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Abstract

Programming screencasts are growing in popularity and are often used by developers as
a learning source. The source code shown in these screencasts is often not available for
download or copy-pasting. Without having the code readily available, developers have to
frequently pause a video to transcribe the code. This is time-consuming and reduces the
effectiveness of learning from videos. Recent approaches have applied Optical Charac-
ter Recognition (OCR) techniques to automatically extract source code from programming
screencasts. One of their major limitations, however, is the extraction of noise such as the
text information in the menu, package hierarchy, etc. due to the imprecise approximation of
the code location on the screen. This leads to incorrect, unusable code. We aim to address
this limitation and propose an approach to significantly improve the accuracy of code local-
ization in programming screencasts, leading to a more precise code extraction. Our approach
uses a Convolutional Neural Network to automatically predict the exact location of code in
an image. We evaluated our approach on a set of frames extracted from 450 screencasts cov-
ering Java, C#, and Python programming topics. The results show that our approach is able
to detect the area containing the code with 94% accuracy and that our approach significantly
outperforms previous work. We also show that applying OCR on the code area identified
by our approach leads to a 97% match with the ground truth on average, compared to only
31% when OCR is applied to the entire frame.

Keywords Programming video tutorials - Software documentation - Source code -
Deep learning - Video mining
1 Introduction

The World Wide Web has become one of the most used sources of information by software
developers, with studies indicating that searching for and acquiring information online takes
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up to 30% of a programmer’s time (Brandt et al. 2009; Grzywaczewski and Igbal 2012).
Most of this time is spent consulting informal online documentation in the form of Q&A
websites, tutorials, API documentation, etc. Software programming screencasts are becom-
ing more and more popular and have seen rapid growth in production and usage (MacLeod
et al. 2015).

Screencasts are particularly useful at offering a step-by-step guide to performing cer-
tain programming tasks or learning programming concepts. However, some limitations still
prevent developers from using them to their full potential. For example, one of the most
important pieces of information present in programming screencasts is the source code
being displayed on screen. However, this code is embedded in the video and not avail-
able for being indexed and searched, for being extracted and reused by programmers or
being linked to other sources of information such as GitHub or StackOverflow discussions.
Therefore, designing tools and techniques that can automatically and correctly extract code
appearing in video tutorials is of immediate importance, as it would give developers access
to a wealth of source code currently not leveraged, as well as open the door to numerous
software engineering applications.

One solution to make the source code in screencasts available would be to apply Optical
Character Recognition (OCR) on video frames. However, software programming screen-
casts contain much more text than just source code, such as menus, package hierarchies of a
project, the program output, etc. Therefore, applying OCR to the entire screen would result
in a lot of noise being extracted as well, which would be concatenated by the OCR to the
source code, corrupting the latter in the process. An example of this problem is shown in
Fig. 1, where OCR has been applied to the entire frame. The valid code is highlighted in
yellow, but it is surrounded by noise extracted from the rest of the frame. Therefore, in order
to correctly extract reusable code using OCR, the first step would be to accurately identify
the code editing window and to apply OCR only on it. While a few previous works have
started using OCR to extract code from video frames (Yadid and Yahav 2016; Ponzanelli
et al. 2017; Khandwala and Guo 2018), their approaches for identifying the code editing
window suffer from limitations that drastically limit their applicability, such as being pro-
gramming language-dependent (Ponzanelli et al. 2017) and using heuristics or assumptions
that are not generally applicable (Yadid and Yahav 2016; Ponzanelli et al. 2017; Khandwala
and Guo 2018).

We propose the first approach to identify the code editing window in programming
screencasts that is language-independent, heuristic-free, and generalizable. Our method is
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Fig.1 The result of applying OCR on the entire frame, showing a significant amount of noise being extracted.
The actual code is highlighted in yellow
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based on extracting the spatial features of video frames using a deep Convolutional Neu-
ral Network (CNN). Then, we detect the main code editing window using object detection
approaches based on a CNN. Our approach is able to determine the code editing window
with an accuracy of 94% on average.

This work builds upon our previously published paper for detecting the code editing

window (Alahmadi et al. 2018) and extends it in several ways:

Our previous work was evaluated on a dataset of video frames extracted from only 150
Java video programming tutorials. In this paper, we extended our dataset to include
frames from a total of 450 Java, C#, and Python video tutorials (150 videos for each lan-
guage). Thus, we also show that our approach is generalizable to screencasts covering
different programming languages.

In our previous work, we only used a region-free object detection architecture (i.e.,
YOLO) to determine the code editing window. In this paper we experiment with two
region-free, as well as three region-proposal approaches and determine that one of
the region-proposal object detectors, Faster R-CNN, performs the best, outperforming
YOLO and reaching an accuracy of 94% on average.

We replicated the approach proposed by Ponzanelli et al. in CodeTube (Ponzanelli
et al. 2017) for finding the code editing window in Java screencasts and compared our
approach with it in a new research question in our evaluation.

We also evaluated the impact of our approach in removing noise when applying OCR
on screencast frames for extracting source code and compared it with CodeTube (Pon-
zanelli et al. 2017). We show that applying OCR on the code region identified by our
approach leads to a 97% match with the ground truth source code on average, com-
pared to 62% when applying the approach in CodeTube and only 31% when OCR is
applied to the entire frame. Therefore, our approach leads to a noise reduction of 35% in
the extracted source code when compared with CodeTube and 66% compared to OCR
applied to the entire frame.

Last but not least, to further reduce the noise and speed up the process of code extraction
from screencasts, we evaluated the ability of our approach to detect frames that contain
only partially visible code (due to the presence of an obstructing window) and frames
containing no code. These frames could then be discarded to make the code extrac-
tion process even faster. We compare our approach against the classification approach
proposed by Ott et al. (2018a) for the same purpose and find that our technique
outperforms it.

In this paper, we focus on answering the following research questions:

RQ1: Which deep architecture model performs the best at localizing the code editing

window in video programming tutorials? To answer this question, we first iden-
tified the video frames that contain code that is fully visible (i.e., code is present
in the frame and not obstructed by any other window). We then train five different
deep neural networks to detect the code editing window in these frames (i.e., the
area of the frame where the code is located). We found that the best architecture,
called Faster R-CNN, can detect the code editing window with an overall accuracy
of 94%. Our approach for the next research questions is therefore based on this
best-performing deep architecture.

RQ2: How does our approach compare to previous work that identified the code

editing window in video frames? To further evaluate our approach, we compared
it with a previous approach for determining the code editing window proposed
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by Ponzanelli et al. (2016a, b, 2017) in their tool called CodeTube. We replicated
the proposed approach of CodeTube in finding the code editing window and com-
pared it to our approach. We found that our approach significantly outperformed
CodeTube in identifying the code section.

RQ3: Does our approach help OCR techniques to better extract code from video
programming tutorials? We compared the OCR-ed text from the code editing
window predicted by our approach to that extracted from the code editing window
predicted by CodeTube and also the text extracted from the entire frame. We found
that our approach leads to a much more accurate code extraction compared to the
other approaches.

RQ4: Can our approach be used for discriminating between frames containing fully-
visible code, partially-visible code and frames containing no code? In RQI,
we showed that our approach can achieve a high accuracy in identifying the code
editing window in frames containing fully visible code. However, not all frames
fall under this category. Therefore, in this question we aim to determine if we can
use our approach to also predict if the frames contain fully visible code in the first
place. In particular, we aim to use our approach for classifying frames into three
categories: containing fully visible code, partially visible code or no code at all. For
RQI, this classification was done manually, to identify only the fully visible code
frames on which our approach was applied. However, if we prove that our approach
is successful in this classification task, this step could be done automatically in the
future, to filter out the unneeded frames before localizing the code editing window.
We compared the performance of our approach in addressing this problem with a
previous approach proposed by Ott et al. (2018a) for the same purpose. We found
that our technique improves the results compared to previous work, achieving an
overall average accuracy of 96%.

The rest of the paper is organized as follows: Section 2 introduces the main archi-
tectures and approaches for image analysis used in our work, Section 3 introduces our
approach and its components, Section 4 describes the empirical evaluation we performed,
Section 5 presents an overview of the related work, and finally Section 6 concludes the

paper.

2 Background

This section introduces the main image analysis approaches and architectures used in our
work.

2.1 Image Feature Extraction

Feature extraction algorithms have been proposed and practically used in a wide range of
computer vision applications. The features extracted for an image have to be robust and
distinctive for that image. There are two main phases in extracting features from an image.
First, distinctive regions or key-points of the image are identified. These key-points could
be corners, blobs, etc. Second, for each key-point, a feature vector or descriptor is assigned,
which is robust to noise. In our approach, we use image feature extraction in order to com-
pare consecutive images in a video based on their features and determine if they contain
duplicate information or not (see Section 3.1).
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In this paper we extract the features of the video frames using the Scale Invariant Fea-
ture Transform (SIFT), which has been successfully used in image recognition applications
(Lowe 1999, 2004). SIFT outperformed several other descriptors in terms of recognition
and matching tasks due to its invariance to rotation and scaling (Mikolajczyk and Schmid
2005). SIFT’s algorithm has four main steps: approximating key-point locations, refining
key-point positions, assigning orientations to key-points and finally extracting features for
each key-point. SIFT uses a Difference of Gaussians (DoG) to find the key-points in images.
DoG is obtained by computing the difference of a Gaussian blur of an image with two dif-
ferent scaling factors. Once the DoG is found, the images are searched for local extrema,
which represent the set of potential key-points. This set is then refined by eliminating any
low-contrast and edge key-points. SIFT then assigns the remaining key-points an orienta-
tion and a vector of descriptors that are invariant to rotations, scale, and illumination. SIFT
considers a small region around each key-point and divides it into cells. A gradient orienta-
tion histogram is built inside each cell. These gradient orientation histograms are then sorted
bearing in mind the dominant orientation of the key-point. This then gives us a descriptor
which is invariant to rotations. To make it invariant to scale, the size of the window needs
to be adjusted according to the scale of the key-point. To make it illumination invariant,
the histogram entries are weighted by gradient magnitude. At the end of this process, SIFT
provides the key-points and their feature vectors that will be used to compare one image to
another.

