
This paper is included in the Proceedings of the

28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the

28th USENIX Security Symposium

is sponsored by USENIX.

The Betrayal At Cloud City: An Empirical Analysis
Of Cloud-Based Mobile Backends

Omar Alrawi, Georgia Institute of Technology; Chaoshun Zuo, Ohio State University;

Ruian Duan and Ranjita Pai Kasturi, Georgia Institute of Technology; Zhiqiang Lin,

Ohio State University; Brendan Saltaformaggio, Georgia Institute of Technology

https://www.usenix.org/conference/usenixsecurity19/presentation/alrawi

The Betrayal At Cloud City:

An Empirical Analysis Of Cloud-Based Mobile Backends

Omar Alrawi*

Georgia Institute of Technology

Chaoshun Zuo*

The Ohio State University

Ruian Duan

Georgia Institute of Technology

Ranjita Pai Kasturi

Georgia Institute of Technology

Zhiqiang Lin

The Ohio State University

Brendan Saltaformaggio

Georgia Institute of Technology

Abstract

Cloud backends provide essential features to the mobile

app ecosystem, such as content delivery, ad networks, ana-

lytics, and more. Unfortunately, app developers often disre-

gard or have no control over prudent security practices when

choosing or managing these services. Our preliminary study

of the top 5,000 Google Play Store free apps identified 983

instances of N-day and 655 instances of 0-day vulnerabilities

spanning across the software layers (OS, software services,

communication, and web apps) of cloud backends. The mo-

bile apps using these cloud backends represent between 1M

and 500M installs each and can potentially affect hundreds

of thousands of users. Further, due to the widespread use of

third-party SDKs, app developers are often unaware of the

backends affecting their apps and where to report vulnera-

bilities. This paper presents SkyWalker, a pipeline to auto-

matically vet the backends that mobile apps contact and pro-

vide actionable remediation. For an input APK, SkyWalker

extracts an enumeration of backend URLs, uses remote vet-

ting techniques to identify software vulnerabilities and re-

sponsible parties, and reports mitigation strategies to the app

developer. Our findings suggest that developers and cloud

providers do not have a clear understanding of responsibil-

ities and liabilities in regards to mobile app backends that

leave many vulnerabilities exposed.

1 Introduction

Cloud-based mobile backends provide a wide array of

features, such as ad networks, analytics, content delivery,

and much more. These features are supported by multiple

layers of software and multiple parties including content

delivery networks (CDNs), hosting providers, and cloud

providers who offer virtual/physical hardware, provisioned

operating systems, and managed platforms. Due to the in-

herent complexity of cloud-based backends, deploying and

maintaining them securely is challenging. Consequently,

*Authors contributed equally.

mobile app developers often disregard prudent security

practices when choosing cloud infrastructure, building, or

renting these backends.

Recent backend breaches of the British Airways [1] app

and Air Canada [2] app demonstrate how wide-spread these

incidents are. More recently, the hijacking of the Fortnite

mobile game [3] showed how incrementally-downloaded

content from mobile backends can allow an attacker to in-

stall additional mobile apps without the user’s consent. Ad-

ditional cases [4] involving the exposure of 43TB of enter-

prise customer names, email addresses, phone numbers, PIN

reset tokens, device information, and password lengths was

due to insecure mobile backends and not the developer’s mo-

bile app code.

Even for security-conscious developers, it is not clear

what backends their mobile app will interact with because

of third-party libraries. Third-party libraries do not expose

their backends to developers, instead, they offer an applica-

tion program interface (API) that developers use. Many of

these vulnerabilities can be identified ahead of time if de-

velopers have the right tools and resources to evaluate the

security of their backends. Further, identifying vulnerable

software layers and the responsible party can expedite reme-

diation and therefore lower the risk of exposure.

To deal with the complexities in cloud infrastructure, the

research community surveyed [5] and proposed several tax-

onomies [6], ontologies [7], assessment models [8], and

threat classifications [9]. Unfortunately, these approaches

provide few practical recommendations for mobile app de-

velopers. Recent works on server-side vulnerability discov-

ery of mobile apps [10]–[12] have shown that a lack of secu-

rity awareness among app developers is a growing problem.

Yet, these works only scratch the surface by examining only

the software service layer of mobile backends.

A systematic study is needed to identify the most pressing

issues facing mobile backends. Moreover, to conduct such

a study, the analysis must be reproducible, transparent, and

easy to interpret for developers. The study should be done

on a representative mobile app ecosystem to provide real in-

USENIX Association 28th USENIX Security Symposium 551

sight into the backend vulnerability landscape. Finally, the

study should offer practical steps to guide and inform app

developers on the security of their mobile backends.

To this end, this paper presents the design and implemen-

tation of SkyWalker, an analysis pipeline to study mobile

backends. Using SkyWalker, we conducted an empirical

analysis of the top 5,000 free mobile apps in the Google Play

store from August 2018. Based on this study, we uncovered

655 0-day instances and 983 N-day instances affecting

thousands of apps. We used Google Play Store metadata to

measure the impact of our findings and estimate the number

of affected users. We propose mitigation strategies for dif-

ferent types of vulnerabilities and guidelines for developers

to follow. Lastly, we offer the SkyWalker analysis pipeline

as a free public web-service to help developers identify

what backends their mobile apps interact with, the security

state of the backends, and recommendations to address any

detected issues.

Our empirical study found 983 N-day instances of 52

vulnerabilities affecting hypervisors, operating systems,

databases, mail servers, DNS servers, web servers, scripting

language interpreters, and others. We found 655 0-day in-

stances of SQL injection (SQLi), cross-site-scripting (XSS),

and external XML entity (XXE). These affected thousands

of mobile apps, with some apps having over 50M+ installs

and more than 332,000 reviews. We present two case studies

to demonstrate the vulnerabilities affecting a specific devel-

oper and vulnerabilities affecting a platform that is used by

many developers.

We found these backends to be geographically distributed

across the globe and hosted on 6,869 different networks.

We notified all affected parties about the findings, and

were careful to follow ethical and legal guidelines when

conducting this study, additional details are in Section 8. We

propose mitigation strategies for developers to follow based

on the issues found and the types of backends. We conclude

with recommendations for deploying and maintaining secure

backends.

2 A Motivating Example

Mobile apps use cloud-based backend services to support ex-

tensive functions like ads, telemetry, content delivery, and

analytics. Unfortunately, a mobile app developer who wants

to audit the backends their app uses will quickly find that this

is harder than it seems. The first thing the developer must

do is simply enumerate those mobile backends. Consider

the Crime City Real Police Driver (com.vg.crazypoliceduty)

app, a mobile game with over 10M+ installs and 126,257

reviews. The mobile app uses several third-party SDK li-

braries including Amazon In-App Billing, SupersonicAds,

Google AdMob, Unity3D, Nuance Speech Recognition Kit,

and Xamarin Mono. The developer may not be aware of

many of the backends that are invoked from imported native

or Java libraries, i.e., the Unity3D backends. In most cases,

the developer will first have to employ static binary analy-

sis tools or dynamically instrument the app to track multiple

levels of SDK inclusion. SkyWalker automatically identified

13 unique backends from this app’s APK (shown in Table 1)

and mapped them to the modules they were found in, i.e.,

library backends versus developer backends.

Party Vendor Backend Purpose

Hybrid
Vasco

Games
androidha.vascogames.com

Game

Content

Third

Unity3D

api.uca.cloud.unity3d.com Telemetry

cdn-highwinds.unityads.unity3d.com Ads

config.uca.cloud.unity3d.com Telemetry

impact.applifier.com Telemetry

Sizmek
bs.serving-sys.com Ads

secure-ds.serving-sys.com Ads

Moat
px.moatads.com Analytics

z.moatads.com Ads

Google

googleads.g.doubleclick.net Ads

pagead2.googlesyndication.com Ads

tpc.googlesyndication.com Ads

www.google-analytics.com Analytics

Table 1: Backends identified for Crime City Real Police

Drive and their purpose. The red cells indicate vulnerable

backends.

