream is transposed
into eight individual bits stored in eight separated bitstreams.
This text-to-bitstream transposition brings the paradigm
of bitstream processing to many applications manipulating
textual data streams, such as network intrusion detection [5]
and semi-structured data analytics [27, 28].

Oftentimes, the bitstreams are processed in multiple rounds
before they are eventually consumed. Figure 4 shows seven
phases of bitstream transformations in XML parsing [28],
where each phase generates a new bitstream (e.g., Lo, and Ey).
Note that the first three bitstreams (i.e., Cy, C1, and C,) are
generated from base bitstreams — By to By (see Figure 3). We
refer to these bitstream transformations as bitstream kernels
and their executions as bitstream processing.

Bitstream-Carried Dependences. As mentioned earlier, it
is easy to introduce dependences into bitwise computations,
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Figure 3. Text-to-Bitstream Conversion [5, 14, 27, 28].
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Figure 4. Bitstream Transformations in XML Parsing [28]
(to make the bitstreams easier to read, zeros are marked as dots).

with the use of operators carrying multi-bit effects, such as
various shift and arithmetic operators. Considering the XML
parsing example in Figure 4, there are two transformations
involving dependences: Advance(C;) and ScanThru(Lg, Cp).
The former shifts every bit in C, one step to the right (note
that it is non-trivial to shift one bit for an entire bitstream).
The latter starts from each 1 in Ly and marks 1 right after a
sequence of 1sin Cy. Essentially, ScanThru(Lg, Cy) = (Lo+Cy)
& —Cy. In the code, these dependences appear as loop-carried
dependences, a class of dependences that is often beyond the
reach of existing parallelizing compilers [2, 48].

Efforts so far in optimizing bitstream processing focus on
the use of SIMD intrinsics [5, 28]. However, this requires to
manually redesign the bitstream processing algorithms to
handle the dependences across SIMD lanes (e.g., 256 bits).
Moreover, this solution cannot be naturally extended to the
entire bitstream because of the limited width of SIMD lanes.
To improve the scalability and the productivity, this work
presents an automatic approach that enables coarse-grained
parallelism for bitstream programs, called principled bitwise
speculation. Next, we give an overview of this new approach.

3 Overview

The basic workflow of principled bitwise speculation (PBS)
is summarized by Figure 5. At a high level, PBS consists of
three basic modules: (i) dependent bit analysis, (ii) bitstream
program modeling, and (iii) runtime speculation. Given a bit-
stream program, the dependent bit analysis conducts a series
of data-flow analyses to identify the exact bits in the program
variables that cause bitstream-carried dependences, referred
to as dependent bits. The dependent bits are then fed into
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Figure 5. Workflow of Principled Bitwise Speculation (PBS)

the bitstream program modeling module, which generates a
finite state machine (FSM) (sometimes partially or virtually),
to capture the basic behaviors of bitstream programs. After
these preparations, the runtime speculation module spawns a
set of threads to process the input bitstream(s) speculatively.
In specific, each speculative thread leverages an FSM-based
speculation technique, called lookback, to predict the runtime
values of the dependent bits. With those values, the thread
is able to speculatively execute the bitstream program over a
partition of the bitstream(s). In cases the prediction fails, the
runtime module also features an accelerated recovery based
on the properties of bitstream programs. In the following,
we present these three modules one by one.

4 Static Dependent Bit Analysis

Conventionally, dependences are defined based on the read
and write of variables. However, for bitstream programs,
such variable-level dependence analysis may not capture the
dependences precisely, due to bit-level value manipulations.
In this section, we present an assembly of static analyses that
analyze bitstream programs down to the bit level to pinpoint
the exact bits causing the dependences, together referred to
as dependent bit analysis. Before introducing its details, we
first define dependent bit both intuitively and formally.

4.1 Dependent Bit: Motivation

The idea of dependent bits can be naturally extended from
the dependences on variables. In general, if two instructions
s; and s; access the same memory location M and one of them
writes to M, then there exists a (data) dependence between s;
and s;. For programs without bitwise operations, M usually
refers to a variable (e.g., an integer or a char). In this case, we
call M the dependent variable. Consider the following code.

Ll: n =n + x
L2: Yy

]
=}
4
~
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There exists a write-after-read dependence from L1 to L1
itself on variable n and a read-after-write dependence from
L1 to L2 also on n. Conventionally, in both cases, variable n
is referred to as the memory M in the dependence definition.
However, for the second dependence, if we break down n
into individual bits (e.g., 8 bits), we may narrow down M to
smaller granularity based on the AND operation in L2. In
fact, a closer look at L2 reveals that the five most significant
bits of n, denoted as ns.7}, actually do not contribute to the
calculation of y — they are ignored. In another word, only
N[o:2] are involved in this dependence, which we referred to
as dependent bits. Similarly, L2 also indicates that the five
most significant bits of y (i.e., y[3:7]) are always zeros - they
are constants. Therefore, a later use of y (not shown) does
not necessarily depend on L2 regarding y(s.7]. In both of the
above scenarios, some instructions, by their semantics, may
not have to access all the bits of variables . Based on this
intuition, we define the dependent bits more formally.

Definition 4.1. If the semantics of two instructions s; and
sj requires to access the same bit of variable v, denoted as
v[k]> and at least one of them writes to vy}, then there exists
a (data) dependence between s; and s; on v, where vy is
the dependent bit.

The concept of dependent bits captures the dependences
in bitstream programs in a more precise way, which is critical
to the construction of FSMs, as we show later.

Next, we put the dependence discussion in the context of
bitstream processing. Consider the following example.

Ll: for i = 0 to N
L2: n =n + in[i]
L3: out[i] = n & 7

where in[] is the input bitstream traversed by the for loop,
byte by byte, and transformed to the output bitstream out[].
Besides the dependences inside the loop body, there also exist
dependences across loop iterations, known as loop-carried
dependences. For instance, the L2 in the second iteration
(reads n) depends on the L2 in the first iteration (writes to n).
These (read-after-write) dependences are chained together
across iterations, preventing any loop-level parallelizations.