2.2 Object Detection Based on CNN

Computer vision has seen numerous advances in recent years in feature extraction, image
recognition, image classification, etc. One category of remarkable advances has been in the
area of object detection, where recent algorithms have shown impressive performance in
finding objects inside an image or a scene. Most state-of-the-art object detection methods
utilize Convolution Neural Networks (CNNs) to not only classify an object into a specific
category but also to find a precise location of that object inside an image (LeCun et al.
1999; Hu et al. 2015). We therefore make use of this kind of architectures in our approach
for identifying and locating the code editing window in a screencast frame. In particular,
we make use of both types of existing object detectors based on CNN architectures: region-
based and region-free.

2.2.1 Region-Based Object Detection

Region-based object detection is based on dividing an image into potential regions that are
the most likely to contain an object. This eliminates the unnecessary computational cost
of running a detector on the entire image, as done in other approaches such as the sliding
window algorithm. The features of the potential regions are extracted using a CNN and
eventually classified by the output layer of the network using a softmax unit.

There have been several object detection methods that show promising results by using a
selective search method to generate a number of regions for an image (Uijlings et al. 2013).
The selective search method is based on image segmentation, first introduced by (Felzen-
szwalb and Huttenlocher 2004). The image segmentation algorithm divides an image into
regions based on pixel intensity, color, motion, etc. Then, proposed regions are created
using the selective search method (Uijlings et al. 2013). Selective search combines different
regions together for the object detection task (i.e., finding region proposals). As an exam-
ple, the results of image segmentation and selective search on a frame extracted from a
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Fig.2 Code frame segmentation (b) and selective search (c) results

programming video tutorial are shown in Fig. 2. In this case, out of the detected potential
regions, the green rectangle contains the code. Region-based CNN algorithms or R-CNN
then adjust the potential regions during the learning process.

R-CNN performs features extraction based on CNN in each proposed region that is
created using the selective search method (Girshick et al. 2013). Forward propagation is
performed on each of the potential regions that output the extracted features using the
output dense layer. A Support Vector Machine is then used to classify each region based
on the input features. R-CNN then uses linear regression to the bounding box to produce
a tighter box on the object. Although R-CNN has been influential in the object detec-
tion field, the performance of R-CNN was its biggest issue. Running a CNN classifier in
each proposed region makes the overall process of finding the location of an object very
slow.

The performance issue was later addressed by Fast R-CNN (Girshick 2015). Fast R-CNN
overcomes the computational cost of running the CNN on each proposed region by instead
running the CNN on the entire image just once. In other words, Fast R-CNN extracts the
entire set of features of the image only once, which reduces the computational time signif-
icantly. Fast R-CNN uses selective search to propose a number of regions. Each Region of
Interest can be represented by the features that were extracted previously using a CNN. The
Region of Interest pooling layer then changes the size of the proposed regions into a fixed
size. These fixed feature vectors are then fed into a fully connected layer that outputs the
predicted class and the bounding box of the object.

Faster R-CNN is the third iteration of R-CNN that aims to further increase the perfor-
mance of the neural detector (Ren et al. 2015). Region Proposal Network was proposed
as an alternative to the selective search algorithm used in previous iterations in order to
overcome the performance issues. Instead of using selective search to find the region pro-
posal which is expensive, Region Proposal Network is used to create the region proposal
and predict the bounding box of the object, as well as the Objectness score.! Faster R-CNN
outperformed all R-CNN variations and has been inspiring several follow-up applications
(Shrivastava and Gupta 2016; Kim et al. 2016).

Faster R-CNN predicts each region using multiple fully-connected layers. This makes the
prediction of each patch or proposed region expensive. Region-based Fully-Convolutional
Networks (R-FCN) were therefore proposed as a further performance improvement of
Faster R-CNN (Dai et al. 2016). We evaluate the use of both Faster R-CNN and R-FCN
region-based approaches for detecting the location of the code region in screencasts in our
empirical evaluation.

1“Objectness” indicates if a box contains an object.
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2.2.2 Region-Free Object Detection

In this section, we explain two popular real-time object detector models, Single Shot Detec-
tion (SSD) (Liu et al. 2016) and You Only Look Once (YOLO) (Redmon et al. 2015), which
we also experiment with in our evaluation to determine the best model for detecting code
regions. Since these models have a single feed-forward convolutional network, they predict
the class and the bounding box in one shot. In other words, there is no need for classifying
different proposals/regions, which makes the process of finding the location of an object
much faster. When comparing region-free detection to region-based detection, there is a
trade-off between speed and accuracy (Huang et al. 2017). The region-based approaches are
more accurate but slower than the region-free ones, as also shown later in the results of our
evaluation.

SSD uses a single network for object localization. It generates a set of fixed-size bound-
ing boxes and assigns a prediction score and box offset for each of the boxes using
convolutional filters. Then, it adjusts the box accordingly to cover the object location.

YOLO is a unified CNN architecture which not only detects the position of the bound-
ing box of each object present in an image but also predicts its class. Thus, YOLO looks at
an input image just once and performs both detection and classification of multiple objects
in one shot. Although YOLO can detect objects of multiple classes, in our case we only
consider a single class: the code region. YOLO is fast since it does not require a complex
pipeline and can make predictions at 150 frames per second, which makes it highly appli-
cable to real-time video streams. It analyzes the entire frame during training and test time
and encodes contextual information about classes as well as their appearance. YOLO also
learns the generalizable representations of objects, so it is less likely to crash when given
unexpected inputs.

3 Approach
In this section we describe our approach, which has two main components: duplicate frame

elimination and code editing window localization. For convenience, we include a summary
of the notations and acronyms we use in Table 1.

Table 1 The list of main terminology and acronyms used in this paper

Symbol Description

Faster R-CNN Faster Region-based Convolutional Neural Networks (region-based object detector)
R-FCN Region-based Fully-Convolutional Networks (region-based object detector)

SSD Single Shot Detector (region-free object detector)

YOLO You Only Look Once (region-free object detector)

SIFT Scale Invariant Feature Transform (feature extraction algorithm)

OCR Optical Character Recognition

FvC Fully Visible Code frames (i.e., frames where the code is present and not obstructed)
PVC Partially Visible Code frames (i.e., frames where the code is present, but obstructed

by an overlapping window)
NC No Code frames (i.e., frames where there is no code present)
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3.1 Duplicate Frame Elimination

Programming screencasts contain a lot of redundant frames, as identified by previous work
(Ellmann et al. 2017). This can significantly impact the performance of the analysis of video
tutorials. Therefore, the first step in our approach focuses on the elimination of duplicate
frames from a programming screencast.

Starting from the set of frames extracted from a video (one per second), we use SIFT
to compare neighboring frames and remove the redundant or duplicate ones, leaving a set
of frames that contain unique information. In order to determine which frames to keep,
we first extract the key-points from each frame and obtain their feature vectors using
SIFT. Then, given two neighboring frames fi and f5, for each key-point ky, ; in frame
f1, we find the best matching key-point ky, ; and the second-best matching key-point
kg, in fp based on the Euclidean distance between their features. If the Euclidean dis-
tance between kg, ; and ky, ; is smaller than 75% of the distance between ky, ; and the
kf, 1 (i.e., the best matching point is significantly closer than the second-best match) then
the pair of key-points (ky, ;, ks, j) is considered a strong match and added to the set
m1 2 of matching key-point pairs for f; and f>. This process is called a "ratio test” and
was introduced by Lowe (2004). The threshold of 75% for the distance was determined
empirically, based on testing different values. This process is repeated for all key-points
in fj, and at the end, the number of matched key-points in m > represents the similar-
ity measure between frames f; and f> (i.e., the more similar key-points in m >, the more
similar the two frames are). In other words, we obtain the similarity percentage between
two frames by dividing the total number of matched key-points by the total number of

key-points.
To determine which frames to keep for a video, we employed the following procedure.
Consider a video and its frames V = {fi, f2,..., fu}, and s; ;+1 as the similarity value

between a pair of consecutive frames f; and f; 1. We compare f; with its successive frame
fi+1,and if s; ;41 is more than 80%, we keep f;+1. We keep fi41 rather than f;, as we want
the latest version of the frame which might contain an important piece of code that was
added. At the end of this process for the entire video, what is left are frames that contain
considerably different information. These are the set of frames we use in the next step of
our approach.

3.2 Code Editing Window Localization

Our goal is to accurately detect the location of the main code editing window in videos,
regardless of its size, location, background color, etc. This is an important restriction since
the size and the location of the main code editing window is not the same for all videos
and could also change within the video itself. As opposed to previous work which was
susceptible to errors due to these variables (Ponzanelli et al. 2017; Yadid and Yahav 2016),
our approach is based on robust feature extractors and object detectors as introduced in
Section 2.

The deep architectures for object detection first propose regions of interest to iden-
tify possible object locations and then classify those regions. The regions of interest are
proposed based on low dimensional feature maps generated by a set of convolutional
layers. The choice of the feature map generating network affects the speed and accu-
racy of the final object detection. Different types of feature extraction networks, with
their own advantages exist. These are mostly convolutional so as to maintain translational
invariance.
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When using more traditional supervised machine learning algorithms such as Naive
Bayes, Supervised Vector Machines, Decision Trees, etc. input features need to be hand-
engineered from the raw data, such that they describe the characteristics of the data points
in a way that can help the learners discriminate between them. This leads to each data point
being represented by a d-dimensional feature vector which, together with the class label
of the data point are used as input for the machine learning algorithm. With the advent of
deep learning techniques, however, the preliminary step of feature engineering is no longer
needed, since deep neural networks have a large number of parameters distributed across
many layers, allowing them to learn higher level features from the raw data itself through
a series of multiple non-linear projections. Therefore such deep learning classifiers directly
take in the raw data with just the class labels, without the need to extract any features from
the data beforehand. In our case, the input data are the images themselves and their labels
are the class name (e.g., Fully Visible Code) accompanied by the coordinates of the code
editing window in the image. The code editing window is spatially located within an image
(i.e., it has a set of coordinates within the image) and with the help of convolutional layers,
the neural networks used in our approach can learn to extract relevant spatial features that
map to the code editing window coordinates.

