
Tracing with Less Data: Active Learning for
Classification-Based Traceability Link Recovery

Chris Mills, Javier Escobar-Avila, Aditya Bhattacharya, Grigoriy Kondyukov, Shayok Chakraborty, Sonia Haiduc
Department of Computer Science

Florida State University
Tallahassee, USA

{cmills, escobara, abhattac, kondyuko, shayok, shaiduc}@cs.fsu.edu

Abstract—Previous work has established both the importance
and difficulty of establishing and maintaining adequate soft-
ware traceability. While it has been shown to support essential
maintenance and evolution tasks, recovering traceability links
between related software artifacts is a time consuming and error
prone task. As such, substantial research has been done to
reduce this barrier to adoption by at least partially automating
traceability link recovery. In particular, recent work has shown
that supervised machine learning can be effectively used for
automating traceability link recovery, as long as there is sufficient
data (i.e., labeled traceability links) to train a classification model.
Unfortunately, the amount of data required by these techniques is
a serious limitation, given that most software systems rarely have
traceability information to begin with. In this paper we address
this limitation of previous work and propose an approach based
on active learning, which substantially reduces the amount of
training data needed by supervised classification approaches for
traceability link recovery while maintaining similar performance.

Index Terms—software traceability, machine learning, active
learning, classification

I. INTRODUCTION

Software systems are made up of many different sources of

information such as source code, bug reports, requirements,

use cases, test cases, etc. These different types of software

artifacts contain important information about various aspects

of the system. Software traceability is a system property

that represents the degree to which the relationships between

related software artifacts of different types are known and

documented. For example, in systems with a high level of

software traceability, it is known which code segments im-

plement which use cases, which bugs are related to which

features, which features cover which requirements, and so

forth. Previous work has shown that the information trace-

ability provides natively supports various software tasks such

as program comprehension, bug localization, impact analysis,

ensuring test coverage, etc. and leads to more reliable projects

with better code and fewer bugs [1]–[3]. Unfortunately, col-

lecting this information is often of secondary concern to the

actual development, maintenance, and evolution of the project.

Therefore, traceability is often established and updated post-

hoc, long after artifacts are created or modified. The process

of establishing links in this scenario is called traceability link
recovery (TLR), and when performed manually it is extremely

costly. Further, even if significant resources are invested to

establish traceability, it will rapidly degrade as the software

system changes due to evolution and maintenance tasks [4]–

[7]. Therefore, equally important as establishing traceability is

the process of maintaining it as the system changes over time.

Many works have proposed methods for at least partially

automating TLR in order to mitigate its high cost, conse-

quently reducing the primary barrier to adoption many projects

face. Recent work has focused on automating TLR using

supervised machine learning, re-envisioning the task as a

binary classification problem [8], [9]. Using this approach, all

possible links between two sets of artifacts are first represented

in a feature space, and then they are classified by a predictive

model that labels each link as valid (i.e., the two artifacts in

the link are in fact related) or invalid (i.e., there is no relevant

relationship between the two artifacts in the link). While

achieving better results and more automation than traditional

approaches to TLR, the classification-based approach also

has a glaring limitation: the predictive models require large

amounts of existing traceability data for training (up to 90%

of all potential links in a system).

Given the fact that most software projects outside of high-

risk, safety critical domains do not capture software traceabil-

ity information, the large amounts of training data required

by state-of-the-art classification approaches for TLR are not

available in the majority of systems. Therefore, to make

a classification-based approach for TLR widely applicable,

we must strive to create accurate predictive models that

require as little training data as possible. To that end, we

introduce ALCATRAL (Active Learning for ClAssification-

based TRAceability Links), the first approach to combine

active learning with classification-based TLR. Active learning
is an approach to iteratively train machine learning models

by identifying unlabeled data that, once labeled, will teach

a model the most about the distinction between classes. In

the case of traceability link recovery, this translates into

intelligently determining which links a developer needs to

label next such that the model learns the most about the

difference between valid and invalid links. This process allows

for training a model with considerably less training data

and prevents the developer from wasting time inspecting and

labeling traceability links that do not contribute to the model’s

predictive performance.

We compared ALCATRAL with our state-of-the-art ap-

proach in classification-based TLR called TRAIL [9]. The

103

2019 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSME.2019.00020

results of the evaluation on 11 datasets show that ALCATRAL

provides a predictive model that is not only accurate in

predicting the validity of traceability links, but also requires

much less training data than TRAIL.

This work makes the following contributions to the state-of-

the-art in machine learning classification approaches to TLR:

1) A novel approach, called ALCATRAL, which is the first

use of active learning for classification-based TLR

2) A replication of the TRAIL framework trained with

datasets of various sizes.

3) An evaluation comparing ALCATRAL with TRAIL,

which showed that ALCATRAL is able to achieve per-

formance similar to TRAIL while reducing the amount

of training data needed by more than 50%.

The rest of this paper is organized as follows. Section

II provides background information on active learning and

an overview of related work in TLR. Section III introduces

our approach ALCATRAL. Section IV outlines the research

questions in our evaluation and the evaluation design for

addressing each one. SectionV presents the results of the

empirical evaluation. Section VI discusses the threats to the

validity of our conclusions and lastly, section VIII provides

concluding remarks and a discussion of future work.

II. BACKGROUND AND RELATED WORK

Software traceability in general has been extensively stud-

ied by the software engineering research community. While

Information Retrieval (IR) approaches account for the bulk

of the work toward the automation of TLR [10], [11], in

this section we focus on discussing the related work using

machine learning approaches for TLR, as they are the most

related to our approach. In addition, we also present some

background information on active learning and its use in the

field of machine learning.

A. Machine Learning for Traceability Link Recovery

The earliest work using machine learning for TLR was in

the area of requirements engineering and was proposed by

Cleland-Huang et al. [12]. The authors introduced a proba-

bilistic classifier trained on a set of indicator words scraped

from websites specifically used to identify non-functional re-

quirements. This technique was later applied to link regulatory

codes to project-specific requirements [13] and architectural

tactics to source code [14]. Casamayor et al. [15] also proposed

an approach for the identification of non-functional require-

ments built on semi-supervised learning, which used user feed-

back and Expectation Maximization. Further, Asuncion et al.

[16] presented an unsupervised approach that used a modified

Latent Dirichlet Allocation algorithm to automatically recover

trace links via clustering, which had previously shown promise

for automating TLR [17].

In the area of deep learning, Guo et al. [18] suggested a tech-

nique to build word embeddings from a domain ontology and

generate traceability links using a specialized neural network.

Zhao et al. [19] introduced a similar technique that also uses

word embeddings, but leverages Learning to Rank to construct

trace links based on the similarity of those word embeddings.

Other work has also leveraged more complex machine learning

models, but still relies on the manual construction of domain

ontologies [20]. Unfortunately, domain ontologies are often

difficult to construct manually, which poses a very similar

situation to building training sets required for supervised

learning (i.e., considerable manual effort is required).