However, if we look closer at the use of variable nin L3,
only ng. have to be accessed and if we propagate this back to
L2, that means, for the n on the right hand side of L2, the five
most significant bits ns.; can be ignored — their values will
not affect the next instruction L 3. Therefore, the loop-carried
dependences only involve 3 bits of n, rather than 8 bits (or
32 bits for an integer), making them much more amenable
to break with speculation techniques.

Based on the above observation, the key is to find out
those dependent bits that cause loop-carried dependences,
which we address next with dependent bit analysis.

3This should not be confused with the instruction implementations that
read all the bits from a register; Here, the concept is based on the semantics.
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4.2 Dependent Bit Analysis

For clarity, we decompose the dependent bit analysis into
three more basic analyses. We first briefly introduce each
of them and how they are integrated, then present their
algorithms in detail. The for loop example in Section 4.1,
denoted as Ly, 4in, will be used as the running example.

Entry-Point Liveness Analysis. First, all the dependent bits
should be live at the entry of the loop body of L,,4;n, that
is, they will be semantically used before they get redefined.
Otherwise, if the bits are redefined first, they will not depend
on values from prior iterations. However, it is challenging
to perform bit-level liveness analysis due to the semantical
variation of instructions. Existing liveness analysis [44] can
reach bit sections, but not individual bits. For this reason, we
first analyze the liveness of variables, then rely on a separate
bitwise analysis (shown next) to prune semantically “killed”
bits from live variables. As the liveness analysis only needs
to compute live variables at the entry of the loop body, rather
than at every program point, we refer to it as entry-point
liveness analysis. As shown in Section 4.3, this difference
reduces the iterative data-flow analysis to a single pass. In
the running example, this analysis finds that both n and
in[i] are live at the loop body entry.

Bit-Status Analysis. The main complexity in dependent bit
analysis comes from the variation of bit status in variables —
some bits may be involved in the calculation semantically
while others may not (ignored). Furthermore, whether they
are involved or not depends on if some bits of the operands
are known (constant). Consider y = n & m. If npgy) are
known to be zeros, then mpg) can be ignored. We address
these complexities with an effective bit-status analysis that
was previously developed for hardware synthesis [3]. In
the running example, this analysis finds that out[i][.7) are
zeros after L3 and ny37) are ignored in both L2 and L3.

Unchanged-Bit Analysis. The last piece of analysis is to
find bits that never change values through all iterations,
called unchanged bits. Note that they are different from the
constant bits which are redefined with known values (@ or
1). Unchanged bits are defined before the loop and remain
unchanged through the iterations. In the running example,
this analysis finds that all bits in in[i] are unchanged.

Putting It All Together. Now, we integrate the results of
the above three analyses. Assume the bits in all live variables
at the loop body entry are in bit set Bj;,¢, the semantically
useful bits in the loop body are in bit set B, ,known, and the
set of unchanged bits is B, nchanged, then the dependent bits
Biepen can be calculated as follows.

Bdepen = (Blive N Bunknown) (1)

In brief, the dependent bits should be (i) live at the entry
of the loop body, (ii) semantically useful in the loop body, but
(iii) possibly changed during the loop iterations. Together, the

- Bunchanged
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three conditions can narrow down the set of dependent bits
to a minimum. Considering the running example,

® Blive = {No:71:L2, in[il[e:77: L2}, where : is followed by
the instruction(s) using the bits before redefinitions;

® Bnknown = {n[w] :L2, in[il}g:0):L2, out[il[o.z): L2},
where : indicates the instruction(s) using the bits;

e and Bunchanged = {1n[1][07]}

Based on Equation 1, we have Bgepen = {n[0:2]: L2}. Next,
we explain how each of the three analyses work in detail.

4.3 Algorithms

In general, dependent bit analysis follows iterative data-flow
analysis over the control-flow graph (CFG) of the main loop
L main body. Thanks to their specific goals, two of its three
sub-analyses only require one iteration to complete.

Algorithm for Entry-Point Liveness Analysis. The goal
of entry-point liveness analysis is to find out which variables
are live at the entry point of main loop body. The domain of
the analysis is the power set of all variables appearing in the
loop body and the direction of the analysis is backward. For
an instruction i, the transfer function f; is:

LIVEENTRY;,, = LIVEENTRY,,; — DEF(i) UUSE(i)  (2)

At a joining point of the CFG, the meet operator A is union
U. When the analysis starts, LIVEENTRY is initialized to @
at the exit of the CFG *. After finishing the first instruction
of the CFG, the analysis ends and the latest LIVEENTRY is
outputed. Figure 6 shows an example analysis on a simplified
CFG based on Figure 1. The IDs of instruction(s) using the
corresponding live variables are also attached.

{c:{L3,L4},a:{L1,L5},b:{L1,L6}}

Ll: p=a+b /5:12,c:{L3,L4},a:L5,b:L6}
L2 =
Fi/ 0x££ .{13,14},a:L5,b:16}
L3:bu=c& 1 {c:L3,a:L5,b:L6}

{c:L4,a:L5,b:L6}

Qbu=c&0
/

{a:L5,b:L6,bu:1L8}

L5: ta = a > 7 {b:L6,ta:L7,bu:L8}
Lé: tb = b >> 7  1i5:17,tb:L7,bu:L8}
L;= tz = ;a & :b {bu:L8,tc:L9}

L8: = bu &

19: o=tc |t {tc:L9,t:L9}

{}

Figure 6. Entry-Point Liveness Analysis (backward).

Algorithm for Bit-Status Analysis. To analyze bit statuses
of different variables, we adopt an existing analysis that was
developed for reducing the size of the synthesized circuits in
reconfigurable hardware [3]. In this analysis, the bit status
is defined as one of four cases: unknown, @, 1, and ignored:

e unknown means the bit value cannot be inferred;

“Here, it assumes the variables used in the main loop body will not be used
after the loop; Otherwise, a global iterative liveness analysis is needed.
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e 0 means the bit value can be inferred and it is zero;
e 1 means the bit value can be inferred and it is one;
e ignored means the bit does not contribute to the output.