In this paper, we used five different configurations of object detectors and backbone
feature extractor networks, which have been proven to perform the best in object detection
tasks. Three of these configurations use region-free object detectors, while two use region-
based ones.

The region-based approaches we use are Faster R-CNN with the Inception Resnet V2
feature extractor (Szegedy et al. 2016) and R-FCN with the Resnet-101 feature extractor
(He et al. 2015). Our configurations for these are defined as follows. The batch size is the
total number of training samples that will be passed through the network at once. The batch
size can be adjusted based on the computer hardware performance such as the GPU memory
as well as the input image size. We set the batch size to 16 for both networks based on the
limitations of our hardware configuration. We then resized the input image dimensions to
the default values of 600 and 1024 pixels. The resized image has the same aspect ratio for
both models. One of the most important parameters that impact the training performance
is the optimizer. The optimizer updates the weights after each epoch by backpropagation
(one forward and backward pass of every training sample through the neural network). For
general object detection, the recommended optimizer is the momentum, which is a version
of the Stochastic Gradient Descent (SGD) (Qian 1999). Therefore, we trained the models
using SGD with momentum optimizer. We used the default values for the hyper parameters
of the network layers such as a stride value of 16.

The region-free approaches we use are: SSD with the Resnet50-FPN feature extrac-
tor (He et al. 2015; Lin et al. 2017), SSD with the Inception V2 feature extractor (Ioffe
and Szegedy 2015), and YOLO with its own Darknet feature extractor (Redmon et al.
2015). The default configurations for these are as follows. We used a batch size of 24 for
SSD. All input images to the SSD models were resized to have the default square aspect
ratio of 640 x 640 and 300 x 300 for SSD with ResnetS0-FPN and SSD with Incep-
tion V2, respectively. We kept the default optimizers for both SSD approaches, which
are SGD with momentum and RMSprop. For YOLO, the input images were resized to
the default 416 x 416 pixels. We trained the model on a total of 4,000 epochs since
the per-batch average loss stopped oscillating after this. We used a batch size of 16
with subdivision of 8, which are the default values for the YOLO architecture. We used
RMSprop gradient decent optimizer to minimize the loss of the network in the training
process.
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Fig.3 An overview of our empirical evaluation

All our implementation is based on the Tensorflow APL? In Tensorflow, each object detec-
tor model is defined by a configuration file which is mainly used in the training process.

4 Empirical Evaluation

Figure 3 shows the general overview of our empirical evaluation. We started by manu-
ally collecting a set of programming video tutorials from YouTube, focusing on topics
related to three programming languages, namely Java, C#, and Python. For each video, we
extracted a frame every second. This resulted in a large set of frames, containing many
duplicates. We therefore, applied our approach for duplicate frame elimination described
in Section 3.1 in order to remove the redundant information and obtain a more diverse set
of frames in our dataset. Each remaining frame was then manually classified into one of
the three main categories: Fully Visible Code (FVC), Partially Visible Code (PVC), and No
Code (NC). A total of 3,000 FVC frames, 1,500 PVC, and 1,500 NC frames were selected
for the evaluation. Each frame was than annotated with the class name (FVC, PVC, or
NC) and the bounding box information. We trained five different object detector configu-
rations (as described in Section 3.2) to determine which models work the best in finding
the code editing window inside a FVC frame. This answers our first research question.
We then used the best model and compared its prediction accuracy with CodeTube (Pon-
zanelli et al. 2017) to answer RQ2. Additionally, we applied OCR to the predicted code
region to show the percentage of noise that was removed using our approach and compared
this with the noise reduction obtained by CodeTube (RQ3). Using the best model deter-
mined in RQ1, we also showed that we can successfully classify an input frame into one of
the FVC, PVC, and NC categories. We compared our approach in this multi-classification
task with a CNN-based classifier that was used by a previous work in classifying video
frames (RQ4).

In the following subsections, we describe in detail our data collection process, the
research questions we address and the results.

2https://github.com/tensorflow/tensorflow
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4.1 Data Collection
4.1.1 Video selection

We created our evaluation dataset by manually selecting a diverse set of programming
screencasts hosted on Youtube on topics involving three different programming languages,
namely Java, C#, and Python. We generally looked for videos where the code is readable
on the screen, without specifically restricting the quality of the videos to any particular
threshold. We targeted videos whose length does not exceed 40 minutes, as a means to limit
the number of frames considered from one single video in our dataset and increase diver-
sity. In order to further increase variety and include videos from more authors, we limited
the number of videos we collected from any given Youtube channel to five. When a chan-
nel we considered contained more than five eligible videos, we randomly selected videos
from it one by one, until we found five that met our criteria. We further aimed to include
videos covering a wide variety of topics for each programming language and also consid-
ered videos where the code was written in a variety of IDEs such as Netbeans, Pycharm,
Visual Studio, IntelliJ, Atom, etc. and a variety of code editors such as vim, Notepad++,
etc. Moreover, we included different background colors for each IDE and code editor (i.e.,
white and black). More specifically, to achieve diversity in the set of videos we consid-
ered, we searched on YouTube using a variety of queries that included: (i) the programming
language name “Java”, “Python” or “C#”, (ii) one of the words “tutorial” or “lesson”, (iii)

LL TS CEINNT3

optionally one of the words: “beginner”, “intermediate”, “advanced”, (iv) optionally the

299 ¢

name of an IDE or a code editor: “Eclipse”, “Netbeans”, “Intellij”, “Pycharm”, “Atom”,

99

“Visual Studio”, “Notepad++”, “vim”, (v) and words referring to important programming
concepts, such as “loop”, “array”, “lists”, etc. We used these queries as needed to increase
the diversity in our dataset gradually. The number of results obtained for each query var-
ied, but we generally focused on the top results obtained for each query. It is generally very
challenging to collect the same number of videos for each IDE for a particular programming
language, as some IDEs are more common than others. For example, we noticed that in the
screencasts on Youtube, (i) the majority of C# videos contain Microsoft Visual Studio, (ii)
Eclipse and Netbeans are the most popular IDEs for Java, and (iii) PyCharm is the most
popular IDE for Python. Furthermore, the majority of videos feature a white background
in the code editing window since it is the default in many IDEs and the most common
background color that developers use in screencasts. While we cannot claim we achieved
complete parity between IDEs and background colors, while being also representative of
the videos hosted on YouTube, we did our best to include videos featuring various IDEs and
background colors for each language.

Another aspect we looked at when it came to IDEs was their layout. IDEs usually have
at least three different sections: the main editing window, the file explorer and the output
window. We made sure to find videos using differently sized and shaped parts in the layout.
We also included videos that had different numbers of sections in their layout.

To keep track of all these properties of the videos, we created a simple database for
storing this information about the selected videos. The two authors in charge of data col-
lection kept this database up to date and checked it frequently to ensure diversity was being
achieved as much as possible, given the limitations described above.

Two of the authors collected a dataset of 450 videos from YouTube following the
guidelines mentioned above, with 150 videos for each of the three popular programming
languages considered (Java, C#, Python). It took a total of about 18 hours to gather these
videos. To ensure the validity of our predefined criteria for each video, and the diversity of

@ Springer



Empirical Software Engineering (2020) 25:1536-1572 1547

Table 2 Statistics about the collected videos

Programming language Min. Mean. 1% Qu. Median 3" Qu. Max.
Java 73s 352s 205s 313s 424s 1789s
C# 86s 475s 251s 366s 590s 2215s
Python 129s 517s 321s 490s 652s 1773s

our dataset, the two authors validated each of the videos together after the initial collection
process. During the validation process, the videos that did not adhere to the criteria were
replaced with new ones.

After the video selection was completed, we used the youtube-d1? API tool to download
the videos to our server. Then, we wrote a script based on the FFMPEG* tool to check the
total number of seconds for each video. The detailed statistics about the collected videos
are shown in Table 2. On average, Python has the highest number of seconds per video with
a mean of 517s. In accordance with our criteria of keeping the length under 40 minutes, the
maximum length was that of a C# video that was ~37 minutes long. The total duration of
the collected videos was relatively similar across the three programming languages.

4.1.2 Duplicate Frame Elimination

We extracted the frames of each of the 450 videos at the rate of one frame per second
using the FFMPEG tool. This resulted, as expected, in many duplicate frames. Therefore,
we applied our duplicate frame elimination approach (see Section 3.1) in order to reduce
the redundant frames.

The results of the duplicate frame removal step are shown in Fig. 4. For example, the
total number of extracted frames from Python programming tutorials was 77,535. During
duplicate removal, more than 80% of the Python frames were found to be redundant and
removed. The mean value of the number of frames kept per Python video was reduced
from ~517 to only ~95, with a median of 77 as shown in Table 3. Only 14.8% and 17.4%
frames were selected to be kept (i.e., were not duplicates) from Java and C#, respectively.
Ultimately, the number of total extracted frames was significantly reduced from 201,574 to
only 34,470 frames. Our dataset consists of only the selected (i.e., remaining, non-duplicate)
frames which we use in our classification and annotation tasks.