Two similar supervised approaches for TLR were proposed

in 2018. First, Bella et al. [8] introduced a semi-supervised

learning approach with four IR-based similarity metrics as a

feature representation. This technique is semi-supervised in

that the training set is identified heuristically based on the

results of IR. However, compared to active learning, the user

is still left to arbitrarily label data based solely on textual

similarity. Second, we proposed the TRAIL framework in [9],

which is a fully supervised approach that leverages query qual-

ity and document statistics features in addition to bidirectional

IR rankings as a feature representation. While TRAIL provides

an abstracted framework for applying machine learning to

TLR with a richer feature representation than the technique

proposed by Bella et al., it does not address the issue of

acquiring training data. TRAIL rather assumes that training

data, representing up to 90% of all the potential links in

a system, is already labeled and available and focuses on

labeling the remaining 10% of the links. While this is a

feasible approach for maintaining already existing traceability

data, it is not very conducive for systems where there is fewer

traceability information available.

ALCATRAL is different from this body of previous work in

several ways. First, it does not require the manual construction

of indicator word sets or domain ontologies. Second, it is a

supervised technique that leverages bidirectional IR rankings

(i.e., semantic similarity), query quality metrics, and simple

statistics about each artifact in the potential link to statistically

model trace links. Therefore, it is distinct from approaches

based on unsupervised learning and word embeddings. Third,

it also provides a richer representation than other semi-

supervised approaches that have been proposed. Fourth, AL-

CATRAL improves upon TRAIL by applying active learning

to directly address the prohibitive amount of training data

required to generate those models. Finally, while the work

proposed by Bella et al. addresses the problem of training data

tangentially through a semi-supervised approach based on IR-

based heuristics, ALCATRAL uses active learning instead.

B. Active Learning

The amount of digital data collected in all aspects of

our lives has increased exponentially over the past decade.

However, while gathering unlabeled data has become cheap

and easy, annotating the data to train machine learning models

is still an expensive process in terms of time, labor, and human

expertise. Therefore, efforts have been made in the field of

machine learning to design techniques aimed at overcoming

these obstacles and reducing the amount of labeled training

data needed by predictive models. Active learning algorithms

alleviate this problem by automatically selecting the salient

104

and exemplar instances from vast amounts of unlabeled data

and suggesting these to a human expert for labeling next. In

other words, active learning aims at finding the data points that

are the most useful for a predictive model in order to learn

new information about what distinguishes different classes in

the data. Selecting the data points that an expert needs to

label using active learning rather than randomly, can prevent

a human expert from wasting time annotating data points that

do not contribute to a model’s predictive performance. This

can lead to drastic reductions in the amount of training data

needed by predictive models, leading to substantial savings in

human annotation effort.

Active learning has been extensively studied by researchers

in the machine learning community [21]. The most common

variation of active learning is batch mode active learning

(BMAL), which exposes the learner to a pool of unlabeled data

and then iteratively queries for the labels of a subset of those

data points. The most widely used mechanism for determining

which data points should be labeled is uncertainty sampling.

With this technique, data points for which a model is the most

uncertain when predicting class membership are chosen for

labeling. That is, with active learning, when a model is confi-

dent about its classification of an unlabeled data point it does

not need to query for affirmation. For ALCATRAL, model

uncertainty is calculated using entropy, which is a common

approach [22]. Alternative uncertainty metrics include distance

from the classification boundary [23], disagreement between

a jury of classifiers [24], variance reduction [25], and the

Fisher information matrix [26], [27] among others. Other work

has shown that combining multiple selection criteria such as

uncertainty, representativeness, and diversity is also a viable

strategy for sample selection [28]. More advanced techniques

for active learning have also been proposed. For example,

Guo and Schuurmans provide a discriminative batch mode

approach using Quasi-Newton optimization [29]. Guo also

introduced BMAL based on matrix partitioning [30], which

is independent of the underlying classification model. Other

studies have presented adaptive approaches to automatically

batch data based on complexity [31].

To our knowledge, this is the first work that applies ac-

tive learning specifically to supervised learning for TLR. As

such, we have opted to apply a simple implementation based

solely on information entropy, which can be built upon in

future work. By applying a simple implementation, we can

understand the impact that active learning has on automatic

TLR via classification and then subsequently measure the

impact of improvements. Relying on an approach to active

learning that is easily implemented also facilitates adoption by

removing unnecessary complexities that provide only minimal

performance improvement.

III. APPROACH

In this section we describe our approach called ALCATRAL

(Active Learning for ClAssification-based TRAceability

Links). Like most recent classification-based approaches to

TLR, ALCATRAL is comprised of several components that

when implemented together form a predictive model. Un-

like these recent approaches, ALCATRAL incorporates active
learning into TRAIL [9], which represents a novel improve-

ment that reduces the amount of training data required to gen-

erate an accurate predictive model. The process ALCATRAL

uses to classify potential traceability links is as follows:

1) All labeled traceability links are represented as a k-

dimensional vector of numerical features that explain

relationships between the two artifacts in each link.

2) The feature vectors derived in the previous step are sent

through a feature selection routine based on Pearson cor-
relation, which removes features that have high pairwise

correlation with another feature. The result of this step

is a series of p-dimensional vectors that represent each

labeled traceability link, where p ≤ k.

3) Synthetic Minority Oversampling TEchnique (SMOTE)
is applied to the set of p-dimensional vectors created by

the previous step in order to address class imbalance,

which occurs because there are many more invalid links

than valid links in the overall dataset.

4) Data from the previous step is used to train an initial

Random Forest classification model, which provides

labels and uncertainty scores for the remaining unlabeled

links.

5) Active learning is applied to the results of the previous

step, which produces a list of additional links that are

labeled and added to the training set to refine the model.

6) The refined ALCATRAL model is used to automatically

classify the remaining unlabeled traceability links.

Note that because we are primarily concerned with the ap-

plication of active learning to reduce the training data require-

ment of existing supervised classification approaches, we used

the same optimal configuration of feature selection (Pearson

correlation), rebalancing technique (SMOTE), and machine

learning algorithm (Random Forest) we obtained during the

extensive evaluation of TRAIL [9] for the implementation of

ALCATRAL . By retaining the same configuration, we are able

to perform a side-by-side comparison with the state-of-the-art

while injecting minimal bias via conflating variables.

A. Representing Potential Traceability Links

Supervised classification-based approaches to TLR consider

all of the possible links that could exist between two given

sets of software artifacts and predict each to be either valid

(i.e., the artifacts are related) or invalid (i.e., the artifacts are

not related). Formally, if we have two artifact sets A and

B, the approach predicts the validity of each element in the

Cartesian product A×B. That is, for each artifact a ∈ A, we

predict the validity of the potential link that exists between a
and some b ∈ B. Therefore, for the purpose of a prediction

model, each potential link between two sets of artifacts is

represented by a set of features that are meant to help the

machine learning algorithm learn what characterizes valid vs.

invalid links. ALCATRAL is implemented with three different

types of features based on prior work [9]: IR-rankings, query

quality metrics, and artifact statistics.

105

1) IR-ranking Features: While IR has limitations and does

not completely automate TLR [9], it does provide useful in-

formation about the semantic similarity between two software

artifacts in a potential link. Therefore, we use IR as a set

of features that represent the similarity between two artifacts

from the perspective of many different IR approaches. This

is similar to previous work that has incorporated multiple IR

approaches using Learning to Rank [32].

Formally, given two artifact sets A and B, and a possible

link between artifacts a ∈ A and b ∈ B, we capture the

strength of this link based on IR using two metrics. First,

we use a as a query and the artifacts in B as the corpus.