Backends have layers of software (components) that sup-

port the web application software (AS), including an oper-

ating system (OS), software services (SS), and communi-

cation services (CS). The developer now has to fingerprint

the backends to inventory the software layers and identify

the software type, version, and its purpose. Using this in-

formation, the developer can then check to see if any of

their software is outdated or affected by a known vulnera-

bility [13], a laborious and time-consuming task. SkyWalker

identified that the game content backend runs Debian 6 for

the OS; OpenSSH 6.5p1, Apache httpd 2.2.22, PHP/5.4.4-

14, and Apache-Coyote/1.1 for the SS; and uses the HTTP

protocol for CS. SkyWalker’s search of the national vulner-

ability database (NVD) [13] and correlation with the finger-

print results showed multiple common vulnerability expo-

sure (CVE) entries affecting PHP 5.4.4-14. Further, the De-

bian version running on the backend is no longer supported

and does not receive any updates from the vendor.

In addition to these issues, the developer’s AS can contain

bugs that must be audited. The developer can check the AS

by auditing the parameters passed to each API and testing

for SQLi, XSS, XXE, or any other applicable vulnerabilities

from OWASP’s top 10 common issues [14]. This task re-

quires secure programming experience and security domain

expertise to identify bugs in the source code. SkyWalker

found that the game content backend interface is vulnera-

ble to SQLi for some parameters passed by the mobile app,

which is due to the AS not properly sanitizing the input.

The developer must now remediate or mitigate these risks,

but each backend layer may be operated by different entities

that provide hardware and software as a service. Therefore,

552 28th USENIX Security Symposium USENIX Association

before fixing any issues, they must figure out what party is re-

sponsible for each component. SkyWalker fingerprinted the

Crime City Real Police Driver game content backend, an-

droidha.vascogames.com, as being hosted on a Google Com-

pute Engine Flexible Environment instance (which provides

virtual hardware, operating system, and PHP). We refer to

this type of backend model as hybrid since Google is par-

tially responsible for the virtual environment and the devel-

oper is responsible for the AS and CS.

The developer must come up with a remediation strategy

to address these problems. Google advertises that they patch

any vulnerable software affecting the OS and SS, but this is

only applicable to non-deprecated versions. In the case of

Crime City Real Police Driver app, the developer is respon-

sible for all the software layers since the OS and SS versions

are deprecated. The developer must upgrade to a supported

OS, apply patches to the PHP interpreter (SS), patch the AS

source code against SQLi, and support HTTPS for secure CS.

The Unity3D, Sizmek, and Moat backends shown in Ta-

ble 1 are called third-party, since the developer has no con-

trol over them. This evaluation must also be carried out

on third-party backends to identify additional vulnerabilities

(potentially affecting all apps which use those shared ser-

vices). SkyWalker found that the Crime City Real Police

Driver app uses the config.uca.cloud.unity3d.com backend,

which contains an XXE vulnerability, and the bs.serving-

sys.com backend that contains an XSS vulnerability. Ideally,

the developer could report those vulnerabilities to the plat-

form through a bug bounty program or migrate their app to

backends that are not vulnerable.

This manual assessment procedure is very involved and

requires extensive security domain knowledge, which many

app developers may not have. Instead, SkyWalker gives all

mobile app developers the ability to identify the backends

invoked by their app, assess their software layers, and sug-

gest remediation strategies to improve the security for their

mobile app backends.

3 Background

This section defines an abstraction to model mobile backends

for our empirical study. We also define our labeling for back-

ends and create a mapping between responsible stakeholders

and resources. We outline how we count vulnerabilities and

define them in the context of this work.

3.1 Mobile App Backend Model

We follow the standard definition for mobile backends used

by industry leaders [15]–[18], which encompass many cloud

features, such as storage, user management, notifications,

and APIs for various services, regardless of who maintain-

s/owns them. We breakdown mobile backends into a stack

representation that consists of five layers:

• Hardware (HW) refers to the physical or virtual hard-

ware that hosts the backend.

• Operating System (OS) refers to the OS running on the

hardware, i.e., Linux or Windows.

• Software Services (SS) refers to software services run-

ning in the OS, i.e., database service, web service, etc.

• Application Software (AS) refers to the custom appli-

cation interface used by mobile apps to interact with the

running services.

• Communication Services (CS) refers to the communi-

cation channel supported between the mobile app and

the mobile backend.

Our approach does not consider the hardware layer

because 1) we would need root-level access on the backend

to evaluate the hardware and 2) mobile app developers have

no direct way of addressing hardware vulnerabilities, i.e.,

manufacturers must issue firmware updates or replace the

hardware. It is important to note that this work does not

consider the mobile app security, instead we leverage the

mobile app to study the backend.

We differentiate between mobile backends by ownership,

which provides a granular mapping between stakeholders

and resources. We define four labels for the mobile back-

ends with respect to the app developer:

• First-Party (B1st) refers to backends that are fully man-

aged by the mobile app developers (i.e., full control

over the backend).

• Third-Party (B3rd) refers to backends that are fully

managed by third-parties (i.e., no control over the

backend).

• Hybrid (Bhyb) refers to backends that are co-managed

by third-parties and developers such as cloud infras-

tructure (i.e., some control over the mobile backend).

• Unknown (Bukn) refers to backends that ownership

could not be established with high confidence.

In our model, there are two primary stakeholders, the app

developers (D) and the cloud service providers (SP). There

are additional stakeholders, like app users and internet ser-

vice providers (ISP), but they do not have direct remediation

oversight. We define a mapping between backends layers,

labels, and ownership, shown in Table 2.

The final piece of the model is the mitigation compo-

nent that maps vulnerable backends to the proper mitigation

strategies. There are five mitigation strategies for developers:

• Upgrade (u) the software to vendor supported versions.

• Patch (p) vulnerable software with a vendor patch.

USENIX Association 28th USENIX Security Symposium 553

Label HW OS SS AS CS

First-Party (B1st) # # # # #

Third-Party (B3rd)

Hybrid (Bhyb) H# H# # #

Table 2: Backend labels (first-party - B1st , third-party

B3rd , and hybrid - Bhyb) and cloud layers (hardware - HW ,

operating system - OS, software services - SS, application

software - AS, and communication services - CS) mapping

to stakeholders (developers - #, service providers - , and

shared - H#)

• Block (b) incoming internet traffic to exposed services.

• Report (r) the vulnerability to the responsible party.

• Migrate (m) the backend to secure infrastructure.

In many cases, the developer may not have control or

authority to fix the issues but still has the option to report it

(r) or change service provider (m).

3.2 Counting Vulnerabilities

This work considers vulnerabilities which are software bugs

that exist in the backend software stack, including the oper-

ating system (OS), services (SS), application (AS), and com-

munication (CS). We consider N-Day vulnerabilities to be

those vulnerabilities which have an associated common vul-

nerabilities and exposure (CVE) number assigned by the na-

tional institute of standards and technology (NIST) and in-

dexed in the national vulnerability database (NVD) [13]. In

our findings, we count N-Day vulnerabilities by class and

instance, where class refers to the CVE number of a partic-

ular vulnerability and an instance refers to the vulnerabil-

ity affecting a specific interface or software component on

a mobile backend. For example, Apache Struts vulnerabil-

ity CVE-2017-5638 that affects Apache Struts 2.3.x before

2.3.32 and 2.5.x before 2.5.10.1 is counted as a single vul-

nerability (class), but it can affect multiple backends that run

different versions of Apache Struts (instances).

Some software versions are affected by multiple CVEs, in

this case, we do not count every CVE as an instance. We

generally assume patching the latest CVE should address all

previous unpatched CVEs. We only consider the latest CVE

affecting the vulnerable software and count it once. Further,

a vulnerability instance is a tuple of the backend’s domain

name, IP address, and the vulnerable software version. As

for 0-Day vulnerabilities, they are associated with the soft-

ware application (AS) running on the backend. This work

looks at three classes of 0-Day vulnerabilities, SQLi, XSS,

and XXE and counts each instance per API interface end-

point on the mobile backend. The defined model, labels,

mitigations, mappings, and vulnerabilities are the basis for

our methodology, which we describe next.

4 Methodology

In this section, we provide an overview of our assessment

and details about implementing SkyWalker. Figure 1 is an

overview of SkyWalker’s internal components. We divide

the implementation into four phases, namely binary analy-

sis, labeling, fingerprinting, and vulnerability analysis. Each

phase provides input to the next phase, starting from an input

app APK to the final vulnerability/mitigation report.

4.1 Binary Analysis

SkyWalker leverages our prior work, Smartgen [19], to per-

form the binary analysis and extract query messages from

an APK binary. SkyWalker dynamically executes the code

paths to the network functions and extracts the native usage

of the backend APIs. The native usage of an API includes

the URI path and their parameter types/values.

