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Distance one lens space fillings and
band surgery on the trefoil knot
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We prove that if the lens space L(n, 1) is obtained by a surgery along a knot in
the lens space L(3, 1) that is distance one from the meridional slope, then 7 is in
{—6,+1,£2,3,4,7}. This result yields a classification of the coherent and nonco-
herent band surgeries from the trefoil to 7°(2,7n) torus knots and links. The main
result is proved by studying the behavior of the Heegaard Floer d—invariants under
integral surgery along knots in L (3, 1). The classification of band surgeries between
the trefoil and torus knots and links is motivated by local reconnection processes in
nature, which are modeled as band surgeries. Of particular interest is the study of
recombination on circular DNA molecules.

57TM25, 57TM27, 57R58; 92E10

1 Introduction

The question of whether Dehn surgery along a knot K in the three-sphere yields
a three-manifold with finite fundamental group is a topic of long-standing interest,
particularly the case of cyclic surgeries. The problem remains open, although substantial
progress has been made towards classifying the knots in the three-sphere admitting
lens space surgeries; see Baker [4; 5], Berge [9], Bleiler and Litherland [11], Goda and
Teragaito [30], Hedden [35], Ozsvéth and Szabd [55] and Rasmussen [61]. When the
exterior of the knot is Seifert fibered, there may be infinitely many cyclic surgery slopes,
such as for a torus knot in the three-sphere; see Moser [50]. In contrast, the celebrated
cyclic surgery theorem (see Culler, Gordon, Luecke and Shalen [21]) implies that if
a compact, connected, orientable, irreducible three-manifold with torus boundary is
not Seifert fibered, then any pair of fillings with cyclic fundamental group has distance
at most one. Here, the distance between two surgery slopes refers to their minimal
geometric intersection number, and a slope refers to the isotopy class of an unoriented
simple closed curve on the bounding torus. Dehn fillings that are distance one from
the fiber slope of a cable space are especially prominent in surgeries yielding prism
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manifolds; see Bleiler and Hodgson [10]. Fillings distance one from the meridional
slope were also exploited by Baker [7] to construct cyclic surgeries on knots in the
Poincaré homology sphere.

In this paper, we are particularly interested in Dehn surgeries along knots in L(3, 1)
which yield other lens spaces. The specific interest in L(3, 1) is motivated by the study
of local reconnection in nature, such as DNA recombination (discussed below). Note
that by taking the knot K to be a core of a genus one Heegaard splitting for L(3, 1),
one may obtain L(p,q) for all p and ¢g. More generally, since the Seifert structures
on L(3,1) are classified (see Geiges and Lange [29]), one could enumerate the Seifert
knots in L(3, 1) and use this along with the cyclic surgery theorem to characterize lens
space fillings when the surgery slopes are of distance greater than one. This strategy
does not cover the case where the surgery slopes intersect the meridian of K exactly
once. We will refer to these slopes as distance one surgeries, also called integral
surgeries. In this article we are specifically concerned with distance one Dehn surgeries
along K in L(3,1) yielding L(n, 1). We prove:

Theorem 1.1 The lens space L(n, 1) is obtained by a distance one surgery along a
knot in the lens space L(3,1) if and only if n is one of =1, +2, 3,4, —6 or 7.

While Theorem 1.1 may be viewed as a generalization of the lens space realization
problem (see Greene [34]), the result was motivated by the study of reconnection events
in nature. Reconnection events are observed in a variety of natural settings at many
different scales, for example large-scale magnetic reconnection of solar coronal loops,
reconnection of fluid vortices, and microscopic recombination on DNA molecules
(see eg Kleckner and Irvine [42], Li, Zheng, Peter, Priest, Cheng, Guo, Chen and
Mackay [43] and Shimokawa, Ishihara, Grainge, Sherratt and Vazquez [65]). Links of
special interest in the physical setting are four-plats, or equivalently two-bridge links,
where the branched double covers are lens spaces. In particular, the trefoil 7'(2, 3)
is the most probable link formed by any random knotting process (see Rybenkov,
Cozzarelli and Vologodskii [62] and Shaw and Wang [64]), and T'(2,n) torus links
appear naturally when circular DNA is copied within the cell; see Adams, Shekhtman,
Zechiedrich, Schmid and Cozzarelli [2]. During a reconnection event, two short
chain segments, the reconnection sites, are brought together, cleaved, and the ends
are reconnected. When acting on knotted or linked chains, reconnection may change
the link type. Reconnection is understood as a band surgery between a pair of links
(L1, Ly) in the three-sphere and is modeled locally by a tangle replacement, where
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Figure 1: The links L, and L, differ in a three-ball in which a rational
tangle replacement is made. Reconnection sites are schematically indicated
in red. A coherent band surgery (left). A noncoherent band surgery (right).

the tangle encloses two reconnection sites as illustrated in Figure 1. Site orientation is
important, especially in the physical setting, as explained in Section 5.2. Depending on
the relative orientation of the sites, the tangle replacement realizes either a coherent or
noncoherent band surgery, as the links are related by attaching a band (see Figure 1).
More details on the connection to band surgery are included in Section 5.

We are therefore interested in studying the connection between the trefoil and other
torus links by coherent and noncoherent band surgery. The Montesinos trick implies
that the branched double covers of two links related by a band surgery are obtained by
distance one Dehn fillings of a three-manifold with torus boundary. Because L(n, 1) is
the branched double cover of the torus link 7°(2, n), Theorem 1.1 yields a classification
of the coherent and noncoherent band surgeries from the trefoil 7°(2,3) to 7'(2,n)
for all n.

Corollary 1.2 The torus knot T (2,n) is obtained from T'(2,3) by a noncoherent
banding if and only if n is +1, 3 or 7. The torus link T (2,n) is obtained from
T(2, 3) by a coherent banding if and only if n is £2, 4 or —6.

Proof Theorem 1.1 obstructs the existence of any coherent or noncoherent banding
from 7'(2,3) to T(2,n) when n is not one of the integers listed in the statement.
Bandings illustrating the remaining cases are shown in Figures 2 and 3. O

In our convention 7°(2, 3) denotes the right-handed trefoil. The statement for the left-
handed trefoil is analogous after mirroring. Note that Corollary 1.2 certifies that each
of the lens spaces listed in Theorem 1.1 is indeed obtained by a distance one surgery
from L(3,1). We remark that a priori, a knot in L(3, 1) admitting a distance one
lens space surgery to L(n, 1) does not necessarily descend to a band move on 7°(2, 3)
under the covering involution.
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Figure 2: Noncoherent bandings: 7(2,n—2) to T(2,n+2) (left), T(2,n) to
itself (center), 7(2, 3) to the unknot (right).
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When 7 is even, if the linking number of 7'(2,n) is +n/2, Corollary 1.2 follows as
a consequence of the behavior of the signature of a link; see Murasugi [51]. If the
linking number is instead —n/2, Corollary 1.2 follows from the characterization of
coherent band surgeries between 7'(2,n) torus links and certain two-bridge knots
in [22, Theorem 3.1]. While both coherent and noncoherent band surgeries have
biological relevance, more attention in the literature has been paid to the coherent
band surgery model (see for example Buck and Ishihara [14], Buck, Ishihara, Rathbun
and Shimokawa [15], Darcy, Ishihara, Medikonduri and Shimokawa [22], Ishihara
and Shimokawa [39], Ishihara, Shimokawa and Vazquez [40], Shimokawa, Ishihara,
Grainge, Sherratt and Vazquez [65] and Stolz, Yoshida, Brasher, Flanner, Ishihara,
Sherratt, Shimokawa and Vazquez [68]). This is due in part to the relative difficulty in
working with nonorientable surfaces, as is the case with noncoherent band surgery on
knots.

Overview of main result The key ingredients in the proof of Theorem 1.1 are a set
of formulas, namely [53, Proposition 1.6] of Ni and Wu and its generalizations in
Propositions 4.1 and 4.2, which describe the behavior of d—invariants under certain
Dehn surgeries. Recall that a d—invariant or correction term is an invariant of the
pair (Y, t), where Y is an oriented rational homology sphere and t is an element of
Spin“(Y) 2 H?(Y; Z). More generally, each d—invariant is a Spin® rational homology
cobordism invariant. This invariant takes the form of a rational number given by the
minimal grading of an element in a distinguished submodule of the Heegaard Floer
homology, HF ™ (Y, t); see Ozsvith and Szabé [54]. Work of Ni and Wu [53] relates the
d—invariants of surgeries along a knot K in S, or more generally a null-homologous
knot in an L—space, with a sequence of nonnegative integer-valued invariants V;, due
to Rasmussen [60] (see for reference the local h—invariants in [60] or [53]).
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Figure 3: Coherent bandings: 7'(2,3) to T(2,2) (left), T(2,3) to T(2,4)
(center), T'(2,—6) to T'(2,3) (right) (see also [22, Theorem 5.10]).

With this we now outline the proof of Theorem 1.1. Suppose that L(n, 1) is obtained
by surgery along a knot K in L(3,1). As is explained in Lemma 2.1, the class
of |n| modulo 3 determines whether or not K is homologically essential. When
n =0 (mod 3), we have that K is null-homologous. In this case, we take advantage of
the Dehn surgery formula due to Ni and Wu mentioned above and a result of Rasmussen
[60, Proposition 7.6] which bounds the difference in the integers V; as i varies. Then
by comparing this to a direct computation of the correction terms for the lens spaces of
current interest, we obstruct a surgery from L(3,1) to L(n, 1) for n # 3 or —6.

When |n| = £1 (mod 3), we must generalize the correction term surgery formula
of Ni and Wu to a setting where K is homologically essential. The technical work
related to this generalization makes use of the mapping cone formula for rationally
null-homologous knots (see Ozsvéth and Szab6 [58]), and is contained in Section 4.
This surgery formula is summarized in Propositions 4.1 and 4.2, which we then use
in a manner similar to that in the null-homologous case. We find that among the
oriented lens spaces of order =1 modulo 3, +L(2,1), L(4,1) and L(7,1) are the
only nontrivial lens spaces with a distance one surgery from L(3, 1), completing the
proof of Theorem 1.1.

Outline In Section 2, we establish some preliminary homological information that
will be used throughout and study the Spin® structures on the two-handle cobordisms
arising from distance one surgeries. Section 3 contains the proof of Theorem 1.1,
separated into the three cases as described above. Section 4 contains the technical
arguments pertaining to Propositions 4.1 and 4.2, which compute d—invariants of
certain surgeries along a homologically essential knot in L (3, 1). Lastly, in Section 5
we present the biological motivation for the problem in relation with DNA topology
and discuss coherent and noncoherent band surgeries more precisely.
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2 Preliminaries

2.1 Homological preliminaries

We begin with some basic homological preliminaries on surgery on knots in L(3, 1).
This will give some immediate obstructions to obtaining certain lens spaces by distance
one surgeries. Here we will also set some notation. All singular homology groups will
be taken with Z—coefficients except when specified otherwise.

Let Y denote a rational homology sphere. First, we will use the torsion linking form
on homology:
Lk: HHY)x H(Y) > Q/Z.

See [18] for a thorough exposition on this invariant.