Since previous work (Khandwala and Guo 2018; Zhao et al. 2019; Ponzanelli et al. 2017;
Yadid and Yahav 2016) has used a different approach, namely pixel-by-pixel similarity to
identify and remove frames containing duplicate information in programming screencasts,
in the next few paragraphs we compare and contrast our approach based on SIFT to the
pixel-by-pixel approach for detecting duplicate frames in two ways. We first provide a high-
level discussion on the limitations of the pixel-by-pixel similarity approaches compared to
SIFT and provide some examples to that respect. Then, in order to see how different the
results provided by the two approaches really are in practice, we perform an analysis of
the similarity and the differences between the set of remaining frames in the videos of our
dataset after applying SIFT and pixel-by-pixel, respectively. One note is that, while there

3https://github.com/rg3/youtube-dl
“https://www.ffmpeg.org/
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Fig.4 The results after the duplicate frame elimination using SIFT

are several ways to compute pixel-by-pixel similarity between two frames, for our compar-
ison we make use of the Structural SImilarity Index (SSIM) (Wang et al. 2004), which is
the approach that has been used in previous work on analyzing programming screencasts
(Khandwala and Guo 2018; Zhao et al. 2019).

Our decision to use SIFT rather than pixel-by-pixel approaches for detecting the similar-
ity between frames is mainly motivated by the fact that pixel-by-pixel approaches are very
sensitive to noise and lead to inaccurate results. There are two main situations that exemplify
this, and we discuss each of them in detail below.

First, two frames containing the same code snippet, but at different locations on the
screen should be recognized as being duplicates/identical. This kind of frame pairs are a
very common occurrence in programming tutorials, since a tutor often scrolls up or down a
code section in an IDE. As an example, in Fig. 5a and b, we have two frames with exactly
the same code snippet, just shifted by four lines. Therefore, only one frame should be
kept for analysis purposes, otherwise duplicate information will be extracted and processed.
Since the pixel-by-pixel algorithm compares the value of each pixel in the first frame to the
value of the pixel at the same position in the second frame, it will consider the two frames
quite dissimilar, since the location of all the original pixels has changed (i.e., the tutor has
scrolled-down). Consequently, the pixel-by-pixel SSIM similarity value between the first
and the second frame is only 68% as shown in Fig. 5f, where a black pixel indicates a match
and a white pixel indicates the two pixels do not match between the two frames. On the
other hand, SIFT is invariant to translation and it does not compare the same pixel location
but rather features of the images. Therefore, SIFT finds the matching features regardless
of their pixels positions. An example of this is shown in Fig. 5e where a line is drawn
between each pair of matched key-points between the two frames and a similarity of 91%
is obtained with SIFT. Therefore, when using SIFT the first frame would be removed since
it is very similar to the second one. The same frame, however, would not be removed when
using SSIM.

Table 3 Statistics of our dataset after applying the duplicate frame elimination compared to the original
number of the extracted frames

Prog. lang. Min. Mean 1% Qu. Median 3" Qu. Max.
Java 73 352 205 313 424 1789
Original C# 86 475 251 366 590 2215
Python 129 517 321 490 652 1773
Java 1 52 18 32 57 505
Selected C# 8 83 35 59 112 582
Python 3 95 48 77 127 451
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The second situation when pixel-by-pixel approaches are challenged is the opposite of
the first, namely when the code location does not change on the screen, but the code itself
does. This can happen when the tutor switches between open files in the IDE and it is a
common occurrence in programming screencasts. An example can be seen in Fig. 5S¢ and
d, where frame 4 contains a completely different code snippet than frame 3. Thus, the two
frames should have a low similarity and thereby both frames should be kept. In the case
of pixel-by-pixel similarity, however, the two frames are actually found to be extremely
similar (93% SSIM similarity). This is due to the fact that the pixel-by-pixel approach finds
all the white background pixels as well as those in the other areas of the IDE such a the
file hierarchy and output to be matching (the black pixels in Fig. 5h). Since all pixels are
given the same weight, the similarity found in the background trumps the relatively small
dissimilarity found in the code snippet. SIFT, on the other hand uses key-points as the basic
comparison unit and is not as influenced by the background. In fact, a similarity of only 61%
is returned by SIFT, which indicates that we should keep both frames. If using pixel-by-
pixel on the other hand, the 93% similarity means that the first frame would be incorrectly
removed.

We now proceed to compare the two algorithms in practice, by applying the two algo-
rithms separately on the frames in our dataset. Formally, for each V = { fi, f2, ..., fu} we
compare each pair of consecutive frames f; and fi4 using SIFT and SSIM with a simi-
larity threshold of 80%, meaning that a frame that has a similarity greater than 80% to its
successor will be removed. The output of this phase is two sets, SIFT = { f;, fj+1,..., fs}
and SSIM = {f, fk+1,---, fi} for each video in our dataset, containing the frames remain-
ing after SIFT and SSIM have been applied, respectively. Since the total number of videos
in our study is 450, we have a total of 450 sets for SIFT and SSIM each.

Our aim is to investigate the similarity and the differences between the remaining frames
using SIFT and SSIM. We compute the similarity between the two sets for all videos using
the Jaccard Index (Jaccard 1912) as shown in Eq. (1). A value between 0.0 and 1.0 is
returned in which 1.0 means the two sets are identical. As shown in Table 4, we compute the
average Jaccard Index between the SIFT remaining frames and the SSIM remaining frames

(a) Input frame 1 (b) Input frame 2 with (c) Input frame 3 (d) !nput frame 4 with
the same code content different content

T ————— T e |

(e) SIFT key-points matching (f) Pixel-by-Pixel (g) SIFT key-points matching (h) Pixel-by-Pixel
(91% similarity) (68% similarity) (61% similarity) (93% similarity)

Fig. 5 Results of comparing two frames that contain identical code (frame 1 and frame 2) and two frames
containing completely different code (frame 3 and frame 4) using SIFT and the Pixel-by-Pixel (SSIM)
algorithms
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Table 4 A comparative analysis between the remaining number of frames after applying SIFT and SSIM on
our dataset

Prog. Lang. Jacc(SIFT,SSIM) | SIFT-SSIM |/|SIFT]| | SSIM-SIFT |/|SSIM]|
Java 0.14 0.84 0.05
C# 0.18 0.81 0.05
Python 0.11 0.87 0.04

for each programming language. On average, the similarity between the two sets are only
18%, 14% and 11% for C#, Java, and Python, respectively. In light of this low similarity,
we were also interested to know how many of the frames in each of the two sets are unique
to that set. The last two columns in Table 4 show these numbers. Specifically, 81-87% of
the frames retained by SIFT were only retained by SIFT and not SSIM. On the other hand,
only 4-5% of the frames retained by SSIM were only retained by SSIM and not by SIFT.
This indicates that a lot of the frames removed by SSIM were retained by SIFT, likely due
to the second situation described above, where two frames are considered very similar by
SSIM due to the match in their background, not in the actual code being displayed (see
Fig. 5c,d, and h for an example), but SIFT can capture the difference in the code and keep
both frames. In total, there were 34,470 frames kept by SIFT across our dataset, while only
4,979 were kept by SSIM. While SSIM leads to a much greater reduction in analysis time
by reducing the amount of frames to be analyzed, we argue that this can also lead to a sig-
nificant loss in meaningful information, as described above. We therefore argue that SIFT is
better suited to analyze programming screencasts, where the changes in the appearance of
frames can be subtle due to the background color and other sections of the IDE remaining
the same between frames, even though completely different code may be shown.

ISIFT N SSIM| _ ISIFT N SSIM|
|SIFT USSIM|  |SIFT|+ |SSIM|— |SIFT N SSIM|

Jaccard(SIFT, SSIM) = (1)

4.1.3 Manual Frame Classification and Annotation

As we are interested in the frames that contain code, in our next step we manually classified
all the frames remaining after removing duplicates (34,470 frames) into three categories:

— Fully Visible Code (FVC). A frame contains fully visible code if the main editing
window is not obstructed in any way and every line of code is clear and readable.

— Partially Visible Code (PVC). A frame contains a partially visible code if the main
editing window is partially obstructed by another window, such as code completion
suggestions.

— No Code (NC). A frame is considered to contain no code if it does not contain any fully
visible nor partially visible code. These could be frames from a video where the tutor is
explaining a topic on slides or board, is searching in their browser, or introduction and
exit scenes, etc.

To make the data classification process more manageable, we created a web-based clas-
sifier which displayed only a frame at a time and provided radio buttons for each of the
FVC, PVC and NC categories, which a person classifying the image could select. Naviga-
tion buttons allowed the person doing the classification to move to the previous or to the
next image. The tool stores the classification results in an SQLite database.
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The data classification task was performed by the first two authors. Each author classi-
fied the remaining frames from half (225) of the videos and confirmed the classes selected
by the other author for the other half of the videos. For the frames where there was a dis-
agreement upon the selected class, the authors reached an agreement after a discussion. The
frames that needed discussion were all involving partially visible code. For example, there
were a few cases where the cursor was blocking a small part of the code (i.e., usually one
character). These frames were initially classified as FVC by one author and PVC by the
other author. After a discussion, the two authors agreed to consider these frames as FVC
since the missed area was insignificant and the missing characters could be easily guessed
or reconstructed. However, when the disagreement involved frames with a small popup box
that blocks part of the code, after consultations, the authors agreed to consider these as
PVC since reconstructing the code from these frames would be challenging. The overall
agreement level between the two authors in selecting the classes was ~ 99.7.%

The detailed classification results are shown in Table 5. Since our goal is to determine the
code region on the screen that will allow the correct extraction of code, we are particularly
interested in the FVC class which contributes 65%, 47%, and 62% to the overall dataset for
Java, C#, and Python, respectively. In particular, in order to obtain the needed training data
for our code editing window detection approach, we need to manually annotate FVC frames
with the coordinates of their code editing windows. Since this is a more intensive task than
just classifying the frames into FVC, PVC, and NC, annotating the whole set of FVC frames
was unfeasible. Instead, we decided to sample a set of 3,000 FVC frames from the total of
19,704 and use this subset for the annotation phase.