After running a as a query through an IR engine, we capture

the rank at which b appears in the list of results as the first

metric. Then we repeat the procedure, this time considering

b as the query, A as the corpus, and capturing the rank

of a in the list of results as the second metric. This gives

the model bidirectional information about artifact similarity,

as previous work indicated that the search direction directly

affects retrieval performance for TLR [33].

For ALCATRAL, we used the same IR approaches initially

used by the state-of-the-art classification approach TRAIL

[9]: Vector Space Model with TF-IDF weighting and cosine

similarity, Okapi BM25, Jensen Shannon, Latent Semantic

Analysis, Latent Dirichlet Allocation, Dirichlet language mod-

els, and Jelenik-Mercer [34]. We used each to compute the two

aforementioned metrics per potential traceability link, resulting

in a total of 14 different IR-based features per link.

2) Query Quality Features: While a significant body of

work suggests that IR is a reasonable technique for automating

TLR, other work has shown that IR performance is directly

related to query quality [35]. In the context of traceability,

artifacts with poor textual quality are considered hard-to-trace

by IR, as for these artifacts IR provides unreliable results,

usually containing many false positives (i.e., an invalid trace-

ability link is erroneously presented as valid). To counteract

this phenomena, we employ a series of query quality metrics

[35] that are designed to help a model identify the scenario in

which two software artifacts appear related based on semantic

similarity, but that information is unreliable because of the

quality of one or both of the artifacts. We employ all of the

features used in previous work in the TRAIL framework [9],

for a total of 112 query quality features.

3) Artifact Statistics Features: Previous work in cold-start

analytics identified several computationally inexpensive statis-

tical metrics to model trace links [36]. In this work we leverage

some of these metrics as features: the number of unique

terms in an artifact, the total number of terms in an artifact

(including duplicates), and the percentage of overlapping terms

between the two artifacts in a candidate link. These features

act as proxies for artifact complexity (i.e., longer artifacts

are more likely to contain more information) and relatedness

(i.e., artifacts that have higher term overlap are more likely

to contain similar information). This results in a total of 5
features for each link.

To summarize, we extracted 131 features for each potential

traceability link: 14 IR-based features, 112 query quality

metrics, and 5 artifact features. Each feature was normalized

to the interval [0,1].

B. Correlation-Based Feature Selection

Some features in the initial 131-feature representation of a

traceability link can carry redundant or irrelevant information.

This can lead to waisted effort computing unneeded features in

addition to overfitting the model. Therefore, in order to iden-

tify only the essential features needed for a predictive model,

feature selection must be used. While there are numerous

approaches available, ALCATRAL performs feature selection

using Pearson’s correlation as implemented in Weka 1. This

is based on guidance from previous work [9] and supports a

one-to-one comparison with TRAIL.

C. The Synthetic Minority Oversampling Technique

Like other classification-based approaches, ALCATRAL

considers the set of all possible links between two sets of

software artifacts. Generally, in that set there are far fewer

valid links than invalid ones. By definition, this leads to a class

imbalance problem. If a model is trained without rebalancing

the data, it may be difficult to differentiate minority class

instances from the majority. Further, the resulting model

may not be practically useful, as the model can achieve

almost perfect accuracy by näively predicting all links to be

invalid. To counteract this phenomena, ALCATRAL uses the

Synthetic Minority Oversampling TEchnique (SMOTE) [37].

Using SMOTE, artificial instances of vectors belonging to the

minority class are generated by interpolation. That is, new

minority class vectors are created around existing minority

class vectors. This boosts the original minority class data’s

signal while having minimal impact on the decision boundary.

D. Random Forest

ALCATRAL itself is agnostic to which machine learning

classification algorithm is trained on the rebalanced data to

perform the prediction. However, to facilitate the comparison

with the state-of-the-art, we use Random Forest, as it lead

to the best performance for TRAIL [9]. The Random Forest

algorithm for classification is an ensemble approach that

generates a set (i.e., a “forest”) of decision trees and then

returns the mode of the predictions made by each tree.

E. Active Learning

Classification-based approaches leverage supervised ma-

chine learning to make a prediction of whether a traceability

link is valid or invalid; therefore, they require a training set to

create the prediction model. In practice, creating this training

set is usually delegated to developers who need to inspect a

multitude of pairs of software artifacts to determine whether

they should be linked or not. Typically, machine learning

techniques are evaluated using ten-fold cross validation. Using

this technique, it is ensured that each data point in a set is

used to test the model exactly once. However, the model is

1https://www.cs.waikato.ac.nz/ml/index.html

106

also trained on 90% of the data and tested on the remaining

10%. Therefore, because the original evaluation of TRAIL

used this tactic, it assumed that 90% of the possible links

in each software project were already reviewed and labeled

by developers. However, as previously discussed, this is not a

reasonable assumption for the vast majority of systems, which

do not come with complete traceability data.

Unlike TRAIL, which uses a passive learning approach that

requires a large set of training data, ALCATRAL uses active
learning by building upon a small initial training set and then

querying the developer about other traceability links that are

difficult for the model to classify. That is, rather than manually

labeling the complete dataset, the developer need only label

those links the model is most unsure about. After the developer

determines whether those links are valid or invalid, they are

appended to the initial training set of ALCATRAL. Finally, a

new model with reduced uncertainty is trained using this new,

enhanced training set. The complete process (also summarized

in Figure 2-B) is described as follows:

ALCATRAL first uses a small initial training set of la-

beled traceability links to create a basic classifier, which is

expected to have relatively low performance. Then, following

a pool-based active learning strategy, the classifier labels the

remaining unlabeled traceability links (i.e., the pool). When

assigning a label, the classifier also provides a confidence score

– usually in the interval [0, 1] – which represents how confident

the model is in the label it assigned. Using these confidence

scores, ALCATRAL samples those links for which there is

the most uncertainty (i.e., the links for which the model is

least confident in its prediction). The expert then inspects each

link in that sample and provides the true label for each link.

Finally, the newly labeled set of sampled points is appended

to the initial training set and an updated model is trained using

this new training set. This process can be iteratively repeated

until a suitably refined training set is obtained.

To measure the uncertainty of a classification using confi-

dence scores, ALCATRAL uses information entropy:

E(x) = −
∑

i∈{0,1}
Pi(x) logPi(x) (1)

Where x is a classified traceability link, i is a label that

the classifier can use to classify the link, and Pi(x) is the

confidence score of the classifier when it assigns the label

i to the link x. A low entropy indicates that the classifier is

certain of the label it assigned to link x, whereas a high entropy

implies that the classifier does not really know how to classify

the link. Figure 1 depicts an example of the sampling process

using entropy as the measurement of uncertainty. Assume that

a classifier tries to assign the label valid to an unlabeled

traceability link A with a confidence score of 0.9, and assigns

the label invalid to the same link A with a confidence score

of 0.1. In this scenario, the classifier finally classifies the

link A as valid with high certainty (E(x) = 0.47). On the

other hand, if the same classifier assigns the valid and invalid
labels to the link B in Figure 1 with confidence scores of 0.4

Fig. 1. Pool-based active learning approach used with an entropy-based query
strategy. Since links close to the decision boundary are difficult to classify,
they are more likely to be sampled and passed to the developer for labeling,
in order to obtain their true label.

and 0.6 respectively, it will classify it as invalid. Not only

is that classification incorrect, it also has high uncertainty

(E(x) = 0.97). However, if the link B is presented to an

expert, she can provide its true label (i.e., valid) by inspecting

the artifacts in the link. We can then add link B to the initial

training set, retrain the classifier, and obtain an improved

decision boundary that now also correctly classifies link C.