4.2 Backend Labels

Backend labeling assigns one of the four labels defined in our

model. The labels are used to map the responsible parties

and the mitigation strategies needed (excluding unknown),

shown in Table 2. Moreover, the labels are used to iden-

tify where the most common issues are found. To perform

the labeling, we curate three unique lists using the ipcat [20]

datacenter dataset. The first list is called CP and contains

cloud providers, content delivery networks (CDNs), and mo-

bile platform cloud services. The second list, Colo, contains

a list of collocation centers. The third list is a list of SDK

libraries that we extracted using LibScout [21] (Table 3),

which help SkyWalker identify third-party backends. OS-

SPolice [22] provides a more comprehensive list, including

native libraries used by the mobile app, but our binary analy-

sis technique only instruments Java code, therefore, we limit

the third-party SDK identification to LibScout.

To perform the labeling we generate a tuple for each

extracted backend B that contains the effective-second level

domain d, IP address ip, a boolean flag lib indicating if

the backend belongs to an SDK library, and the developer

or vendor name v. We define a function owner() that

parses WHOIS, MaxMind [23], and ASN records to extract

ownership information. The owner() function uses text

tokenization, normalization, and aliasing to consolidate

varying records.

SkyWalker uses Algorithm 1 to assign labels to each back-

end. Algorithm 1 takes as input a list of backends, β , con-

taining tuples B = {d, ip, lib,v} and returns a list of labeled

backends β ′. The algorithm uses the CP and Colo list to

check membership for the domains and IPs to determine the

appropriate label. The first check is to determine the origin

of the backend (was it extracted from an SDK library?) then

554 28th USENIX Security Symposium USENIX Association

a RST packet. TCP ping scans are more reliable in detecting

the availability of the remote server (backend) because they

are not filtered by firewalls like ICMP scans.

Once SkyWalker establishes the host is reachable, Sky-

Walker conducts a TCP SYN scan (SYN-SYN/ACK-RST)

across all ports. This process identifies candidate ports on

the target backend that will be used for a more thorough scan

(TCP connect). To be efficient, SkyWalker uses the list of

ports identified in the TCP SYN scan to conduct a TCP con-

nect scan (SYN-SYN/ACK-ACK) i.e., establish a complete

connection. Based on the port/service identified, SkyWalker

interactively grabs the banner, the header response, and any

available configuration. The retrieved information varies per

service type, for example, HTTP will have header informa-

tion unlike SSH, nonetheless, both help fingerprint the host.

Moreover, SkyWalker looks for TLS/SSL connections on all

candidate ports because many services like HTTP and IMAP

can run over TLS/SSL. Finally, to obtain the backend IP ad-

dress fronted by CDNs, SkyWalker looks up the IP address

in a manually curated CDN list and uses passive DNS to find

historical records that existed just before the current records.

When SkyWalker cannot locate such record, the backend is

excluded from fingerprinting.

Once SkyWalker discovers all the services running on a

backend, SkyWalker uses the result to fingerprint the back-

end. The fingerprint identifies the OS, SS, and CS type

(Linux, Windows; PHP, .NET, Python, Perl; FTP, SFTP,

HTTP, HTTPS, SSH, IMAP, etc.), version, and configura-

tion information if available. The fingerprinting uses open

source and commercial Nessus Attack Scripting Language

(NASL) scripts to identify the different layers of software

on the backend. For example, to identify the OS, the NASL

script inspects the banner string, analyzes the SSL certificate,

checks additional running services (SMB, RDP, SSH), per-

forms structured ICMP pings, inspects HTTP headers, and

uses TCP/IP fingerprinting algorithms [24]. Based on these

signals a confidence score is provided based on matching a

set of pre-profiled OSes. For example, if 90% of the signals

match a Windows Server 2008 R2 Service Pack 1 profile, we

consider the OS layer for that backend in the vulnerability

analysis. Any confidence level below 90% or ambiguity be-

tween the same OS but different versions will not be consid-

ered for the vulnerability analysis phase.

Web Applications. Web apps (AS) are generally tailored

per mobile app, unlike OS, SS, and CS layers. The binary

phase performs in-context analysis for each API interface on

the backend, which provides API information used for fin-

gerprinting. We reference the OWASP’s top 10 vulnerability

issues [14] that can be passively tested within the ethical and

legal bounds discussed in Section 8. Specifically, SkyWalker

uses side-channel SQLi through time delay, reflective XSS,

and XXE callback to identify candidate issues in web apps.

It is important to note that other vulnerabilities such as au-

thentication bypass, broken access control, and sensitive data

exposure present a high risk that can violate legal obliga-

tions. Adding a module to SkyWalker to support additional

vulnerabilities is trivial and can be easily implemented.

For each backend interface, a number of parameters

(p) are associated with each request. SkyWalker tests

each interface p times to check every parameter for SQLi

and XSS. The XXE check is performed on all interfaces

because some AS can accept JSON or XML requests. As

mentioned earlier, the scan is slow and randomly done to

avoid congestion and degradation of service on production

backends. SkyWalker creates two queues, a job queue and

a processing queue. SkyWalker generates p requests for a

given backend interface and stores them in the job queue.

The job queue contains all backend requests, which are

shuffled and loaded into the processing queue in batches

(128 requests per batch). Batches that contain requests with

the same domain or IP address are removed and replaced by

non-overlapping domains and IP address requests. There are

32 workers that ingest from the processing queue and store

the results for vulnerability analysis.

4.4 Vulnerability Analysis

The vulnerability analysis is two parts, N-day analysis, and

0-day analysis. For the N-day analysis, SkyWalker correlates

CVE entries with results from the fingerprinting to identify

possible issues. The confidence level of the fingerprint re-

sults is also used to verify each vulnerability. SkyWalker

uses NASL scripts that take the output of the service dis-

covery, OS identification, SS identification, and CS identifi-

cation as input and match them against known vulnerabili-

ties (CVEs). The NASL results are considered if they have

90% confidence level or higher for OS detection, which pro-

vides high accuracy for vulnerability matching. Note, that

the confidence level is calculated based on pre-profiled OSes

by matching the fingerprint signals (collected from all lay-

ers) to the profile signals.

We manually verified all 983 N-days and found them to

be all true positives. The zero false positive results are due

to the Nessus configuration, which allows us to tune how

the scans are done and how they should be reported. For

example, we configure Nessus to perform the scan types

described above, consider OS type and version detection of

90% or higher and consider SS that have banner information

with version numbers. On the other hand, when we used

UDP scanning techniques and consider generic service

banner information we find over 6,500 candidate N-day

instances with a large false positive rate. In theory, the back-

end can be configured to lie about the banner information,

which would make it hard for us to verify.

For the 0-day analysis, SkyWalker carefully triggers the

candidate vulnerability to verify the findings. For each vul-

nerable parameter, SkyWalker generates a pair of request

messages, the original message and the vulnerable message.

556 28th USENIX Security Symposium USENIX Association

For SQLi, SkyWalker baselines the original request message

several times throughout the week and at different times of

the day. Then SkyWalker performs the same measurement

on the vulnerable message in the same week but in non-

overlapping time intervals by triggering the vulnerable pa-

rameter through an SQLi sleep injection. SkyWalker calcu-

lates the response time deviation based on the sleep param-

eter passed in the SQL statement and the average response

time of the message pairs. If the deviation is equal to the

time delay parameter in the SQL statement, SkyWalker con-

cludes that the interface and parameter pair is vulnerable.

Similarly for XSS, SkyWalker triggers the vulnerable pa-

rameter and includes JavaScript code to creates a new div

element with a unique name attribute. SkyWalker checks

the returned content by parsing the document object model

(DOM) to find the div element containing the unique name

attribute. If the div element with the set name attribute ex-

ists SkyWalker concludes that the interface and parameter

are vulnerable. Note that SkyWalker matches the returned

content with parameters sent to ensure that the XSS candi-

date vulnerability is of type 2 (reflected). For XXE, Sky-

Walker generates a request message that contains an HTTP

callback request to a server we operate. The request mes-

sage is passed to the backend, which will parse the specially

crafted XML document. If the parser is vulnerable to XXE,

SkyWalker will log an HTTP request from the backend un-

der analysis, which indicates the interface is vulnerable. In

addition, we manually reviewed the request/return pairs for

all 655 0-day instances and found no false positives.

4.5 Open Access for Developers

One of our primary goals for this work is to empower app

developers with open access to SkyWalker via a free-to-use

web-service. The service currently supports Android mobile

apps but can be extended to support other mobile platforms,

e.g., Apple iOS. The web-interface takes as input a link to an

Android app in the Google Play store or a direct APK upload.