In order to ensure diversity and uniformity in our FVC frame sample, which is important
when training machine learning approaches, we applied a form of stratified sampling as
follows. First, to ensure diversity across programming languages, we decided to include
1,000 frames for each of the three programming languages in our sample. Then, for each
programming language, we included a balanced number of frames from each video in that
set and selected the frames to include from each video randomly. In more details, given a
set of videos for a programming language V = {v1, v2, ..., v150}, for each v;, we select a
random FVC frame f; from it and add it to the selected set. Once a frame has been included
from each video, we repeat the process, until the size of the selected set equals 1,000 FVC
frames for that programming language. Thus, our dataset consists of 3,000 FVC frames
randomly picked from each video of every programming language.

Once the 3,000 FVC frames were selected, we proceeded to manually annotate each of
them with the location of their corresponding code editing window. We define the location
of a code editing window in a frame as a bounding box (x, y, w, h), where (x, y) is the
center of the quadrilateral or box where the code is located and (w, i) are the width and
height of the box. The bounding box is often represented in terms of (x, y, w, k) in object
detection literature (Redmon et al. 2015). We used a cloud online image annotation service,

Table 5 Classification results (FVC=Fully Visible Code, PVC=Partially Visible Code, NC=No Code)

Prog. language FVC frames PVC frames NC frames Total FVC/Total
Java 5,079 667 2,064 7,810 0.65 1N
C# 5,799 1311 5292 12,402 0.47
Python 8,826 1,590 3,842 14,258 0.c2 [
Total 19,704 3,568 11,198 34,470
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Dataturks,> for enabling the annotation of the frames with this information. A total of ten
Computer Science graduate students participated in the annotation process. We recorded a
video that explains the process of the annotation with a few examples and shared it with all
of our participants. A total of 300 FVC frames were assigned to each participant. Since each
frame was annotated only once, one of the authors manually verified each annotation and
re-annotated the frame that had inaccurate bounding box (e.g., any frames that did not cover
the code entirely, or covered more than only the code). Less than 20 frames out of the 3,000
required re-annotation. The annotation process involved showing one frame at a time, after
which a bounding box could be drawn on the frame to delimit the code section. The location
of the bounding box identified by the participants was then automatically determined and
saved as (x, y, w, h) as explained above. The participants had an option to skip annotating a
frame for any reason, such as if it was not clear for them where to draw the box. We make
our dataset available online.

4.2 Research Questions, Methodology, and Results

4.2.1 RQ1. Which deep architecture model performs the best at localizing the code
editing window in video programming tutorials?

Motivation: The main purpose of this work is to propose an approach that is able to
precisely locate the code editing window regardless of the programming language, the
code editing tool used, the location and the size of the code region, etc. This research
question aims to experimentally determine which of the five deep architectures presented
in Section 3.2 is best at performing this task.

Methodology: To address this question, we trained the five deep object detectors with
the annotated FVC frames. In the object detection literature, it is common to train the
network using only images from the positive class. For example, if the goal is to identify
cars in images, an object detector would be trained only with images that contain cars.
The detector will then simply fail when an object (e.g., a car) cannot be identified in an
image, such as in the case of images belonging to the negative class. This is done out
of practicality since there can be an infinite number of examples in the negative class
(e.g., an infinite number of pictures without cars in them) and therefore training on all
types of images in this class is impossible and not needed. In our case, the positive class
is represented by the FVC frames annotated with the location of a code editing window.
Thus, we trained the five different network architectures on the FVC frames and their
corresponding main code editing windows. We split the dataset into training, validation,
and testing sets. The validation and the testing sets are 10% of the dataset each, while the
remaining 80% of the 3,000 annotated FVC images were used for training. We performed
a 10-fold cross-validation in our experiments. While the validation sets were mainly used
to tune the model hyperparametes and avoid overfitting, the testing sets used to evaluate
the final model on unseen data. Each fold had different test images that were randomly
generated and were different from the validation sets and the images in the other folds.
We computed the training and prediction time for each model during our experiments.
We conducted all the experiments using Tensorflow on a machine with an Intel Xeon
3.40GHz processor, 128GB RAM, and a GeForce GTX 1080 GPU with 8 GB of memory.

Shttps://dataturks.com/
Shttp://malahmadi.sa/roi/
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Evaluation metrics: Intersection over Union (IoU) is a metric commonly used for mea-
suring the success of an object detection task and has been widely used in several
competitions such as PASCAL VOC Challenge, ImageNet Large Scale Visual Recogni-
tion Challenge, and MS COCO (Everingham et al. 2010; Russakovsky et al. 2015; Lin
et al. 2014). IoU measures how well the predicted object area matches the area of the
ground truth by dividing the intersection of the two areas to their union. In our case, the
ground truth is represented by the area selected by the participants to contain the code
editing window, while the prediction of the code editing window is given by the five deep
learning architectures we employ. While IoU gives an indication of how good a predic-
tion of a code editing window is, it does not give a clear indication of whether to consider
a prediction successful or not. For this purpose, we use IoU thresholds and consider a pre-
diction successful if its IoU is above the threshold. For example, setting the IoU threshold
to 0.8 means that we consider any prediction that achieves an IoU higher than 0.8 when
compared to the ground truth as a successful prediction. Using IoU thresholds allows us
to compute further performance metrics such as average precision and accuracy (defined
below).

Average Precision (AP) is another metric we use to report the success of the pre-
dictions. We report AP at different IoU thresholds, as it is the standard in different
competitions and the state-of-the-art work in object detection (Dai et al. 2016; Shrivas-
tava and Gupta 2016). Each object detector predicts the location of the code box with
a confidence score. We compute the AP by sorting the confidence scores in descending
order. Then, for each predicted code box, we consider the prediction to be true if its loU
is greater than the current IoU threshold. We compute the precision for each prediction
starting from the image with the highest confidence score. In this context, the precision
is the ratio of the correctly predicted bounding boxes to the total number of predictions.
As the AP might vary based on the chosen IoU threshold, we compute the AP at different
IoU thresholds (0.5 to 0.9 with a step size of 0.1).

The Accuracy is the last metric we report for this research question. It is measured as
the total number of correct predictions divided by the total number of predictions. We
also report the accuracy at different IoU thresholds.

Results: Table 6 shows the AP at different IoU thresholds for each model tested. In total,
each model has been trained and tested 10 times using 10-fold cross validation. The
results are based on 50 different experiments for each of the five object detectors, which
took a total of 71 hours to run. As shown in Table 6, the average precision and the
accuracy for all models are relatively high at the .5, .6, and .7 IoU thresholds. This means
that each model is reliably predicting the code editing window with an IoU of at least
50% (i.e., at least a 50% overlap with the ground truth). We can also observe that when
we increase the IoU thresholds gradually, the performance of all approaches starts to
significantly decrease, with the exception of Faster R-CNN and SSD-Resnet. This shows
the importance of evaluating each model at different IoU thresholds, where we can finally
find the best model that could reliably predict a code editing window with a high overlap
with the ground truth. At an IoU threshold of 0.9, Faster R-CNN maintains an AP of
93.3% with 94.4% accuracy. This is indicative that Faster R-CNN is the best performing
model for our dataset.

Additionally, when we fed our 300 frames into the models to make the prediction in each
fold, we computed the prediction time and averaged the result. Although YOLO performed
the worst in terms of AP and accuracy for prediction compared to other models, the pre-
diction time was the fastest with an average of ~ 6 fps as shown in Table 6. In general, the
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Fig.6 Training time in (minutes) for each object detector we used during our 10-fold cross validation

prediction times of YOLO and SSD are faster than those of Faster R-CNN and R-FCN since
they are region-free approaches. Since for the scope of this research the accuracy is more
important than the speed, we chose Faster R-CNN which is the most accurate approach and
can still make a code editing window prediction at a rate of ~ one fps.

Figure 6 shows the training time of the models using the 10-fold cross validation for
a total of 4,000 iterations where all models have converged. The choice of the backbone
network contributes toward the training time as we can see with SSD using Resnet with 101
layers and SSD using Inception. We observed that Faster R-CNN took about an hour during
the training process. Szegedy et al. (2016) shows that training with residual connections
accelerates the training of Inception networks significantly and proposed Inception-ResNet-
v2 that we utilized as a feature extractor for Faster R-CNN. Another important factor that
plays an important role in the training performance is the localization task. While R-FCN is
faster to train, it is less accurate compared to Faster R-CNN.

Figure 7 shows four examples of code box predictions made by Faster R-CNN compared
to the ground truth bounding boxes. The blue bounding box represents the ground truth and
the green bounding box is our model’s correct prediction. We generally noticed that Faster
R-CNN remains very accurate even with different combinations of IDE layouts we tested.
For example, in Figs. 7a and b, the prediction and ground truth are almost exact matches.
In Fig. 7c, the prediction achieves an IoU of 86%, but still manages to cover almost the
same code section, and nothing else. However, due to the high IoU threshold of 90%), it is
marked as an incorrect prediction, since it falls below the threshold. For the last Fig. 7d,
the model incorrectly predicted both the code bounding box and the terminal bounding box
as a single code bounding box. The color of the terminal and its format looked similar to
the code bounding box, so we assume this is what made the model to incorrectly predict
the code bounding box. More example predictions can be found online in our replication
package.”

7http://malahmadi.sa/roi/
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Fig. 7 Ground truth bounding box (in blue) compared to predicted bounding box (in green) for correct
prediction or (in red) for incorrect prediction

4.2.2 RQ2. How does our approach compare to previous work that identified the code
editing window in video frames?

Motivation: Finding the code editing window/bounding box is the first step towards
extracting source code from video tutorials. Previous work has mostly made use of sim-
ple edge detection techniques for this purpose, which have known limitations that limit
their application (more details in Section 5). CodeTube (Ponzanelli et al. 2017) is the
only previously proposed approach that not only employs an edge detection technique,
but also offers an alternative approach for the cases when edge detection fails. Therefore,
we compare the performance of our approach based on Faster R-CNN with CodeTube.

