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Abstract—Previous work has established both the importance
and difficulty of establishing and maintaining adequate soft-
ware traceability. While it has been shown to support essential
maintenance and evolution tasks, recovering traceability links
between related software artifacts is a time consuming and error
prone task. As such, substantial research has been done to
reduce this barrier to adoption by at least partially automating
traceability link recovery. In particular, recent work has shown
that supervised machine learning can be effectively used for
automating traceability link recovery, as long as there is sufficient
data (i.e., labeled traceability links) to train a classification model.
Unfortunately, the amount of data required by these techniques is
a serious limitation, given that most software systems rarely have
traceability information to begin with. In this paper we address
this limitation of previous work and propose an approach based
on active learning, which substantially reduces the amount of
training data needed by supervised classification approaches for
traceability link recovery while maintaining similar performance.

Index Terms—software traceability, machine learning, active
learning, classification

I. INTRODUCTION

Software systems are made up of many different sources of
information such as source code, bug reports, requirements,
use cases, test cases, etc. These different types of software
artifacts contain important information about various aspects
of the system. Software traceability is a system property
that represents the degree to which the relationships between
related software artifacts of different types are known and
documented. For example, in systems with a high level of
software traceability, it is known which code segments im-
plement which use cases, which bugs are related to which
features, which features cover which requirements, and so
forth. Previous work has shown that the information trace-
ability provides natively supports various software tasks such
as program comprehension, bug localization, impact analysis,
ensuring test coverage, etc. and leads to more reliable projects
with better code and fewer bugs [1]-[3]. Unfortunately, col-
lecting this information is often of secondary concern to the
actual development, maintenance, and evolution of the project.
Therefore, traceability is often established and updated post-
hoc, long after artifacts are created or modified. The process
of establishing links in this scenario is called traceability link
recovery (TLR), and when performed manually it is extremely
costly. Further, even if significant resources are invested to
establish traceability, it will rapidly degrade as the software

system changes due to evolution and maintenance tasks [4]-
[7]. Therefore, equally important as establishing traceability is
the process of maintaining it as the system changes over time.

Many works have proposed methods for at least partially
automating TLR in order to mitigate its high cost, conse-
quently reducing the primary barrier to adoption many projects
face. Recent work has focused on automating TLR using
supervised machine learning, re-envisioning the task as a
binary classification problem [8], [9]. Using this approach, all
possible links between two sets of artifacts are first represented
in a feature space, and then they are classified by a predictive
model that labels each link as valid (i.e., the two artifacts in
the link are in fact related) or invalid (i.e., there is no relevant
relationship between the two artifacts in the link). While
achieving better results and more automation than traditional
approaches to TLR, the classification-based approach also
has a glaring limitation: the predictive models require large
amounts of existing traceability data for training (up to 90%
of all potential links in a system).

Given the fact that most software projects outside of high-
risk, safety critical domains do not capture software traceabil-
ity information, the large amounts of training data required
by state-of-the-art classification approaches for TLR are not
available in the majority of systems. Therefore, to make
a classification-based approach for TLR widely applicable,
we must strive to create accurate predictive models that
require as little training data as possible. To that end, we
introduce ALCATRAL (Active Learning for ClAssification-
based TRAceability Links), the first approach to combine
active learning with classification-based TLR. Active learning
is an approach to iteratively train machine learning models
by identifying unlabeled data that, once labeled, will teach
a model the most about the distinction between classes. In
the case of traceability link recovery, this translates into
intelligently determining which links a developer needs to
label next such that the model learns the most about the
difference between valid and invalid links. This process allows
for training a model with considerably less training data
and prevents the developer from wasting time inspecting and
labeling traceability links that do not contribute to the model’s
predictive performance.

We compared ALCATRAL with our state-of-the-art ap-
proach in classification-based TLR called TRAIL [9]. The
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results of the evaluation on 11 datasets show that ALCATRAL
provides a predictive model that is not only accurate in
predicting the validity of traceability links, but also requires
much less training data than TRAIL.
This work makes the following contributions to the state-of-
the-art in machine learning classification approaches to TLR:
1) A novel approach, called ALCATRAL, which is the first
use of active learning for classification-based TLR
A replication of the TRAIL framework trained with
datasets of various sizes.
An evaluation comparing ALCATRAL with TRAIL,
which showed that ALCATRAL is able to achieve per-
formance similar to TRAIL while reducing the amount
of training data needed by more than 50%.

2)

3)

The rest of this paper is organized as follows. Section
I provides background information on active learning and
an overview of related work in TLR. Section III introduces
our approach ALCATRAL. Section IV outlines the research
questions in our evaluation and the evaluation design for
addressing each one. SectionV presents the results of the
empirical evaluation. Section VI discusses the threats to the
validity of our conclusions and lastly, section VIII provides
concluding remarks and a discussion of future work.

II. BACKGROUND AND RELATED WORK

Software traceability in general has been extensively stud-
ied by the software engineering research community. While
Information Retrieval (IR) approaches account for the bulk
of the work toward the automation of TLR [10], [11], in
this section we focus on discussing the related work using
machine learning approaches for TLR, as they are the most
related to our approach. In addition, we also present some
background information on active learning and its use in the
field of machine learning.

A. Machine Learning for Traceability Link Recovery

The earliest work using machine learning for TLR was in
the area of requirements engineering and was proposed by
Cleland-Huang et al. [12]. The authors introduced a proba-
bilistic classifier trained on a set of indicator words scraped
from websites specifically used to identify non-functional re-
quirements. This technique was later applied to link regulatory
codes to project-specific requirements [13] and architectural
tactics to source code [14]. Casamayor et al. [15] also proposed
an approach for the identification of non-functional require-
ments built on semi-supervised learning, which used user feed-
back and Expectation Maximization. Further, Asuncion et al.
[16] presented an unsupervised approach that used a modified
Latent Dirichlet Allocation algorithm to automatically recover
trace links via clustering, which had previously shown promise
for automating TLR [17].