SkyWalker then performs binary analysis to extract the back-

ends, label them based on our curated dataset, fingerprint

them, and identify vulnerabilities that affect them. In addi-

tion to the analysis, the output report provides guidelines on

how to mitigate the identified issues using the strategies dis-

cussed earlier (upgrade, patch, block, report, and migrate).

SkyWalker summarizes vulnerability findings across all

observed SDK and Java library backends, which developers

can turn to proactively to make an informed decision when

choosing third-party libraries to include in their future

apps. It is important to note that attackers can abuse this

system to attack mobile app backends. Therefore we

require the developers to disclose their affiliation with the

target app before the analysis results are provided. Once

a user is manually vetted, they can only submit apps that

they develop. We do not consider third-party SDKs in

this process. The SkyWalker service can be found at:

https://MobileBackend.vet.

5 Assessment Findings

5.1 Experiment Setup

Environmnet. We use a local workstation running Ubuntu

14.04 with 24GB memory and 16 x 2.393GHz Intel Xeon

CPUs and four Nexus phones to run and instrument the mo-

bile apps. We use an Amazon Web Service (AWS) Elastic

Compute (EC2) instance with a reserved IP address to con-

duct the fingerprinting and run a web server with informa-

tion about our study along with an email address for backend

hosts to contact us if they want to opt-out.

Tools and Data Sets. For the binary analysis tool im-

plementation, we relied on Soot [25], FlowDroid [26],

Z3-str [27], and Xposed [28] with custom code written in

Java (7,000 lines of code) and Python (900 lines of code).

For our backend labeling implementation, we relied on Team

Cymru IP-to-ASN [29], MaxMind Geolocation [23], Alexa

ranking [30], ipcat list [20], and Domaintools WHOIS [31]

with custom code written in Python (480 lines of code).

For fingerprinting, we relied on the Nessus scanner and

commercial plugins [32], sqlmap [33], and Acunetix [34].

We used Nessus plugins and custom Python code (1010 lines

of code) to perform the vulnerability analysis. For internet

measurements, we utilized honeypot scanning activity from

Greynoise [35].

5.2 Software Vulnerability Details

Table 4 shows the distribution of 0-day and N-day instances

across the software layers. We categorize the apps using the

Google Play store groups and present the number of vulnera-

bilities and backend labels. Overall, we analyzed 4,980 apps

with cloud-based backends and successfully extracted back-

ends for 4,740 mobile apps. The remaining 240 mobile apps

crashed and did not complete the full binary analysis.

Interestingly, the OS component reports the least vulner-

abilities, while the AS component reports the most vulnera-

bilities, across all mobile app categories. Recall from Sec-

tion 3.2, vulnerabilities affecting AS components are all con-

sidered 0-day. The OS, SS, and SC components account for

N-day vulnerabilities. Although the number of apps is not

uniform across the categories, we use the raw vulnerability

count for ranking. For 0-day vulnerabilities, the top three

mobile app categories are tools, entertainment, and games.

For N-day vulnerabilities, the top three mobile app categories

are entertainment, tools, and games.

Ownership. Table 4 presents the labels for the backends

used by mobile apps. The most common label is hybrid,

where 3,336 backends use hybrid infrastructure. The second

USENIX Association 28th USENIX Security Symposium 557

Category # Mob. Apps
Vulnerabilties Labels

OS # SS # AS # CS Total # B1st # B3rd # Bhyb # Bukn Total

Books & Reference 332 15 49 55 71 190 365 653 501 354 1,873

Business 145 5 22 10 37 74 93 258 150 113 614

Entertainment 1,177 36 108 158 170 472 746 913 942 783 3,384

Games 1,283 34 81 147 106 368 290 804 651 444 2,189

Lifestyle 363 20 50 79 72 221 262 665 311 237 1,475

Misc 199 6 21 45 46 118 76 422 163 105 766

Tools 792 19 84 184 115 402 729 796 812 464 2,801

Video & Audio 689 24 46 89 98 257 267 648 434 357 1,706

Total 4,980 121 356 655 506 1,638 2,492 1,089 3,336 2,506 9,423

Table 4: An overview of the vulnerable mobile apps per genre along with the raw counts of vulnerabilities and labels.

Party
Vulnerable Component

OS SS AS CS Total

B1st 37 87 155 211 490

B3rd 6 21 200 42 269

Bhyb 47 150 154 184 535

Bukn 55 135 146 173 509

Table 5: Count of apps affected by vulnerabilities per cloud

layer and their corresponding labels.

Comp. Vulnerability (Top 3) #Apps

OS

Expired Lifecycle for Linux OS (various) 124

Windows Server RCE (MS15-034) 64

Expired Lifecycle for Windows Server 9

SS

Vulnerable PHP Version 357

Expired Lifecycle for Web Server (various) 181

Vulnerable Apache Version 76

AS

XSS (various) 262

SQLi (various) 160

XXE (various) 86

CS

Support for Vulnerable SSL Version 2 and 3 997

OpenSSH Bypass (CVE-2015-5600) 16

Vulnerable OpenSSL (various) 15

Table 6: The top three vulnerabilities found per cloud layer

along with the number of affected mobile apps.

largest is first-party with 2,492 backends followed by third-

party with 1,089 backends. There are 2,506 backends that

we were not able to label due to ambiguities, but we labeled

approximately 73% of all backends we encountered.

More important is providing remediation guidance to the

responsible party. Table 5 shows the mapping between the

backend labels and the vulnerable apps. We cannot say much

about the Unknown category since the vulnerabilities may

belong to either first-party or hybrid categories. We observe

that for first-party backends, the highest number of vulnera-

ble apps are found in AS and CS components with 155 and

211 instances, respectively. Similarly, the hybrid backends

have 154 0-day vulnerability instances and 184 N-day in-

stances. In general, we observe that the components that app

developers are responsible for (AS and CS in the B1st and

Bhyb) have more vulnerabilities.

Operating System (OS). The OS component issues can

be summarized into two categories: legacy unsupported OS

or unpatched OS. The difference is that the legacy OS are

no longer supported by the vendor, hence vulnerabilities will

not be addressed. We see from Table 6 that both Linux (vari-

ous flavors) and Windows backends use expired lifecycle ver-

sions and 133 apps use these backends. The second most

common issue is the Windows Server vulnerability MS15-

034 affecting 64 apps, which have patches by the vendor.

Overall, the top three OS vulnerabilities listed in Table 6 af-

fect 197 mobile apps.

We found the MS15-034 vulnerability affecting hybrid

backends (Bhyb) that run on Amazon AWS, Akamai, OVH, Go

Daddy, Digital Ocean, and other smaller hosting providers.

Further, some of the backends appear on CDN networks, like

Akamai, Fastly, and CloudFlare, that offer “EdgeComput-

ing” services [36] which provide web app accelerator ser-

vices. This insight shows that some developers who deploy

vanilla versions of Windows Server OS are not maintaining

them. In Table 5 the first-party OS component has 37 vulner-

able backends, which is much higher than third-party back-

ends (6). App developers who run and maintain their own

backends (B1st) have to be mindful of these bugs, which in

some cases require provisioning new backends with newer

OSes causing incompatibilities with existing services (SS)

and applications (AS). SkyWalker can inform the developer

of these issues and report mitigation strategies.

Software Services (SS). SkyWalker identified multiple vul-

nerabilities affecting a range of PHP versions, which can be

used to cause denial of service (CVE-2017-6004), disclose

memory content (CVE-2017-7890), disclose sensitive infor-

mation (CVE-2016-1903), and execute arbitrary code (CVE-

2017-11145). Backends of 357 mobile apps affected by PHP

vulnerabilities, significantly higher than the other two vul-

nerabilities. Further, even though some mobile app back-

ends had no 0-day vulnerabilities, an attacker can still craft

special requests to trigger deep bugs within the interpreter to

compromise the backend. Although this might be a difficult

task, recent advancement in vulnerability fuzzing [37] can

uncover these deep bugs.

558 28th USENIX Security Symposium USENIX Association

The second most common SS vulnerability was unsup-

ported versions of Apache web server (1.3.x and 2.0.x),

Tomcat server (8.0.x), and Microsoft IIS web server (5.0).