In the case that H{(Y) is a cyclic group, it is enough to specify the linking form
by determining the value £k(x, x) for a generator x of H;{(Y) and extending by
bilinearity. Consequently, if two rational homology spheres Y; and Y, have cyclic first
homology with linking forms given by n/p and m/ p, where p > 0, then the two forms
are equivalent if and only if n = ma? (mod p) for some integer a with gcd(a, p) = 1.
We take the convention that L(p, ¢g) is obtained by (p/¢g)-surgery on the unknot, and
that the linking form is given by ¢/ p.! Following these conventions, (p/q)-surgery
on any knot in an arbitrary integer homology sphere has linking form ¢/ p as well.

Let K be any knot in ¥ = L(3, 1). The first homology class of K is either trivial or
it generates Hy(Y') = Z/3, in which case we say that K is homologically essential.
When K is null-homologous, then the surgered manifold Y, /,(K) is well defined and
Hi(Y,/4(K))=Z/3®Z/p. When K is homologically essential, there is a unique
such homology class up to a choice of an orientation on K. The exterior of K is denoted
M =Y —N(K) and because K is homologically essential, H{ (M) = Z. Recall that
the rational longitude £ is the unique slope on dM which is torsion in Hy (M ). In our
case, the rational longitude ¢ is null-homologous in M. We write m for a choice of
dual peripheral curve to £ and take (m, {) as a basis for H1(0M). Let M (pm + g{)
denote the Dehn filling of M along the curve pm + gf, where ged(p,q) = 1. It
follows that Hy (M (pm + gf)) = Z/ p and that the linking form of M (pm + g{) is

I'We choose this convention to minimize confusion with signs. The deviation from —g/p to q/p is
irrelevant for our purposes, since this change will uniformly switch the sign of each linking form computed

in this section. Because £k and £k, are equivalent if and only if —{k; and —{k, are equivalent, this
will not affect the results.
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equivalent to ¢/ p when p # 0. Indeed, M (pm + g{) is obtained by (p/g)—surgery
on a knot in an integer homology sphere, namely the core of the Dehn filling M (m).

Recall that we are interested in the distance one surgeries to lens spaces of the form
L(n, 1). Therefore, we first study when distance one surgery results in a three-manifold
with cyclic first homology. We begin with an elementary homological lemma.

Lemma 2.1 Fix a nonzero integer n. Suppose that Y’ is obtained from Y = L(3, 1)
by a distance one surgery on a knot K and that H{(Y') = Z/n. Then:

(1) Ifn =3k +1, then K is homologically essential.

(ii) If K is homologically essential, the slope of the meridian on M is 3m~+(3r+1)£
for some integer r . Furthermore, there is a choice of m such that r = 0.

(iii) With the meridian on M given by 3m + { as above, then if n = 3k + 1
(respectively n = 3k — 1), the slope inducing Y' on M is 3k + 1)m + k{
(respectively (3k — D)m + k).

(iv) Ifn =3k, then K is null-homologous and the surgery coefficient is +k . Fur-
thermore, gcd(k,3) = 1.

Proof (i) This part follows because surgery on a null-homologous knot in Y has
H(Y,/q(K)=Z/3®Z/p.

(ii)) By the discussion preceding the lemma, we have that the desired slope must
be 3m + g{ for some ¢ relatively prime to 3. In this case, M (3m + ¢¥) has linking
form equivalent to % or %, depending on whether ¢ = 1 or 2 (mod 3). Since 2 is
not a square mod 3, we see that the linking form % is not equivalent to that of 1,
which is the linking form of L(3,1). Therefore, ¢ = 1 (mod 3) and the meridian
is 3m + (3r + 1)£ for some r. By instead using the peripheral curve m’ = m + r¢,

which is still dual to £, we see that the meridian is given by 3m’ + £.

(iii) By the previous item, we may choose m such that the meridional slope of K
on M is given by 3m + £. Now write the slope on M yielding Y’ as (3k = 1)m +g£.
In order for this slope to be distance one from 3m + £, we must have that ¢ = k.

(iv) Note that if K is null-homologous, then the other two conclusions easily hold
since H1(Y') =7/3 & Z/ k . Therefore, we must show that K cannot be homolog-
ically essential. If K were essential, then the slope on the exterior would be of the
form 3km + s£ for some integer s. The distance from the meridian is then divisible
by 3, which is a contradiction. a
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In this next lemma, we use the linking form to obtain a surgery obstruction.

Lemma 2.2 Fix a nonzero odd integer n. Let K be a knot in Y = L(3,1) with
a distance one surgery to Y' having H\(Y') = Z/n and linking form equivalent
to sgn(n)/|n|. If n =1 (mod 3), then n > 0.

Proof Suppose that n < 0. Write n = 1 —3; with j > 0. By assumption, the linking
form of Y’ is —1/(3j — 1). By Lemma 2.1(iii), the linking form of Y’ is also given
by j/(3j —1). Consequently, —; is a square modulo 3/ — 1 or equivalently, —3
is a square modulo 3j — 1, as —3 is the inverse of —j. Because n is odd, the law
of quadratic reciprocity implies that for any prime p dividing 3j — 1, we have that
p =1 (mod 3). This contradicts the fact that 3 —1 = —1 (mod 3). i

Remark 2.3 By an argument analogous to Lemma 2.2, one can prove that if n =3k —1
is odd, then n =1 or 11 (mod 12).

Lemma 2.2 does not hold if n is even. This can be seen since —L(2,1) =~ L(2,1) is
obtained from a distance one surgery on a core of the genus one Heegaard splitting
of L(3,1). In Section 2.3 we will be able to obtain a similar obstruction in the case
that » is even.

2.2 The four-dimensional perspective

Given a distance one surgery between two three-manifolds, we let W denote the
associated two-handle cobordism. For details on the framed surgery diagrams and
associated four-manifold invariants used below, see [31].

Lemma 2.4 Suppose Y’ is obtained from a distance one surgery on L(3,1). Then:
(i) If|H{(Y')|=3k—1, then W is positive definite, whereas if |H,(Y')| =3k +1,
then W is negative definite.

(ii) The order of H{(Y') is even if and only if W is Spin.

Proof (i) Ineither case, Lemma 2.1 implies that Y’ is obtained by integral surgery on
a homologically essential knot K in L(3,1). First, L(3, 1) is the boundary of a four-
manifold N, which is a +3—framed two-handle attached to B* along an unknot. Let Z
denote N U W. Since b;ﬁ (Z2)= b2jE (N)+ b;E(W), we see that W is positive definite
(respectively negative definite) if and only if b;r (Z) is equal to 2 (respectively 1).
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Since K is homologically essential, after possibly reversing the orientation of K and
handlesliding K over the unknot, we may present Y’ by surgery on a two-component

31
Q=(l C),

which implies that the order of H;(Y’) is |3¢ — 1|. Since the intersection form of Z

link with linking matrix

is presented by Q, we see that b;r (Z) equals 2 (respectively 1) if and only if ¢ > 0
(respectively ¢ < 0). The claim now follows.

(i) We will use the fact that an oriented four-manifold whose first homology has no
2—torsion is Spin if and only if its intersection form is even. First, note that Hy (W)
is a quotient of Z/3, so H{(W;Z/2) = 0. Next, view L(3, 1) as the boundary of
the Spin four-manifold X obtained from attaching —2—framed two-handles to B*
along the Hopf link. This is indeed Spin, because X is simply connected and has even
intersection form. After attaching W to X, we obtain a presentation for the intersection
formof WU X:

-2 1 a
Owux=| 1 =2 b
a b ¢

Since this matrix presents H;(Y”), we compute that | H;(Y”)| is even if and only if ¢
is even if and only if the intersection form of W U X is even. Since X is Spin and
we are attaching W along a Z /2-homology sphere, we see that the simply connected
four-manifold W U X is Spin if and only if W is Spin. Consequently, |H;(Y")]| is
even if and only if W is Spin. a

2.3 d-invariants, lens spaces, and Spin manifolds

As mentioned in the introduction, the main invariant that we will use is the d—invariant,
d(Y,t), of a Spin® rational homology sphere (Y, t). These invariants are intrinsically re-
lated with the intersection form of any smooth, definite four-manifold bounding Y [54].
In some sense, the d—invariants can be seen as a refinement of the torsion linking form
on homology. For homology lens spaces, this notion can be made more precise as
in [44, Lemma 2.2].

We assume familiarity with the Heegaard Floer package and the d—invariants of rational
homology spheres, referring the reader to [54] for details. We will heavily rely on the
following recursive formula for the d—invariants of a lens space.
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Theorem 2.5 (Ozsvith—Szab6 [54, Proposition 4.8]) Let p > g > 0 be relatively
prime integers. Then there exists an identification Spin®(L(p,q)) = 7/ p such that
. 1, Qi+1-p—9g)°
D d(L(p.q).i)=—7+
4 4pq

for0 <i < p+q. Here, r and j are the reductions of p and i modulo q, respectively.

—d(L(g.7).])

Under the identification in Theorem 2.5, it is well known that the self-conjugate Spin®
structures on L(p, q) correspond to the integers among

-1 -1
) rra—1 4 171
2 2

(See for instance [26, Equation (3)].)
For reference, following (1), we give the values of d(L(n,1),i), including d(L(n,1),0),
for n > 0:

N_ 1 (i-n)? _n—1
3) d(L(n,1),i)= 4+—4n and d(L(n,1),0)= 7

It is useful to point out that d—invariants change sign under orientation-reversal [54].
Using the work of this section, we are now able to heavily constrain distance one

surgeries from L(3,1) to L(n, 1) in the case that n is even.

Proposition 2.6 Suppose there is a distance one surgery between L(3,1) and L(n, 1),
where n is an even integer. Unless n = 2 or 4, we have n < 0. In the case that n < 0,
the two-handle cobordism from L(3,1) to L(n, 1) is positive definite and the unique
Spin structure on L(n, 1) which extends over this cobordism corresponds to i = |n/2|.

A technical result that we need is established first, which makes use of Lin’s Pin(2)—
equivariant monopole Floer homology [45].

Lemma 2.7 Let (W,s): (Y,t) — (Y’,t) be a Spin cobordism between L-spaces
satistying b;L(W) =1 and b, (W) =0. Then
4 dY' ) —d(Y,t)=—-1.
Proof By [46, Theorem 5], we have that

a(Y' )= B(Y, 0 = 1,

where o and B are Lin’s adaptation of the Manolescu invariants for Pin(2)—equivariant
monopole Floer homology. Conveniently, for L-spaces, @ = 8 = d/2 [20; 59; 45; 38].
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Thus, we have

s) d(Y'.¢)—d(Y.t)= —1.

On the other hand, we may reverse orientation on W to obtain a negative-definite Spin
cobordism (=W, s): (=Y, t) — (—=Y’,t). Thus, we have from [54, Theorem 9.6] that

)+ b (W) 1
4 4
Combined with (5), this completes the proof. a

d(=Y' ¥)—d(-Y,¢) >

Proof of Proposition 2.6 For completeness, we begin by dispensing with the case
of n = 0, ie S? x S!. This is obstructed by Lemma 2.1, since no surgery on a
null-homologous knot in (3, 1) has torsion-free homology.

Therefore, assume that n % 0. The two-handle cobordism W is Spin by Lemma 2.4.
First, suppose that b;r (W) =1 (and consequently b5 (W) = 0), so that we may apply
Lemma 2.7. Because s on W restricts to self-conjugate Spin® structures t and '
on Y and Y/, (2) and (4) imply that

(6) d(L(n,1),i)—d(L(3,1),0) = —1,
where i must be one of 0 or |n/2]. Applying (3) to L(3,1), we conclude that
d(L(n.1).0) = 1.