Internally, bit-status analysis consists of two sub-analyses:
constant-bit analysis which checks if a bit has a known value
(0 or 1) and ignored-bit analysis which infers if a bit will be
ignored with no impacts on the outputs. The former extends
the constant propagation to the bit level and therefore is a
forward analysis, while the latter resembles the dead code
analysis, thus it is backward. Both analyses operate on all the
bits of all variables, denoted as B,;;. The following lattice
diagram shows the partial order among the four bit statuses.

x(ignored)

/
o] 1
NS

u(unknown)

During the analysis, the bit status is moved up from the
bottom of the lattice. That is, the analysis first initializes all
bits in B,;; to u, then it applies constant-bit analysis to mark
bits with their known values (@ or 1). After that, it applies
ignored-bit analysis to identify “ignored” bits. In both steps,
the analysis is iterative to cope with potential inner loops
of the main loop. Next, we briefly explain each of the two
sub-analyses. More details can be found in [3].

First, constant-bit analysis traverses the CFG forwards to
propagate bits with known values. Unlike the conventional
constant propagation, the transfer function of constant bit
analysis highly depends on the specific operation involved.
Take instruction bu = ¢ & 1 as an example. By taking a
logical AND with 1, the analysis infers that bup;.;) must be
zeros. Similarly, it infers ta;.7] are zeros too, based on ta =
a >> 7. After constant-bit analysis, all bits in B,;; are either
0, 1, or “unknown”, which are the “not ignored” cases. The
ignored-bit analysis starts from these bit statuses, traverses
the CFG backwards, and turns some of them to “ignored”
based on the specific operations. For example, the analysis
infers that c[y.7) inbu = ¢ & 1 are ignored, due to the AND
operation with 1. Figure 7 shows a bit-status analysis on our
running example. For limited space, only the variables with
updated bit status(es) are shown.

Algorithm for Unchanged-Bit Analysis. The algorithm
used for unchanged-bit analysis is straightforward. To find
out bits never defined in the main loop, the analysis initializes
all bits in B,;; as “unchanged”, then it scans every instruction
in the CFG and marks bits that are defined as “changed”. In
the end of the scanning, the remaining “unchanged” bits
are outputted. As unchanged-bits are flow-insensitive, the
analysis can traverse the CFG either forwards or backwards,
in just one pass. Consider the example in Figure 7. The results
of unchanged-bit analysis consist of all bits in a and b.
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Ll: p=a+b
L2: p == Oxff
K/ C[XXXXXXXU]
C[ XXXXXXXU
L3: pu = ¢ & 1 [ ]
bu[0000000u]
C[ XXXXXXXX
Lid: py =c & 0 [ ]
bu[0000000u]
/ bu[0000000u] a[ UXXXXXXX ]
LZ: tB|eaz®y ta[0000000u] b[uxXXXXXXX]
il 0 " £b[0000000u]
=T I tc[0000000 b
8: t =Dbu & 1 cl u] bu[XXXXXXXu]
L9: ¢ = tc | t t[0000000u]
c[0000000u]

Figure 7. Bit Status Analysis (forward&backward).

Merging Results. Based on Equation 1, we can compute
the dependent bit set Byepen for the running example. The
calculation process is shown in Figure 8. In the end, it only
includes c[o}, which is used by instruction L3.

5 Modeling Bitstream Programs

This section discusses the roles that dependent bits play in
bitstream processing, with a goal to create an abstraction of
bitstream programs in general.

Bitstream Program Abstraction. Despite that bitstream
programs may carry complex logic with various instructions,
essentially, they all boil down to a transformation of some
bitstream(s). This makes them resemble sequential circuits,
though one is software and the other is hardware. The close
correspondence motivates us to model bitstream programs
with finite-state machines (FSMs), a model for sequential
circuits. In the following, we first present a basic method to
construct FSMs from bitstream programs, then discuss the
strategies to address extremely large FSMs.

5.1 FSM Construction

In a sequential circuit design scenario, some forms of FSMs
(such as Mealy machines or Moore machines) are often first
constructed to model the behaviors of the designed circuits.
Then, by encoding the FSM states with binaries, the FSM is
converted into a truth table. From there, the flip-flops will
be determined and the circuit diagram will be generated.
Figure 9-(a) shows the FSM (Mealy machine) for designing
a hardware counter that counts three consecutive ones. By
encoding the three states with 00, @1, and 19, a truth table
can be generated, as Figure 9-(b), where CS/NS represents
the current/next state and I/0 represents the input/output.

In the context of bitstream program modeling, we reverse
the FSM-to-truth table process. That is, we first generate a
truth table, then encode the value combinations in the truth
table with states to construct the FSM. Next, we elaborate
the two phases in detail.

Truth Table Generation. In sequential circuit design, the
truth table reflects the boolean logical relations among the
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= {c[o.7:{L3,L4}, a[o.7) : {L1, L5}, bo7y : {L1,L63} N {c[o): {L3}, apo7): L1, @77 : L5, bpo.7) : L1, b7y : L6, - - - } — {077, bo7y }
= {coy:{L3}, ago.71: L1, a[77: L5, bpo77: L1, by71 : L6} — {@qo:77, bpo7y} = {cqoy:{L3}}

Figure 8. Calculation of Dependent Bits for Example in Figures 7 and 6 (for B, ,known» only the relavent elements are shown).
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(a) FSM

(b) Truth Table

Figure 9. Example FSM (Mealy machine) and Truth Table.

input, output, and memory element (next-state logic). In our
context, we use the truth table in a similar way, except that
the memory element of a sequential circuit is replaced with
the dependent bits in bitstream programs.

Given a bitstream program with identified dependent bits
Biepen, we first identify the input bits 8;, and output bits
Bous, that is, the bits consumed from input bitstream(s) and
the bits written into the output bitstream(s) in each iteration
of the main loop. Here, we assume the input bitstreams are
read-only and the output bitstreams are written-only. Then,
by tracking the uses of loop index in array references, we can
easily identify the input and output bits, such as the input
bits ALi] and B[i] and the output bits C[i] in our running
example (see Figure 1). For more complicated situations, we
can provide pragmas to programers for helping identify the
input/output bitstreams. With those bits, we can generate
the truth table as follows.

(a) List the dependent bits By, pen as both the CS columns
and NS columns of the truth table. Set the input bits
Bin as the I columns and the output bits B,,,; as the
0 columns of the truth table, respectively.

(b) Enumerate all the binary combinations of the bits in
the CS and I columns, which, in fact, determine the
total number of rows in the truth table N,,.,,.