Similar to unsupported OS, web server vendors will not is-

sue security patches for unsupported software, which affects

backends of 181 mobile apps. For Apache web server ver-

sions less than 2.2.15, they are affected by several denial of

service bugs (CVE-2010-0408, CVE-2010-0434) and TLS

injection bug (CVE-2009-3555) affecting 76 mobile apps.

Additionally, Apache servers that use Apache Struts ver-

sions 2.3.5 - 2.3.31 or 2.5.10.1 and lower are vulnerable

to CVE-2017-5638, which allows remote code execution.

The same Apache Struts vulnerability was reportedly used

against Equifax’s hack [38]. In total, the top three SS vulner-

abilities affect 614 mobile apps.

Applications (AS). Table 7 has a breakdown of the number

of mobile apps, their number of install categories, and the

instances of 0-day bugs affecting them. Although XSS is the

largest category with 503 instances followed by SQLi (215)

and XXE (46), we note that not all of the bugs have the same

impact and some affect the same backend. For instance, an

SQLi can be limited to an isolated instance of the app (e.g.,

a container), which would limit the attack to disclosing in-

formation from the application database or modifying preex-

isting records. Moreover, XSS vulnerabilities often have less

impact than SQLi and XXE.

XXE vulnerabilities affect web apps that use XML for

their API communication. The fundamental flaw that en-

ables XXE vulnerabilities to exist is a faulty implementation

of the XML parser. Based on our measurement, we found

1 XXE instance in the top 100M, 5 in the top 50M, 15 in

the top 10M, 9 in the top 5M, and 17 in the top 1M. Table 7

shows the concentration of vulnerabilities found in lower

ranking apps. For example: 1 XXE and 3 XSS vulnerabil-

ities in the top 132 mobile apps; 4 SQLi, 10 XSS, and 5

XXE vulnerabilities in the next 131 mobile apps (though

still representing over 50M+ installs each). However, AS

vulnerabilities are not confined to lower ranking apps but do

affect higher ranking apps.

Installs # Apps # SQLi # XSS # XXE

1B 5 0 0 0

500M 11 0 0 0

100M 116 0 3 1

50M 131 4 10 5

10M 1,049 25 85 15

5M 1,047 54 89 9

1M 2,621 132 316 17

Table 7: The number of 0-day vulnerabilities found per in-

stall category.

Table 8 shows the AS layer implementation language and

associated vulnerabilities. AS implemented in PHP have the

most 0-days instances (284) affecting 108 different back-

Language # Backends # 0-Days

PHP 108 284

ASP.NET 13 33

PERL 4 9

JS 4 8

JSP 2 5

Unknown 72 316

Table 8: The number of identified languages associated with

0-day vulnerable backends.

ends, followed by ASP.NET with 33 0-day instances affect-

ing 13 different backends. We note that this trend does

not mean causation. PHP is the most popular language

used for web application development [39], hence it is ex-

pected to represent more vulnerabilities by being more pop-

ular. Furthermore, we found 9 0-day instances in PERL, 8 in

JavaScript (NodeJS), 5 in JSP, and the rest of the 316 could

not be determined.

Communication (CS). All mobile apps rely on the

HTTP/HTTPS protocol for communication with their back-

ends. The binary analysis phase extracted a total of 17,725

request messages from the 4,740 mobile apps. The request

messages are split into HTTP (8,118) request messages and

HTTPS (9,607) request messages. There are 446 mobile

apps that only use HTTP communication and another set of

147 mobile apps that only use HTTPS communication. The

remaining set of 4,147 apps mix between HTTP and HTTPS

communication.

Despite using HTTPS, over 20% of the backends (1,012)

have issues with TLS/SSL configuration (e.g., insecure ses-

sion renegotiation and resumption) or unpatched software

versions (e.g., SSL version 2 and 3). These flaws can be ex-

ploited by an attacker to carry out a MITM attack by down-

grading the protocol negotiation using the POODLE [40] at-

tack. Additionally, the OpenSSH Bypass vulnerability ex-

poses the backend to compromise via SSH credential guess-

ing or secret key leak. The mobile apps using these vulnera-

ble backends do not use the SSH service and to remediate one

can turn off, patch, or block the incoming internet traffic to it.

Those backends which only use HTTP expose users to

eavesdropping and MITM attacks because it does not of-

fer integrity or confidentiality. We manually inspected the

request messages sent from 3,253 apps that use HTTP and

found personally identifiable information (PII) such as name,

gender, birth year, user ID, password, username, and country.

Additionally, we found device information like MAC, IMEI,

SDK version, make/model, SSID, Wifi signal, cell signal,

screen resolution, carrier, root access, IP Address, and co-

ordinate location. Combining this information, a network

attacker can identify individuals and attribute behavior pro-

files to them. Furthermore, 6 apps we investigated perform a

password reset over HTTP. Interestingly, the Apple iOS App

Store enforces strict use of HTTPS through their App Trans-

USENIX Association 28th USENIX Security Symposium 559

For smaller third-party and first-party developers, they did

not have a formal way to contact them to report vulnerabil-

ities. We followed a tiered approach in our notification by

first notifying the app developer directly using the contact

information in the Play Store. Our second attempt to report

the vulnerability is by contacting the domain owner using the

WHOIS information and following the mitigation strategy.

Our third attempt to report the vulnerability is by contacting

Google directly through their issue tracker portal. For parties

that did not confirm or respond to our multiple attempts, we

reported the vulnerabilities to US-CERT [47].

Component # IP Scanners

Operating System (OS) 341,521

Services (SS) 445,908

Application (AS) 206,533

Table 9: Number of IPs observed scanning the internet for

vulnerabilities reported by Greynoise.io [35] over a period

of a year (Sept 2017 to Sept 2018).

The N-day vulnerabilities we found are discoverable

and easy to exploit due to the availability of fast internet

scanners like ZMap [48] and MASSCAN [49]. We argue

that it is a matter of time until these vulnerabilities are found

and exploited. Table 9 shows the number of active scans

detected on the internet through Greynoise [35] honeypots

over a period of one year (Sept 2017 to Sept 2018). There

are 341,521 unique IPs scanning for OS related vulnerabil-

ities, 445,908 unique IPs scanning for SS vulnerabilities,

and 206,533 unique IPs scanning for AS vulnerabilities.

Many of these scans target N-day vulnerabilities, while

scans for 0-day vulnerabilities cannot be accounted for.

Nonetheless, past events demonstrate that attackers are

prone to scan for and exploit 0-day vulnerable web apps like

Wordpress [50], Drupel [51], and PHPMyAdmin [52] when

publicly disclosed. Furthermore, a recent report [53] also

pointed out that the number of vulnerabilities in web apps

increased in 2018 and that support for PHP version 5.x and

7.x will end in 2019, which means we can anticipate more

unpatched and exposed backends in the future.

6 Case Studies

6.1 Case Study 1: Vulnerable Web App

The mobile app “Dailyhunt” has more than 50M+ installs

and is part of the “Books & Reference” category. The mo-

bile app interacts with nine different backends as shown in

Table 10. The backends are split into two labels, hybrid and

third-party. The hybrid backends are hosted on Akamai’s

EdgeComputing [36] and run a custom web app to serve

the mobile app. The hybrid backends are used for CDN,

telemetry, and requesting app-specific data. Specifically, the

Label Backend Use
Vulns.

AS CS

Bhyb

api-news.dailyhunt.in App Data 0 1

acq-news.dailyhunt.in
App Data &

Telemetry
2 1

bcdn.newshunt.com CDN 0 1

acdn.newshunt.com CDN 0 1

B3rd

fonts.gstatic.com CDN 0 0

e.crashlytics.com Telemetry 0 0

settings.crashlytics.com Telemetry 0 0

t.appsflyer.com Ads 0 0

api.appsflyer.com Ads 0 0

Table 10: A list of backends and issues found for the mobile

app Dailyhunt.

api-news.* domain registers the device and requests content,

where the acq-news.* backend captures user behavior and

offers promotion and the actual content is delivered by the

two CDN domains acdn.* and bcdn.*.

We were not able to fingerprint the OS and the SS be-

cause the Akamai servers respond only to web app spe-

cific responses, i.e., minimal header and banner informa-

tion. Nonetheless, we found two 0-day vulnerabilities in the

acq-news.* backend on the same API interface. Since this

web application is specific to this mobile app, we looked for

other apps published by the same developer. We found that

the eBooks by Dailyhunt app (which has over 500K installs

but does not rank in the top 5,000 apps) also uses the same

vulnerable API interface. Additionally, the mobile apps use

HTTP to communicate with the hybrid backends and HTTPS

to communicate with third-party services.