If i = 0, Equation (3) applied to L(n, 1) implies that d(L(n,1),0) = (|n| —1)/4
for n >0 and (1—|n|)/4 for n <0. The only solution agreeing with (6) is when n = +-2.
If i = |n|/2, Equation (3) implies that d(L(n, 1),i) is —% for n > 0 and % for n <0,
and so (6) holds whenever n < 0. Note that in this case, W is positive definite.

Now suppose b;r (W) = 0. Therefore, we apply Lemma 2.7 instead to —W to see that
where again, i = 0 or |n/2|. In this case, there is a unique solution given by n = +4

when i = 0. This completes the proof. a

2.4 d-invariants and surgery on null-homologous knots

Throughout the rest of the section, we assume that K is a null-homologous knot in a ra-
tional homology sphere Y. By Lemma 2.1, this will be relevant when we study surgeries
to L(n,1) with n =0 (mod 3). Recall that associated to K, there exist nonnegative
integers V;; for each i € Z and t € Spin®(Y) satisfying the following property:
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Property 2.8 [60, Proposition 7.6]

Viiz Viit1 = Vii— 1.

When K is null-homologous in Y, the set of Spin® structures Spin®(Y,(K)) is in
one-to-one correspondence with Spin®(Y) @ Z/ p. The projection to the first factor
comes from considering the unique Spin® structure on Y which extends over the
two-handle cobordism W,(K): Y — Y, (K) to agree with the chosen Spin® structure
on Y,(K). With this in mind, we may compute the d—invariants of Y, (K) as follows.
The result below was proved for knots in S, but the argument immediately generalizes
to the situation considered here.

Proposition 2.9 [53, Proposition 1.6] Fix an integer p > 0 and a self-conjugate
Spin® structure t on an L-space Y. Let K be a null-homologous knot in Y. Then there
exists a bijective correspondence i <> t; between 7/ pZ and the Spin® structures on
Spin®(Y,(K)) that extend t over W, (K) such that

(M d(Yp(K), ti) =d(Y, ) +d(L(p,1),i) — 2Ny,
where Ny; = max{Vy;, Vi p—i}. Here, we assume that 0 <i < p.

In order to apply Proposition 2.9, we must understand the identifications of the Spin®
structures precisely. In particular, the correspondence between i and t; is given in
[57, Theorem 4.2]. Let s be a Spin® structure on W, (K) which extends t and let t; be
the restriction to Y, (K). Then we have from [57, Theorem 4.2] that i is determined by

(8) (c1(5), [F]) + p =2i (mod2p),

~

where [F] is the surface in W), (K) coming from capping off a Seifert surface for K.
For this to be well defined, we must initially choose an orientation on K, but the choice
will not affect the end result.

Before stating the next lemma, we note that if Y is a Z/2-homology sphere, then
HY'(W,(K);Z/2) =0, and thus there is at most one Spin structure on W,(K). If p
is even, W, (K) is Spin, since the intersection form is even and H; (W, (K);Z/2) =0.
Further, Y,(K) admits exactly two Spin structures, and thus exactly one extends
over W, (K).

Lemma 2.10 Let K be a null-homologous knot in a 7 /2—homology sphere Y. Let t
be the self-conjugate Spin® structure on Y, and let t, be the Spin® structure on Y, (K)
described in Proposition 2.9 above. Then:
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(i) to is self-conjugate on Y, (K).

(ii) The Spin structure ty does not extend to a Spin structure over W, (K).

Proof (i) By (8), we see that if 5 extends ty over W,(K),

(c1(5),[F]) = —p (mod 2p).

Note that § extends to over W, (K) and restricts to t on Y, since t is self-conjugate.
The above equation now implies that

(c13),[F]) = p=—p (mod 2p).

In the context of (8), i = 0. Consequently, we must have that s also restricts to tg
on Y, (K). Of course, this implies that t, is self-conjugate.

(ii) By (8), we deduce that for a Spin structure that extends t; over W,(K), p = 2i
(mod 2 p). Since we consider 0 <7 < p, we have that i = p/2 # 0. Consequently, to
cannot extend to a Spin structure on W, (K). a

3 The proof of Theorem 1.1

We now prove Theorem 1.1 through a case analysis depending on the order of the
purported lens space surgery modulo 3.

3.1 From L(3,1) to L(n,1) when |n| =0 (mod 3)
The goal of this section is to prove:

Proposition 3.1 There is no distance one surgery from L(3,1) to L(n, 1), where
|n| = 3k, except when n = 3 or —6.

Proof Let K be a knot in L(3, 1) with a distance one surgery to L(n, 1), where
|n| = 3k. By Lemma 2.1(iv), we know that K is null-homologous and the surgery
coefficient is =k /1, and by Proposition 2.6, k # 0.

The proof now follows from the four cases addressed in Propositions 3.2, 3.3, 3.4 and 3.5,
which depend on the sign of n and the sign of the surgery on L(3,1). We obtain a
contradiction in each case, except when n = 3 or —6. These exceptional cases can be
realized through the band surgeries in Figures 2 and 3 respectively. a

We now proceed through the case analysis described in the proof of Proposition 3.1.

Algebraic & Geometric Topology, Volume 19 (2019)



2452 Tye Lidman, Allison H Moore and Mariel Vazquez

Proposition 3.2 If k > 2, then L(3k, 1) cannot be obtained by (+k /1)—surgery on a
null-homologous knot in L(3,1).

Proof By Proposition 2.6, 3k cannot be even, so we may assume that L(3k, 1) is
obtained by (44 /1)-surgery on a null-homologous knot K in ¥ = L(3,1) for k odd.
Consequently, there are unique self-conjugate Spin® structures on L(3k, 1), L(3,1)
and L(k,1). By (2), Proposition 2.9 and Lemma 2.10,

©) d(L(3k,1),0) < d(L(3,1),0) +d(L(k,1),0).

Using the d—invariant formula (3), when k£ > 2, we have

—1+3k —1+3 —1~|—k>
4 4 4
which contradicts (9). m|

d(L(3k,1),0)—d(L(3,1),0) —d(L(k,1),0)=

0’

Proposition 3.3 If k > 1, then L(—3k, 1) cannot be obtained by (—k /1)—surgery on
a null-homologous knot in L(3,1).

Proof Suppose that L(—3k, 1) is obtained by (—k/1)—surgery on a null-homologous
knot in L(3,1). By Proposition 2.6, we cannot have that 3k is even. Indeed, in the
current case, the associated two-handle cobordism is negative definite. Therefore, 3k is
odd, and we have unique self-conjugate Spin® structures on L(3k, 1) and L(k,1).

By reversing orientation, we obtain L(3k, 1) by (+k/1)—surgery on a null-homologous
knot in L(—3,1). We may now repeat the arguments of Proposition 3.2 with a slight
change. We obtain that

d(L(3k,1),0) < —d(L(3,1),0) +d(L(k, 1), 0).

By direct computation,
—1+3k n 1 —1+k

4 2 4
Again, we obtain a contradiction. a

> 0.

d(L(3k,1),0)+d(L3,1),0)—d(L(k,1),0) =

Proposition 3.4 If k > 2, then L(3k, 1) cannot be obtained by (—k /1)—surgery on a
null-homologous knot in L(3,1).

Proof As in the previous two propositions, Proposition 2.6 implies that k£ cannot be
even. Therefore, we assume that k is odd. We will equivalently show that if k£ > 3 is
odd, then L(—3k, 1) cannot be obtained by (+k/1)—surgery on a null-homologous
knot in L(—3,1).
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Again, consider the statement of Proposition 2.9 in the case of the unique self-conjugate
Spin® structure on L(3k,1). Writing t for the self-conjugate Spin® structure on
L(-3,1), equations (3) and (7) yield

_ (=L 3k\_ 11 K
2Nyo = d(L(3K.1).0)=d(L(3, 1.0 +d(L(k. 1.0 = (—3+ 5 ) =5 (-3 +7)-
and so Ngo = (k—1)/2. Since Vi o >V, by Property 2.8, we have that Ny o = Vi .

Next we consider Proposition 2.9 in the case that t is self-conjugate on L(—3, 1) and
i = 1. From Property 2.8, we have that V; ; must be either (k —1)/2 or (k —3)/2.
Since Ny = max{V 1,V x—1} = Vi1, the same conclusion applies to N .

We claim that there is no Spin® structure on L(—3k, 1) compatible with (7) and
Ni1 = (k—1)/2 or (k—3)/2. Suppose for contradiction that such a Spin® structure
exists. Denote the corresponding value in Z/3k by j. Of course, j # 0, since j =0
is induced by i =0 on L(k,1).

First, consider the case that Ny ; = (k —1)/2. Applying (7) with i =1 yields

o1 e ) ()

for some 0 < j < 3k. This simplifies to the expression

k(3j+3)=j>+3.
Thus j is a positive integral root of the quadratic equation
fG) = j?=3kj—(Bk=3).
For k > 0, there are no integral roots with 0 < j < 3k.

Suppose next that Ny ; = (k —3)/2. Equation (7) now yields

o= (2 L ()

which simplifies to the expression
k(3j —3) = j2+3.
Thus j is an integral root of the quadratic equation
f() = j*=3kj+ 3k +3).

However, the only integral roots of this equation for k¥ > 0 occur when k = 2 and
j =3, and we have determined that k is odd. Thus, we have completed the proof. O

Algebraic & Geometric Topology, Volume 19 (2019)



2454 Tye Lidman, Allison H Moore and Mariel Vazquez

Proposition 3.5 Ifk =1 or k > 2, then L(—3k, 1) cannot be obtained by (+k/1)—
surgery on a null-homologous knot in L(3,1).

Proof As a warning to the reader, this is the unique case where Proposition 2.6 does
not apply, and we must also allow for the case of k even. Other than this, the argument
mirrors the proof of Proposition 3.4 with some extra care to identify the appropriate
self-conjugate Spin® structures.

Consider the statement of Proposition 2.9 in the case that t is self-conjugate on L(3, 1)
and i =0 on L(k, 1). We would like to determine which Spin® structure on L(—3k, 1)
is induced by (7). As in the previous cases, when k is odd, to is the unique self-
conjugate Spin¢ structure on L(—3k, 1), which corresponds to 0. We now establish the
same conclusion if k is even. In this case, the proof of Lemma 2.10 shows that the Spin©
structures t and t /5, as in Proposition 2.9, give the two self-conjugate Spin® structures
on L(—3k,1). On the other hand, (2) asserts that the numbers 0 and 3k /2 also
correspond to the two self-conjugate Spin® structures on L(—3k, 1). Proposition 2.6
shows that 3k /2 corresponds to the Spin structure that extends over the two-handle
cobordism, while Lemma 2.10(ii) tells us that ty is the Spin structure that does not
extend. In other words, tog corresponds to 0 on L(—3k,1).

Equations (3) and (7) now yield

1 3k\ 1 1 k
2Nyo=d(L(3k, 1), 0)+d(L(3, 1),00+d(L(k, 1),0) = (—5+3 )+ 2+ (=5 +5).
and so Nyo =k /2. Since Vi o >V, x, we have that Ny o = V.