In the area of deep learning, Guo et al. [18] suggested a tech-
nique to build word embeddings from a domain ontology and
generate traceability links using a specialized neural network.
Zhao et al. [19] introduced a similar technique that also uses
word embeddings, but leverages Learning to Rank to construct
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trace links based on the similarity of those word embeddings.
Other work has also leveraged more complex machine learning
models, but still relies on the manual construction of domain
ontologies [20]. Unfortunately, domain ontologies are often
difficult to construct manually, which poses a very similar
situation to building training sets required for supervised
learning (i.e., considerable manual effort is required).

Two similar supervised approaches for TLR were proposed
in 2018. First, Bella et al. [8] introduced a semi-supervised
learning approach with four IR-based similarity metrics as a
feature representation. This technique is semi-supervised in
that the training set is identified heuristically based on the
results of IR. However, compared to active learning, the user
is still left to arbitrarily label data based solely on textual
similarity. Second, we proposed the TRAIL framework in [9],
which is a fully supervised approach that leverages query qual-
ity and document statistics features in addition to bidirectional
IR rankings as a feature representation. While TRAIL provides
an abstracted framework for applying machine learning to
TLR with a richer feature representation than the technique
proposed by Bella et al., it does not address the issue of
acquiring training data. TRAIL rather assumes that training
data, representing up to 90% of all the potential links in
a system, is already labeled and available and focuses on
labeling the remaining 10% of the links. While this is a
feasible approach for maintaining already existing traceability
data, it is not very conducive for systems where there is fewer
traceability information available.

ALCATRAL is different from this body of previous work in
several ways. First, it does not require the manual construction
of indicator word sets or domain ontologies. Second, it is a
supervised technique that leverages bidirectional IR rankings
(i.e., semantic similarity), query quality metrics, and simple
statistics about each artifact in the potential link to statistically
model trace links. Therefore, it is distinct from approaches
based on unsupervised learning and word embeddings. Third,
it also provides a richer representation than other semi-
supervised approaches that have been proposed. Fourth, AL-
CATRAL improves upon TRAIL by applying active learning
to directly address the prohibitive amount of training data
required to generate those models. Finally, while the work
proposed by Bella et al. addresses the problem of training data
tangentially through a semi-supervised approach based on IR-
based heuristics, ALCATRAL uses active learning instead.

B. Active Learning

The amount of digital data collected in all aspects of
our lives has increased exponentially over the past decade.
However, while gathering unlabeled data has become cheap
and easy, annotating the data to train machine learning models
is still an expensive process in terms of time, labor, and human
expertise. Therefore, efforts have been made in the field of
machine learning to design techniques aimed at overcoming
these obstacles and reducing the amount of labeled training
data needed by predictive models. Active learning algorithms
alleviate this problem by automatically selecting the salient



and exemplar instances from vast amounts of unlabeled data
and suggesting these to a human expert for labeling next. In
other words, active learning aims at finding the data points that
are the most useful for a predictive model in order to learn
new information about what distinguishes different classes in
the data. Selecting the data points that an expert needs to
label using active learning rather than randomly, can prevent
a human expert from wasting time annotating data points that
do not contribute to a model’s predictive performance. This
can lead to drastic reductions in the amount of training data
needed by predictive models, leading to substantial savings in
human annotation effort.

Active learning has been extensively studied by researchers
in the machine learning community [21]. The most common
variation of active learning is batch mode active learning
(BMAL), which exposes the learner to a pool of unlabeled data
and then iteratively queries for the labels of a subset of those
data points. The most widely used mechanism for determining
which data points should be labeled is uncertainty sampling.
With this technique, data points for which a model is the most
uncertain when predicting class membership are chosen for
labeling. That is, with active learning, when a model is confi-
dent about its classification of an unlabeled data point it does
not need to query for affirmation. For ALCATRAL, model
uncertainty is calculated using entropy, which is a common
approach [22]. Alternative uncertainty metrics include distance
from the classification boundary [23], disagreement between
a jury of classifiers [24], variance reduction [25], and the
Fisher information matrix [26], [27] among others. Other work
has shown that combining multiple selection criteria such as
uncertainty, representativeness, and diversity is also a viable
strategy for sample selection [28]. More advanced techniques
for active learning have also been proposed. For example,
Guo and Schuurmans provide a discriminative batch mode
approach using Quasi-Newton optimization [29]. Guo also
introduced BMAL based on matrix partitioning [30], which
is independent of the underlying classification model. Other
studies have presented adaptive approaches to automatically
batch data based on complexity [31].

To our knowledge, this is the first work that applies ac-
tive learning specifically to supervised learning for TLR. As
such, we have opted to apply a simple implementation based
solely on information entropy, which can be built upon in
future work. By applying a simple implementation, we can
understand the impact that active learning has on automatic
TLR via classification and then subsequently measure the
impact of improvements. Relying on an approach to active
learning that is easily implemented also facilitates adoption by
removing unnecessary complexities that provide only minimal
performance improvement.

III. APPROACH

In this section we describe our approach called ALCATRAL
(Active Learning for ClAssification-based TRAceability
Links). Like most recent classification-based approaches to
TLR, ALCATRAL is comprised of several components that
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when implemented together form a predictive model. Un-
like these recent approaches, ALCATRAL incorporates active
learning into TRAIL [9], which represents a novel improve-
ment that reduces the amount of training data required to gen-
erate an accurate predictive model. The process ALCATRAL
uses to classify potential traceability links is as follows:

1) All labeled traceability links are represented as a k-
dimensional vector of numerical features that explain
relationships between the two artifacts in each link.
The feature vectors derived in the previous step are sent
through a feature selection routine based on Pearson cor-
relation, which removes features that have high pairwise
correlation with another feature. The result of this step
is a series of p-dimensional vectors that represent each
labeled traceability link, where p < k.
Synthetic Minority Oversampling TEchnique (SMOTE)
is applied to the set of p-dimensional vectors created by
the previous step in order to address class imbalance,
which occurs because there are many more invalid links
than valid links in the overall dataset.
Data from the previous step is used to train an initial
Random Forest classification model, which provides
labels and uncertainty scores for the remaining unlabeled
links.
5) Active learning is applied to the results of the previous
step, which produces a list of additional links that are
labeled and added to the training set to refine the model.
The refined ALCATRAL model is used to automatically
classify the remaining unlabeled traceability links.
Note that because we are primarily concerned with the ap-
plication of active learning to reduce the training data require-
ment of existing supervised classification approaches, we used
the same optimal configuration of feature selection (Pearson
correlation), rebalancing technique (SMOTE), and machine
learning algorithm (Random Forest) we obtained during the
extensive evaluation of TRAIL [9] for the implementation of
ALCATRAL . By retaining the same configuration, we are able
to perform a side-by-side comparison with the state-of-the-art
while injecting minimal bias via conflating variables.

2)

3)

4)

6)

A. Representing Potential Traceability Links

Supervised classification-based approaches to TLR consider
all of the possible links that could exist between two given
sets of software artifacts and predict each to be either valid
(i.e., the artifacts are related) or invalid (i.e., the artifacts are
not related). Formally, if we have two artifact sets A and
B, the approach predicts the validity of each element in the
Cartesian product A x B. That is, for each artifact a € A, we
predict the validity of the potential link that exists between a
and some b € B. Therefore, for the purpose of a prediction
model, each potential link between two sets of artifacts is
represented by a set of features that are meant to help the
machine learning algorithm learn what characterizes valid vs.
invalid links. ALCATRAL is implemented with three different
types of features based on prior work [9]: IR-rankings, query
quality metrics, and artifact statistics.



1) IR-ranking Features: While IR has limitations and does
not completely automate TLR [9], it does provide useful in-
formation about the semantic similarity between two software
artifacts in a potential link. Therefore, we use IR as a set
of features that represent the similarity between two artifacts
from the perspective of many different IR approaches. This
is similar to previous work that has incorporated multiple IR
approaches using Learning to Rank [32].

Formally, given two artifact sets A and B, and a possible
link between artifacts a € A and b € B, we capture the
strength of this link based on IR using two metrics. First,
we use a as a query and the artifacts in B as the corpus.
After running a as a query through an IR engine, we capture
the rank at which b appears in the list of results as the first
metric. Then we repeat the procedure, this time considering
b as the query, A as the corpus, and capturing the rank
of a in the list of results as the second metric. This gives
the model bidirectional information about artifact similarity,
as previous work indicated that the search direction directly
affects retrieval performance for TLR [33].

For ALCATRAL, we used the same IR approaches initially
used by the state-of-the-art classification approach TRAIL
[9]: Vector Space Model with TF-IDF weighting and cosine
similarity, Okapi BM25, Jensen Shannon, Latent Semantic
Analysis, Latent Dirichlet Allocation, Dirichlet language mod-
els, and Jelenik-Mercer [34]. We used each to compute the two
aforementioned metrics per potential traceability link, resulting
in a total of 14 different IR-based features per link.

2) Query Quality Features: While a significant body of
work suggests that IR is a reasonable technique for automating
TLR, other work has shown that IR performance is directly
related to query quality [35]. In the context of traceability,
artifacts with poor textual quality are considered hard-to-trace
by IR, as for these artifacts IR provides unreliable results,
usually containing many false positives (i.e., an invalid trace-
ability link is erroneously presented as valid). To counteract
this phenomena, we employ a series of query quality metrics
[35] that are designed to help a model identify the scenario in
which two software artifacts appear related based on semantic
similarity, but that information is unreliable because of the
quality of one or both of the artifacts. We employ all of the
features used in previous work in the TRAIL framework [9],
for a total of 112 query quality features.

3) Artifact Statistics Features: Previous work in cold-start
analytics identified several computationally inexpensive statis-
tical metrics to model trace links [36]. In this work we leverage
some of these metrics as features: the number of unique
terms in an artifact, the total number of terms in an artifact
(including duplicates), and the percentage of overlapping terms
between the two artifacts in a candidate link. These features
act as proxies for artifact complexity (i.e., longer artifacts
are more likely to contain more information) and relatedness
(i.e., artifacts that have higher term overlap are more likely
to contain similar information). This results in a total of 5
features for each link.

To summarize, we extracted 131 features for each potential
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traceability link: 14 IR-based features, 112 query quality
metrics, and 5 artifact features. Each feature was normalized
to the interval [0,1].

B. Correlation-Based Feature Selection

Some features in the initial 131-feature representation of a
traceability link can carry redundant or irrelevant information.
This can lead to waisted effort computing unneeded features in
addition to overfitting the model. Therefore, in order to iden-
tify only the essential features needed for a predictive model,
feature selection must be used. While there are numerous
approaches available, ALCATRAL performs feature selection
using Pearson’s correlation as implemented in Weka '. This
is based on guidance from previous work [9] and supports a
one-to-one comparison with TRAIL.

C. The Synthetic Minority Oversampling Technique

Like other classification-based approaches, ALCATRAL
considers the set of all possible links between two sets of
software artifacts. Generally, in that set there are far fewer
valid links than invalid ones. By definition, this leads to a class
imbalance problem. If a model is trained without rebalancing
the data, it may be difficult to differentiate minority class
instances from the majority. Further, the resulting model
may not be practically useful, as the model can achieve
almost perfect accuracy by niively predicting all links to be
invalid. To counteract this phenomena, ALCATRAL uses the
Synthetic Minority Oversampling TEchnique (SMOTE) [37].
Using SMOTE, artificial instances of vectors belonging to the
minority class are generated by interpolation. That is, new
minority class vectors are created around existing minority
class vectors. This boosts the original minority class data’s
signal while having minimal impact on the decision boundary.