(c) For each row in the truth table, execute the bitstream
program (only main loop body) by assigning the input
bits and dependent bits with the corresponding values
in this row. Record the resulted values of dependent
bits and output bits, and fill their values to this row
under the NS columns and O columns, respectively.

It is easy to find that the total number of columns in the
truth table Nio; = [Bin| + 2 X [Baepen| + 1Bou: |- Figure 10-(a)
shows the truth table generated for our running example (see
Figure 1) based on the dependent bit found in Section 4.3. In
this case, the numbers of input and output bits are both eight
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and there is only one dependent bit. The size of the table is
217 x 26, which is quite large even for offline generation. We
will discuss how to address it shortly in Section 5.2. Next, we
describe how to construct an FSM based on the truth table.

FSM Construction. The key idea in constructing the FSM
is treating the value combinations of dependent bits as the
states. This means, for a bitstream program with |Bgepen |
bits, the number of states would be 2!8depen! In our running
example, as there is only one dependent bit, the number of
states is two: one for bit value 0 and the other for bit value 1.
As to the FSM transitions, they are actually already laid out
in the truth table: for the current state in C column(s), given
the input bits in I column(s), the next state is shown in the N
column(s) and the output bits are shown in the 0 column(s).
The number of transitions equals the number of rows of the
truth table. Figure 10-(b) shows the FSM constructed based
on the truth table in Figure 10-(a). For space limits, only some
representative transitions are shown.

It is not surprising that the FSM and the constructed truth
table for our running example are essentially those used
for designing a byte-level hardware adder. Essentially, the
hardware adder and the bitstream program are equivalent
in terms of functionality. However, the FSM-based modeling
of bitstream programs does not require programmers to be
familiar with hardware design and redevelop the solution
from an FSM point of view. Moreover, the logic of bitstream
programs could be quite complex, which can make manual
FSM design an extremely challenging task.

Another challenge in the FSM-based modeling is that the
sizes of FSMs could be very large for real-world bitstream
programs (see Section 8), because of the large numbers of
dependent bits and/or input bits. We address this issue next.

5.2 Partial and Virtual FSMs

For FSMs (and truth tables) that are too large to generate in
practice, we introduce partial and virtual FSMs.

Partial FSMs. The intuition is that, in many applications,
the visiting frequencies of FSM transitions are biased. Hence,
it is possible to use a small portion of captured transitions to
cover a large number of actual transitions. As shown later,
this is often sufficient to enable effective speculation for some
bitstream programs. To achieve this, we use a pool of training
input bitstreams to collect “hot values” of dependent bits and
input bits based on their appearing frequencies. Base on the
“hot values”, a partial truth table is first constructed, with
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c 1(a, B) N o(c)
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(a) Truth Table (b) FSM

Figure 10. Truth Table and FSM (partially shown) for the Running Example (see Figure 1 and Section 4.3).

some rows potentially missing. Then, following the truth
table-to-FSM construction, a partial FSM is created.

Virtual FSMs. Another way to address oversized FSMs is to
completely bypass the physical FSM construction. Instead, it
simulates FSM transitions with the executions of bitstream
program. Basically, an FSM transition is virtually performed
with an execution of the main loop body of the bitstream
program, where the current state is the current values of
dependent bits and the next state is the resulted values of
the dependent bits after the execution. In this way, there is
no need to generate the truth table. However, the dependent
bits, along with the input bits, remain to be identified with
the static analyses, to capture the FSM states and inputs on
demand. More details regarding its uses are in Section 6.

Note that even though the use of virtual FSMs avoids
physical FSM generations, generating physical FSMs may
still be beneficial, because it enables the use of various FSM
optimizations. Next, we will show how to use the FSM models
to enable speculative bitstream processing.

6 Runtime Speculation

The section presents the idea of FSM-based speculation for
bitstream processing, then introduces a novel technique that
can leverage the special properties of bitstream programs to
accelerate the recovery from misspeculation.

6.1 FSM-based Speculation

The basic idea of speculative FSM execution stems from an
interesting observation [23], that is, a future FSM state can
be effectively predicted by running the FSM on a small piece
of input prior to the prediction position, a technique later
formalized and referred to as lookback [53]. Figure 11 depicts
the lookback-based speculative FSM execution.

The input sequence is first partitioned evenly based on the
number of available CPU cores. Then, each input partition is
assigned to a thread to process. Except the first thread, all the
other threads run speculatively. To find out the starting state,
a speculative thread runs the FSM from all states on the suffix
of the prior input partition (i.e., lookback). After the lookback,
the state with highest number of occurrences among the
ending states is selected as the starting state. Using the FSM
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partition 2 partition 1

[ 010111001...1010100010  [001010101001...1000010 |
A

Iop!

non-spec.

lookback
spec.

Figure 11. Lookback-based Speculative FSM Parallelization.

in Figure 9 as the example, after a seven-symbol lookback, all
three states transition to state s, implying that it must be the
correct starting state. In general, lookback can significantly
improve speculation accuracies for many FSMs.

When a prediction fails, a reprocessing with the correct
starting state is needed to ensure the correctness. Thanks
to the state convergence properties, the reprocessing may
stop earlier when the corrected state trace “merges” with the
wrong state trace (more details in [53]).

To adopt FSM speculation for bitstream processing, we
first construct the FSM for the given bitstream program,
then leverage the FSM-based lookback to find out the most
possible state. After that, the selected state is decoded into
binary values, which are then assigned to the dependent
bits in the bitstream program to start the speculative exe-
cution. The high-level workflow remains similar to that in
Figure 11, except that the speculative FSM execution becomes
the speculative execution of bitstream program. Considering
the example of long bitstream addition, FSM-based lookback
essentially provides a systematic exploration of the prior
bits “close by” to find out the possibility of a produced carry.
Our evaluation (Section 8) shows that a short FSM-based
lookback often yields high speculation accuracies for long
bitstream addition and many other bitstream programs.