Next we consider Proposition 2.9 in the case that t is self-conjugate on L(3,1) andi =1.
From Property 2.8, we have that V; ; must be either k/2 or (k —2)/2. Since Ny =
max{ Vi1, Vik—1} = Vi1, we also have that Ny =k /2 or (k—2)/2.

We claim that there is no Spin® structure on L(—3k, 1) compatible with Ny ; =k /2
or (k—2)/2 in (7). Suppose for the contrary such a Spin® structure exists corresponding
to j € Z/3k. Again, j # 0.

In the case that Ny ; = k/2, then (7) yields

k= (_% t %) = % + (—% + (2;:)2>,

which simplifies to the expression

k(3j+3)=j>+3.
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As discussed in the proof of Proposition 3.4, there are no integral solutions with k > 1
and 0 < j < 3k.

In the case that Ny = (k —2)/2, equations (3) and (7) now yield

o2 (o Q) L (L ),

which simplifies to the expression

k(3j—3)=j2+3.

As discussed in the proof of Proposition 3.4, there is a unique integral root corresponding
to k = 2 and j = 3. This exceptional case arises due to the distance one lens
space surgery from L(3,1) to —L(6,1) described in [6, Corollary 1.4]% (see also
[48, Table A.5]). i

3.2 From L(3,1) to L(n,1) when |n| =1 (mod 3)
The goal of this section is to prove the following.

Proposition 3.6 There is no distance one surgery from L(3,1) to L(n, 1), where
|n| =3k + 1, except whenn = £1,4 or 7.

As a preliminary, we use (1) to explicitly compute the d—invariant formulas that will
be relevant here. For k£ > 0,

1| (=1+2j-3k)?

(10) ALk +1.1). ) ==+ ST
(1) d(LGK +1.1).0) =2,

(12) d(LGk+1.3).1) =%

(13) d(LG3k +1,3),4) = %

We will also need the following proposition about the d—invariants of surgery, proved
in Proposition 4.2 in Section 4. This can be seen as a partial analogue of Proposition 2.9
for homologically essential knots.

2While this is written as L(6,1) in [6], Baker was working in the unoriented category.
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Proposition 3.7 Let K be a knot in L(3,1). Suppose that a distance one surgery
on K produces an L—space Y’, where |H(Y')| = 3k + 1 is odd. Then there exists a
nonnegative integer Ny satisfying

(14) d(Y',t) +d(L(3k +1,3),1) = 2Ny,
where t is the unique self-conjugate Spin¢ structure on Y.

Furthermore, if Ny > 2, then there exists t' € Spin°(Y’) and an integer Ny equal
to Ng or Ny — 1 satistying

(15) d(Y' . t)+d(L(3k+1,3),4) =2Nj;.

With the above technical result assumed, the proof of Proposition 3.6 will now follow
quickly. The strategy of proof is similar to that used in the case of L(3k,1).

Proof of Proposition 3.6 By Lemma 2.4 and Proposition 2.6, we see that » must be
odd or n = 4. In the latter case, we construct a coherent band surgery from the torus
knot 7'(2, 3) to T(2,4) in Figure 3, which lifts to a distance one surgery from L(3, 1)
to L(4,1). Therefore, for the remainder of the proof, we assume that n is odd. We
also directly construct a noncoherent band surgery from 7°(2, 3) to 7'(2,7) and the
unknot in Figure 2, so we now focus on ruling out all even values of k > 4.

We begin by ruling out distance one surgeries to +1L(3k + 1, 1) with k > 4. Since
n = 3k + 1 is odd, there is a unique self-conjugate Spin¢ structure on L(3k +1,1).
By (11), (12) and (14), we have Ny = k/2. Since k is at least 4, we have No > 2. We
claim that there is no solution to (15) with Ny =k /2 or (k —2)/2. This will complete
the proof for the case of +L(3k +1,1).

First, consider the case of Ny =k /2. Simplifying (15) as in the proof of Proposition 3.4
we obtain
J2P—(+3k)j+(2-3k)=0.

It is straightforward to see that there are no nonnegative integral roots of the quadratic
equation for positive k.

Next, we consider N = (k —2)/2. In this case, (15) implies
JE—=(1+3k)j+ @Bk +4)=0.

The roots are of the form

j=31+3k £ V92 -6k —15).
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It is straightforward to verify that for & > 4, the lesser root is always strictly between
1 and 2, while the greater root is strictly between 3k — 1 and 3k . Therefore, there are
no integer solutions. This completes the proof for the case of +L(3k + 1, 1).

To complete the proof of Proposition 3.6, it remains to show that L(—3k + 1, 1), with
k > 0 even, cannot be obtained from a distance one surgery along a homologically
essential knot in L (3, 1). Proposition 3.7 establishes

(16) d(L3k +1,1),0) = d(L(3k +1,3),1) — 2N,

for some nonnegative integer Ngy. However, from (11) and (12), we have that

d(LGk +1,1),0) = % > ’i — d(LGk+1,3),1),

which contradicts (16). m|
3.3 From L(3,1) to L(n,1) when |n| = —1 (mod 3)
In this section, we handle the final case in the proof of Theorem 1.1:

Proposition 3.8 There is no distance one surgery from L(3,1) to L(n, 1), where
|n| =3k —1>0, except when n = £2.

As before, we state the d—invariant formulas that will be relevant for proving this
theorem first:

1, (2i—3k+1)?

(18) d(LGk —1,3),1) = kT_z’
2
(19) d(LGk—1,3),4) = %

The above follow easily from (1).

Next, we state a technical result about the d—invariants of surgery that is similar to
Proposition 3.7 and that we will also prove in Section 4 (Proposition 4.1).

Proposition 3.9 Let K be a knot in L(3,1). Suppose that a distance one surgery
on K produces an L-space Y', where |Hy(Y')| = 3k —1 > 0. Then there exists a
nonnegative integer No and a self-conjugate Spin® structure t on Y’ such that

(20) d(Y',t)=d(L(3k —1,3),1)—2N,.

In the case that k is odd, if t # t for some self-conjugate t, then d(Y', 1) = %.
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Furthermore, if Ny > 2, then there exists another Spin¢ structure t' on Y’ and an
integer N1 equal to Ny or Ny — 1 satisfying

(21) dY',¢)=d(L(3k—1,3),4)—2Nj.
With this, the proof of Proposition 3.8 will be similar to the previous two cases.

Proof of Proposition 3.8 In the case that n = 2, we may construct a noncoherent
banding from 7°(2, 3) to the Hopf link, as shown in Figure 3, which lifts to a distance
one surgery from L(3,1) to L(2,1) = L(—2,1). Therefore, we must rule out the case
of n =+3Bk—1) with k > 2.

The proof will now be handled in two cases, based on the sign of n. First, we suppose

that +L(3k — 1, 1), with k > 2, is obtained by a distance one surgery on L(3,1). By

Proposition 2.6, we only need to consider the case that 3k — 1 is odd. Using (18), we

compute

3k—-2
4

d(LGk—1,1).0) = > % — d(LGk—1.3).1).

This contradicts Proposition 3.9.

Now, we suppose there is a distance one surgery from L(3,1) to L(=3k —1,1)
with kK > 2. By Lemma 2.2, we may assume that n is even. We begin with the case
of k = 3. Lemma 2.1 implies that if —L(8, 1) was obtained by a distance one surgery,
then the linking form of —L(8, 1) must be equivalent to %. This is impossible since 5
is not a square mod 8. Thus, we restrict to the case of k > 5 for the rest of the proof.

Proposition 3.9 and the fact that d(L(—3k —1,1),0) # % imply that
—d(L(3k—1,1),0) =d(L(3k—1,3),1)—2Ny

for some nonnegative integer Ny. We compute from (17) and (18) that

k—1
No="5-.

Since we are in the case of k£ > 5, we may apply (21). Combined with (19), this yields

1_@2j=3k+D?_3k2-19k+18
47 4Gk—1) ~  4(3k-1) b
for some 0 < j < 3k — 1. Equivalently,
Ny = S5+ j4j2—Tk—3jk43k?
= 23k—1) '

Here Ny =(k—1)/2 or (k—3)/2.
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In the case of (k —1)/2, we are looking for integral roots of the quadratic equation
SG) =72+ (1 =3k) + (4= 3k).

For k > 5, there are no roots between 0 and 3k — 1. For the case of (k—3)/2, we are
instead looking for integral roots of the quadratic

() =%+ j(1=3k)+ 3k +2).

There are no integral roots in this case for k > 5. This completes the proof. a

4 The mapping cone formula and d—invariants

In this section, we prove the following two key technical statements, which were used
above in the proof of Theorem 1.1 in the cases of |n| = 1 (mod 3). These provide
analogues of Proposition 2.9 for certain surgeries on homologically essential knots
in L(3,1).

Proposition 4.1 Let Y = L(3,1) and suppose that Y’ is an L-space obtained from a
distance one surgery on a knot in Y, where |H{(Y')| = 3k — 1 with k > 1. Then there
exists a nonnegative integer No and a self-conjugate Spin® structure t on Y’ satisfying

(22) d(Y',t) =d(L(3k—1,3),1)—2N,.

Further, if Ny > 2, then there exists an integer N1 satistying No > N1 > Ny — 1 and
(23) d(Y',t+PD[u]) = d(L(3k —1,3),4)—2N;.

Here, [u] represents the class in Hy(Y') induced by the meridian of the knot.
Moreover, if t # t for a self-conjugate Spin® structure t, then d(Y', ) = %.
Proposition 4.2 Let Y = L(3, 1) and suppose that Y' is an L-space obtained from a

distance one surgery on a knot in Y, where |Hy(Y")| = 3k + 1 with k > 0. Then there
exists a nonnegative integer No and a self-conjugate Spin® structure t on Y’ satisfying

(24) d(Y',t) +d(L(3k +1,3),1) = 2Ny.

Further, if Ny > 2, then there exists an integer N satisfying Ny > N; > Ny — 1 and
(25) d(Y',t+PD[u]) +d(L(3k +1,3),4) = 2N;.

Here, [u] represents the class in Hy(Y') induced by the meridian of the knot.

Moreover, if t # t for a self-conjugate Spin® structure t, then d(Y',t) = %.
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Remark 4.3 We expect that the conclusions of these two propositions hold indepen-
dently of Y’ being an L—space and the value of Nj.

The general argument for the above propositions is now standard and is well known
to experts. The strategy is to study the d—invariants using the mapping cone formula
for rationally null-homologous knots due to Ozsvéth and Szabé [58]. In Section 4.1,
we review the mapping cone formula. In Sections 4.2, 4.3 and 4.4 we establish certain
technical results about the mapping cone formula analogous to properties well-known
for knots in S3. Finally, in Section 4.5, we prove Propositions 4.1 and 4.2.

4.1 The mapping cone for rationally null-homologous knots

In this subsection, we review the mapping cone formula from [58], which will allow us
to compute the Heegaard Floer homology of distance one surgeries on knots in a rational
homology sphere. We assume the reader is familiar with the knot Floer complex for
knots in S3; we will use standard notation from that realm. For simplicity, we work in
the setting of a rational homology sphere Y. (As a warning, Y will be —L(3, 1) when
proving Proposition 4.2.) All Heegaard Floer homology computations will be done
with coefficients in F = Z /2. As mentioned previously, singular homology groups are
assumed to have coefficients in Z, unless otherwise noted.