IV. DESIGN OF THE EMPIRICAL EVALUATION

In this paper, our goal is to address the large amount of la-

beled data required to train predictive models for classification-

based approaches to TLR. We performed an empirical study

to determine the degree to which ALCATRAL is able to

decrease the amount of training data necessary to create

accurate predictive models for classifying potential traceability

links. This study considers two different ways of applying

active learning within ALCATRAL. In the first, we add

additional labeled data identified using active learning to a

small training set in a single sweep. In the second, we add

additional labeled data identified using active learning to the

initial training set iteratively, re-labeling the unlabeled dataset

and re-calculating the entropy of each of those predicted

labels at each iteration. Mind that the systems we use in our

study already have the ground truth available, meaning that

all the potential traceability links are already labeled as valid

or invalid. Therefore, instead of soliciting live help from an

expert to label the traceability links we select using active

learning, we just consult the ground truth, therefore simulating
the interaction with an expert developer.

A. Datasets

In our study, for a fair comparison with previous work

we use the datasets available in the replication package for

TRAIL [9]. We used all 11 traceability datasets available in

the replication package. These involve eight different types of

artifacts, and are extracted from six different software projects.

In total, the datasets have 32,616 possible links between pairs

of artifacts, of which 2,600 (7.97%) are valid and 30,016

are invalid (92.03%). By using the same data as TRAIL, we

can perform a direct comparison between both approaches to

determine the impact that active learning has on performance

and amount of training data while holding other conflating

107

variables constant. Table I shows the breakdown of this dataset

by software system, invalid and valid links, and artifact types.

TABLE I
DATASETS USED IN THE EVALUATION

System Invalid
Links Valid Links Artifact Types†

eAnci 7091 554 (7.25%) UC, CC
EasyClinic 1317 93 (6.60%) UC, CC
EasyClinic 871 69 (7.34%) ID, CC
EasyClinic 1177 83 (6.59%) ID, TC
EasyClinic 574 26 (4.33%) ID, UC
EasyClinic 2757 204 (6.89%) TC, CC
EasyClinic 1827 63 (3.33%) TC, UC
eTour 6363 365 (5.43%) UC, CC
iTrust 1493 58 (3.74%) UC, CC
MODIS 890 41 (4.40%) HighR, LowR
SMOS 5656 1044 (15.58%) UC, CC

Total 30016 2600 (7.97%)
† HighR = High-level Requirements, LowR = Low-level

Requirements, UC = Use Cases, CC = Code Classes, ID
= Interaction Diagrams, TC = Test Cases.

B. Research Questions

Through this empirical study, we seek to answer two re-

search questions:

RQ1: Can a single application of active learning reduce
the amount of training data needed to achieve a performance
similar to TRAIL for TLR? In this research question we seek

to understand if applying active learning once can lead to a

reduction in the amount of training data needed to achieve

a performance similar to TRAIL, which used 90% of all

the valid and invalid links in a system as training data. We

also replicate TRAIL based on the information provided in

the original paper [9], which allows us to then compare the

performance of ALCATRAL and TRAIL side-by-side using

different amounts of training data. For answering this research

question we begin with an initial training set of 10% of all the

links in a system and then incrementally add more training data

either selected randomly for TRAIL or selected using active

learning applied in a single sweep for ALCATRAL.

RQ2: Does the performance of ALCATRAL improve when
active learning is applied iteratively? For the first research

question, we add additional training data for ALCATRAL

by using active learning in a single sweep. That is, for any

one experiment we compute entropy values, select data points

based on the entropy and append them to the training set,

then retrain the model only once. Note, however, that entropy

is directly related to model uncertainty, which is in turn

directly related to model performance. Therefore, intuitively

we would expect incremental model improvements to also

improve the model’s ability to determine its uncertainty about

a given prediction. Consequently, we want to explore if this is

indeed the case and therefore apply active learning iteratively

to answer RQ2. That is, at each iteration (beginning with

the same 10% initial training set) we make predictions and

compute the associated entropy values, append the 10% of

the unlabeled set with the highest entropy to the training set,

and retrain the model which is then used as the initial model

in the subsequent iteration.

C. Methodology

In all of the experiments discussed below, the same process

for splitting the data is used. For each instance of an experi-

ment (i.e., trial), the dataset for each software project is split

into three sets: training, unlabeled, and testing using stratified

random sampling. In each case, the training and unlabeled

sets together make up 90% of the overall data for a project,

and the remaining 10% is the test set. The training set is

a set of labeled links used to train a classification model.

The unlabeled set, as the name would suggest, is a set of

unlabeled links from which additional data is taken for training

using active learning. The testing set is used to determine a

model’s performance. Therefore, the training set is used to

construct the initial model, the unlabeled set is used to make

preliminary predictions, compute entropy for active learning,

and select additional training data based on that entropy; then,

after retraining including the newly selected data, the testing

set is used to determine the performance of that model. Figure

2 illustrates this data splitting process. Note that the testing set

is disjoint and solely used to evaluate performance. Further, to

address bias potentially introduced by random sampling when

splitting the data, we perform 50 trials of each experiment and

present aggregated results by averaging the performance of the

models across all trials. Note that SMOTE and stratification

are applied only for the initial training set. They are not used

for retraining models after additional labeled links are added

in order to limit the impact of artificial data selection on the

results. Further, when referencing X% of the data, we mean

X% of the total amount of valid and invalid links in a system,

for ease of comparison with the original TRAIL experiments

which used 90% of the data for training and 10% for testing.

In this work we present the performance of all models in

terms of F-Score, a metric that is commonly used to evaluate

approaches that support TLR, also used in [9] to compare

TRAIL to IR approaches. F-score is the harmonic mean of

the precision and recall of an approach, given by:

Precision =
|{valid links} ∩ {links classified as valid}|

|{valid links}|
(2)

Recall =
|{valid links} ∩ {links classified as valid}|

|{links classified as valid}|
(3)

FScore = 2 · Precision ·Recall

Precision+Recall
(4)

F-Score is a reasonable metric for this study because in order

for ALCATRAL to be successful, it must balance both pre-

cision and recall: automatically recovering the largest number

of valid links possible, while also minimizing false positives.

To answer RQ1, we train two sets of models. The first is a

series of ALCATRAL models trained with increasing amounts

108

Fig. 2. Data splitting and processing

of data provided by active learning. For these, we begin with a

randomly selected initial training set of size 10% chosen with

stratified random sampling. For each subsequent experiment

we add an additional 10% of the data, retrain the model, and

measure its performance with the testing set, until the final

experiment where 90% of the data is used as training. The

second set of models is a series of TRAIL models that act as

a reference for comparison. For these, we train the model with

an equivalent amount of data for a corresponding ALCATRAL

comparison model using stratified random sampling to select

the training data. We perform 50 trials of each experiment,

and present the average results.

To fully answer the research question posed, we perform

two comparisons. First, we compare ALCATRAL trained with

various amounts of data to the TRAIL results provided in

[9], which we call the TRAIL baseline. This allows us to

establish the amount of data at which ALCATRAL achieves

parity in performance with the original benchmark. The delta

between the 90% of the links used as training data by the

TRAIL baseline and the amount of data at which ALCATRAL

achieves parity quantifies the improvement achieved by AL-

CATRAL in terms of reducing the required training data for

the best performance. In the second analysis, we compare the

performance achieved by ALCATRAL to that of TRAIL using

various amounts of training data. This allows us to compare the

performance degradation between TRAIL and ALCATRAL as

increasingly less data is available for training.