Methodology: We replicated the approach proposed by CodeTube (Ponzanelli et al.
2017) for locating the code bounding box as follows. First, using edge detection based
on OpenCV, we detected a number of quadrilaterals in a code frame. Then, we applied
OCR on each quadrilateral using Tesseract-OCR? (as done in CodeTube) and found the
one that contains code in it. The result of this process is accurate when the main code
editing window is detected as a quadrilateral. For many of the frames, however, the code
editing window is not detected, especially when the bounding box is unclear. In this
case, we applied the second approach proposed by CodeTube: we divided the image
into fixed-size sub-images, applied OCR on them and analyzed the results. The top-left
and bottom-right sub-images with at least one English and/or Java keywords defined the
overall code region.

We compared the replicated approach from CodeTube with our best model from RQ1,
namely Faster R-CNN. In other words, we compared the code bounding boxes produced
by the two approaches to our testing dataset and observed which ones are closer to the
ground truth. Since the CodeTube approach was defined and evaluated only on Java
programming videos in previous work (Ponzanelli et al. 2017), we only use the Java FVC
frames in our testing set (100 frames in total) for this part of our evaluation, for a fairer
comparison.

Evaluation metrics: We used the IoU metric between the predicted code section and
the ground truth code section for both our approach and CodeTube. We then report the
median IoU across all 100 Java testing frames for our approach as well as for CodeTube.

Results:  As shown in Fig. 8, our approach significantly outperformed CodeTube. While
the median IoU was only 0.4 for CodeTube (0.48 average [oU), our approach achieved
a median IoU of 0.95 (0.93 average IoU). When analyzing the results in more detail,

8https://opencv.org/
9https://github.com/tesseract-ocr
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Fig. 8 Boxplots of the IoU metric for our approach and CodeTube with the median value reported above
each boxplot

we noticed that using the CodeTube algorithm, 50 code regions were detected using the
first approach (code edge detection), while the other 50 were detected using the second
heuristic approach as the code edge detection approach had failed.

The CodeTube heuristic approach has some limitations that yield low accuracy. Basi-
cally, the fixed-size sub-images could cover only part of the code, that could lead to
truncated identifiers and English words. Since CodeTube looks for Java or English words,
the sub-image containing truncated code would not be valid. This could be resolved using a
sliding-window approach with a predefined stride width and height. However, this would be
computationally expensive as we would need to apply OCR on all sub-images. On the other
hand, using our approach, we apply OCR to only one region (i.e., the code editing window).
Our approach uses supervised learning which requires a label for each frame. This label is
the code bounding box annotation, that we need to prepare before training the model. Unlike
CodeTube, this process is time-consuming since it requires human effort to make the anno-
tation. Yet, this is only a one-time process and once the model is built, it can be used for
as many predictions as needed. Additionally, our approach is able to make a prediction at a
rate of ~ one fps as shown in Table 6. CodeTube requires ~ 12 seconds to make a predic-
tion for each frame. This is mainly because CodeTube applies OCR to 25 different boxes to
make the prediction (i.e., 20% of the original width and height).

4.2.3 RQ3. Does our approach help OCR techniques to better extract code from video
programming tutorials?

Motivation: The ultimate goal of our approach is to help OCR approaches extract code
better from programming video tutorials by reducing the noise that would otherwise be
extracted. In this research question, we investigate this assumption and study whether
applying OCR on the code editing window predicted by our approach leads to better
results compared to applying OCR on the entire frame. Additionally, we aim to compare
the results of the code extraction from the bounding box detected by our approach with
the one detected by CodeTube.
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Methodology: To answer this question, we apply OCR on each frame in our testing
dataset consisting of 300 FVC frames from Java, C#, and Python video tutorials. OCR is
applied four times on each frame, namely:

—  On the ground truth code bounding box. OCR is applied on the true location of the
code bounding box in the frame and the result is stored as OC Rg.

— On the predicted code bounding box. OCR is applied on the code bounding
box predicted by our best approach, Faster R-CNN and the result is stored as
OCRpredicted-

—  On the entire code frame. OCR is applied on the entire frame and the result is stored
as OCREptire-

—  On the CodeTube-predicted code frame. OCR is applied on the code bounding box
predicted by CodeTube using the approach discussed in Section 4.2.2, and the result
is stored as O C RcodeTube-

We then compare how close OCRpyegicted, OC RcodeTube, and OC Rgy;ire €ach come
to the ground truth OCRgr.

For this part of our evaluation we used Google Cloud Vision API for OCR,'® which,
unlike Tesseract-OCR used in CodeTube, does not need image preprocessing before
extracting a clean text. Google API has also been shown to outperform Tesseract-OCR
in previous studies (Moslehi et al. 2018).

Evaluation metrics: We used the Levenshtein Distance (LD) metric to measure the simi-
larity between O C Rgr and O C Rpyegicteqd as Well as the dissimilarity between OC Rgr
and OCREgyyire for each of the test frames. Additionally, we used LD to compare the
dissimilarity of OCRgr with both OCRp;egictea and O C RcogeTube- The Levenshtein
distance measures the required number of edit operations (insertion, substitution, and
deletion) to transform one string to another. The higher the Levenshtein distance, the
more dissimilar the two texts are. However, it is hard to gauge what the exact value of
the Levenshtein distance means. Therefore, we use the Normalized Levenshtein Distance
(NLD), defined in Eq. (2), which instead indicates how similar two texts are to each other
as a value between zero and one. An NLD of one indicates that two texts are identical.

LD(t, 12)

NLD(t1,) =1 — max(len(t), len(t2)) o

The Normalized Levenshtein Distance (NLD) has been used before in several fields
including software engineering to gauge similarity between texts. Sun (2015) and Thum-
malapenta et al. (2010). When OCRgr is exactly the same as OCRp edicted, their
NLD is one. The NLD is computed between each OCRg7 to each OCRpredicteds
OCRcodeTube, and OC Rgp;ire. We used a total of 300 frames from our test set to com-
pare OCRpredictea and OC RcogeTube 10 O C REpsire. Since the approach and study in
the CodeTube paper (Ponzanelli et al. 2017) focused only on Java programming, we
excluded Python and C# from our evaluation, for a fair comparison (i.e., only the 100
Java frames were used from our test set).

Results: From the boxplots in Fig. 9, it is clear that OCRpyegictea outperformed
OCREntire and O C RcpdeTubes @s its similarity to the ground truth is significantly higher,
reaching a median of 97% for Java, 98% for C# and 96% for Python. On the other
hand, OC Rgy;ir. achieved a median similarity to the ground truth of only 31% for Java,

10https://cloud.google.com/vision/

@ Springer


https://cloud.google.com/vision/

Empirical Software Engineering (2020) 25:1536-1572

1559

1.0 .97 .31 .98 34 .96 29
T % : T
0.8 i i
+ +

3 +
£ 0.6
=
v
v
T04 .
-
z

0.2 +

0.0

Java c# Python
Programming Language
OCR on the Entire Frame
% Average Value
(a) Results of 300 frames (Java, C#, Python)
0.97 0.62 0.31
v -
0.8
+

a 0.6
-
4

0.4 +

0.2 F

0.0

Our approach CodeTube Entire

% Average Value

(b) Results of 100 Java frames

Fig. 9 Boxplots of NLD with the median above each boxplot shown (i) in (blue) for NLD(O CRpyedicted,
OCRgr), (ii) in (red) for NLD(OC Rgniire, OCRgr), (iii) in (green) for NLD(OC Rgpiire, OCRcodeTube)

34% for C# and 29% for Python as shown in Fig. 9a. Although, CodeTube reduced a
median of 32% noise comparing to O C Rgpire, the dissimilarity between O C RcodeT ube
to OCRgr is about 38% on average. This indicates that the process of detecting the
code bounding box by CodeTube is not as accurate as our approach. Overall, this shows
that on average, applying our code localization approach based on Faster R-CNN to the
frame and then applying OCR only on the area predicted by our approach leads to a 66%
reduction in noise in the extracted code compared to applying OCR on the entire frame.

4.2.4 RQA4. Can our approach be used for discriminating between FVC, PVC, and NC
frames?

Motivation: ~While our duplicate frame elimination step manages to remove a lot of
the noise in a programming screencast, during the manual classification of frames, we
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noticed that a lot of them contain only Partially Visible Code (PVC) due to the obstruc-
tion of the code editing window by other windows such as popups. These frames are
not useful in the process of correctly extracting code and would therefore be best if they
were automatically identified and removed from the analysis, instead of having to man-
ually identify them. Since our Faster R-CNN approach proved to be very successful in
identifying particular windows in a frame (i.e., the code editing window), we want to
investigate in this research question, if the same approach could also be used to identify
popups obscuring the code (or in other words to identify the PVC frames). Additionally,
the frames that do not contain any written code should also be detected and removed,
since they are not useful in localizing and extracting code in the first place. So, we want
to train our model to also learn the features of the frames that belong to the no code (NC)
class, and identify them correctly. We also compare our approach to VGG-16, an algo-
rithm used in previous work for the detection of FVC, PVC, and NC frames (Ott et al.
2018a).

Methodology: We considered this problem as a multi-class classification problem where
the three possible classes are Fully Visible Code (FVC), Partially Visible Code (PVC),
and No Code (NC). Previous work has addressed this particular problem using a clas-
sifier based on VGG-16 (Ott et al. 2018a), which is a pre-trained network and robust
feature extractor that won the ILSVRC-2014 competition in classification (Simonyan and
Zisserman 2014). However, we also believe that our approach based on Faster R-CNN
has the potential to perform very well and maybe even outperform VGG-16 on this task.
While Faster R-CNN was used in our RQ1 for predicting the location of the code edit-
ing window, what was not maybe straightforward is that Faster R-CNN also implicitly
classifies each object inside the predicted box. We can therefore use Faster R-CNN as a
classifier and compare it with the VGG-16 classifier used in previous work.