As for the third-party services, we did not find any vul-

nerabilities. The third-party backends serve requests on port

443 (HTTPS). The appsflyer.com backend is a service for

ad analytics that provides different functions using the same

interface. The t.appsflyer.com backend is a telemetry end-

point for the ad network and the api.appsflyer.com backend

authenticates and associates the app with its profile.

Takeaway. This case highlights several challenges to secur-

ing mobile app backends. First, backends are heterogeneous

and differ across their software stack, topology setup, config-

uration, and custom application. Second, outsourcing cloud

management and provisioning (e.g., to cloud providers and

CDNs) benefits security but comes with a lack of visibility,

limited per-app customization, and unclear incident liability.

Third, vulnerabilities can exist (and be scanned for) in any

software layer of the cloud and API interface on the web

app, which makes them challenging to identify and fix. Un-

fortunately, app developers do not have the resources, time,

or personnel to fulfill this task. Using SkyWalker, we aim to

provide guidance to where the most pressing issues exist and

map them to responsible parties as shown in Table 2.

USENIX Association 28th USENIX Security Symposium 561

App Name # Reviews # Installs

com.icegame.fruitlink 332,907 50M+

com.unbrained.wifipasswordgenerator 151,518 10M+

com.magdalm.wifimasterpassword 148,355 10M+

com.unbrained.wifipassgen.app 43,824 1M+

com.magdalm.freewifipassword 35,552 1M+

apps.ignisamerica.gamebooster 23,725 500K+

com.icegame.crazyfruit 23,631 1M+

com.magdalm.wifipasswordpro 22,113 1M+

apps.ignisamerica.bluelight 16,659 500K+

com.icegame.fruitsplash2 15,193 1M+

Table 11: A list of the top 10 mobile apps using the appnext

platform.

Label Backend Usage
Vulns.

OS AS CS

B3rd

admin.appnext.com App Data 0 1 0

global.appnext.com App Data 0 0 0

cdn.appnext.com CDN 1 0 1

cdn3.appnext.com CDN 1 0 1

Table 12: List of backends and vulnerable layers found in

the appnext platform.

6.2 Case Study 2: Vulnerable Platform

The appnext [54] platform integrates with mobile apps to in-

gest user behavior telemetry and provide predictive actions

that users might perform. Developers use this to upsell sub-

scription, ads, or recommend actions to app users. The app-

next platform is used by 6 mobile apps from the top 5,000

free apps. We analyzed all apps by the same developers that

are not in the top 5,000 and found 140 additional apps using

the appnext platform. The top 10 most reviewed apps using

the appnext platform can be found in Table 11. The top app

has 332,907 reviews and over 50M+ installs. These numbers

give us an indication of the the platform’s significant popu-

larity and daily use.

The appnext platform backends (shown in Table 12) are

labelled as third-party, because the backends are found in an

SDK library. We found two CDN domains that point to the

same server IP, which are hosted on Limelight Networks, a

CDN provider. This CDN backend is vulnerable to an OS

integer overflow in the HTTP protocol stack (MS15-034)

that can be remotely exploited. Further, the CS still offers

SSLv2 and SSLv3, which are vulnerable to insecure padding

scheme for CBC cipher. appnext’s admin.* and global.* do-

mains run on Amazon AWS and provide app-specific data,

like authentication, telemetry ingestion, predictive actions,

and configuration. The infrastructures run Microsoft Win-

dows Server 2008 R2 for the OS, Microsoft-IIS/7.5 for its

web server (SS), and the CS uses HTTPS. The application

(AS) backend is a custom web application that is written in

ASP and uses the ASP.NET framework. The AS has a vulner-

ability that allows an attacker to run arbitrary SQL queries.

We have notified the developers about these findings and

awaiting remediation.

Takeaway. This case highlights multiple vulnerabilities,

0-day and N-day, that affect three of the four software

layers. This mobile platform collects sensitive information

about user behavior, including PII and device information.

Unfortunately, these backend vulnerabilities are inherited by

multiple apps and developers, and the app developers cannot

immediately remediate the vulnerabilities in third-party

services. The mitigation strategy for the app developer is

to report (r) these findings to appnext or migrate (m) their

app to a different service. SkyWalker helps us label the

backends, identify the vulnerability, and guide the developer

to a clear action (report or migrate).

7 Mitigation

The goal of our empirical analysis was to bring attention

to this overlooked problem in mobile backends, but also to

provide guidance to app developers for building or choosing

secure backends. In this section, we discuss the general

mitigation strategies which SkyWalker recommends for app

developers and to help improve the security posture of their

app backends.

7.1 Remediation Strategies

App developers who rely on first-party backends have to up-

grade, patch, and block as needed for each software layer

on their backend. If they rely on third-party backends they

can report the issue or migrate their backend to a more se-

cure provider. Ambiguity arises when the backend is hosted

by a cloud provider, a hybrid type backend. To resolve these

issues we further generalize the hybrid backends into IaaS

(cloud provider manages the virtual HW) and PaaS (cloud

provider manages HW , OS, and SS).

Hybrid

Strategies HW OS SS AS CS

Upgrade 4 4 44

Patch 4 4 44 44

Block 4 4

Report 44 4 4

Migrate 44 4 4

Table 13: A mapping of mitigation strategies for developers

hosting their hybrid backend on infrastructure (IaaS) or a

platform (PaaS).

Table 13 provides developers with a guideline on how to

mitigate vulnerable hybrid backends. For example: if the

hybrid backend is using a cloud provider’s platform offer-

ing, developers should report and/or migrate their backend

if the vulnerabilities are found in HW , OS, SS and upgrade

or patch if the vulnerabilities CS or AS related, respectively.

562 28th USENIX Security Symposium USENIX Association

This matrix provides a starting point for app developers to

explore their options, i.e., migrate or wait for a fix. In some

cases, the offering from cloud providers includes HW and

OS (as in the motivating example which uses Google Com-

pute Engine Flexible Environment). In this case, developers

have to make sure they use the latest OS images supported

by their cloud provider.

7.2 Recommendations

The empirical analysis provides insight not only about inse-

cure mobile backends, but also secure practices that devel-

opers can learn from. For developers who decide to build

their own first-party backends, we recommend the follow-

ing: First, developers should delegate as much of the back-

end functionality to reputable third-party backends and min-

imize the number of features and functions their backend

needs to support. Second, developers should dedicate per-

sonnel to manage and maintain their backends including the

routine maintenance of OS, SS and CS, and timely fixes of

known vulnerabilities affecting their cloud backends and mo-

bile apps using patching tools [55]–[57]. Third, developers

should develop an audit plan and a mitigation plan and be

familiar with it to execute during an incident or vulnera-

bility disclosure. Finally, developers should utilize defense

tools like web app firewalls (WAF), DDoS mitigation, and

crawler/scanner blockers to protect from internet scanners,

DDoS threats, and web app attacks (SQLi, authentication by-

pass, etc.). We identified over 730 backends using defense

services, all of which had smaller footprints when finger-

printed and no vulnerabilities were detected.

8 Measurement Considerations

Ethical. Because our work does not require or implicate hu-

man subjects, no IRB approval was required by our institute.

Our study identified a large number of 0-day and N-day vul-

nerabilities in active mobile app backends through scanning

and probing. Our techniques include service scans, banner

grabs, and side-channel probes. We emphasize that no ac-

tive exploitation, disruption, or sensitive data access was at-

tempted against the mobile backends. Although there are no

set guidelines for vulnerability measurements in the commu-

nity, several previous works (e.g., [48], [58]–[60]) have set

some precedent. Our measurements followed the best prac-

tices used in previous work using the following approach:

• Good Internet Citizenship: Similar to the work of Li

et al. [58], we provided an opt-out page for our scanner

IP that gives targets an option to be removed from the

study. Further, we signal our benign intention by setting

the user-agent string in the scans and provide a reverse

DNS record for our IP to give targets additional infor-

mation about our study. We were contacted by one app

developer and requested that we remove their backends

and related infrastructure from our study.

• Non-Exploit Payloads: Similar to the work of Du-

rumeric et al. [59], our scanning and measurement tech-

niques did not include any active exploits against the

mobile app backends. We used side-channel measure-

ments with time delay probes to infer vulnerabilities.

The requests were carefully crafted to ensure that vul-

nerabilities are triggered for verification and not persis-

tent or full system exploitation. Further, our scanning

approach was throttled to ensure the availability of the

backend is not affected by the additional load.