For RQ2 we begin with an initial training set of 10% of

the data selected through stratified random sampling. Then we

perform active learning by training the model using this data,

performing a classification of the unlabeled links based on the

trained model, determining the entropy of all unlabeled links

and selecting the 10% of the unlabeled links with the highest

entropy for labeling next. We then consult the ground truth

in order to determine the labels of these previously unlabeled

links, and proceed to move them from the unlabeled set to the

training set. We then retrain the model with the new training

set (including the newly added data points), and continue

this process several times, incrementally adding 10% of the

remaining unlabeled data with the highest entropy until we

have used a full 90% of the overall data (the initial training

set plus all of the unlabeled data) to train the model.

As with the previous research questions, we perform 50
trials of this experiment, and present the average results.

Further, we provide a comparison to the TRAIL baseline and

replicated TRAIL models with equivalent amounts of training

data for each ALCATRAL experiment.

We released the scripts used to perform the experiments,

the datasets, and the complete set of results in a replication

package available at https://bit.ly/2Ip1wK7.

V. RESULTS

A. RQ1

Table II shows the performance of ALCATRAL (ACL) and

TRAIL (TRL) models trained with increasing amounts of data

in terms of F-Score. Immediately we see a dramatic increase

in performance for ALCATRAL models compared to TRAIL

models with small amounts of data and, as expected, the

difference between the two tapers off as more data is added.

Further, while we see improvements in TRAIL models when

additional data is available, they do not achieve performance

similar to ALCATRAL models until more than 70% of the data

is made available for training. Specifically, on average, TRAIL

comes within 2 percentage points of performance with an

ALCATRAL model trained using 30% of the data only when

TRAIL is trained using 70% or more of the data. In general,

across all datasets, we see a more than two-fold decrease in the

109

TABLE II
PERFORMANCE OF ALCATRAL BY AMOUNT OF TRAINING DATA ADDED USING ACTIVE LEARNING AND RANDOM SELECTION

Initial
10%

Size of the training set TRAIL
baseline
as in [9]20% 30% 40% 50% 60% 70% 80% 90%

Dataset ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL

eAnci 52.2 73.1∗ 61.4 77.4∗ 65.9 77.4∗‡ 69.0 77.0∗ 71.7 76.4∗ 73.6 75.9∗ 75.1 75.2∗ 76.7 74.6∗ 78.0 77.9

eC-CC/UC 45.8 62.4∗ 53.9 65.5∗ 57.8 66.5∗ 60.1 67.1∗† 62.4 67.8∗† 63.3 67.6∗† 65.0 67.3∗† 65.9 67.4† 67.6 67.5

eC-ID/CC 42.1 64.0∗ 51.6 69.4∗ 57.9 71.3∗ 62.7 71.8∗‡ 64.6 72.3∗† 67.5 71.7∗‡ 69.4 72.4∗† 70.6 72.5† 72.1 72.8

eC-ID/TC 63.2 90.1∗ 75.6 93.1∗† 81.4 93.6∗† 85.1 93.6∗† 87.6 93.3∗† 89.4 93.7∗† 91.3 93.8∗‡ 92.4 93.6† 93.4 93.4

eC-ID/UC 25.3 50.9∗ 29.2 52.3∗ 39.9 54.3∗ 43.2 54.7∗‡ 47.1 55.4∗‡ 49.0 55.5∗‡ 51.6 55.6‡ 53.9 55.7∗‡ 57.8 57.6

eC-TC/CC 73.8 94.7∗ 86.4 97.7∗‡ 91.5 98.0∗ 93.7 98.0∗ 95.2 97.9∗ 96.1 98.0∗ 96.8 98.1∗ 97.2 98.0∗ 97.4 97.5
eC-TC/UC 56.2 91.3∗ 69.4 93.0∗ 77.1 93.3∗ 81.9 93.4∗ 85.8 92.9∗ 88.1 93.1∗ 90.9 93.0 92.9 92.9∗ 94.7 94.5
eTour 42.5 55.0∗ 49.6 57.0∗ 52.1 57.5∗ 54.4 57.9∗ 56.3 58.2∗ 57.1 58.3 58.5 58.4∗ 59.7 58.5∗ 60.7 60.8

iTrust 30.9 62.5∗‡ 47.9 64.1∗ 53.7 64.5∗ 57.7 63.7∗ 59.3 63.3∗ 60.0 62.7∗ 60.5 63.0∗ 61.1 62.3 61.4 60.9
MODIS 32.1 52.0∗ 42.3 57.2∗ 48.7 58.6∗ 53.1 59.8∗ 56.0 61.2∗ 59.2 61.6∗ 60.3 62.6 62.4 62.7∗ 63.8 64.3
SMOS 47.6 60.2∗ 56.7 67.0∗ 62.3 71.4∗ 66.6 73.8∗ 70.4 75.2∗ 73.5 75.9 76.0 76.5∗ 77.9 76.3∗ 79.8 79.7

Average 46.5 68.8∗ 56.7 72.2∗ 62.6 73.3∗ 66.1 73.7∗ 68.7 74.0∗ 70.6 74.0∗ 72.3 74.2∗ 73.7 74.0∗ 75.1 75.2
∗=there is a significant statistical difference between ALCATRAL and TRAIL trained with the same amount of data. †=there is no significant
statistical difference between ALCATRAL and the TRAIL baseline [9]. ‡=there is a significant statistical different between ALCATRAL and the
TRAIL baseline [9], but the effect size is small or negligible. Bolded values show the lowest percentage of training data with which ALCATRAL
achieves results that are comparable to the TRAIL baseline [9] (no statistically significant difference or a low or negligible effect size). Underlined
values indicate the best result overall for a dataset (for a line).

amount of required training data for ALCATRAL compared

to TRAIL to achieve a comparable performance.

It is also important to note that these results show that on

average ALCATRAL is within three percentage points of the

previously established TRAIL baseline (last column in Table

II) and our replication of it (second to last column in Table II),

even when only using 30% of the data set for training. This

both illustrates how duplicative the statistical data contained in

the complete dataset is, and indicates that entropy-based active

learning is a reasonable means of exploiting that duplicity.

Additionally, one interesting thing to note is that the perfor-

mance degradation seen for TRAIL models trained with less

than 90% of the data is not as severe as one might expect

on average, particularly when more than 60% of the data is

available for training, in which case the results are within 5%
of TRAIL trained with 90% of the data. This serves as a

cautionary tale for future evaluations of classification-based

approaches: an analysis of the amount of data required to

achieve a certain level of performance is extremely important.

Further, while it is interesting to look at the average per-

formance across all of the datasets in consideration, it is also

important to consider performance trends for specific datasets.