Speculation with Partial/Virtual FSMs. For partial FSMs,
the lookback is similar to the FSMs with full transition tables,
except that the lookback may start with a subset of states and
some FSM execution paths in the lookback may stop earlier
due to the lack of the needed transitions. As a result, the
accuracy of the predicted state could be reduced. In general,
partial FSMs work well in cases where the FSM transitions
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follow a biased distribution. As to virtual FSMs, the lookback
directly executes the bitstream program to mimic the FSM
transitions. In specific, we start the lookback with “virtual
states” — the value combinations of the dependent bits. If
there are too many combinations, a subset is selected either
randomly or based on some training inputs. For each value
combination of dependent bits, an instance of the bitstream
program is run to perform “virtual transitions". At the end
of the lookback, the value combination that appears mostly
would be selected as the predicted values. Note that even
though virtual FSMs bypass the physical FSM generation,
the lookback essentially still explores the state convergence
of FSMs in an implicit way (“virtually”).

6.2 Fast Recovery from Misspeculation

In the existing FSM speculation, after parallel speculative
executions, each predicted starting state is verified against
the correct state — the ending state of the prior partition. If
the verification fails, the corresponding input partition has to
be reprocessed with the correct starting state. Despite some
optimization [53] for stopping the reprocessing earlier, the
reprocessing cost, in general, can significantly compromise
the speculation benefits [37].

The above issue may be alleviated in speculative bitstream
processing. Unlike FSMs, the outputs of bitstream programs
are binary sequence(s). Under certain conditions, the correct
and incorrect output bitstreams may be correlated by some
bitwise relations. For example, the incorrect output bitstream
could be the flipped version of the correct one (see Figure 12).
If we can prove this as a property of the bitstream program,
we can directly rectify the incorrect output bitstream, rather
than reprocessing the input bitstream.

| 010111001...1010100010 | A’ incorrectoutput bitstream

A[i] = —A'[i]

| 101000110...0101011101 | A correct output bitstream

Figure 12. Example Fast Recovery from Misspeculation.

In fact, we can prove properties of bitstream programs
offline with the help of their corresponding FSMs. Assume
that the correct and incorrect output bitstreams are 0 and 0’,
respectively, and the hypothesis is that 0 = P(0’), where P
is a bitwise logical function. From the FSM point of view, the
hypothesis can be proved as follows. For every pair of state
transitions T'(s1,I;) = (s;, O1) and T(s, ) = (s;, Oz) where
s1 # s3 and I} = I, we should have O; = P(0,) as well as O,
= P(01). Note that the proof requires ¥ to be commutative,
as a transition, in general, may happen in both the correct
and misspeculated executions. After proving the P for the
bitstream program, we can apply % to the output bitstream
from any misspeculated processing to recover the correct
one. We call this technique property-based fast recovery.
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7 Implementation

This section briefly describes some implementation details
of the proposed principled bitwise speculation.

Static Analyzer. We prototyped dependent bit analysis on
the LLVM (version 9.0.0). The analysis is implemented as
an LLVM pass, called depenBit. The pass first identifies the
main loop with the help of BitstreamLoop pragmas. Then,
it runs an LLVM loop analysis pass ° to find out the loop
induction variable, followed by an SCC (strongly connected
components) analysis pass ° to locate the body of main loop.
After these preparation, the pass starts the three sub-analyses
mentioned in Section 4.3 and merges the analysis results to
produce the dependent bits for the given bitstream program.
More details regarding the analyzer, including some of its
potential limitations, will be discussed in Section 8.

FSM Generator and Speculation Runtime. In our current
prototype, both the FSM generator and speculation runtime
are implemented as standalone modules using C++. The FSM
generator takes dependent bits as inputs and outputs an FSM
transition table. In addition, the generator can optionally
take a training input to create a partial FSM. By default,
the size of partial FSMs is set to |S| X 1024, where |S]| is the
number of states. To support speculative parallelization, we
use the Pthread library for its customizable thread settings.
By default, the runtime creates the same number of threads as
the number of CPU cores. The default length for the lookback
(in number of bits) is set to 2 X |B;,|. Using a multiple of
input vector size avoids the aligning complexity. As to the
property-based fast recovery, the current prototype focuses
on testing the hypothesis of NOT - relation. More hypothetic
relations are planned to be added in the future versions.

8 Evaluation

This section evaluates the principled bitwise speculation,
with a focus on the performance benefits.

8.1 Methodology

Benchmarks. To facilitate the evaluation, we collected eight
bitstream kernels from multiple applications, ranging from
semi-structured data processing [27, 28] and text pattern
matching [5] to multimedia [26, 39] and bioinformatics [49].
They are listed in Table 1. Three of them are implemented
with SIMD intrinsics. For each kernel, we collected a set
of inputs from their applications, including 10 small inputs
(10MB each) and 10 large inputs (300MB each).

To demonstrate end-to-end benefits, we also evaluate PBS
with an open-source high-performance regular expression
engine, called icgrep [5] (see more details in Section 8.4).

Evaluation Platform. We mainly ran our experiments on
a 64-core machine equipped with an Intel Xeon Phi 7210

Shttps://llvm.org/doxygen/classllvm_1_1Loop.html
®https://llvm.org/doxygen/classllvm_1_Tscc__iterator.html
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Table 1. Bitstream Kernels in Evaluation.

Abbreviation | Brief Description SIMD
shd_srs |Shift-hamming-distance filter kernel [49] No
802_11a IEEE 802.11a convolutional encoder [39] No

8b10b_cal |IBM 8bit/10bit block encoder [39] No
g721_upd |G.721 voice compression kernel [26] No
quoteStr |JSON bitmap indexing from Mison [27] No
scanThru |Ending index construction from icgrep [5]| Yes
matchStar |Matching “*” in regex from icgrep [5] Yes
xmlParser |XML parsing kernel from Parabix [28] Yes

processor (1.3GHz). The machine runs Linux 3.10.0 with
supports of SSE4.2 and AVX2. As to the compilers, we use
LLVM 9.0.0 for analyzing the source code and GCC 4.8.5 for
generating the executables, with “~03” flag enabled.

For bitstream kernels, we measured the time spent on
the main loop, while for the regular expression engine, the
end-to-end running time was collected. All timing results
reported are the average from 10 repetitive runs.

8.2 Static Analysis and Modeling

To prepare for the static analysis, we inlined functions that
are called inside the main loops to avoid precision loss from
the inter-procedural analysis. The second column of Table 2
reports the number of LLVM IR instructions in the main loop
of each kernel, where the static analyses are performed.