Our dataset contains frames from three different classes: FVC, PVC, and NC. Since
we had already annotated 3,000 FVC frames from all the videos we collected for each
programming language, we downsampled the total number of FVC frames to 1,500 to
bring it to the same number of frames as PVC and NC. The downsampling process was
mainly used to balance our dataset across all classes. We used a similar approach to the
one described in Section 4.1.3. Basically, we randomly chose one FVC frame from each
video and repeated this process again by selecting another random frame until we had a
total of 500 FVC frames for each programming language. A total of 1,500 PVC frames
and NC frames were randomly selected using this same stratified sampling approach. The
PVC frames were then also equally distributed using the Dataturks annotation tool to a
total of 10 participants, which annotated each PVC with the box defining the obstructing
window. All annotations were verified by one of the authors who re-annotated the ones
with an inaccurate bounding box or the skipped ones (i.e., an annotator could skip anno-
tating a frame). While in the case of FVC and PVC frames, it is relatively straight-forward
what needs to be annotated (i.e., the bounding box of the code and of the obstructing
window, respectively), annotating the NC frames presents a few options. There are three
main approaches we envisioned for training the model with the negative class (NC class
in our case). The first approach would be to train the model with only positive examples
(FVC and PVC frames) and the model would just return a True Negative when asked to
classify NC frames with no visible code. In the second approach, all three classes (FVC,
PVC and NC) would be used to train the model and we would just annotate the NC
frames with zeros as the bounding box coordinates. The third approach is similar to the
second approach but rather than setting the bounding box to zeros, we consider the entire
image as a single bounding box and annotate the NC frames with its coordinates (i.e., the
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bounding box is the entire image). Although using the first approach we do not need to
collect negative examples for training, we need to set a confidence threshold to identify
the best class that describes the detected object if any. A value less than a pre-defined
threshold would indicate that there was no object in the image, hence, it belongs to the
negative class (e.g., NC class). Identifying the best threshold needs several experiments
and is based on heuristics that might fail in some cases. Using the second approach would
work the same way as the first one, since the model would not learn anything from an all-
zeros bounding box. The third approach, however, would allow the model to explicitly
learn the spatial features of the NC frames and make a prediction accordingly without
using any heuristic such as a confidence threshold. Additionally, annotating these frames
would not require any human effort since a script could automatically generate the anno-
tation for each of these frames with the bounding box information. Eventually, our model
should output the class name and the bounding box information for each input frame
where we use the bounding information only for the frames with the FVC and the class
name to identify the PVC and the NC frames.

For our competitor, VGG-16, we also used our dataset with the three classes: FVC,
PVC, and NC. The label for each image is only the class name since VGG-16 is basi-
cally a classifier that uses the features of the entire image. VGG-16 was trained using
back-propagation, and a sophisticated gradient decent optimizer along with techniques
to prevent overfitting. In particular, we monitor the validation loss in each epoch, and
stop the training when the validation loss is not improving after a total of five epochs.
Additionally, we save the best model that achieves the best performance on the validation
set during the training of our network. Decreasing the learning rate over time improves
the network performance as the network would “fine-tune” the learned weights (Rus-
sakovsky et al. 2015). Therefore, we automatically reduce the learning rate by a factor
of 1 x 10! if we observe that the validation loss is decreasing for a total of 3 epochs.
We experimentally found that by fine-tuning our networking using these techniques, the
overall classification performance for the model increased. The VGG-16 network was
implemented using Python with Keras'! API.

We split our dataset into training (80%), validation (10%), and testing (10%). Both
VGG-16 and Faster R-CNN were trained using 10-fold cross-validation for the described
multi-class classification task.

Evaluation metrics: To evaluate the performance of classifying FVC, PVC, and NC
frames, we used the following standard metrics in our experiment (Zimmermann et al.
2007).

Precision measures the ability of the classifier to correctly identify positive samples.
In particular, it measures the percentage of correctly classified frames in a specific class

over all frames classified as that class. Formally, it is defined as P = % where T),
is the number of true positives and F), is the number of false positives. A high precision
indicates that a classifier is returning a small number of false positives.

Recall, also known as True Positive Ratio, measures the percentage of correctly clas-
sified frames in a specific class over the actual number of frames in that class (e.g., the
total number of correct FVC predictions over the total number of FVC frames). It is com-
puted as R = %, where T, is the number of true positives and Fj, is the number of

false negatives.

https://github.com/keras-team/keras
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F-score is a measure that uses a combination of precision and recall to indicate the
effectiveness of the classifier. Formally, F; score is the harmonic mean of precision and

recall, definedas FF =2 - q 54'-1;2)'

Accuracy measures the proportion of correctly classified frames. Formally, Accuracy
Tp+Tn
T/)+Fn+Fp+Tn !

is defined as Acc =

Results:  Table 7 shows the results of our 10-fold cross-validation experiments using the

VGG-16 and Faster R-CNN models. We observed that both models achieved a high pre-
cision and recall for predicting the frames that belong to the NC class. Since the FVC
frames and the PVC frames look very similar to each other, the accuracy for predicting
these frames is less than that of the NC frames. Faster R-CNN outperformed VGG-16 in
predicting the frames that belong to the FVC and PVC classes, with an F-Score of .96 and
.95, respectively. The recall score of the PVC class using VGG-16 is .86, which means
that the model classified some PVC as a false negative (i.e., only 1,291 out of 1,500 were
correctly classified as a PVC). In order to better understand where VGG-16 failed in the
classification of PVC frames, we analyzed the results in detail and found that the prob-
lems were in the cases of dark IDE backgrounds or when there was not enough contrast
between the obstructing popup window and the IDE background. Faster R-CNN, on the
other hand, was able to better handle these cases. Not only was the overall accuracy of
Faster R-CNN better than VGG-16, but also Faster R-CNN can determine the exact loca-
tion of the code region in the FVC frames. Therefore, Faster R-CNN is more practical
for our problem since we can classify and localize at the same time.

In Fig. 10, we show some of the prediction examples that are made by our model for the
frames that belong to the NC and PVC classes. The content of Figs 10a and b are a FVC
frame and a PowerPoint slide, respectively and were correctly classified by our approach
into the FVC and NC categories, respectively. Figure 10c shows an example of predicting
the PVC frame where the model correctly classified and located the obstructing window.
We also show an example of incorrect prediction in Fig. 10d where the model incorrectly
classified the input frame as a FVC frame instead of PVC, since the size of the popup
box was very small.

4.3 Threats to Validity

The threats to internal validity in our study include the two main tasks for labeling our
data set. First, two of the authors classified the remaining video frames in our dataset after
removing the duplicates. Each author had to classify frames from a set of 225 videos. There
is a chance that some of the frames were incorrectly labeled. To mitigate this threat, each

Table 7 The classification results of the 10-fold cross-validation experiments for the Fully Visible Code
(FVC), Partially Visible Code (PVC), and No Code (NC) classes using VGG-16 and Faster R-CNN

Class VGG-16 Faster R-CNN

Precision Recall F-Score Precision Recall F-Score
FVC 0.86 0.91 0.88 0.94 0.98 0.96
PVC 0.90 0.86 0.88 0.99 091 0.95
NC 0.98 0.99 0.99 0.95 0.99 0.97
Overall accuracy 0.92 0.96
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Fig. 10 An example of prediction results for the frames with FVC, NC, and PVC using Faster R-CNN

author had to verify the frames labeled by the other author from the other 225 videos.
The authors discussed any conflict regarding the labels and reached a common agreement.
Second, for each of the FVC frames and PVC frames, we needed the ground truth code
bounding box. Therefore, we recruited 10 computer science students to annotate the frames
with this information. Sometimes, the participants may not be sure about the location of the
code to annotate, so they might draw an inaccurate bounding box. To mitigate this issue,
we had an option for them to skip a frame. For each skipped frame, one of the authors later
annotated it. Additionally, we created a simple video demonstration about the process of
annotating frames with a few examples for our participants. Lastly, all the annotated frames
were verified by one of the authors.

Construct validity is threatened in our study by the measurements we used to answer our
four research questions. In general, we mitigated this threat by using well-established met-
rics from the fields of object identification in images and image classification (Dai et al.
2016; Shrivastava and Gupta 2016; Russakovsky et al. 2015). For measuring the accuracy
of our approach for RQ1, we had to carefully set a reasonable IoU threshold. A low IoU
threshold increases the overall average precision and accuracy, while a high one can dras-
tically reduce them. In our evaluation process, we followed the standard procedure from
the literature in the field and computed the average precision and accuracy at different loU
thresholds.

For RQ2, we only used the 100 Java frames from our testing set in order to have a
fair comparison with the previous work we compared against, CodeTube (Ponzanelli et al.
2017), which was proposed and evaluated only for Java screencasts. We also made sure to
apply the same OCR engine that was used in CodeTube in the step for finding the code
region.

The construct threats in RQ3, concern the evaluation metrics we used to show the
similarity between two texts. The similarity between two texts could be measured using
several metrics, based on character or token. We used the Normalized Levenshtein Distance
string metric, which has been previously used in software engineering for measuring text
similarity.

In our experiments to answer RQ4, the construct threat is mainly related to the effec-
tiveness of the performance metrics that were used for the classification task. We mitigated
the threat of selecting the measurement metrics by using well-established measurements in
the machine learning field. That is, we evaluated our approach by using Precision, Recall,
F-Score.

Regarding the threats to external validity, our results may not be generalizable to all the
software development videos available or all of the code editing windows present in them.
However, we aimed to make our approach and findings more generalizable by including
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videos covering three different programming languages, different IDEs and background
colors, various layouts, etc., for a total of 450 videos. To ensure even more diversity, we
also limited the maximum number of selected videos from any channel to five.