One particularly notable subset of datasets involve EasyClinic:

ID/TC, TC/CC, and TC/UC. These are interesting because they

each have extremely high F-Score baselines for TRAIL, each

above 90%. In each case, ALCATRAL is able to get within

0.2 − 1.5% of that baseline performance using only 30% of

the data for training. More than that, in the case of EasyClinic

TC/CC ALCATRAL with 30% also surpasses the TRAIL

baseline. These results present two important findings. First,

the statistical data representing links between these particular

artifact sets are particularly duplicative, where a small subset

of the data fully expresses the full variability of the overall

dataset. Second, these artifact sets provide an opportunity to

study the properties of artifacts whose relatedness can more

easily be distinguished by a statistical model. Future work

should focus on understanding the mathematical properties of

these sets in an effort to find ways of making artifact sets more

easily automatically traced.

On the other side of the spectrum, ALCATRAL’s per-

formance for SMOS and MODIS continues to increase as

additional data is added. However, even with 50% of the

data available for training, models for these two systems have

substantially lower performance than the TRAIL baseline. This

indicates that for some datasets, there is insufficient duplicity

in the data for active learning to effectively prioritize the links

that should be labeled. Further, it indicates that the feature

representation presented in the initial TRAIL implementation

are insufficient to completely explain the distinction between

valid and invalid links to a classifier. As a result, future work

should investigate alternative feature representations that could

better capture the distinguishing characteristics of valid links.

Finally, in seven of the eleven datasets, ALCATRAL is

able to provide performance statistically similar to the TRAIL

baseline established with 90% of the data. In those same cases,

ALCATRAL provides statistically significantly better results

than a TRAIL model trained on an equivalent amount of

data. In general, when presented with less than 50% of the

total dataset for training, ALCATRAL outperforms TRAIL

in every case. Further, when compared to the established

TRAIL baseline in [9], ALCATRAL is able to achieve similar

performance with significantly less data.

Summary for RQ1. ALCATRAL obtains performance

within 3% of the established TRAIL baseline [9] using

only a third of the training data. ALCATRAL provides

better performance than TRAIL models trained on an

equivalent amount of data. ALCATRAL also reduces

the training data requirements of TRAIL by at least a

half, and in many cases by two-thirds.

110

B. RQ2

For RQ2 we employ an iterative approach to active learning

in which each subsequent iteration builds upon the model

trained by the previous iteration. This approach is based on

the idea that an improved model will not only achieve higher

performance, but will also provide more reliable entropy cal-

culations. These improved entropy calculations subsequently

allow the model to more optimally query an expert for the

labels of interesting trace links. Table III shows the results of

such an iterative model for each dataset beginning with no

additional data, all the way to the 8th iteration, at which the

model is trained on the full 90% of the data available in the

training and unlabeled sets.

Interestingly, these results indicate that for nine of the eleven

datasets, ALCATRAL is able to achieve performance that

is statistically similar to the established TRAIL baseline [9]

with ≤ 50% of the data used for training. In the case of

iTrust, statistical similarity is achieved after the first iteration,

requiring only 20% of the overall data. Further, for MODIS

and SMOS, the datasets that ALCATRAL struggles the most

with when adding additional data in a single sweep, the

iterative approach is able to achieve parity with TRAIL using

only 50% and 40% of the data respectively for training. This

indicates that at least for these two projects that the entropy

values computed by the initial model trained on 10% of the

data were, in fact, unreliable, which lead to a drastic reduction

in efficiency when selecting additional data to be labeled.

Moreover, for eAnci, one of the two datasets that required

more than 50% of the data to achieve statistically similar

results to the TRAIL baseline, the performance is very close

to the baseline for much lower amounts of data, but the

results lose statistical significance at iteration 7. Therefore,

practically speaking ALCATRAL is likely to provide sufficient

performance for smaller training sets, but should be empir-

ically evaluated on a project-by-project basis. This is also

important because the artifact types being traced also impact

performance as seen in the EasyClinic datasets.

Additionally, Table IV shows performance improvements

made by ALCATRAL using an iterative active learning ap-

proach over TRAIL for training set sizes. These results clearly

show that ALCATRAL provides superior F-Score performance

compared to TRAIL particularly for small training sets, which

is the most common scenario for software projects in the

wild. Overall, ALCATRAL provides a 25% improvement for

the smallest training sets, with a minimum and maximum

improvement across systems of 11% and 78% respectively.

Finally, note that there is still an improvement of more than

10% for most datasets when only 50% of the data is available

for training. ALCATRAL and TRAIL begin reaching parity

with one another at 60% training sets for most systems. It’s

important to point out that even though statistical significance

between the performance of TRAIL and ALCATRAL exists

in certain cases, the effect sizes in those cases are low or

negligible. Therefore, TRAIL models do not out perform

ALCATRAL models in a practical sense (i.e., large mean dif-

ferences with statistical significance) even with large amounts

of training data available. Therefore, ALCATRAL is able

to assist in scenarios in which only limited training data

is available and maintains good performance when a larger

amount of training data becomes available.

Finally, compared to ALCATRAL models implemented

with a single sweep approach to active learning, ALCATRAL

with an iterative implementation of active learning provides

equivalently strong results with more marked statistical sig-

nificance. The iterative models achieve parity with the 90%
TRAIL baseline [9] earlier and maintain significant differences

with TRAIL models trained with less data.

Summary for RQ2. Compared to single sweep, an iter-

ative approach to active learning in ALCATRAL leads

to better performance with statistically significant results

over TRAIL trained on equivalent amounts of data. AL-

CATRAL outperforms TRAIL for small sizes of training

data and achieves parity with it when large amounts

of training data are available. Therefore, ALCATRAL

represents an improvement over TRAIL in the most

likely scenario for projects in the wild and maintains

similar performance to TRAIL in rare situations where

a large amount of training data is available.

VI. THREATS TO VALIDITY

Construct validity refers to how well the metrics used for

evaluation measure the phenomena under study. To mitigate

threats to construct validity, we measure the performance of

ALCATRAL models using F-Score, which is a standard metric

used in the field. By using F-Score we also ensure that we are

preferring models with both high recall and precision, which

are pragmatic for automatically performing TLR in practice.

Internal validity refers to how well a study insulates changes

in the dependent variable from unaccounted for, conflating,

independent variables. This study mitigates threats to internal

validity in several ways. First, there are many sources of

randomization in the experiments presented in this study: split-

ting the dataset, performing SMOTE, and the random forest

classifier itself. In order to mitigate any biases introduced by

this randomness, we perform 50 trials of each experiment and

present average results across those trials. Further, we have

controlled the seeds for both the SMOTE and random forest

components of the experiments so that the results can easily be

replicated for verification. Second, these experiments are per-

formed on the same datasets used to establish the TRAIL base-

line, which is used as a point of comparison for ALCATRAL.

Third, because ALCATRAL is an approach that specifically

addresses the excessive need for training data using active

learning, we match the configuration of TRAIL in each of the

comparisons. Using an identical configuration makes a direct

comparison with TRAIL possible while minimizing external

influences on model performance and highlighting the impact

that active learning has on classification-based TLR.