• Responsible Disclosure: Lastly, we notified affected

mobile app developers and third-party mobile service

providers through the appropriate channels. For devel-

opers and third-party service providers who did not re-

spond to our communication, we reported the vulnera-

bilities through the US-CERT [47].

Legal. Similar to Ristenpart et al. [60], we operate within

the legal bounds in conducting this study. In the US, the

Computer Fraud and Abuse Act (CFAA) is the governing law

that pertains to use and access of computer systems. The law

states, in brief, that access to any computer system must be

authorized, but does so in broad terms. The decision from the

case of Moulton v VC3 (2000) sets a precedent that service

discovery scanning does not cause damages or direct harm to

target systems. Additionally, we assume any internet-facing

service gives implicit permission to access the target com-

puter system, in particular, we refer to how web crawlers

and internet indexing services operate. As we outlined in

our ethical section earlier, we provide subjects the option

to opt-out, perform non-malicious measurement probes, and

use responsible disclosure to notify affected parties.

9 Related Work

Cloud Security. Cloud security has been surveyed exten-

sively [61]–[65]. Xiao et al. [9] performed a comprehensive

analysis of the security issues in cloud services by surveying

high-level provider and tenant issues for the cloud-based ser-

vices in general. Singh et al. [66] presented a survey to iden-

tify common issues reported in third-party cloud services

and summarize the work from the architecture framework,

service and deployment, and cloud technologies perspective.

Our work looks at “in-the-wild” deployment of cloud

services from the OS, SS, AS, and CS perspectives to empiri-

cally study and uncover common issues in mobile backends.

Measurement Studies. Durumeric et al. [67] conducted a

comprehensive internet-wide study of the HTTPS certificate

ecosystem. Later, Durumeric et al. [59] carried out a simi-

lar internet-wide study for the Heartbleed vulnerability [68].

USENIX Association 28th USENIX Security Symposium 563

Perez-Botero et al. [69] presented an in-depth study charac-

terizing hypervisor vulnerabilities in cloud services. Zuo et

al. [19] proposed a system to identify mobile app URLs and

examine their reputation with public blacklists to detect ma-

licious apps. Our work differs from prior work by studying

a range of vulnerabilities which may affect mobile app back-

ends on the internet.

Empirical Backend Analysis. Zuo et al. [12] performed

an assessment of mobile app backend services by investigat-

ing the cloud offerings of Google, Amazon, and Microsoft.

Our work provides a wider analysis by going beyond just

the third-party service backends and by examining a diverse

set of cloud-based backends. Fernandes et al. [70] analyzed

the top apps found in the Samsung SmartThings platform to

identify permission issues. We follow a similar approach but

focus on the mobile app integration with cloud services in-

stead of IoT apps and cloud services. Alrawi et al. [71] pre-

sented a systematization security assessment of home-based

IoT devices and their companion cloud and mobile apps. Our

work encompasses a wider application, beyond only IoT mo-

bile apps, and a more focused assessment by looking at the

supporting backends provided by cloud services.

10 Conclusion

This paper presented SkyWalker, an analysis pipeline to

study mobile app backends. We used SkyWalker to empiri-

cally analyze the top 5,000 mobile apps in the Google Play

store and uncovered 655 0-days and 983 N-days instances

affecting thousands of apps. Lastly, we offer SkyWalker as

a public service to help app developers improve the security

of their backends, give insight on what platforms are vulner-

able, and guide developers to fix issues found in their back-

ends: https://MobileBackend.vet.

Acknowledgement

We thank Manos Antonakakis, Yizheng Chen, Angelos

Keromytis, Panagiotis Kintis, Chaz Lever, Frank Li, Xi-

aojing Liao, Yinqian Zhang, and the anonymous reviewers

for their insightful comments. This work was partially

supported by AFOSR under grant FA9550-14-1-0119, NSF

awards 1834215, and 1834216.

References

[1] S. Ghosh, British Airways customer data stolen from its web-

site, https://www.theguardian.com/business/2018/

sep/06/british-airways-customer-data-stolen-

from-its-website, 2018.

[2] Z. Whittaker, Air Canada confirms mobile app data breach,

https://techcrunch.com/2018/08/29/air-canada-

confirms-mobile-app-data-breach/, 2018.

[3] A. Martonik, Epic‘s first Fortnite Installer allowed hack-

ers to download and install anything on your Android

phone silently, https://www.androidcentral.com/

epic-games-first-fortnite-installer-allowed-

hackers-download-install-silently, 2018.

[4] K. Watkins, “HospitalGown: The Backend Exposure Putting

Enterprise Data at Risk,” Appthority, Tech. Rep., 2017.

[5] S. Subashini and v. Kavitha, “A survey on security issues

in service delivery models of cloud computing,” Journal of

Network and Computer Applications, 2011.

[6] C. Höfer and G. Karagiannis, “Cloud computing services:

Taxonomy and comparison,” Journal of Internet Services

and Applications, 2011.

[7] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified

ontology of cloud computing,” in In Proc. IEEE Grid Com-

puting Environments Workshop (GCE), 2008.

[8] D. Gonzales, J. M. Kaplan, E. Saltzman, Z. Winkelman, and

D. Woods, “Cloud-trust-A security assessment model for in-

frastructure as a service (IaaS) clouds,” IEEE Transactions

on Cloud Computing, 2017.

[9] Z. Xiao and Y. Xiao, “Security and privacy in cloud comput-

ing,” IEEE Communications Surveys & Tutorials, 2013.

[10] K. Watkins and S. M. Kywe, “Unsecured Firebase

Databases: Exposing Sensitive Data via Thousands of Mo-

bile Apps,” Appthority, Tech. Rep., 2018.

[11] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards automatic

discovery of vulnerable authorizations in online services,” in

Proceedings of the 24th ACM Conference on Computer and

Communications Security (CCS), Dallas, TX, Oct. 2017.

[12] C. Zuo, Z. Lin, and Y. Zhang, “Why does your data leak?

uncovering the data leakage in cloud from mobile apps,” in

Proceedings of the 40th Symposium on Security and Privacy

(Oakland), San Francisco, CA, May 2019.

[13] National Institute of Standards and Technology, NATIONAL

VULNERABILITY DATABASE, https://nvd.nist.gov,

2019.

[14] OWASP, OWASP Top 10 - 2017: The Ten Most Critical Web

Application Security Risks, https://www.owasp.org/

images/7/72/OWASP_Top_10-2017_%28en%29.pdf.

pdf, 2018.

[15] Kony, Kony Fabric, https://www.kony.com/products/

fabric/, 2018.

[16] OutSystems, Build Mobile Apps, https://www.outsyste

ms.com/platform/build-mobile-apps/, 2018.

[17] Apache, Architectural overview of Apache Cordova plat-

form, https://cordova.apache.org, 2018.

[18] Backbase, Backbase Enterprise Integration Framework, ht

tps://backbase.com/platform/integration/, 2018.

[19] C. Zuo and Z. Lin, “Smartgen: Exposing server urls of mo-

bile apps with selective symbolic execution,” in Proceed-

ings of the 26th International World Wide Web Conference

(WWW), 2017.

564 28th USENIX Security Symposium USENIX Association

[20] N. Galbreath, Categorization of IP Addresses, https://

github.com/client9/ipcat, 2019.

[21] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party

library detection in android and its security applications,”

in Proceedings of the 23rd ACM Conference on Computer

and Communications Security (CCS), Vienna, Austria, Oct.

2016.

[22] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identify-

ing open-source license violation and 1-day security risk at

large scale,” in Proceedings of the 24th ACM Conference on

Computer and Communications Security (CCS), Dallas, TX,

Oct. 2017.

[23] MaxMind, About MaxMind, https://www.maxmind.com/

en/company, 2018.

[24] R. Beverly, “A robust classifier for passive TCP/IP finger-

printing,” in Workshop on Passive and Active Network Mea-

surement, Springer, 2004.

[25] E. Bodden, A framework for analyzing and transforming

java and an- droid apps, https://sable.github.io/

soot/, 2018.

[26] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Pre-

cise context, flow, field, object-sensitive and lifecycle-aware

taint analysis for android apps,” in Proceedings of the 2014

ACM SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI), Edinburgh, UK, Jun. 2014.

[27] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A z3-based

string solver for web application analysis,” in Proceed-

ings of the 18th European Software Engineering Conference

(ESEC) / 21st ACM SIGSOFT Symposium on the Founda-

tions of Software Engineering (FSE), Saint Petersburg, Rus-

sia, Aug. 2013.