Choose an oriented knot K C Y with meridian x and a framing curve A, ie a slope A
on the boundary of a tubular neighborhood of K which intersects the meridian © once
transversely. Here, A naturally inherits an orientation from K. Let Y’ denote the result
of A—surgery.

We write Spin‘(Y, K) for the relative Spin¢ structures on (M, dM), which has an
affine identification with H2(Y, K) = H*(M,dM). Here, M = Y — N(K). If K
generates Hq(Y), then Spin®(Y, K) is affinely isomorphic to Z. In our applications,
this will be the case.

There exist maps Gy, 4 g: Spin®(Y, K) — Spin®(Y) satisfying
(26) Gyxk (¢ +K)=Gyxk () +ik,

where k € H?(Y, K) and i: (Y,pt) — (Y, K) is inclusion. Here, —K denotes K with
the opposite orientation. We have

Gy,—k () = Gy,x (§) +PD[A].

If Y/ =Y, (K) is obtained by surgery on K, we will write K’ or K for the core of
surgery.
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Associated to £ € Spin°(Y, K) is the (Z @ Z)filtered knot Floer complex C¢ =
CFK*(Y, K, &). Here, the bifiltration is written (algebraic, Alexander). We have
Cepp[u] = Ce[(0, —1)]; ie we shift the Alexander filtration on Cg by one. Note that

not every relative Spin® structure is necessarily related by a multiple of PD[u], so we
are not able to use this to directly compare the knot Floer complexes for an arbitrary
pair of relative Spin¢ structures.

For each £ € Spin‘(Y, K), we define the complexes A7 = Cg{max{i, j} > 0} and
B;’ = C¢{i = 0}. The complex Bg‘ is simply CF* (Y, Gy,k(§)), while Ag’ represents
the Heegaard Floer homology of a large surgery on K in a certain Spin® structure,

described in slightly more detail below.

The complexes A; and B; are related by grading homogenous maps

v;: A; — B; and h;: A; — B;+PD[A]‘
Rather than defining these maps explicitly, we explain how these can be identi-
fied with certain cobordism maps as follows. Fix n >> 0 and consider the three-
manifold Y43 (K) and the induced cobordism from Y, 4, (K) to Y obtained
by attaching a two-handle to Y, reversing orientation, and turning the cobordism
upside down. We call this cobordism W, , which is negative definite. Fix a genera-
tor [F] € Hy(W,,Y) such that PD[F]|y = PD[K]. Equip Y, (K) with a Spin®
structure t. It is shown in [58, Theorem 4.1] that there exist two particular Spin®
structures v and h = v 4+ PD[F] on W, which extend t over W, and an association
E: Spin‘ (Yyu+2(K)) — Spin‘(Y, K) satisfying the commutative squares

CF+(Yn/A+}»(K)v t) — Ag_ CF+(Ynu+A(K)7 t) = Ag‘
CFT (Y, Gy,k () —— B} CET (Y. Gy—k (©) — B oy

where £ = E(t). Here, fy; . denotes the Spin® cobordism map in Heegaard Floer
homology, as defined in [56].

More generally, there exists a map Ek ,: Spin(W,) — Spin°(Y, K) such that
if v and b are as above, then

(28) Egna(0)=§ and Eg,)(h) =&+ nPD[u]+PD[A].
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To make the notation more suggestive, we will write vg and g for the associated
Spin® structures on W, appearing in (27).

Recall that for any Spin¢ rational homology sphere, the Heegaard Floer homology
contains a distinguished submodule isomorphic to 7+ = F[U, U]/ U - F[U], called
the rower. Since W, is negative definite, on the level of homology, v; induces a grading
homogeneous nonzero map between the towers, which is necessarily multiplication
by UV for some integer N > 0. We denote this integer by Ve. The integer Hy is
defined similarly. These numbers V¢ are also known as the local s—invariants, originally
due to Rasmussen [60]. A direct analogue of [60, Proposition 7.6] (Property 2.8 above),
using Cg1pp(u] = C¢[(0, —1)], shows that for each & € Spin“(Y, K),

(29) Ve Z Vetppju) = Ve — 1.
We are now ready to define the mapping cone formula. Define the map

B0 e:Paf P Ea)e E vl @)+ E+PDRL AL (@),
; :

where the first component of (£, a) simply indicates the summand in which the element
lives. Notice that the mapping cone of ® splits over equivalence classes of relative
Spin® structures, where two relative Spin® structures are equivalent if they differ by an
integral multiple of PD[A]. We let the summand of the cone of ® corresponding to the
equivalence class of & be written X;. Ozsvith and Szabd show that there exist grading
shifts on the complexes Ag’ and B; such that Xg’ can be given a consistent relative
Z—grading [58]. In fact, these shifts can be done to X; with an absolute Q—grading.
While we do not describe the grading shifts explicitly at the present moment, it is
important to point out that these shifts only depend on the homology class of the knot.
With this, we are ready to state the connection between the mapping cone formula and

surgeries on K.

Theorem 4.4 (Ozsvith and Szabd [58]) Let € € Spin°(Y, K). Then there exists a
quasi-isomorphism of absolutely graded F[U]-modules,

(31) X{ ~ CFF (Yi(K). Gy, (5),x;. ().

Finally, we remark that the entire story above has an analogue for the hat flavor of
Heegaard Floer homology. We denote the objects in the hat flavor by A, £ X g, Ug, etc.
The analogue of (31) is then a quasi-isomorphism

(32) Xe ~ CE(Y;.(K), Gy, (k).k, (£))-
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+ + +
h As—s PD[m] N As N As+5 PD[m]
T e [N e
Ve_5pDim) Ve Ve+5pPD[M]
+ + +
BS—S PD[m] BE Bs+5 PD[m]

Figure 4: The mapping cone formula for surgery on a knot in L(3,1)
resulting in a three-manifold Y’ with |H;(Y’)] = 5 corresponding to the
Spin® structure Gy g/ (§).

4.2 Preliminaries specific to knots in L(3, 1)

Through Sections 4.2-4.4, K will denote a homologically essential knotin ¥ = L(3, 1)
and A will denote a framing such that Y/ =Y; (K) is an L-space with | H; (Y')| =3k—1
for some k > 0. The case of | Hy(Y")| =3k +1 is dealt with similarly, and the necessary
changes are described in Section 4.5. Recall we give A the orientation induced by K.

The mapping cone formula for any homologically essential knot in L(3, 1) is easier
to describe than in generality. We have that Spin®(Y, K) =~ Z. Write [m] for the
generator of Hy (M) such that [u] = 3[m] (instead of —3[m]). Consequently, since
[i]-[A] = 1, we have that [A\] = (3k — 1)[m] by Lemma 2.1(iii). Therefore, for fixed

& € Spin“(Y, K), we see that the mapping cone X; consists of the Ag, and Bg/ where

& —& =Bk —1)j-PD[m] for some j € Z. For a more pictorial representation, see
Figure 4 for the case of k = 2.

Ozsviath and Szab6 show that for fixed £, there exists N such that v;Jrj.PD[M] and
h;_j.PD[“] are quasi-isomorphisms for j > N. Using this, the mapping cone formula
is quasi-isomorphic (via projection) to the quotient complex depicted in Figure 5. We

will denote the truncated complex by X;’N , which now depends on &, even though
the homology does not. Note that the shape of the truncation is special to the case that
H; (Y3 (K)) has order 3k — 1. Were the order to be 3k + 1, there would instead be

+ + + + +
Ae_neppy Ae—v—1)ppp] Ag Ag o Agy NPDIA]

S TSUININININ

+
H £+PD[A] £+ N-PD[A]

Figure 5: The truncated mapping cone X;’N computing the complex
CFt (Y3.(K), Gy, (k).k, (§)) in the case that [H;(Y)(K))| = —1 (mod 3).

Algebraic & Geometric Topology, Volume 19 (2019)



2464 Tye Lidman, Allison H Moore and Mariel Vazquez

one more B; than A; and h; would translate by —(3k + 1) PD[m]. This issue will
be dealt with in Proposition 4.2 by reversing orientations and performing surgery on
knots in —L(3, 1) instead.

By [12, Lemma 6.7], since Y, (K) is an L—space obtained by a distance one surgery in
an L—space, we have that

(33) Hi(Ag) =T, H*(A;) ~ Tt forall &£ e Spin°(Y, K).

Indeed, the orientation conventions from [12, Lemma 6.7] are specified by the condition
that [] and [A] are positive multiples of the same homology class, which is the
setting we are in. Of course, since Y = L(3,1) is an L-space, we also have that
H, (Eg) ~TF and Hy (B,(),+ ) == 7 for all £. Equation (33) implies that the Heegaard
Floer homology of Y (K) is completely determined by the numbers Vg and Hg for
each & € Spin“(Y, K).

4.3 Spin°® structures

In order to understand the Heegaard Floer homology of surgery using the mapping cone,
we must understand the various Spin® and relative Spin® structures that appear. These
are well understood in the setting of a null-homologous knot, and are likely known to
experts, but we include them here for completeness. As in the previous subsection, K
will denote a homologically essential knotin ¥ = L(3, 1) and A is a framing such that
Y’ =Y, (K) is an L-space with |H;(Y")| = 3k — 1 for some k > 0.

Fix n > 0 throughout. By fixing the appropriate parity of 7, we can compute from
Lemma 2.1 that “large positive surgery”, ie Y43 (K), has a unique self-conjugate
Spin® structure. We denote this by to. Further, let £y = Z(to) be the induced relative
Spin® structure as in (27). Recall that for £ € Spin®(Y, K), we write vg and bg to be
the Spin® structures on W, defined above (27).—

Proposition 4.5 Let [y] € H{(M). Then Vg, pp[y] = Hey—pp[y]-
This is the analogue of the more familiar formula Vy = H_g for knots in § 3

Proof We will use an observation of Ni and Vafaee from [52, Proof of Lemma 2.6].
Consider the pair (W,, H), where H is the 2-handle attached to Y x I. Note that H
is contractible, so we see that H>(W,)) = H*(W,), H) = H?(Y, K). By excision, we
now see that H2(W,)) is naturally identified with H?(M,IM) = Z. We define € to
be this identification. The assignment Eg , 3: Spin®(W,) — Sp_lnc (Y, K) discussed
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above (28) is affine over €; ie Ex ,(5) — Eg 2 (8") = e(s—s'). It follows from (28)
that €(PD[F]) = n PD[u] + PD[A]. For shorthand, we write E for Eg , ;.

By the conjugation invariance of Spin® cobordism maps in Floer homology [56,
Theorem 3.6], it suffices to show that vg, 4 pp[,] and bg _pp[,] are conjugate Spin®
structures on W, . Because W, is definite and H?(W,)) = Z, the Spin°—conjugation
classes are completely determined by 012. First, we will establish that bg, = bg,, ie the
case of [y] =0.

It follows from [58, Proof of Proposition 4.2] that vg, and bg, are characterized as
the two Spin® structures on the negative-definite cobordism W, extending t; which
have the largest values of 012. Indeed, there it is shown that every Spin¢ structure
extending to is of the form bg, + 7 -PD[F] and that one of bg, or hg, maximizes the
quadratic function ¢y (vg, +n-PD[F ])2. If there were an additional Spin® structure
sharing the same value of (312 with one of vg, or fg,, this would imply that the first
Chern class of the maximizing Spin® structure would be 0, forcing W, to be Spin. By
Lemma 2.4, this implies that | H; (Y, 43 (K))| is even, contradicting the choice of n
made at the beginning of this subsection.