D. Random Forest

ALCATRAL itself is agnostic to which machine learning
classification algorithm is trained on the rebalanced data to
perform the prediction. However, to facilitate the comparison
with the state-of-the-art, we use Random Forest, as it lead
to the best performance for TRAIL [9]. The Random Forest
algorithm for classification is an ensemble approach that
generates a set (i.e., a “forest”) of decision trees and then
returns the mode of the predictions made by each tree.

E. Active Learning

Classification-based approaches leverage supervised ma-
chine learning to make a prediction of whether a traceability
link is valid or invalid; therefore, they require a training set to
create the prediction model. In practice, creating this training
set is usually delegated to developers who need to inspect a
multitude of pairs of software artifacts to determine whether
they should be linked or not. Typically, machine learning
techniques are evaluated using ten-fold cross validation. Using
this technique, it is ensured that each data point in a set is
used to test the model exactly once. However, the model is
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also trained on 90% of the data and tested on the remaining
10%. Therefore, because the original evaluation of TRAIL
used this tactic, it assumed that 90% of the possible links
in each software project were already reviewed and labeled
by developers. However, as previously discussed, this is not a
reasonable assumption for the vast majority of systems, which
do not come with complete traceability data.

Unlike TRAIL, which uses a passive learning approach that
requires a large set of training data, ALCATRAL uses active
learning by building upon a small initial training set and then
querying the developer about other traceability links that are
difficult for the model to classify. That is, rather than manually
labeling the complete dataset, the developer need only label
those links the model is most unsure about. After the developer
determines whether those links are valid or invalid, they are
appended to the initial training set of ALCATRAL. Finally, a
new model with reduced uncertainty is trained using this new,
enhanced training set. The complete process (also summarized
in Figure 2-B) is described as follows:

ALCATRAL first uses a small initial training set of la-
beled traceability links to create a basic classifier, which is
expected to have relatively low performance. Then, following
a pool-based active learning strategy, the classifier labels the
remaining unlabeled traceability links (i.e., the pool). When
assigning a label, the classifier also provides a confidence score
— usually in the interval [0, 1] — which represents how confident
the model is in the label it assigned. Using these confidence
scores, ALCATRAL samples those links for which there is
the most uncertainty (i.e., the links for which the model is
least confident in its prediction). The expert then inspects each
link in that sample and provides the true label for each link.
Finally, the newly labeled set of sampled points is appended
to the initial training set and an updated model is trained using
this new training set. This process can be iteratively repeated
until a suitably refined training set is obtained.

To measure the uncertainty of a classification using confi-
dence scores, ALCATRAL uses information entropy:

E(z) =— Z Pi(z)log P;(z) (1)

i€{0,1}

Where z is a classified traceability link, ¢ is a label that
the classifier can use to classify the link, and P;(z) is the
confidence score of the classifier when it assigns the label
¢ to the link . A low entropy indicates that the classifier is
certain of the label it assigned to link x, whereas a high entropy
implies that the classifier does not really know how to classify
the link. Figure 1 depicts an example of the sampling process
using entropy as the measurement of uncertainty. Assume that
a classifier tries to assign the label valid to an unlabeled
traceability link A with a confidence score of 0.9, and assigns
the label invalid to the same link A with a confidence score
of 0.1. In this scenario, the classifier finally classifies the
link A as valid with high certainty (F(z) = 0.47). On the
other hand, if the same classifier assigns the valid and invalid
labels to the link B in Figure 1 with confidence scores of 0.4
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Fig. 1. Pool-based active learning approach used with an entropy-based query
strategy. Since links close to the decision boundary are difficult to classify,
they are more likely to be sampled and passed to the developer for labeling,
in order to obtain their true label.

and 0.6 respectively, it will classify it as invalid. Not only
is that classification incorrect, it also has high uncertainty
(E(x) = 0.97). However, if the link B is presented to an
expert, she can provide its true label (i.e., valid) by inspecting
the artifacts in the link. We can then add link B to the initial
training set, retrain the classifier, and obtain an improved
decision boundary that now also correctly classifies link C.

IV. DESIGN OF THE EMPIRICAL EVALUATION

In this paper, our goal is to address the large amount of la-
beled data required to train predictive models for classification-
based approaches to TLR. We performed an empirical study
to determine the degree to which ALCATRAL is able to
decrease the amount of training data necessary to create
accurate predictive models for classifying potential traceability
links. This study considers two different ways of applying
active learning within ALCATRAL. In the first, we add
additional labeled data identified using active learning to a
small training set in a single sweep. In the second, we add
additional labeled data identified using active learning to the
initial training set iteratively, re-labeling the unlabeled dataset
and re-calculating the entropy of each of those predicted
labels at each iteration. Mind that the systems we use in our
study already have the ground truth available, meaning that
all the potential traceability links are already labeled as valid
or invalid. Therefore, instead of soliciting live help from an
expert to label the traceability links we select using active
learning, we just consult the ground truth, therefore simulating
the interaction with an expert developer.

A. Datasets

In our study, for a fair comparison with previous work
we use the datasets available in the replication package for
TRAIL [9]. We used all 11 traceability datasets available in
the replication package. These involve eight different types of
artifacts, and are extracted from six different software projects.
In total, the datasets have 32,616 possible links between pairs
of artifacts, of which 2,600 (7.97%) are valid and 30,016
are invalid (92.03%). By using the same data as TRAIL, we
can perform a direct comparison between both approaches to
determine the impact that active learning has on performance
and amount of training data while holding other conflating



variables constant. Table I shows the breakdown of this dataset
by software system, invalid and valid links, and artifact types.