Table 2. Static Analysis Results (#Instr: number of instructions;
#DB/#IB/#0B: numbers of dependent/input/output bits).

Kernel | #Instr.|#DB| #IB #0B

shd_srs 61 1 32 32

802_11a 72 5 32 2X32
8b1ob_cal| 140 1 32 32
g721 _upd 143 2 3x32|3%x8
quoteStr 61 1 2 X 32 32
scanThru 1218 1 |2x256| 256
matchStar | 1226 1 |2Xx256| 256
xmlParser | 1881 2 [3%x256| 256

Analysis Results. As shown in Table 2, columns 2-4 report
the numbers of dependent bits, input bits and output bits,
discovered in the bitstream kernels.

For each kernel, we manually checked the source code
to examine the correctness of the analysis results. In the
end, our examination shows that the reported bits are both
correct and precise. Among the eight kernels, five kernels are
found with only one dependent bit, despite that the variables
holding them are 64-bit unsigned integers or 256-bit SIMD
vectors. For kernels g721_upd and xmlParser, there are two
dependent bits. In both cases, the two bits come from two
different variables. Kernel 802_11a is found with the most
number of dependent bits — five bits, which are all from the
same variable shiftRegister(s.s 1.0). As to the input and
output bits, the number ranges from 32 to 3x 256 (3 means

Ay

616

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

60
%50
40
2 39 27.4X
[
Q. 10.6X
v 20
0 - [ | m_mi
s 5 05 VW ®m g T O S5 5 D0 Y ©® g T O
= O O U = © = MmO = m©
n o < 0 9 U »n o= 0 a o
8%75 %-cl HI_QI jlmgﬁﬁ g-cl H\QI jlm
StsE¥g87 Sts£igsy
T ® 3 E "3 3R T8 9 E "3 2R
) o ™~ @ o I~
£ x o0 o £ x o0 o
Large Small

Figure 13. Speedup of Parallelized Kernels (64-core).

three bitstreams), except g721_upd which outputs 3x8 bits
to three output bitstreams. It is not surprising that the last
three kernels use so many input/output bits, as they are
implemented with SIMD intrinsics. The static analysis time
of the DepenBit pass, reported by LLVM, ranges from tens
of milliseconds to several seconds.

Despite the success in analyzing the kernels, there exists
some limitations with our current analysis implementation.
One assumption is that the main loop of bitstream kernels is
in canonical form, which facilitates the identification of the
loop induction variable and input/output bits. This could be
addressed with more advanced induction variable analysis or
the use of pragmas. In addition, as most bitwise operations
work with non-floating point variables, our current analysis
does not cover floating point variables.

FSM-based Modeling. Based on the number of dependent
bits reported in Table 2, the number of FSM states ranges
from two to 32 (i.e., 2°), which is quite manageable. However,
due to the large number of input bits, it is still impractical
to generate the FSMs physically. For this reason, we adopt
partial and virtual FSMs (see Section 5.2). In particular, we
generate a partial FSM for kernel 8b10b_cal, which is one
of the kernels with the smallest truth table. Moreover, the
value combinations of dependent bits in 8b10b_cal follows
a highly biased distribution, making it a good candidate for
using a partial FSM. By running the bitstream program on
a training input, we generated a partial FSM for 8b10b_cal
with 2X1024 transitions. For the other kernels, we adopt the
virtual FSMs, which use the executions of bitstream programs
to simulate the FSM transitions.

8.3 Speculative Parallelization

This section evaluates the parallel performance of FSM-based
speculation (Section 6) on the bitstream kernels, including
their speedups, speculation accuracies, and scalabilities.

Speedup. Figure 13 reports the speedups of the parallelized
bitstream kernels on the 64-core machine. In general, for the
large inputs, the speedups tend to be higher. Because, with
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larger inputs, the parallelization costs (e.g., threads creation
and etc.) can be better amortized by the longer executions.

In specific, four bitstream kernels (matchSar , scanThru,
xmlParser, and shd_srs) achieve nearly (or slightly higher
than) 60X speedups. Note that, for three of them, the speedups
are on top of the vectorizations with SIMD intrinsics. There
are two main reasons for their higher speedups than the
other kernels. First, the four kernels obtain 100% speculation
accuracies (more discussions shortly). Second, they do not
generate long output streams; instead, their output bits are
directly consumed by the following steps. This makes the
bitstream kernels more computation-bound, thus reaching
higher speedups with more CPU cores.

Among them, 8b10b_cal achieves the least speedup (2.3X
for large inputs). This is mainly due to its limited speculation
accuracy (around 50%). We will discuss some remedies for
this kernel later in this section. For quoteStr, the speculation
accuracy, in fact, is similar to 8b10b_cal. However, as we
will show later, this kernel is qualified for the property-based
fast recovery. With this technique, it is able to reach 32.3X
speedup for large inputs, despite the limited speculation
accuracy. Finally, for kernels 802_11a and g721_upd, the
speculation accuracies are also 100%. However, due to the
need for generating long output bitstreams, they become
more I/O-bound as more and more CPU cores are added
(as shown later in scalability), reaching 16.2X and 19.6X
speedups for large inputs, respectively.

Speculation Accuracy. As mentioned earlier, six out of
eight kernels achieve 100% speculation accuracies in our
tested cases, with the default lookback length (i.e., 2X|By¢]).
This confirms the effectiveness of FSM-based speculation,
which systematically explores the possible changes of bit
values (“transitions”) under the “partial context” of input bits
nearby. For the other two kernels (8b10b_cal and quoteStr),
their speculation accuracies are only about 50% as the two
states of their FSMs rarely converge. Fortunately, these two
kernels are eligible for some optimizations, as explained next.

Optimization with Fast Recovery. First, quoteStr passed
the testing of NOT relation hypothesis (see Section 6.2) for
fast recovery. This means, if a misspeculation occurs, it is
possible to directly flip the incorrect output bitstream to get
the correct one, rather than reprocessing the input bitstream.
With fast recovery, quoteStr achieves much higher speedup
than the other benchmark 8b10b_cal which also suffers
from low speculation accuracy (see Figure 13).