Of course ¢ (050)2 = (550)2 and similarly for b, . Because t¢ is self-conjugate on
Y+ (K), we deduce that either bg, = bg, and Eéo = g, Or bg, = vg, and Héo =bg,-
Since bg, = vg, + PD[F], it must be that vg, = bg,, proving the desired claim for
PD[y] = 0.

Now, fix an arbitrary [y] € H{(M). We see that
E(bg,—ppfy]) = £ (vgy—pp[y]) + 1 PD[11] + PD[A]
=&y —PD[y]+ nPD[u] + PD[A]
= E(bg,) —PD[y]
= E(bg, —€ ' (PDy))
= E(vg, +€¢ ' (PD[y]),

where the first three lines follow from (28), the fourth is the affine action of H 2(Wn/)
on Spin®(W,), and the fifth is because bg, = bhg,. Since E is injective, we see
that hg,—pp[y] = g, +€ ' (PD[y]). On the other hand, E(vg, + ¢ 1 (PD[y])) =
E(vg,+pp[y)) because E is affine over €, and thus vg, + e~ 1(PD[y)) = D¢, +PD[y]-

This establishes that ve, 1 pp[,] and bg,_pp[y] are conjugate, which is what we needed
to show. a
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Ly

Figure 6: Surgery on the link L = L; U L, C S3 is equivalent by a slam-
dunk move to surgery along the knot J C S3 (left). The surgery diagram
also shows integral surgery on the knot Ky in L(3, 1) yielding a manifold
with |H;| =3k —1.

Remark 4.6 By the proof of Proposition 4.5, if ¢4, t— € Spin® (¥}, 41 (K)) are such
that E(ty) = &y = PD[y] for [y] € Hi (M), then t4+ and t{_ are conjugate.

In order to prove Proposition 4.1, we will need to identify self-conjugate Spin® struc-
tures on Y3 (K) in the mapping cone formula. This will be done in Lemmas 4.7 and 4.11.
Before doing so, it will be useful to describe a particular example of Y) (K) by a
concrete surgery diagram. (See Figure 6.) Let LY = L U L, denote the Hopf link
connect sum with a knot J C S3 at L;. We may consider Y as (—3/2)—surgery
on L,, where K is the image of L under the surgery. We will write this special knot
in L(3,1) as K. In this case, A is represented by the framing k — 1 on L, and after
a slam-dunk move, we see that the resulting manifold is S(33 k—1) /3(J ). In general,
to compute (p/q)—surgery on a knot J in S3 using the mapping cone formula, we
follow the recipe of Ozsvath and Szabd. First, define

zzz_H
q q q

Then, consider surgery on the link L7, where L, has coefficient —g/r and L; has
integral surgery coefficient | p/q].

In particular, Ky will be an important knot to understand later on, where U is the
unknot in S*3. This is why the d—invariants of L(3k —1,3) show up in Proposition 4.1.
Finally, we note that Ky is a core of the genus one Heegaard splitting of L (3, 1).

Lemma 4.7 Let £ be as above. Then Gy, k), k, (§0) is a self-conjugate Spin®
structure on Y) (K).

Proof By assumption, £ = E(tg) is the relative Spin¢ structure induced by the
unique self-conjugate Spin® structure on the large positive surgery Y, (K). Since
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the statement is purely homological, it suffices to prove the lemma in the case of a
particular model knot, provided that this knot is homologically essential in L(3,1).
Thus we consider the model knot Ky as described above. In our case, we are interested
in the +(k—1)—framed two-handle attachment along Ky C —L(3,2) illustrated in
Figure 6. The mapping cone formula in this case has been explicitly computed in [58]
and can be completely rephrased in terms of the knot Floer complex for the unknot
in §3. More precisely, this is the mapping cone formula for ((3k—1)/3)-surgery along
the unknot in S3.

Write Aj‘ for the Aj—complexes and V; and H; for the numerical invariants Vy and Hj
coming from the mapping cone formula for integer surgeries along the unknot in S3,
computed in [57, Section 2.6]. The proof of [58, Theorem 1.1] shows that there exists
an affine isomorphism g: Spin“(Y, Ky) — Z such that

+_ g+
G4 A =Alee)3)

for each £ € Spin®(Y, Ky ). Furthermore, we have Ve = V| 4(¢)/3) and He = H | g(¢)/3] -
In this setti@le Spin® structure Gy, (k),k, (§) is, up to conjugation, the Spin®
structure on L(3k — 1,3) corresponding to g(£§) modulo 3k — 1. We claim that
g(&p) = 1, which is sufficient since on L(3k — 1, 3), the number 1 corresponds to a
self-conjugate Spin® structure by (2).

From [57, Section 2.6], we have

0 ifs>0 s ifs>0
35 - =% and M, = =Y
(33) Vs {—s ifs <o, M4 7 {o if s <0.

In order for the Vs and Hy to be compatible with Proposition 4.5 and (29), since
& |g(§£)/3], we must have that g(&y) = 1, completing the proof. a

4.4 L-space surgeries and truncation

We make the same hypotheses on K C Y = L(3, 1) as in the previous two subsections.
While (33) states that Hy (X;) ~ H, (A;) ~ T for each £ in the case that Yy (K) is
an L—space, we have not determined “where” in the mapping cone the nonzero element
of lowest grading is supported. The analogous question is well known for surgery on
knots in S3 (see [53] for example), but is more subtle in the present setting, since we
cannot directly compare Vg and Ve pp[y). Indeed, & and & + PD[A] do not differ by a
multiple of PD[u]. The next lemma will help us to understand this in the case of [£g].
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Before stating the lemma, observe that there are natural quotient maps

O X{ —>4f and Mg X — A4,

for any & € Spin“(Y, K).

Lemma 4.8 Suppose that Yy (K) is an L-space. Then the projection Hg;: Xg; — Ag;
is a quasi-isomorphism.

Proof It suffices to prove that f £, 18 @ quasi-isomorphism.

First, suppose that Vg, > 0. Since Hy (A;:)) = 7, this is equivalent to Vg, vanishing
on homology. By Proposition 4.5, we see that il\g:o vanishes on homology as well. For
notation, write Q = ker(ﬁ g,)- Using the exact triangle

H.(0) Hi(Xg,)
(g, +i7;0x ~ 450)
Hi(Ag,)

we see that ﬁéo is surjective on homology. Since H, (?Aigo) and H, (/T g,) are both
one-dimensional, we see that ITg, must be a quasi-isomorphism.

Next, suppose that Vg, and }Algo are nonzero on homology. Recall that the quotient
from X g, to the truncated complex Xév described above is a quasi-isomorphism. There-
fore, we will show that the prOJectlon from XY £ 1O A, g, 18 a quasi-isomorphism. Note the

kernel of the quotient from X?’ to Aéo is a sum of two complexes, Q4 and Q_, where

04 = GB Agy+j-pD[A] D @ By+(j)-pDlA)
j=1 Jj=1

= @ Ag,+jpo[r] @ Bey+(j+1)-PD[A]-
j=—N j=-N

These complexes are shown in Figure 7. Note that Vg, j.pp[a] (respectively h £0-+j-PD[A])
is a quasi-isomorphism for all 0 < j < N (respectively —N =< j < 0) if and only if
O (respectively Q) is acyclic. Note that if some Vg, j.pp[z] Vanishes on homology
for 0 < j < N, then up to homotopy, Q4 splits into a sum of two complexes, each
with odd Euler characteristic, and thus dim Hx(Q+) > 2. We have an analogous result
for ﬁgOJr j-pp[a] and Q—. Note that these splittings exist because we are working with
complexes over F.
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Agy—NrDpy] " Agy—ppi2] Aggapop) Agy+ N-PDD]
\vl\vl X vl \vl\ lv
h h h h
i Bg,—ppa] By, Bgy+ppa] s Bgy+N-pDA]

Figure 7: The kernel of the quotient from Xé‘(’) to A, & - The left summand
(respectively right summand) corresponds to Q_ (respectively Q).

If Q4 (respectively Q_) is not acyclic, then by Proposition 4.5, Q_ (respectively Q)
is not acyclic. Therefore, we see that if either O or Q_ is not acyclic, then H*(Q)
has dimension at least four. This contradicts the fact that H (XN ) = Hy (Aéo) =

due to the exact triangle between H.(Q), Hx (XN ) and Hy (Aéo) Therefore, Q is
acyclic, and we see that the desired projection is a quasi-isomorphism. a

The above argument shows that if Vg, > 0, then Vg 4 j.pppn) = Hg,—jpppr) = 0 for
all j > 0 when Y, (K) is an L—space. This will be useful for proving an analogue of
Lemma 4.8 for &y + PD[u], which we now establish.

Lemma 4.9 Suppose that Y (K) is an L—space and Vg, > 2. Then the projection

'X+

+ + . . . .
HEO+PD[M]- £o-+PD[u] Aéo 4pD[p] 52 quasi-isomorphism.

Proof As discussed above, Vg, j.pppa) = 0 for all j > 0. By (29),

Veo+PD[u]+j-po] = 0

for all j > 0. Therefore, the subcomplex consisting of the /Ig and E; with & =
& + PD[u] + j - PD[A] with j > 0 is acyclic, so we quotient by this subcomplex.
Denote the result by X/, which has one-dimensional homology.

By (29) and the assumption that Vg > 2, we have that VEOJFPD[M] > 1, and thus
U€O+pD[‘L] is trivial on homology. Choose a € A$0+pD[M] and b € B§0+pD[M] such
that a is a cycle generatlng the homology of AEO+PD[M] and 0b = Vg, pp[y)(a). Then
a+beX isa cycle since h, go+PD[u] =0 in X’. Of course, a+ b cannot be a boundary
in X/, since a is not a boundary, and we conclude that a 4+ b generates the homology
of X'. Since the projection onto Aéo+PD[M] sends a + b to a, we see that the projection
from X’ to AEOJFPD[M] is a quasi-isomorphism. This is sufficient to yield the desired
result. i

Remark 4.10 In the specific case that K = Ky in L(3, 1), it can easily be computed

from (35) that T is a quasi-isomorphism, even though Vg, = 0.

£0+PD[u]
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2&0—3 PD[m] /féo—PD[m] 2&0+PD[m] ’Zéo+3 PD[m]
Bgy—pp[m] B+ pD[m] By 43pD[m]

Figure 8: When k = 1, up to homotopy, XEO +pp[] Splits off this summand.

It remains to prove one more lemma before we are able to prove Proposition 4.1. For
notation, when 3k — 1 is even we write [0] = ((3k —1)/2)[m] = %[)L].

Lemma 4.11 Suppose that Y’ is an L—space obtained from a distance one surgery
on L(3,1) with |H,(Y')| = 3k — 1 even. Then:

(1) Vegy+pp[e; = 0.

(i) IIF £0+PD[0] is a quasi-isomorphism.

(iii) Gy k(&0 + PD[0)) is a self-conjugate Spin® structure on Y.

Proof (i) Suppose that Vg, 4ppig) > 0. By Proposition 4.5, we have Hé’o —pp[g] > 0.
Following the same arguments as in Lemmas 4.8 and 4.9, we see that Vv £o-+PD[6] splits,
up to homotopy, into a direct sum of three complexes with odd Euler characteristic.
This contradicts the fact that Y’ is an L—space.