TABLE I
DATASETS USED IN THE EVALUATION

Invalid sy . "
System Links Valid Links Artifact Types
eAnci 7091 554 (7.25%) UC, CC
EasyClinic 1317 93 (6.60%) UC, CC
EasyClinic 871 69 (7.34%) 1D, CC
EasyClinic 1177 83 (6.59%) 1D, TC
EasyClinic 574 26 (4.33%) 1D, UC
EasyClinic 2757 204 (6.89%) TC, CC
EasyClinic 1827 63 (3.33%) TC, UC
eTour 6363 365 (5.43%) UC, CC
iTrust 1493 58 (3.74%) UC, CC
MODIS 890 41 (440%) HighR, LowR
SMOS 5656 1044 (15.58%) UC, CC
Total 30016 2600 (7.97%)

" HighR = High-level Requirements, LowR = Low-level
Requirements, UC = Use Cases, CC = Code Classes, ID
= Interaction Diagrams, TC = Test Cases.

B. Research Questions

Through this empirical study, we seek to answer two re-
search questions:

RQ:: Can a single application of active learning reduce
the amount of training data needed to achieve a performance
similar to TRAIL for TLR? In this research question we seek
to understand if applying active learning once can lead to a
reduction in the amount of training data needed to achieve
a performance similar to TRAIL, which used 90% of all
the valid and invalid links in a system as training data. We
also replicate TRAIL based on the information provided in
the original paper [9], which allows us to then compare the
performance of ALCATRAL and TRAIL side-by-side using
different amounts of training data. For answering this research
question we begin with an initial training set of 10% of all the
links in a system and then incrementally add more training data
either selected randomly for TRAIL or selected using active
learning applied in a single sweep for ALCATRAL.

RQ2: Does the performance of ALCATRAL improve when
active learning is applied iteratively? For the first research
question, we add additional training data for ALCATRAL
by using active learning in a single sweep. That is, for any
one experiment we compute entropy values, select data points
based on the entropy and append them to the training set,
then retrain the model only once. Note, however, that entropy
is directly related to model uncertainty, which is in turn
directly related to model performance. Therefore, intuitively
we would expect incremental model improvements to also
improve the model’s ability to determine its uncertainty about
a given prediction. Consequently, we want to explore if this is
indeed the case and therefore apply active learning iteratively
to answer RQ.. That is, at each iteration (beginning with
the same 10% initial training set) we make predictions and
compute the associated entropy values, append the 10% of
the unlabeled set with the highest entropy to the training set,
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and retrain the model which is then used as the initial model
in the subsequent iteration.

C. Methodology

In all of the experiments discussed below, the same process
for splitting the data is used. For each instance of an experi-
ment (i.e., trial), the dataset for each software project is split
into three sets: training, unlabeled, and testing using stratified
random sampling. In each case, the training and unlabeled
sets together make up 90% of the overall data for a project,
and the remaining 10% is the test set. The training set is
a set of labeled links used to train a classification model.
The unlabeled set, as the name would suggest, is a set of
unlabeled links from which additional data is taken for training
using active learning. The festing set is used to determine a
model’s performance. Therefore, the training set is used to
construct the initial model, the unlabeled set is used to make
preliminary predictions, compute entropy for active learning,
and select additional training data based on that entropy; then,
after retraining including the newly selected data, the testing
set is used to determine the performance of that model. Figure
2 illustrates this data splitting process. Note that the testing set
is disjoint and solely used to evaluate performance. Further, to
address bias potentially introduced by random sampling when
splitting the data, we perform 50 trials of each experiment and
present aggregated results by averaging the performance of the
models across all trials. Note that SMOTE and stratification
are applied only for the initial training set. They are not used
for retraining models after additional labeled links are added
in order to limit the impact of artificial data selection on the
results. Further, when referencing X% of the data, we mean
X% of the total amount of valid and invalid links in a system,
for ease of comparison with the original TRAIL experiments
which used 90% of the data for training and 10% for testing.

In this work we present the performance of all models in
terms of F-Score, a metric that is commonly used to evaluate
approaches that support TLR, also used in [9] to compare
TRAIL to IR approaches. F-score is the harmonic mean of
the precision and recall of an approach, given by:

[{valid links} N {links classified as valid}|

Precision =
recuston [{valid links}|
2
valid links} N {links classt fied as vali
Recall lid link links cl d lid
ecall =
[{links classified as valid}|
3)
FScore — 2. Precision - Recall @)

Precision + Recall

F-Score is a reasonable metric for this study because in order
for ALCATRAL to be successful, it must balance both pre-
cision and recall: automatically recovering the largest number
of valid links possible, while also minimizing false positives.
To answer RQ1, we train two sets of models. The first is a
series of ALCATRAL models trained with increasing amounts
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of data provided by active learning. For these, we begin with a
randomly selected initial training set of size 10% chosen with
stratified random sampling. For each subsequent experiment
we add an additional 10% of the data, retrain the model, and
measure its performance with the testing set, until the final
experiment where 90% of the data is used as training. The
second set of models is a series of TRAIL models that act as
a reference for comparison. For these, we train the model with
an equivalent amount of data for a corresponding ALCATRAL
comparison model using stratified random sampling to select
the training data. We perform 50 trials of each experiment,
and present the average results.

To fully answer the research question posed, we perform
two comparisons. First, we compare ALCATRAL trained with
various amounts of data to the TRAIL results provided in
[9], which we call the TRAIL baseline. This allows us to
establish the amount of data at which ALCATRAL achieves
parity in performance with the original benchmark. The delta
between the 90% of the links used as training data by the
TRAIL baseline and the amount of data at which ALCATRAL
achieves parity quantifies the improvement achieved by AL-
CATRAL in terms of reducing the required training data for
the best performance. In the second analysis, we compare the
performance achieved by ALCATRAL to that of TRAIL using
various amounts of training data. This allows us to compare the
performance degradation between TRAIL and ALCATRAL as
increasingly less data is available for training.

For RQ2 we begin with an initial training set of 10% of
the data selected through stratified random sampling. Then we
perform active learning by training the model using this data,
performing a classification of the unlabeled links based on the
trained model, determining the entropy of all unlabeled links
and selecting the 10% of the unlabeled links with the highest
entropy for labeling next. We then consult the ground truth
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in order to determine the labels of these previously unlabeled
links, and proceed to move them from the unlabeled set to the
training set. We then retrain the model with the new training
set (including the newly added data points), and continue
this process several times, incrementally adding 10% of the
remaining unlabeled data with the highest entropy until we
have used a full 90% of the overall data (the initial training
set plus all of the unlabeled data) to train the model.