Optimizations for 8b10b_cal. There are two optimizations
applicable to 8b10b_cal. First, its FSM model is found to run
even faster than the original program, thus we can use the
FSM to replace the bitstream program. Second, the FSM has
only two states. In this case, we may aggressively execute
both states, an existing FSM parallelization technique known
as enumerative parallelization [29]. With both optimizations,

Ay

617

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

we observed a 43.7X speedup on the 64-core machine, instead
of 2.3X as reported earlier in Figure 13.
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Figure 14. Scalability (Large Inputs on 64-core Machine).

Scalability. As demostrated in Figure 14, four kernels present
near-linear speedups up to 64 cores (matchStar, scanThru,
xmlParser, and shd_srs). quoteStr and 8b10b_cal also
scale up to 64 cores, but their speedups are more close to
their maximums. The speedups of 802_11a and g721_upd
saturate with around 20-30 cores. In general, the scalability
mainly depends on the speculation accuracy, reprocessing
costs, and the I/O-to-computation raito.

8.4 Case Study: Enabling Data-Parallel icgrep

To confirm the benefits of PBS on full-fledged applications,
we experimented it with icgrep [5], a regular expression
engine with SIMD parallelism. icgrep compiles a regular
expression into a bitstream program (in LLVM IR) to find
matches in a text stream. Here, we use the same regular
expressions from the icgrep paper [5] for our evaulation
(see Table 3). The input textual streams are collected from a
Linux server using the tcpdump tool.

First, our dependent bit analysis shows that the number of
dependent bits in the generated bitstream programs ranges
from 19 to 36 (the 3rd column of Table 3). In general, for
more complex regular expressions, the number of dependent
bits tends to increase. Given the relatively large numbers of
dependent bits, we opt for virtual FSM-based speculation.
The last column of Table 3 reports their maximum speedups
on the 64-core machine, ranges from 10.4X to 27.6X. The
speedups come from the high speculation accuracies. In fact,
for all the six generated bitstream programs, we observed
100% speculation accuracies, thanks to the fast convergence
properties of their virtual FSMs. The sub-linear speedups are
due to the generation of output bitstreams, which are saved
in cases the users want to print out the matched contexts.

9 Related Work

As we have introduced bitstream processing in Section 2, this
section focuses on other relevant topics, including bit-level
analysis and speculative parallelization.
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Table 3. Evaluation of PBS on icgrep.

ID |Regular Expression #DB | Speedup
1@ 19 | 104X
2 [([0-91[0-9]2)/([0-9][0-9]2)/([0-91[0-9]([0-9][0-91)?) | 27 | 17.5X
3 |(["@]he("@]+) 22 18.1X
4 |(([a-zA-Z][a-zA-Z0-9]%)://|mailto:)([*/]+)(/[*]¥)?] | 36 | 21.9X
("@]he(" @]+
5 |[ ](0x)?([a-fA-F0-9][a-fA-F0-9])+[.:,?! ] 26 21.7X
6 |[A-Z]((([a-zA-Z]*a[a-zA-Z]*[ ])*[a-zA-Z]*e[a-zA-| 32 27.6X
Z]"[ 1)[a-zA-Z]*s[a-zA-Z]"[ ])*[.7]

Bit-Level Analysis. Existing research on bit-level analysis
is mainly for saving hardware resources, with applications to
multimedia processing and telecommunications [1, 3, 16, 25,
43, 44]. For example, Budiu and others [3] proposed bitvalue
analysis that finds unused and constant bits in C programs
to improve their performance on specialized architectures
with non-standard bitwidths. This analysis has been adopted
by this work as part of the dependent bit analysis. Under
a similar context, Stephenson and other [43] introduced a
compiler, called Bitwise, to minimize the number of bits used
by each operand in both integer and floating point programs.
The compiler has shown promising results in architectural
synthesis. Alternatively, Gupta and others [16] introduced a
program representation to facilitate expanding traditional
program analysis to the subword level. Following this work,
Tallam and Gupta [44] designed a bitwidth-aware algorithm
for global register allocation, showing 10%-50% reduction in
register uses when compared to the traditional approaches.

Our work is deeply inspired by the above bitwise analysis.
However, to the best of our knowledge, this is the first work
that leverages bit-level analysis for program parallelization.

Bit-Level Parallelism. Besides code vectorization, there are
also many efforts in exploiting bit-level parallelism in specific
applications [18, 42], especially for string matching [30, 31,
33] and semi-structured data indexing [27, 28]. In particular,
Carribault and Cohen [7] examined bit-parallel matching
algorithms with register promotion optimizations. In general,
these efforts bring potential applications that can benefit
from our coarse-grained parallelization techniques.

Speculative Parallelization. There exists a rich body of
work on speculative parallelization [9-13, 15, 17, 22, 35, 40,
41, 47, 54]. For space limits, we briefly introduce some of
them. As an early framework, LRPD [41] was proposed for
speculative loop execution with a parallel data dependence
test that checks cross-iteration dependences. When the test
fails, the loop would be reexecuted in serial. To better take
advantage of multicore processors, Ding and others [12]
introduced behavior oriented parallelization (BOP) which
uses some partial information of program behaviors to assist
the parallelization. For a similar purpose, copy-or-discard
execution model [47] was introduced, with improvements
using multiple value prediction [45] and supports of dynamic
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data structures [46]. In addition, there are also proposals of
programming language constructs [35], speculation design
for irregular applications [34], as well as compilers with
speculative execution supports [38]. Some recent works also
target speculative parallelization of semi-structured data
stream processing, but at the byte level rather than bit level,
like speculative HTML parsing [51] and speculative path
query processing of XML/JSON streams [19, 20].

In sum, the prior work laid the foundations for speculative
parallelization. However, for bitstream processing, programs
expose special challenges to the speculative parallelization
with bit-level data manipulations. It is non-trivial to adopt
most of the above techniques with high effectiveness. Take
the long bitstream addition as an example, the value of the
dependent variable changes across loop iterations following
non-trivial patterns. Traditional value predictors, such as the
last-value and stride-based predictors, in fact, perform no
better than a random predictor in such cases. By modeling
bitstream programs with FSMs and exploiting their inherent
state convergence properties [21, 36, 52, 53], this work provides
a systematic treatment to the speculative parallelization of
bitstream programs, achieving high speculation accuracies
and low-misspeculation costs.