5 Related Work

Nowadays, social media plays an essential role in developers’ daily tasks, as they use it to
communicate with other developers, acquire new information and skills, solve problems,
etc. Storey et al. (2014). Programming screencasts, such as those hosted on YouTube are
becoming more and popular and recent studies have started analyzing and leveraging this
source of documentation. MacLeod et al. (2015) and MacLeod et al. (2017) performed a set
of interviews with developers in order to study their motivation for creating programming
screencasts and found that sharing knowledge they gained while performing a programming
task was their main goal. Bao et al. (2017) analyzed the content of screen-captured videos
to produce time-series HCI data automatically. Bao et al. (2018) proposed an approach to
record the workflow of programming screencasts and display it to the watchers. Conse-
quently, a timeline of the workflow operations are displayed with an option to navigate to
a specific action. Moslehi et al. (2018) proposed an approach to link source code files to
the corresponding screencasts by leveraging the GUI text as well as the audio transcripts.
Ellmann et al. (2017) analyzed a set of videos from YouTube and found that video program-
ming tutorials are more static than other types of videos, namely that the content shown
on screen changes less often. This indicates that, when analyzing programming screen-
casts, one important performance gain may be to first remove the duplicated information
that appears across several consequent frames in the video. Based on this previous work,
we designed the first step of our approach (described in Section 3.1) to remove duplicate
frames.

Other related works aim to create a useful resource from video contents and comments.
As there are millions of programming video tutorials on YouTube, tagging video content is
beneficial for developers to find the intended video. Escobar-Avila et al. (2017) and Parra
et al. (2018) proposed an automatic tagging system for software development video tutori-
als. Comments could also provide video creators with useful information when accurately
analyzed. But not all the comments are useful for the narrators; therefore, Poché et al. (2017)
proposed an approach based on machine learning to classify comments into relevant and
irrelevant.

The most related works to our research are divided into three topics and discussed in
details below: Duplicate Frame Elimination in Programming Screencasts, Code Bounding
Box Detection and Code Extraction from Videos, and Identifying Partially Visible Code in
Video Frames.

5.1 Duplicate Frame Elimination in Programming Screencasts

Previous work on analyzing programming video tutorials has made use of pixel-by-pixel
metrics to compute the similarity between frames in order to determine duplicate informa-
tion to remove. Yadid and Yahav (2016), uniformly sampled the frames from 40 videos at a
rate of 30 frames per video. Then the authors discarded the frames that do not contain typed
code. While the frames could be sampled at longer periods of time to reduce redundancy,
this would inevitably lead to the loss of valuable information, as some of the frames skipped
may contain new material. Ponzanelli et al. (2017) compared every two consecutive frames
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using pixel matrices and removed one of the frames when the similarity was less than a
certain threshold. Comparing two consecutive frames after extracting one frame per sec-
ond ensures the diversity of the frame selection process. Thus, we used the same approach
in our frame extraction and duplicate elimination processes. However, we used a different
approach for comparing one frame to another, described in Section 3.1. Moslehi et al. (2018)
applied a simple textual comparison between each subsequent frame. While this approach
can successfully compare two frames that are textually rich, it will likely fail for frames with
more visual and less textual content. Other works are summarized in Table 8 and mostly use
pixel-based comparison between frames.

Pixel-based or pixel-by-pixel comparison between frames is very sensitive to noise and
leads to inaccurate results. For example, a part of the code might be highlighted which
would result in differences between the pixels in the frames (i.e., before and after the text
highlighting). Also, when a cursor location changes, the pixel values of the cursor would
change from one location to another. Unfortunately, pixels are not invariant of transforma-
tion, unlike features. There are several other cases such as image resolution, color changing,
etc. that can add more noise to pixels. This is the primary reason that Moslehi et al. (2018)
changed their approach from pixel-based comparison to textual comparison.

To avoid the limitations of pixel-by-pixel approaches, we leverage Scale Invariant Fea-
ture Transform (SIFT) which has been experimentally approved by a wide variety of
applications to be very successful for extracting features (Lowe 1999, 2004). Although
video resolution could affect the performance of SIFT in terms of extracting features, SIFT
resolves this issue by firstly selecting a set of candidate key-points and then filtering out the
ones with low contrast or those that were poorly localized. The remaining key-points are
robust to noise, illumination, and occlusion. Additionally, we use SIFT to remove duplicates
among neighboring frames from within a video and not across multiple videos. We assume
that the tutors do not alter the color scheme or other visual properties of the IDE during the
presentation. In other words, the resolution and the color scheme/contrast used by the IDE /
source code editor are very likely to remain the same for neighboring frames extracted from
the same video. SIFT is successfully able to resolve the scaling and rotation challenges of
an image. In video programming tutorials, it is common that a tutor may have zoomed into
a specific area of code to explain it, and this problem is addressed by the invariant scale
property of SIFT. SIFT outperformed several feature detector algorithms and was applied
to several object recognition applications, Juan and Gwun (2009). Section 2 describes the
SIFT algorithm in more details.

5.2 Code Bounding Box Detection and Code Extraction from Videos
Most of the video programming screencasts involve a narrator writing code on-the-fly in a
code editor such as an IDE. These IDEs have some windows in the form of quadrilaterals

which can be detected using an edge detection algorithm such as Canny Edge Detector,

Table 8 Papers that analyzed the similarity between videos frames

Paper Total Tutorials Frame Rate Frame Comparison
Ponzanelli et al. (2017) 150 one fps Pixel-by-Pixel
Ellmann et al. (2017) 100 10 fps Pixel-by-Pixel
Moslehi et al. (2018) 10 one fps Textual-Based
Ott et al. (2018a) 40 one fps Pixel-by-Pixel
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Canny (1986). Therefore, several approaches used edge detection techniques along with
some heuristics to find the main code editing window, as summarized in Table 9.

Yadid and Yahav (2016) applied a Canny Edge Detection algorithm to extract a set of
contours from an IDE frame. The smallest contour that covers most of the code is assumed
to be the main code region. The authors state that finding the main editing window is a
challenging task; therefore they find the location of the main editing window for one frame
of a video using Canny Edge Detection and use its location to extract the other code sections
from the remaining frames. While this is convenient and computationally efficient, it can
also be incorrect in many situations, when the window is moved, split, resized, overlapped,
etc.

Recent work was proposed by Khandwala and Guo (2018) to automatically extract
source code from screencasts and display it in a web-based tool. The approach combines
different code sections shown in a video by finding the differences between frames and
merging the code when the editing window is scrolled. Due to the fact that the edge-based
algorithm that finds the main code segment is not very accurate, the code extraction process
was poor. The authors resolved this issue by introducing a custom edge detector algorithm
based on seven heuristic steps. However, these heuristics are not always applicable and are
subject to error. We resolve this issue by applying a deep feature extractor on each image
and train a model with images and their corresponding code segment locations. This does
not rely on any heuristics and is generally applicable.

Ponzanelli et al. (2017) proposed CodeTube, which is a tool that enables developers
to write a query, and relevant video fragments will be retrieved along with other related
StackOverflow discussions. CodeTube identified the code editing window using a two-part
approach. First, the authors used a tool to find all quadrilaterals of an IDE frame. In many
cases the code section can be identified as a quadrilateral. If the first approach fails, the
authors use a second approach based on frame segmentation. A frame is divided into sub-
frames such that each sub-frame is 20% of the width and height of the original image. Then,
OCR is applied to each sub-frame. A sub-frame is marked as a Java code if it contains a Java
keyword and/or at least one English term. Finally, the minimum (x, y) and the maximum (x,
y) of the sub-frames that contain code are considered the bounding box of the code section.

We experimentally found that edge detection algorithms have several limitations that
would fail in detecting the code editing window in many cases. For example, there have
to be explicit box boundaries to be detected by the edge detector. There are several cases
where box horizontal and vertical lines are not clearly visible in videos frames. Furthermore,
the code sometimes is not written on a quadrilateral which is a polygon with four edges.
Figure 11 shows the result of applying Canny Edge Detector on a frame extracted from
a video tutorial. The code bounding box was not detected in this case, as was the case in
many other frames. On the other hand, our approach was successfully able to detect the
code bounding box as shown in Fig. 11.

Table 9 Papers that find a code region in screencasts

Paper # of Tutorials Find code frame Find code region
Yadid and Yahav (2016) 40 Manual Edge Detector
Ponzanelli et al. (2017) 150 OCR-Based Edge Detector
Khandwala and Guo (2018) 20 OCR-Based Edge Detector
Our Approach 450 CNN CNN-+Localize
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Canny Edge
Detec! :

Fig. 11 Comparison between approaches in finding the code editing window

5.3 Identifying Partially Visible Code in Video Frames

Ott et al. (2018a) used a pre-trained neural network VGG-16 to classify frames from 40
Java programming videos into four categories. Two of these categories are Fully Visi-
ble Code (FVC) and Partially Visible Code (PVC). Their main goal is to classify the
entire frame as containing code or not. On the other hand, our goal is not only classi-
fying the frame but also detecting the accurate location of the code snippet inside the
frame. This is related to our work as we aim to classify FVC and PVC to answer our
RQ4. We used the VGG-16 classifier employed by Ott et al. (2018a) as a baseline to com-
pare our Faster R-CNN approach against and found that VGG-16 is outperformed on all
metrics.

A follow-up work by the same authors is to recognize the programming language based
on a VGG network (Ott et al. 2018b). Java and Python programming languages were used
in their experiment.

6 Conclusion

In this paper, we proposed a novel approach to improve the accuracy and drastically reduce
the noise of code extraction based on OCR from programming screencasts by localizing the
main code editing window inside the code frames. Our approach is based on advanced object
detection models that are trained to automatically predict the main code editing window.
We evaluated our approach on a set of frames extracted from videos on three different
programming languages: Java, C#, and Python. A total of 450 videos were collected in our
study.

@ Springer
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We trained five neural networks architectures for our classification and localization tasks
for finding the code region and found that Faster R-CNN performs the best, achieving an
accuracy of 94% on average.

We also extracted the source code using OCR from a set of 300 frames and showed that
applying our approach leads to a 66% reduction in noise and a 96% match with the ground
truth source code.

Our long-term goal is to be able to extract the code from the predicted code region cor-
rectly. Our future work will move in this direction, focusing on correcting the noise caused
by the OCR extraction and also improving upon previous work in merging code appearing
in different video fragments in order to obtain a correct and complete program. We then aim
to create a web-based system that analyzes programming screencasts and correctly extracts
the complete embedded source code and makes it available for download.
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