As with the previous research questions, we perform 50
trials of this experiment, and present the average results.
Further, we provide a comparison to the TRAIL baseline and
replicated TRAIL models with equivalent amounts of training
data for each ALCATRAL experiment.

We released the scripts used to perform the experiments,
the datasets, and the complete set of results in a replication
package available at https://bit.ly/2Ip1wK7.

V. RESULTS
A. RQI

Table II shows the performance of ALCATRAL (ACL) and
TRAIL (TRL) models trained with increasing amounts of data
in terms of F-Score. Immediately we see a dramatic increase
in performance for ALCATRAL models compared to TRAIL
models with small amounts of data and, as expected, the
difference between the two tapers off as more data is added.
Further, while we see improvements in TRAIL models when
additional data is available, they do not achieve performance
similar to ALCATRAL models until more than 70% of the data
is made available for training. Specifically, on average, TRAIL
comes within 2 percentage points of performance with an
ALCATRAL model trained using 30% of the data only when
TRAIL is trained using 70% or more of the data. In general,
across all datasets, we see a more than two-fold decrease in the



TABLE 11
PERFORMANCE OF ALCATRAL BY AMOUNT OF TRAINING DATA ADDED USING ACTIVE LEARNING AND RANDOM SELECTION

o Size of the training set TRAIL

Initial baseline

10% 20% 30% 40% 50% 60% 70% 80% 90% as in [9]
Dataset ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL
eAnci 522 73.1* 614 774* 659 714*F 69.0 77.0* 717 764* 73.6 759* 751 752* 767 7T4.6* 78.0 77.9
eC-CC/UC 458 624* 539 65.5* 57.8 66.5% 60.1 67.1*T 624 67.8*T 63.3 67.6*1 650 67.3*T 659 6741 67.6 67.5
eC-ID/CC  42.1 64.0* 51.6 69.4* 579 713* 62.7 71.8*F 64.6 723*T 67.5 71.7*% 69.4 724*T 706 725 72.1 72.8
eC-ID/TC 632 90.1* 756 93.1*T 814 93.6*T 85.1 93.6*T 87.6 93.3*T 894 93.7*t 91.3 93.8*% 924 9367 934 93.4
eC-ID/UC 253 50.9* 292 523* 39.9 543* 432 54.7*% 47.1 554*% 490 555*f 516 556f 539 55.7*%1 578 57.6
eC-TC/CC  73.8 947* 86.4 97.7*% 915 98.0* 93.7 98.0* 952 97.9* 96.1 98.0* 968 98.1* 972 98.0* 974 97.5
eC-TC/UC 562 913* 69.4 93.0* 77.1 933* 81.9 93.4* 858 92.9* 881 93.1* 909 93.0 929 92.9* 947 94.5
eTour 425 550* 49.6 57.0* 52.1 57.5* 544 579* 563 582* 57.1 583 585 584* 597 58.5* 60.7 60.8
iTrust 309 62.5%F 479 64.1* 537 64.5* 577 63.7% 593 63.3* 60.0 62.7¢ 605 63.0* 61.1 623 614 60.9
MODIS 321 52.0% 423 572* 487 586% 53.1 59.8* 560 61.2* 592 61.6* 603 62.6 624 62.7* 638 64.3
SMOS 476 602* 567 67.0* 623 714* 66.6 73.8* 704 752% 735 759 760 765* 779 763* 79.8 79.7
Average 46.5 68.8* 56.7 72.2* 62.6 73.3* 661 73.7* 68.7 74.0* 70.6 74.0* 723 742* 737 74.0* 75.1 75.2

*=there is a significant statistical difference between ALCATRAL and TRAIL trained with the same amount of data.

T=there is no significant

statistical difference between ALCATRAL and the TRAIL baseline [9]. f=there is a significant statistical different between ALCATRAL and the
TRAIL baseline [9], but the effect size is small or negligible. Bolded values show the lowest percentage of training data with which ALCATRAL
achieves results that are comparable to the TRAIL baseline [9] (no statistically significant difference or a low or negligible effect size). Underlined

values indicate the best result overall for a dataset (for a line).

amount of required training data for ALCATRAL compared
to TRAIL to achieve a comparable performance.

It is also important to note that these results show that on
average ALCATRAL is within three percentage points of the
previously established TRAIL baseline (last column in Table
II) and our replication of it (second to last column in Table II),
even when only using 30% of the data set for training. This
both illustrates how duplicative the statistical data contained in
the complete dataset is, and indicates that entropy-based active
learning is a reasonable means of exploiting that duplicity.

Additionally, one interesting thing to note is that the perfor-
mance degradation seen for TRAIL models trained with less
than 90% of the data is not as severe as one might expect
on average, particularly when more than 60% of the data is
available for training, in which case the results are within 5%
of TRAIL trained with 90% of the data. This serves as a
cautionary tale for future evaluations of classification-based
approaches: an analysis of the amount of data required to
achieve a certain level of performance is extremely important.

Further, while it is interesting to look at the average per-
formance across all of the datasets in consideration, it is also
important to consider performance trends for specific datasets.
One particularly notable subset of datasets involve EasyClinic:
ID/TC, TC/CC, and TC/UC. These are interesting because they
each have extremely high F-Score baselines for TRAIL, each
above 90%. In each case, ALCATRAL is able to get within
0.2 — 1.5% of that baseline performance using only 30% of
the data for training. More than that, in the case of EasyClinic
TC/CC ALCATRAL with 30% also surpasses the TRAIL
baseline. These results present two important findings. First,
the statistical data representing links between these particular
artifact sets are particularly duplicative, where a small subset
of the data fully expresses the full variability of the overall
dataset. Second, these artifact sets provide an opportunity to
study the properties of artifacts whose relatedness can more
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easily be distinguished by a statistical model. Future work
should focus on understanding the mathematical properties of
these sets in an effort to find ways of making artifact sets more
easily automatically traced.