(ii) We first deal with the case of k > 3. It suffices to show Hg,pp[g) and Ve, _pp[e)
are positive, because in that case, up to homotopy, XEOJFPD[G] splits off a summand
containing ASO_PD[Q], A§0+pD[9] and B$o+PD[0] whose homology is necessarily rank
one. Since Vg, pp[g] = Hg,—pp[e] by Proposition 4.5, the result follows. By another
application of Proposition 4.5, it suffices to simply establish the positivity of Hg,pp[g]-
We will do this by showing that Hg,ppjg] is strictly greater than Vg, ppyg]-

Fix n > 0. Let t, denote the Spin® structure on Y, 4, (K) such that E(ts) =
& +PD[0]. Let t4. denote Gy,+ k (§o + PD[#]) on Spin®(Y). By [56, Theorem 7.1],

d(L(3.1),t4) = d(Ypu42.(K), ts)

c1(vgy+ppie)” — 30 (W,) —2x(W,)
= 4 — 2Vy+pD[6);

d(L(3’ 1)’ t—) - d(YnM-i-)»(K)’ t*)

_c1(bgyrppe))’ — 30 (W,) —2x(W,,)
= 1 — 2Hg, +ppjo)-
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since vé?; +PD[O] (respectively hg; +PD[9]) is given by the Spin® cobordism map in-
duced by v, 1pp[g] (respectively bg,ppie)). Consequently, He,pp[g] — Ve,+pD[9]
is completely determined by homological information, so it suffices to show that
Heg, +pp[g) > Vey+pp[g] for our model knot Ky in L(3, 1), described in Section 4.3.
Recall from the proof of Lemma 4.7 that Ve = V|¢(¢)/3) and Hg = H |4 (¢)/3) - and that
g(&p) = 1. Using this and (35), since k > 3 we have that

3k+1
(36) Heyvpplo) = H|3k+1)/6] = V|Gk+1)/6] T LTJ

> V| (3k+1)/6)
= Veo+pD[o]-
This completes the proof in the case that & > 3.

It remains to deal with the case of & = 1. This will not be needed in the application of

Proposition 4.1, but we include it for completeness. In this case, [A]=2[m] and [0]=[m].

While we do not have the strict inequality of (36), a similar computation shows that
Veo—ppio1—ppin] = Heo+ppio1+PDIA] = Veo+pDI0T+PDR] + 1 > 0.

From this, it follows that Xéo +ppie] splits off, up to homotopy, the summand in Figure 8.
Using Proposition 4.5, we can apply similar arguments to Lemmas 4.8 and 4.9 to deduce
that T1 £,+PD[6] 18 a quasi-isomorphism, which is sufficient.

(iii) Recall that Gy’ g/ (&) is self-conjugate by Lemma 4.7. Further, in H 2(Y') we
have that i * PD[A] = —i * PD[6]. From (26) we obtain

Gy, k' (Eo +PD[0]) = Gy’ k' (5) +i™ PD[0)]
= Gy’,g'(§0) —i* PD[f)]
= Gy, k(50 + PD[0]). O

4.5 The proofs of the surgery formulas

Proof of Proposition 4.1 We first establish (22). Suppose that Y’ is an L-space
obtained from a distance one surgery on aknotin L(3, 1), where |H; (Y')| =3k—1>0.
We would like to see that if t = Gy’ g/(§o), then

d(Y',t) =d(L(3k —1,3),1) —2V,.
By Lemma 4.7, we know that t is self-conjugate, so this will give the desired result.

Since H;; is a quasi-isomorphism (Lemma 4.8), the d—invariant of Y’ in the Spin©
structure Gy~ g’(§o) is computed by the minimal grading of a nonzero element
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of H, (A+) after the appropriate grading shift mentioned above Theorem 4.4. Notice
that before this grading shift, this minimal grading in H (A+) is given by exactly
d(Y,Gy, kg (&) —2Vg,. As described in [58, Section 7.2], the absolute grading shift
on the mapping cone depends only on homological information, not on the isotopy
type of the knot. Let o(§) denote the grading shift applied to A; in the mapping cone

formula, which does not depend on K. In particular,

(37) d(Y', Gy g (§0)) = d(Y,Gy,k (£0)) —2Vg, + 0 (§0).

Consider the case of the knot Kyy. By the proof of Lemma 4.7, we have that
= L(3k —1,3), Vg, =0, and 1 corresponds with the Spin® structure Gy’ g (£o).
Consequently,

0(§0) =d(L(3k—1,3),1)=d(Y, Gy,k (§))
For a knot K C Y satisfying the hypotheses of the proposition, (37) now implies

dY',t)y=d(L3k—1,3),1) —2Vg,.
This establishes (22).

The proof of (23) now follows the same strategy. The only changes to the argument
are that Lemma 4.8 is replaced by Lemma 4.9 and Remark 4.10, and we must use
that the Spin® structure on L(3k —1,3) given by Gy, K}, (&0 + PD[u]) corresponds,
up to Spin°—conjugation, with 4. To see this final claim, we use [17, Section 6],
where it is shown that the difference of the Spin® structures corresponding to i and j
on L(3k —1,3) is +i*((i — j)k -PD[m]) € H*>(L(3k —1,3)). (This is true even in
the case that 3k — 1 = 2 < 3.) Since [u] = 3[m] and GY/,K{J (&o) is self-conjugate
on L(3k —1,3), we have the desired claim. Since Gy, K, (&) corresponds to i =1
on L(3k —1,3), the claim follows.

Finally, we must establish that if (Y, %) # % for a self-conjugate Spin® structure t,
then t = t. This only requires proof in the case that 3k — 1 is even. Either t = t
or t = Gy g/(£§o + PD[f]) by Lemmas 4.7 and 4.11. Applying the same argument as
in the above cases, it follows from Lemma 4.11 that

Z.

Since d(Y’,t) # d(Y', Gy k(€0 + PD[0])) by assumption, we have that t =1. O

d(Y'. Gy (0 + PDIO]) = d (L3 —1.3), L) = ]

3What is denoted as [] in this article is denoted [1] in the notation of [17]. Conveniently, the instances
of k used in each article agree in the case of L(3k —1,3).
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Proof of Proposition 4.2 The proof follows similarly to that of Proposition 4.1. The
main issue is that, as described in Lemma 2.4, the two-handle attachment from L(3, 1)
to Y’ is negative definite instead of positive definite. Therefore, we must reverse orienta-
tion in order to obtain a positive-definite cobordism from —L(3, 1) to —Y’. We now can
repeat the arguments as before nearly verbatim, including Sections 4.2-4.4. The only
change is the “model” computation, which comes from the link L7 as in Section 4.3,
where we use (—3/1)—surgery on L, and (+k/1)-surgery on L. A slam-dunk shows
that in the case of J = U, the result is L(3k + 1, 3). Repeating the arguments for
Proposition 4.1, we obtain the terms coming from L(3k + 1, 3) and —Y". |

5 Relevance of Theorem 1.1 and Corollary 1.2 to DNA
topology

In Section 5.1 we first give precise definitions of coherent and noncoherent band surgery
and discuss implications of Theorem 1.1 and Corollary 1.2. In Section 5.2 we discuss the
biological motivation for our specific focus on the trefoil and other 7'(2, ) torus links.

5.1 Modeling local reconnection by band surgery

If L is a link in the three-sphere, then a band b: I x I — S3 is an embedding of the
unit square such that L Nb(I x I) = b(I x dl). Two links Ly and L, are related by
a band surgery if L, = (L;—b(I xdI))Ub(dI xI).If Ly and L, are oriented, and
the orientation of L{—b (I xdI) is consistent with the orientations of both L and L,,
then the band surgery is called coherent. Otherwise, the band surgery is noncoherent.*
See Figure 1. Figure 2 illustrates noncoherent bandings transforming a knot to another
knot. Note that a coherent band surgery necessarily changes the number of components
of a link, as shown in Figure 3.

Write (S3, L;) = (B, t;)U(B’,t"), where S* = BU B’ is the union of two three-balls,
with the sphere dB = 0B’ intersecting L; transversely in four points, and where
ti=(BNL;)and t' = (B'NL;). Here (B,1;) and (B’,t’) are two-string tangles. It is
often convenient to isotope L1 and L, so that a coherent or noncoherent band surgery
can be expressed as the replacement of a rational (0) tangle by an (c0) or (£1/n)

4Note this definition does not imply the induced surface cobordism from L; to L, is orientable
(respectively, nonorientable). For example, given a coherent band surgery from a two-component link to a

knot, one may obtain a noncoherent band surgery via the same band move by reversing the orientation of
one of the link components.
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N~ . / N/ 5
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Figure 9: Examples of rational tangle replacements. We model local recon-
nection as tangle replacements, such as those pictured. We typically assume
low-crossing tangle replacements. Any additional topological complexity
surrounding the reconnection sites is pushed to the outside tangle, which
remains fixed during reconnection.

tangle (Figure 9). When 7 is small, these tangles have special relevance in biology (see
for example [69; 72; 71; 65; 68]). For example, in the context of DNA recombination,
the local reconnection sites correspond to the core regions of the recombination sites,
ie two very short DNA segments where cleavage and strand-exchange take place. Thus
these tangle replacements and the corresponding band surgeries appropriately model
the recombination reaction. Note that (B, 1) is replaced with (B, t,) leaving (B’,t")
fixed. In terms of the resulting tangle decomposition, this simplification comes at the
expense of complicating the outside tangle (B’, ).

The double cover of B’ branched over ¢’ is a compact, connected, oriented 3—manifold
M with torus boundary. The manifold M may also be obtained as X (L) — N(K),
where we write ¥ (L) to denote the double cover of S3 branched over L, and the
knot K is the lift of a properly embedded arc arising as the core of the band; the latter per-
spective has been adopted throughout the current article. Both X (L) and X(L,) are
obtained by Dehn fillings of M, and the Montesinos trick [49] implies these fillings are
distance one. One such example is illustrated in Figure 10. For this reason, Theorem 1.1
immediately provides an obstruction to the existence of band surgeries between the
right-handed trefoil knot and the torus link 7'(2,n) for n # +1, +2, 3, 4, —6, 7.
In Section 5.2, we present examples from the literature where most of the exceptional
cases have been observed in DNA recombination reactions involving the trefoil.

Coherent band surgery is better understood than the noncoherent case (see for example
[39; 40; 14; 15; 22; 65]). If a coherent band surgery decreases the maximal Euler charac-
teristic of an oriented surface without closed components bounding the link, it is known
that the band can be isotoped to lie onto a taut Seifert surface [63; 37, Theorem 1.6].
Thus minimal Seifert surfaces can sometimes be used to obstruct the existence of
coherent band surgeries or characterize the tangle decompositions that yield existing
surgeries [22; 14; 15]. As noncoherent band surgery is an unoriented operation,
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E(Ll) E(Lz)

OO O&-

L, L,

Figure 10: An example of a rational tangle replacement realizing a band
surgery, together with the corresponding lift to the branched double cover.
The blue arc properly embedded in the complement of L lifts to the blue
knot K in X(L;). The exterior tangle (B’,t’) is of arbitrary complexity
and lifts to M, depicted as the open shaded area. Dehn fillings along the
curves « and f yield M(«x) = X(L1) and M(B) = X(L,), respectively.
When drawn on the same boundary torus, & and f intersect geometrically
once.

such techniques are not immediately available. There are several obstructions to the
existence of a noncoherent band surgery coming from certain evaluations of the Jones
or Q—polynomials [1], but these are not helpful in the present case. A theorem of
Kanenobu [41, Theorem 2.2] implies that if a knot or link L is obtained by a coherent
or noncoherent band surgery on a knot K whose unknotting number is one, then
either 2det(L) or —2det(L) is a quadratic residue of det(K). Because this condition
is always true when det(K) = 3, the obstruction is inapplicable in the case of the
trefoil. Theorem 1.1 provides new obstructions to the existence of both coherent and
noncoherent band surgeries along the trefoil.