[28] X. Framework, Xposed Module Repository, https://rep

o.xposed.info/module/de.robv.android.xposed.

installer, 2018.

[29] T. Cymru, IP TO ASN MAPPING, http://www.team-

cymru.com/IP-ASN-mapping.html, 2018.

[30] Alexa, Find Website Traffic, Statistics, and Analytics, https

://www.alexa.com/siteinfo, 2018.

[31] DomainTools, About Us, https://www.domaintools.

com/company/, 2018.

[32] T. Security, Nessus Professional, https://www.tenable.

com/products/nessus/nessus-professional, 2018.

[33] S. Project, sqlmap: automatic SQL injection and database

takeover tool, http://sqlmap.org, 2018.

[34] Acunetix, Audit Your Web Security with Acunetix Vulner-

ability Scanner, https : / / www . acunetix . com /

vulnerability-scanner/, 2018.

[35] Geynoise, About, https://greynoise.io/about/, 2018.

[36] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai net-

work: A platform for high-performance internet applica-

tions,” in Proceedings of the ACM SIGOPS Operating Sys-

tem Review, vol. 44, Jul. 2010.

[37] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and

B. Liang, “Semfuzz: Semantics-based automatic generation

of proof-of-concept exploits,” in Proceedings of the 24th

ACM Conference on Computer and Communications Secu-

rity (CCS), Dallas, TX, Oct. 2017.

[38] D. Goodin, Failure to patch two-month-old bug led to mas-

sive Equifax breach, https : / / arstechnica . com /

information - technology / 2017 / 09 / massive -

equifax- breach- caused- by- failure- to- patch-

two-month-old-bug/, 2018.

[39] X. Li and Y. Xue, “A survey on server-side approaches to se-

curing web applications,” ACM Computing Surveys (CSUR),

2014.

[40] B. Möller, T. Duong, and K. Kotowicz, “This poodle bites:

Exploiting the ssl 3.0 fallback,” Security Advisory, 2014.

[41] App Transport Security, https://forums.developer.

apple.com/thread/6767, 2015.

[42] Unity3D, Imagine, build and succeed with Unity, https:

//unity3d.com, 2018.

[43] Simpli.fi, About Us, https://www.simpli.fi/about-

us/, 2018.

[44] bugcrowd, THE BUGCROWD DIFFERENCE, https://

www.bugcrowd.com/who- we- are/the- bugcrowd-

difference/, 2018.

[45] B. Factory, CREATE MY BUG BOUNTY PROGRAM, http

s://bountyfactory.io/en/mybugbounty.html, 2018.

[46] HackerOne, About HackerOne, https://www.hackerone

.com/about, 2018.

[47] US-CERT, About Us, https://www.us-cert.gov/abou

t-us, 2018.

[48] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap:

Fast internet-wide scanning and its security applications.,” in

Proceedings of the 22th USENIX Security Symposium (Secu-

rity), Washington, DC, Aug. 2013.

[49] R. D. Graham, MASSCAN, https://github.com/rober

tdavidgraham/masscan, 2018.

[50] M. Veenstra, Privilege Escalation Flaw In WP GDPR Com-

pliance Plugin Exploited In The Wild, https : / / www .

wordfence . com / blog / 2018 / 11 / privilege -

escalation - flaw - in - wp - gdpr - compliance -

plugin-exploited-in-the-wild/, 2018.

[51] J. Mattsson, Drupal core - Highly critical - Remote Code

Execution - SA-CORE-2018-002, https://www.drupal.

org/sa-core-2018-002, 2018.

[52] C. Point, Web servers PHPMyAdmin Misconfiguration Code

Injection, https://www.checkpoint.com/defense/

advisories/public/2014/cpai-17-mar1.html, 2018.

[53] N. Avital, The State of Web Application Vulnerabilities in

2018, https://www.imperva.com/blog/the-state-

of-web-application-vulnerabilities-in-2018/,

2019.

[54] Appnext, The Appnext Discovery Platform, https://www.

appnext.com/platform/, 2018.

USENIX Association 28th USENIX Security Symposium 565

[55] SecurityFTW - cs-suite, Cloud Security Suite - One stop tool

for auditing the security posture of AWS/GCP/Azure infras-

tructure. https : / / github . com / SecurityFTW / cs -

suite, 2018.

[56] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic reboot-

less kernel updates,” in Proceedings of the 4th European

Conference on Computer Systems (EuroSys), Nuremberg,

Germany, Mar. 2009.

[57] R. Duan, A. Bijlani, Y. Ji, O. Alrawi, Y. Xiong, M. Ike, B.

Saltaformaggio, and W. Lee, “Automating patching of vul-

nerable open-source software versions in application bina-

ries,” in Proceedings of the 2019 Annual Network and Dis-

tributed System Security Symposium (NDSS), San Diego,

CA, Feb. 2019.

[58] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. Mc-

Coy, S. Savage, and V. Paxson, “You‘ve got vulnerability:

Exploring effective vulnerability notifications,” in Proceed-

ings of the 25th USENIX Security Symposium (Security),

Austin, TX, Aug. 2016.

[59] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M.

Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey, et al.,

“The matter of heartbleed,” in Proceedings of the 14th Inter-

net Measurement Conference (IMC), 2014.

[60] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,

you, get off of my cloud: Exploring information leakage

in third-party compute clouds,” in Proceedings of the 16th

ACM Conference on Computer and Communications Secu-

rity (CCS), Chicago, Illinois, Nov. 2009.

[61] S. Subashini and V. Kavitha, “A survey on security issues

in service delivery models of cloud computing,” Journal of

network and computer applications, vol. 34, no. 1, pp. 1–11,

2011.

[62] M. Almorsy, J. Grundy, and I. Müller, “An analysis of

the cloud computing security problem,” arXiv preprint

arXiv:1609.01107, 2016.

[63] Y. Sun, G. Petracca, X. Ge, and T. Jaeger, “Pileus: Protect-

ing user resources from vulnerable cloud services,” in Pro-

ceedings of the 32th Annual Computer Security Applications

Conference (ACSAC), 2016.

[64] S. Iqbal, M. L. M. Kiah, B. Dhaghighi, M. Hussain, S. Khan,

M. K. Khan, and K.-K. R. Choo, “On cloud security at-

tacks: A taxonomy and intrusion detection and prevention as

a service,” Journal of Network and Computer Applications,

vol. 74, pp. 98–120, 2016.

[65] N. V. Juliadotter and K.-K. R. Choo, “Cloud attack and

risk assessment taxonomy,” IEEE Cloud Computing, vol. 2,

no. 1, pp. 14–20, 2015.

[66] A. Singh and K. Chatterjee, “Cloud security issues and chal-

lenges: A survey,” Journal of Network and Computer Appli-

cations, 2017.

[67] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman,

“Analysis of the https certificate ecosystem,” in Proceedings

of the 13th Internet Measurement Conference (IMC), 2013.

[68] Codenomicon and Google, The Heartbleed Bug, https://

heartbleed.com/, 2017.

[69] D. Perez-Botero, J. Szefer, and R. B. Lee, “Characteriz-

ing hypervisor vulnerabilities in cloud computing servers,”

in Proceedings of the 20th ACM Conference on Computer

and Communications Security (CCS), Berlin, Germany, Oct.

2013.

[70] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of

emerging smart home applications,” in Proceedings of the

37th Symposium on Security and Privacy (Oakland), San

Jose, CA, May 2016.

[71] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok:

Security evaluation of home-based iot deployments,” in Pro-

ceedings of the 40th Symposium on Security and Privacy

(Oakland), San Francisco, CA, May 2019.

566 28th USENIX Security Symposium USENIX Association

	Introduction
	A Motivating Example
	Background
	Mobile App Backend Model
	Counting Vulnerabilities

	Methodology
	Binary Analysis
	Backend Labels
	Service Discovery and Fingerprinting
	Vulnerability Analysis
	Open Access for Developers

	Assessment Findings
	Experiment Setup
	Software Vulnerability Details
	Impact on Mobile Application Users
	Vulnerability Disclosure, Bug Bounties, And In The Wild Threats

	Case Studies
	Case Study 1: Vulnerable Web App
	Case Study 2: Vulnerable Platform

	Mitigation
	Remediation Strategies
	Recommendations

	Measurement Considerations
	Related Work
	Conclusion