On the other side of the spectrum, ALCATRAL’s per-
formance for SMOS and MODIS continues to increase as
additional data is added. However, even with 50% of the
data available for training, models for these two systems have
substantially lower performance than the TRAIL baseline. This
indicates that for some datasets, there is insufficient duplicity
in the data for active learning to effectively prioritize the links
that should be labeled. Further, it indicates that the feature
representation presented in the initial TRAIL implementation
are insufficient to completely explain the distinction between
valid and invalid links to a classifier. As a result, future work
should investigate alternative feature representations that could
better capture the distinguishing characteristics of valid links.

Finally, in seven of the eleven datasets, ALCATRAL is
able to provide performance statistically similar to the TRAIL
baseline established with 90% of the data. In those same cases,
ALCATRAL provides statistically significantly better results
than a TRAIL model trained on an equivalent amount of
data. In general, when presented with less than 50% of the
total dataset for training, ALCATRAL outperforms TRAIL
in every case. Further, when compared to the established
TRAIL baseline in [9], ALCATRAL is able to achieve similar
performance with significantly less data.

Summary for RQ;. ALCATRAL obtains performance
within 3% of the established TRAIL baseline [9] using
only a third of the training data. ALCATRAL provides
better performance than TRAIL models trained on an
equivalent amount of data. ALCATRAL also reduces
the training data requirements of TRAIL by at least a
half, and in many cases by two-thirds.




B. RO2

For RQy we employ an iterative approach to active learning
in which each subsequent iteration builds upon the model
trained by the previous iteration. This approach is based on
the idea that an improved model will not only achieve higher
performance, but will also provide more reliable entropy cal-
culations. These improved entropy calculations subsequently
allow the model to more optimally query an expert for the
labels of interesting trace links. Table III shows the results of
such an iterative model for each dataset beginning with no
additional data, all the way to the 8th iteration, at which the
model is trained on the full 90% of the data available in the
training and unlabeled sets.

Interestingly, these results indicate that for nine of the eleven
datasets, ALCATRAL is able to achieve performance that
is statistically similar to the established TRAIL baseline [9]
with < 50% of the data used for training. In the case of
iTrust, statistical similarity is achieved after the first iteration,
requiring only 20% of the overall data. Further, for MODIS
and SMOS, the datasets that ALCATRAL struggles the most
with when adding additional data in a single sweep, the
iterative approach is able to achieve parity with TRAIL using
only 50% and 40% of the data respectively for training. This
indicates that at least for these two projects that the entropy
values computed by the initial model trained on 10% of the
data were, in fact, unreliable, which lead to a drastic reduction
in efficiency when selecting additional data to be labeled.

Moreover, for eAnci, one of the two datasets that required
more than 50% of the data to achieve statistically similar
results to the TRAIL baseline, the performance is very close
to the baseline for much lower amounts of data, but the
results lose statistical significance at iteration 7. Therefore,
practically speaking ALCATRAL is likely to provide sufficient
performance for smaller training sets, but should be empir-
ically evaluated on a project-by-project basis. This is also
important because the artifact types being traced also impact
performance as seen in the EasyClinic datasets.

Additionally, Table IV shows performance improvements
made by ALCATRAL using an iterative active learning ap-
proach over TRAIL for training set sizes. These results clearly
show that ALCATRAL provides superior F-Score performance
compared to TRAIL particularly for small training sets, which
is the most common scenario for software projects in the
wild. Overall, ALCATRAL provides a 25% improvement for
the smallest training sets, with a minimum and maximum
improvement across systems of 11% and 78% respectively.
Finally, note that there is still an improvement of more than
10% for most datasets when only 50% of the data is available
for training. ALCATRAL and TRAIL begin reaching parity
with one another at 60% training sets for most systems. It’s
important to point out that even though statistical significance
between the performance of TRAIL and ALCATRAL exists
in certain cases, the effect sizes in those cases are low or
negligible. Therefore, TRAIL models do not out perform
ALCATRAL models in a practical sense (i.e., large mean dif-
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ferences with statistical significance) even with large amounts
of training data available. Therefore, ALCATRAL is able
to assist in scenarios in which only limited training data
is available and maintains good performance when a larger
amount of training data becomes available.

Finally, compared to ALCATRAL models implemented
with a single sweep approach to active learning, ALCATRAL
with an iterative implementation of active learning provides
equivalently strong results with more marked statistical sig-
nificance. The iterative models achieve parity with the 90%
TRAIL baseline [9] earlier and maintain significant differences
with TRAIL models trained with less data.

Summary for RQ,. Compared to single sweep, an iter-
ative approach to active learning in ALCATRAL leads
to better performance with statistically significant results
over TRAIL trained on equivalent amounts of data. AL-
CATRAL outperforms TRAIL for small sizes of training
data and achieves parity with it when large amounts
of training data are available. Therefore, ALCATRAL
represents an improvement over TRAIL in the most
likely scenario for projects in the wild and maintains
similar performance to TRAIL in rare situations where
a large amount of training data is available.

VI. THREATS TO VALIDITY

Construct validity refers to how well the metrics used for
evaluation measure the phenomena under study. To mitigate
threats to construct validity, we measure the performance of
ALCATRAL models using F-Score, which is a standard metric
used in the field. By using F-Score we also ensure that we are
preferring models with both high recall and precision, which
are pragmatic for automatically performing TLR in practice.