OO OO

Figure 11: Relative orientations of the reconnection sites: an unknotted chain
with two sites in direct repeats (far left) and an unknot with two sites in inverted
repeats (second from left). 7(2,n) torus links with parallel orientation of
the strands and linking number +n/2 (second from right) and antiparallel
orientation of the strands and linking number —n/2 (far right).
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5.2 Relevance to DNA topology

DNA is a nucleic acid that carries the genetic code of an organism. In its most common
form, the B—form, DNA is a right-handed double helix with two sugar-phosphate
backbones lined up by nitrogeneous bases A, T, C and G. The sequence of bases
determines the genetic code. The bases along one backbone are complementary to the
bases along the second backbone, and are held together via hydrogen bonds between
A and T and between C and G. The length of a DNA molecule is measured in the number
of nucleotides, or base pairs (bp). For example, the genomes of viruses such as bacte-
riophages can be fairly short, while the circular chromosome of Escherichia coli ranges
from 4.5 to 5.5 million bp, and the human genome is approximately 3 billion bp long.

Importance of 7(2, n) torus knots and links in recombination In the early 1960s,
the Frisch—-Wasserman—Delbriick conjecture [28; 23] stated that in long polymer chains
knots would occur with almost sure certainty. The conjecture has been proved for
various polymer models [70; 24; 25]. It was also verified experimentally on randomly
circularized DNA chains [47; 62; 64; 3]. The high knotting probability is accentuated
when the polymer chains occur in confined volumes, such as a long chromosome inside
a viral capsid or in a cell nucleus. In studies dealing with geometry and topology of
long DNA molecules, double-stranded DNA is modeled as the curve drawn by the axis
of the double helix. Experimental and numerical work of closed polymer chains in
open space clearly indicate that the most probable knot is the trefoil knot.

In addition to the trefoil knot, other 7°(2, 1) torus knots and links are especially relevant
in biology as illustrated by the effects of replication on circular DNA. In our current
understanding, the tree of life consists of three domains: Archaea, Bacteria and Eukarya.
Bacteria and Archaea have circular chromosomes. The process of DNA replication on
a circular chromosome, whereby the cell produces a copy of its genome in preparation
for cell division, yields two interlinked daughter DNA molecules. The two-component
links defined by the axes of the DNA double helices have been shown experimentally
to be T(2,n) torus links [2]. Note that this is a consequence of the right-handed
double-helical structure of DNA. The two components must be unlinked to ensure
survival of the next generation of cells. Typically the unlinking is mediated by type II
topoisomerases, enzymes that introduce a double-stranded break and mediate strand-
passage. The local action of type II topoisomerases can be modeled as a crossing
change. However, Grainge et al [33] showed that unlinking of replication links can
also be mediated by recombination and proposed an unlinking mechanism by local
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reconnection where each 7'(2, n) torus link was converted to a 7'(2,n — 1) torus knot,
and each T'(2,n — 1) torus knot was converted to a 7' (2, n — 2) torus link. In [65] it
was proved that this mechanism of stepwise unlinking is the only possible pathway
that strictly reduces the complexity (measured as the minimal crossing number) of
the DNA substrates at each step. More recently, using a combination of analytical
and numerical tools, [68] showed that even when no restrictions are imposed on the
reduction in crossing number, the stepwise mechanism proposed in [33] is the most
likely. These examples underscore the importance of understanding any topological
transitions between torus knots and links, including the trefoil.

Band surgery as a model for DNA recombination As was previously mentioned,
the local action of recombination enzymes can be thought of as a simple reconnection
and can be modeled mathematically as band surgery. The reconnection sites are two
short, identical DNA segments (typically 5-50bp long). They usually consist of a
nonpalindromic sequence of nucleotides and we can therefore assign an unambiguous
orientation to each site. Two reconnection sites in a single circular chain may induce the
same orientation along the chain, in which case they are said to be in direct repeats. If the
sites induce opposite orientations into the chain, they are said to be in inverted repeats
(Figure 11). When the substrate is a knot with two directly repeated sites, reconnection
yields a product with two components, which may be nontrivially linked. This process
corresponds to a coherent band surgery. Conversely, if the substrate is a two-component
link with one site on each component, the product is a knot with two directly repeated
sites. When the substrate is a knot with two inversely repeated sites, the product is a
knot with the same site orientation. This corresponds to a noncoherent band surgery.

Two-string tangle decompositions are commonly used to model enzymatic complexes
attached to two segments along a circular DNA molecule. The topology of the product
depends on the global conformation adopted by the substrate prior to reconnection.
Therefore understanding the outside tangle (B’,t’) is crucial to an accurate description
of the enzymatic reaction. When the tangles involved are rational or sums of two
rational tangles, there is a well-known combinatorial technique, called the tangle
calculus, which allows one to solve systems of tangle equations related to an enzymatic
action and thus infer mechanisms of the enzymes. The tangle method was first proposed
by Ernst and Sumners in [27] and is now standard in the toolkit of DNA topologists.
Coherent and noncoherent band surgeries fit easily into this framework.

Site-specific recombination experiments consistent with Corollary 1.2 DNA re-
combination events occur often in the cellular environment since they are needed
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for repair of double-stranded breaks, a deleterious form of DNA damage. Most of
the time, double-strand breaks are properly repaired by a process called homologous
recombination, and no visible changes are present on the DNA at the end of the process.
However, sometime homologous recombination results in local reconnection, also
called cross-over in the biological literature. Studying topological changes related
to homologous recombination is difficult due to the length of the DNA substrates.
Site-specific recombination is another recombination process that has been extensively
studied from the topological point of view. Site-specific recombinases are important
to a variety of naturally occurring processes and genetic engineering techniques, such
as the integration or excision of genetic material [32], dimer resolution [67], or the
regulation of gene expression via inversion [36]. The trefoil knot and other 7'(2,n)
torus knots and links have commonly been used as substrates, or observed as products
of site-specific recombination. In the next few paragraphs, we survey a few examples
from the literature specific to Corollary 1.2. Recall that site-specific recombinases
target short DNA sequences called recombination sites. By convention the names of
the sites are short words indicated in italics (eg att, dif, psi, res). The names of the
enzymes are capitalized (eg Xer, A-Int, Gin, Hin).

In Spengler et al [66] the authors incubated a 9.4 kilobase (kb) negatively supercoiled
DNA plasmid containing two inversely repeated att recombination sites, with the
integrase A—Int from bacteriophage A. The products were knots with odd number
of crossings, and their gel migration was consistent with that of torus knots. The
analogous experiment with plasmids carrying two directly repeated att sites yielded
two-component links with even number of crossings. Crisona et al [19] confirmed that
all products of A-Int recombination on unknotted substrates with two recombination
sites are right-handed torus knots (in the inverted repeat case) or torus links (in the
direct repeat case) of the form 7°(2,n).

There are many instances of coherent bandings in the biological literature. For example,
in [8], a 7kb substrate with two art sites in direct repeat and two res sites in direct
repeat incubated with A—Int-produced right-handed torus links with antiparallel res sites.
Links with 4, 6, 8 and 10 crossings were observed. These links were then incubated
with another enzyme, the Tn3 resolvase. In this study the trefoil knot clearly appeared
as a product of resolvase recombination on a right-handed four- and six-crossing torus
link with two sites in antiparallel orientation.’ The trefoil obtained is predicted to be

5These are the links 4%/ and 6%/, respectively, using the nomenclature convention from [68].
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a negative trefoil, which is left-handed. This transition is the mirror to the transition
between 7'(2,3) and 7T'(2,—6) from Corollary 1.2.

The Xer site-specific recombination system is a good source of examples relevant to
the results from Corollary 1.2. In the cell, Xer recombination is known to act at two
directly repeated dif sites along the bacterial chromosome to resolve chromosomal
dimers, and has been shown to unlink replication links [33]. The enzymatic action is
consistent with a stepwise unlinking pathway [33; 65]. In this pathway any 7'(2,4)
link with parallel sites is converted to a 7'(2, 3) knot and any 7'(2, 3) knot is converted
toa 7(2,2) link. In a different reaction, Xer recombination at two psi sites in direct
repeats converts an unknot to a 7'(2, 4) link with antiparallel sites (see Figure 11) [71].
The psi sites are 28 bp long and consist of an 11 bp XerC binding region, an 11 bp XerD
binding region, a 6 bp asymmetric central region, and a 160 bp accessory sequence
adjacent to the XerC binding site. In Bregu et al [13], the 28 bp core region of the psi
site was inverted with respect to the accessory sequence. This allowed the authors to
mediate Xer recombination on sites in inverted repeats, ie the noncoherent case. The
reaction converted an unknot to a trefoil 7°(2, 3).

Noncoherent bandings have been observed experimentally in the action of several
other site-specific recombinases. Noteworthy are enzymes Gin and Hin. Gin is a
site-specific recombinase from bacteriophage Mu used to change the genetic code of
the viral genome by inverting one of the DNA arcs, called the G—segment, bound by
the recombination sites [72]. Gin acts processively; ie it performs several rounds of
recombination before releasing its substrate. In the first round, when acting on an
unknotted DNA circle with sites in inverted repeat, Gin produces an unknot with an
inverted G—segment, and in the second round the unknot is turned into a trefoil, and
the original genetic sequence is restored. By a similar mechanism, Hin converts its
unknotted substrate to a trefoil [16]. Hin does not change the genetic code of the DNA.
These examples illustrate the transition between 7°(2,3) and 7'(2,1).

In sum, we have presented examples from the literature where some of the exceptional
cases from Theorem 1.1 have been observed. In particular transitions between the
right-handed trefoil knot and the torus links 7°(2,n) for n = +1, +2, 4, and between
the left-handed trefoil and the torus links 7°(2, —4) and T'(2, 6) have been reported.
We note that in the noncoherent case, the transitions observed were from the unknot to
the trefoil. Transitions from the trefoil to the trefoil, and from the trefoil to 7°(2, 7) are
probably very rare. The frequency of such transitions can be assessed using numerical
simulations as described in [68]. In fact, in a preliminary numerical experiment where
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noncoherent band surgery is modeled on 9.6 x 10* trefoils represented as polygonal
chains in the simple cubic lattice, the probability of the transition from the trefoil to
the unknot was 0.975, from the trefoil to itself was 0.013, and the transition from the
trefoil to 7°(2, 7) was not observed. In a separate experiment where 3.3 x 10° polygons
of type T'(2,7) with two sites in inverted repeats were used as substrates, the transition
to the unknot occurred with probability 0.94 and to the trefoil with probability 0.008.
In this experiment one single transition was observed from 7'(2, 7) to itself.
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