External validity refers to how well the results of a study

generalize to other contexts. This study mitigates threats to

111

TABLE III
PERFORMANCE OF AL-TRAIL WITH ITERATIVE TRAINING

Initial
10%

Size of the training set TRAIL
baseline
as in [9]20% 30% 40% 50% 60% 70% 80% 90%

Dataset ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL

eAnci 52.2 72.8∗ 61.4 78.7∗ 65.9 78.8∗ 69.0 78.8∗ 71.7 78.6∗ 73.6 78.3∗ 75.1 78.2∗‡ 76.7 78.1‡ 78.0 77.9

eC-CC/UC 45.8 62.4∗ 53.9 66.1∗ 57.8 67.7∗† 60.1 67.3∗† 62.4 67.6∗† 63.3 67.4∗† 65.0 67.1∗‡ 65.9 67.5† 67.6 67.5

eC-ID/CC 42.1 64.3∗ 51.6 70.5∗ 57.9 72.4∗† 62.7 72.3∗† 64.6 72.4∗† 67.5 72.5∗† 69.4 72.6∗† 70.6 72.6† 72.1 72.8

eC-ID/TC 63.2 90.0∗ 75.6 94.1∗ 81.4 93.6∗‡ 85.1 93.6∗† 87.6 93.6∗† 89.4 93.5∗† 91.3 93.4∗† 92.4 93.5† 93.4 93.4

eC-ID/UC 25.3 52.0∗ 29.2 54.9∗ 39.9 53.7∗ 43.2 55.5∗‡ 47.1 56.6∗† 49.0 57.3∗† 51.6 56.7∗† 53.9 57.2† 57.8 57.6

eC-TC/CC 73.8 95.2∗ 86.4 97.6∗‡ 91.5 97.7∗ 93.7 97.6∗† 95.2 97.6∗† 96.1 97.5∗† 96.8 97.5∗† 97.2 97.4† 97.4 97.5

eC-TC/UC 56.2 91.8∗ 69.4 94.9∗‡ 77.1 95.3∗ 81.9 95.2∗‡ 85.8 94.5∗† 88.1 94.7∗† 90.9 94.8∗‡ 92.9 94.6† 94.7 94.5

eTour 42.5 56.1∗ 49.6 58.6∗ 52.1 59.7∗ 54.4 60.1∗ 56.3 60.5∗† 57.1 60.7∗† 58.5 61.1∗† 59.7 60.6† 60.7 60.8

iTrust 30.9 62.2∗‡ 47.9 63.1∗ 53.7 63.4∗ 57.7 62.1∗ 59.3 61.8∗‡ 60.0 60.7† 60.5 61.2† 61.1 61.3† 61.4 60.9

MODIS 32.1 52.2∗ 42.3 59.5∗ 48.7 61.6∗ 53.1 62.7∗‡ 56.0 63.3∗‡ 59.2 63.6∗† 60.3 64.0∗† 62.4 64.1† 63.8 64.3

SMOS 47.6 62.9∗ 56.7 75.3∗ 62.3 79.9∗‡ 66.6 80.0∗‡ 70.4 79.4∗‡ 73.5 79.3∗ 76.0 79.6∗† 77.9 79.7† 79.8 79.7

Average 46.5 69.3 56.7 73.9 62.6 74.9 66.1 75.0 68.7 75.1 70.6 75.0 72.3 75.1 73.7 75.2 75.1 75.2
∗=there is a significant statistical difference between ALCATRAL and TRAIL trained with the same amount of data. †=there is no significant
statistical difference between ALCATRAL and the TRAIL baseline [9]. ‡=there is a significant statistical different between ALCATRAL and the
TRAIL baseline [9], but the effect size is small or negligible. Bolded values show the lowest percentage of training data with which ALCATRAL
achieves results that are comparable to the TRAIL baseline [9] (no statistically significant difference or a low or negligible effect size). Underlined
values indicate the best result overall for a dataset (for a line).

TABLE IV
PERFORMANCE INCREASE ACHIEVED BY ALCATRAL OVER TRAIL

USING DIFFERENT AMOUNTS OF DATA

Size of the training set

Dataset 20% 30% 40% 50% 60% 70% 80% 90%

eAnci 18.6% 19.4% 14.2% 10.0% 6.9% 4.4% 2.0% 0.2%
eC-CC/UC 15.8% 14.3% 12.5% 7.8% 6.7% 3.7% 1.8% -0.1%
eC-ID/CC 24.6% 21.8% 15.5% 11.9% 7.2% 4.4% 2.8% 0.7%
eC-ID/TC 19.0% 15.6% 10.0% 6.9% 4.7% 2.4% 1.1% 0.2%
eC-ID/UC 78.0% 37.7% 24.3% 17.9% 15.5% 10.9% 5.2% -1.0%
eC-TC/CC 10.2% 6.7% 4.2% 2.5% 1.5% 0.7% 0.3% 0.0%
eC-TC/UC 32.3% 23.2% 16.3% 11.0% 7.2% 4.2% 2.0% 0.0%
eTour 13.2% 12.4% 9.7% 6.8% 6.0% 3.7% 2.3% -0.2%
iTrust 29.9% 17.4% 9.8% 4.8% 2.9% 0.3% 0.1% -0.2%
MODIS 23.3% 22.1% 16.0% 12.0% 6.9% 5.5% 2.6% 0.4%
SMOS 11.0% 20.8% 20.0% 13.7% 8.1% 4.4% 2.2% -0.2%

Average 25.1% 19.2% 13.9% 9.6% 6.7% 4.1% 2.0% 0.0%

external validity by applying the technique to 11 widely used

traceability datasets across six different projects spanning eight

different types of artifacts. This is not to say the results of this

study are completely generalizable, but does suggest that the

results are applicable to those types of artifacts and for several

systems from different domains. Additionally, we evaluated

our approach with the assumption that a developer makes no

mistakes at providing a label to the links that are included in

the training set. However, mislabeling of links is a possible

scenario that can impact ALCATRAL’s performance. Future

work will focus on estimating the sensitivity of ALCATRAL

to mislabeled links.

VII. ACKNOWLEDGMENTS

Sonia Haiduc is supported in part by the National Science

Foundation grant 1846142.

VIII. CONCLUSION AND FUTURE WORK

We introduced ALCATRAL, and approach which uses

entropy-based active learning as a mechanism to reduce

the training data demands of TRAIL, the state-of-the-art

supervised machine learning approach to automating TLR.

First, we show that ALCATRAL provides models with better

performance than training TRAIL on an equivalent amount

of training data. Second, we show that using ALCATRAL,

models can achieve performance similar to the TRAIL baseline

while reducing the amount of training data needed by up to

two-thirds. Specifically, we show that ALCATRAL achieves

average performance within 3% of TRAIL when only 30%
of the traceability data is labeled for training. Finally, we

also show that applying AL iteratively provides improved

performance over TRAIL with statistical significance in many

cases. ALCATRAL with iterative active learning represents

an improvement over TRAIL when there is little training data

available and maintains similar performance to TRAIL in rare

situations where a large amount of training data is available.

Future work will focus on further reducing the need for

training data by investigating two research directions. First,

we plan to consider smaller increments of additional data than

10%, with particular focus on the iterative approach. Second,

we will look at transfer learning, which has been success-

fully applied to defect prediction [38], [39], as an alternative

approach that completely eliminates the need for project-

specific training data by training models on data from similar
projects. By equipping a classification-based approach with

a means of completely circumventing the need for project-

specific training data, it becomes an even stronger candidate

for a fully automated approach to general TLR.

112

REFERENCES

[1] E. Bouillon, P. Mäder, and I. Philippow, “A survey on usage scenarios
for requirements traceability in practice,” in International Working Con-
ference on Requirements Engineering: Foundation for Software Quality.
Springer, 2013, pp. 158–173.

[2] P. Mäder and A. Egyed, “Do developers benefit from requirements trace-
ability when evolving and maintaining a software system?” Empirical
Software Engineering, vol. 20, no. 2, pp. 413–441, 2015.