10 Conclusion

This work treats sequential bitstream programs from a new
perspective, by analogizing them to the sequential circuits.
Inspired by their similarities, this work proposes to model
bitstream programs with FSMs. To facilitate the modeling,
this work integrates multiple static analyses to systematically
reason about the bits in program variables that cause the
loop-carried dependences, namely, the dependent bit analysis.
With the identified dependent bits, an FSM is constructed
for the bitstream program, following a modified truth table
approach used in the conventional circuit design. For FSMs
that are too large to generate, this work also introduces
partial and virtual FSMs as alternatives. This FSM modeling
enables the use FSM speculation techniques for parallelizing
bitstream programs. To reduce the cost of misspeculation,
this work further proposes fast recovery that leverages the
logical property of bitstream programs to avoid reprocessing.
Finally, evaluation with real-world bitstream programs and
a regular expression engine confirms the effectiveness of
the proposed techniques, achieving significant performance
improvements on multicore/manycore machines.
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A Artifact Appendix
A.1 Abstract

This artifact contains the source code of a basic version of
PBS and some benchmarks evaluated in this paper, including
an LLVM dependent bit analysis pass, the parallel versions of
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bitstream kernels, and a regular expression engine icgrep.
For each kernel, there are 5 small inputs (10MB each) and
5 large inputs (300MB each). In addition, there are 10 large
inputs, up to 300MB each, collected from a Linux server
using tcpdump, for the evaluation of icgrep. At last, this
artifact includes bash scripts to compile the source code and
generate some of the results reported in the paper.

Considering the performance measurements, the artifact
needs to run on Intel Xeon Phi processor (Knights Landing)
with GCC and Pthread supports. Since the static analyzer
was implemented on LLVM 9.0.0, the artifact also needs
the environment for installing the corresponding version of
LLVM and Clang. Moreover, all source code was tested in
the environment of CentOS 7.

A.2 Artifact check-list (meta-information)

Algorithm: Principled Bitwise Speculation.

Program: Static analyzer and parallelized bitstream kernels.

Compilation: GCC 4.8.5 and LLVM 9.0.0.

Binary: The source code of PBS in a basic version, parallelized

bitstream kernels, icgrep engine, and the scripts are included

to generate binaries.

e Data set: All data were collected from the corresponding real-
world applications. For each kernel and regular expression,
there are totally 10 datasets with size of 10MB or 300MB.

e Run-time environment: The artifact has been developed and
tested on Linux (CentOS 7) environment. The source code of
static analyzer was compiled by Clang 9.0.0 and all the other
code was compiled by GCC with Pthread.

e Hardware: The artifact is supposed to run on Intel Xeon Phi
7210 Processor (Knights Landing/KNL, 1.3GHz).

e Execution: Bash scripts are included for execution.

e Output: Results mainly include static analysis results and the
execution time of each kernel and each regular expression.

e How much disk space required (approximately): 10GB

e How much time is needed to complete experiments
(approximately): It takes about 1.5 to 2 hour, assuming LLVM
and other required tools have been installed.

e Publicly available?: Yes.

A.3 Description

A.3.1 How to access.

A zip file named Artifact. zip, containing the source code, scripts,
as well as the datasets, is available as a public repository on Zenodo
(https://doi.org/10.5281/zenodo.3610556)

A.3.2 Hardware dependencies.

We recommend testing our code on an Intel Xeon Phi architecture
(Intel Xeon Phi 7210 with 1.3GHz in particular). Please make sure
there is at least 15GB space available (for our artifacts and LLVM).

A.3.3 Software dependencies.

We assume the artifact runs on CentOS 7, but other similar Linux
distributions should also work. We also need GCC 4.8.5 and LLVM
9.0.0 (but note that, to install LLVM 9.0.0, GCC version should be
at least 5.1). To compile and run the source code with the scripts,
we need Cmake 3.14.6 and Python 2.7.5. The bitstream kernels
included in the artifact implement a shift-hamming-distance filter,



RIGHTS LI

Session 7B: Streaming computational models — In the flow!

an IEEE 802.11a convolutional encoder, the IBM 8bit/10bit block
encoder, and a JSON bitmap indexer. For more details about these
kernels and their original applications, please check our paper and
references. The case study application icgrep is an open-source
regular expression engine (http://www.icgrep.com). The version
we used in the artifact is the release version 1.0.

A.3.4 Data sets.

Datasets are included in this artifact for testing. They are collected
from their corresponding real-world applications. They are located
in the directory Artifact/AE/data.

A.4 Installation

After downloading and unzipping the artifact file, make sure LLVM
9.0.0 has been installed (for the static analyzer). We provide a bash

script Artifact/LLVM/install. sh for LLVM installation.
$ c¢d Artifact/LLVM && bash install.sh

Remember to follow the notes to add path to your ~/.bashrc after
finishing the execution of the above script.

A.5 Experiment workflow

We provide a bash script Artifact/AE/scripts/run.sh, which
is used for finishing the testing in one-step execution. Type the
following command for testing

$ c¢d Artifact/AE/scripts && bash run.sh
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Generating all results takes about 2 hours. There are three major
parts, including conducting static analysis, performance testing for
bitstream kernels, and performance evaluation of the case study
application. It is suggested to execute these three parts separately,
instead of using the one-step script. More details about executing
different parts can be found in the scripts.

A.6 Evaluation and expected result

After running the bash script, the results will be outputted to the
command line window, in three parts. First, the static analysis
results will appear, showing the bit status of variables causing
dependences in each kernel. Then, parts of the results (performance
of 3 bitstream kernels) in Figure 13 and 14 will appear, showing
the speedup (using 64 cores) over the sequential version, and the
speedup curves for their scalabilities. Finally, it will report the
maximum speedups reached for parallelizing icgrep over regular
expression 2, 4, and 6, as shown in Table 3.

A.7 Experiment customization

Optionally, there are also three groups of scripts located under
folder Artifact/AE/scripts, which can help generate the results
mentioned above separately. Please follow the commands shown
in these scripts to make your own compilation and testing. For
example, when testing icgrep, you can follow the patterns shown
in script Artifact/AE/scripts/caseStudy_execute.sh to test
any other regular expression.
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