[3] P. Rempel and P. Mäder, “Preventing defects: The impact of require-
ments traceability completeness on software quality,” IEEE Transactions
on Software Engineering, 2016.

[4] L. James, “Automatic requirements specification update processing from
a requirements management tool perspective,” in Proceedings of the
International Conference and Workshop on Engineering of Computer-
Based Systems. IEEE, 1997, pp. 2–9.

[5] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, “Scenarios in system
development: current practice,” IEEE Software, vol. 15, no. 2, pp. 34–45,
1998.

[6] G. Antoniol, C. Casazza, and A. Cimitile, “Traceability recovery by
modeling programmer behavior,” in Proceedings of the Seventh Working
Conference on Reverse Engineering. IEEE, 2000, pp. 240–247.

[7] J. L. de la Vara, M. Borg, K. Wnuk, and L. Moonen, “An industrial
survey of safety evidence change impact analysis practice,” IEEE
Transactions on Software Engineering, vol. 42, no. 12, pp. 1095–1117,
2016.

[8] E. E. Bella, M.-P. Gervais, R. Bendraou, L. Wouters, and A. Koudri,
“Semi-supervised approach for recovering traceability links in complex
systems,” in 2018 23rd International Conference on Engineering of
Complex Computer Systems (ICECCS). IEEE, 2018, pp. 193–196.

[9] C. Mills, J. Escobar-Avila, and S. Haiduc, “Automatic traceability main-
tenance via machine learning classification,” in 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2018, pp. 369–380.

[10] M. Borg, P. Runeson, and A. Ardö, “Recovering from a decade: A
systematic mapping of information retrieval approaches to software
traceability,” Empirical Software Engineering, vol. 19, no. 6, pp. 1565–
1616, 2014.

[11] M. Saleem and N. M. Minhas, “Information retrieval based requirement
traceability recovery approaches-a systematic literature review,” Univer-
sity of Sindh Journal of Information and Communication Technology,
vol. 2, no. 4, pp. 180–188, 2018.

[12] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated clas-
sification of non-functional requirements,” Requirements Engineering,
vol. 12, no. 2, pp. 103–120, 2007.

[13] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, “A
machine learning approach for tracing regulatory codes to product
specific requirements,” in Proceedings of the International Conference
on Software Engineering, vol. 1, 2010, pp. 155–164.

[14] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar, “A tactic-
centric approach for automating traceability of quality concerns,” in
Proceedings of the International Conference on Software Engineering
(ICSE), 2012, pp. 639–649.

[15] A. Casamayor, D. Godoy, and M. Campo, “Identification of non-
functional requirements in textual specifications: A semi-supervised
learning approach,” Information and Software Technology, vol. 52, no. 4,
pp. 436–445, 2010.

[16] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software trace-
ability with topic modeling,” in Proceedings of the 32nd International
Conference on Software Engineering, vol. 1. IEEE, 2010, pp. 95–104.

[17] C. Duan and J. Cleland-Huang, “Clustering support for automated
tracing,” in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering. ACM, 2007, pp. 244–
253.

[18] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced soft-
ware traceability using deep learning techniques,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE,
2017, pp. 3–14.

[19] T. Zhao, Q. Cao, and Q. Sun, “An improved approach to traceability
recovery based on word embeddings,” in 2017 24th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 2017, pp. 81–89.

[20] Z. Li and L. Huang, “Tracing requirements as a problem of machine
learning,” International Journal of Software Engineering & Applications,
vol. 9, no. 4, pp. 21–36, 2018.

[21] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

[22] A. Holub, P. Perona, and M. C. Burl, “Entropy-based active learning
for object recognition,” in 2008 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops. IEEE, 2008, pp.
1–8.

[23] S. Tong and D. Koller, “Support vector machine active learning with
applications to text classification,” Journal of machine learning research,
vol. 2, no. Nov, pp. 45–66, 2001.

[24] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective sampling
using the query by committee algorithm,” Machine learning, vol. 28,
no. 2-3, pp. 133–168, 1997.

[25] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with
statistical models,” Journal of artificial intelligence research, vol. 4, pp.
129–145, 1996.

[26] S. C. Hoi, R. Jin, and M. R. Lyu, “Large-scale text categorization by
batch mode active learning,” in Proceedings of the 15th international
conference on World Wide Web. ACM, 2006, pp. 633–642.

[27] S. C. Hoi, R. Jin, J. Zhu, and M. R. Lyu, “Semi-supervised svm batch
mode active learning for image retrieval,” in 2008 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2008, pp. 1–7.

[28] D. Shen, J. Zhang, J. Su, G. Zhou, and C.-L. Tan, “Multi-criteria-based
active learning for named entity recognition,” in Proceedings of the
42nd Annual Meeting on Association for Computational Linguistics.
Association for Computational Linguistics, 2004, p. 589.

[29] Y. Guo and D. Schuurmans, “Discriminative batch mode active learn-
ing,” in Advances in neural information processing systems, 2008, pp.
593–600.

[30] Y. Guo, “Active instance sampling via matrix partition,” in Advances in
Neural Information Processing Systems, 2010, pp. 802–810.

[31] S. Chakraborty, V. Balasubramanian, and S. Panchanathan, “Adaptive
batch mode active learning,” IEEE transactions on neural networks and
learning systems, vol. 26, no. 8, pp. 1747–1760, 2015.

[32] D. Binkley and D. Lawrie, “Learning to rank improves IR in SE,” in
Proceedings of the 30th IEEE International Conference on Software
Maintenance and Evolution (ICSME’14). IEEE, 2014, pp. 441–445.

[33] C. Mills and S. Haiduc, “The impact of retrieval direction on ir-based
traceability link recovery,” in 39th International Conference on Software
Engineering: New Ideas and Emerging Technologies Results Track.
IEEE, 2017, pp. 51–54.

[34] C. Zhai and J. Lafferty, “A study of smoothing methods for language
models applied to ad hoc information retrieval,” in Proceedings of the
24th annual international ACM SIGIR Conference on Research and
Development in Information Retrieval, 2001, pp. 334–342.

[35] C. Mills, G. Bavota, S. Haiduc, R. Oliveto, A. Marcus, and A. D. Lucia,
“Predicting query quality for applications of text retrieval to software
engineering tasks,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 26, no. 1, p. 3, 2017.

[36] J. Guo, M. Rahimi, J. Cleland-Huang, A. Rasin, J. H. Hayes, and
M. Vierhauser, “Cold-start software analytics,” in Proceedings of the
13th International Conference on Mining Software Repositories. ACM,
2016, pp. 142–153.

[37] N. Chawla, K. Bowyer, L. Hall, and P. Kegelmeyer, “Smote: Synthetic
minority over-sampling technique,” Journal of Artificial Intelligence
Research, vol. 16, no. 1, pp. 321–357, Jun. 2002.

[38] F. Peters, T. Menzies, and A. Marcus, “Better cross company defect
prediction,” in Proceedings of the 10th Working Conference on Mining
Software Repositories. IEEE Press, 2013, pp. 409–418.

[39] X. Yu, J. Liu, W. Peng, and X. Peng, “Improving cross-company
defect prediction with data filtering,” International Journal of Software
Engineering and Knowledge Engineering, vol. 27, no. 09n10, pp. 1427–
1438, 2017.

113