Internal validity refers to how well a study insulates changes
in the dependent variable from unaccounted for, conflating,
independent variables. This study mitigates threats to internal
validity in several ways. First, there are many sources of
randomization in the experiments presented in this study: split-
ting the dataset, performing SMOTE, and the random forest
classifier itself. In order to mitigate any biases introduced by
this randomness, we perform 50 trials of each experiment and
present average results across those trials. Further, we have
controlled the seeds for both the SMOTE and random forest
components of the experiments so that the results can easily be
replicated for verification. Second, these experiments are per-
formed on the same datasets used to establish the TRAIL base-
line, which is used as a point of comparison for ALCATRAL.
Third, because ALCATRAL is an approach that specifically
addresses the excessive need for training data using active
learning, we match the configuration of TRAIL in each of the
comparisons. Using an identical configuration makes a direct
comparison with TRAIL possible while minimizing external
influences on model performance and highlighting the impact
that active learning has on classification-based TLR.

External validity refers to how well the results of a study
generalize to other contexts. This study mitigates threats to



TABLE III
PERFORMANCE OF AL-TRAIL WITH ITERATIVE TRAINING

oo Size of the training set TRAIL

Initial baseline

10% 20% 30% 40% 50% 60% 70% 80% 90% as in [9]
Dataset ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL ACL TRL
eAnci 522 72.8* 614 78.7* 659 788* 69.0 78.8* 717 78.6* 73.6 783* 75.1 782*% 767 78.1% 78.0 71.9
eC-CC/UC 458 62.4* 539 66.1* 57.8 67.7*T 60.1 67.3*1 624 67.6*T 633 67.4*T 650 67.1*% 659 6757 67.6 67.5
eC-ID/CC  42.1 643* 51.6 70.5% 579 724*T 627 723*1 64.6 724*1 675 7257 69.4 72.6*t 706 72.6T 721 72.8
eC-ID/TC 632 90.0* 75.6 94.1* 814 93.6*% 85.1 93.6*T 87.6 93.6*T 89.4 935*T 913 934*T 924 9357 934 93.4
eC-ID/UC 253 52.0* 292 549* 399 537* 432 555*% 47.1 56.6*T 49.0 57.3*T 51.6 56.7*1 53.9 5727 5738 57.6
eC-TC/ICC 738 952* 864 97.6*% 91.5 97.7* 937 97.6*T 952 97.6*1 96.1 97.5*t 96.8 97.5*1 972 9747 974 97.5
eC-TC/UC 562 91.8* 69.4 94.9*% 77.1 953* 819 952*% 858 94.5*T 88.1 94.7*T 909 94.8*% 929 9467 947 94.5
eTour 425 56.1* 49.6 58.6*% 52.1 59.7* 544 60.1* 563 60.5*T 57.1 60.7*T 585 61.1*T 59.7 60.6T 60.7 60.8
iTrust 309 62.2*f 479 63.1* 537 63.4* 577 62.1* 593 61.8*% 60.0 6077 605 612F 61.1 61.37 614 60.9
MODIS 32.1 522* 423 59.5% 487 61.6* 53.1 62.7*F 56.0 63.3*% 592 63.6*T 603 64.0*T 624 64.17 638 64.3
SMOS 476 62.9* 567 753* 623 79.9*F 66.6 80.0*% 704 794*t 735 793* 760 79.6*T 77.9 7977 79.8 79.7
Average 465 693 567 739 626 749 661 750 687 751 70.6 750 723 751 737 752 751 75.2

*=there is a significant statistical difference between ALCATRAL and TRAIL trained with the same amount of data. T=there is no significant
statistical difference between ALCATRAL and the TRAIL baseline [9]. f=there is a significant statistical different between ALCATRAL and the
TRAIL baseline [9], but the effect size is small or negligible. Bolded values show the lowest percentage of training data with which ALCATRAL
achieves results that are comparable to the TRAIL baseline [9] (no statistically significant difference or a low or negligible effect size). Underlined

values indicate the best result overall for a dataset (for a line).

TABLE 1V
PERFORMANCE INCREASE ACHIEVED BY ALCATRAL OVER TRAIL
USING DIFFERENT AMOUNTS OF DATA

Size of the training set
40% 50% 60% 70%

142% 10.0% 69% 4.4%
125% 7.8% 6.7% 3.7%
155% 11.9% 72% 4.4%
10.0% 69% 4.7% 2.4%
24.3% 17.9% 15.5% 10.9%
42% 2.5% 15% 0.7%
16.3% 11.0% 72% 4.2%
97% 6.8% 6.0% 3.7%
9.8% 48% 29% 0.3%
16.0% 12.0% 69% 5.5%
20.0% 13.7% 8.1% 4.4%

13.9% 9.6% 6.7% 4.1%

90%

0.2%
-0.1%
0.7%
0.2%
-1.0%
0.0%
0.0%
-0.2%
-0.2%
0.4%
-0.2%

0.0%

80%

2.0%
1.8%
2.8%
1.1%
5.2%
0.3%
2.0%
2.3%
0.1%
2.6%
2.2%

2.0%

20%

18.6%
15.8%
24.6%
19.0%
78.0%
10.2%
32.3%
13.2%
29.9%
23.3%
11.0%

25.1%

30%

19.4%
14.3%
21.8%
15.6%
37.7%

6.7%
23.2%
12.4%
17.4%
22.1%
20.8%

19.2%

Dataset

eAnci
eC-CC/UC
eC-ID/CC
eC-ID/TC
eC-ID/UC
eC-TC/CC
eC-TC/UC
eTour
iTrust
MODIS
SMOS

Average

external validity by applying the technique to 11 widely used
traceability datasets across six different projects spanning eight
different types of artifacts. This is not to say the results of this
study are completely generalizable, but does suggest that the
results are applicable to those types of artifacts and for several
systems from different domains. Additionally, we evaluated
our approach with the assumption that a developer makes no
mistakes at providing a label to the links that are included in
the training set. However, mislabeling of links is a possible
scenario that can impact ALCATRAL’s performance. Future
work will focus on estimating the sensitivity of ALCATRAL
to mislabeled links.
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VIII. CONCLUSION AND FUTURE WORK

We introduced ALCATRAL, and approach which uses
entropy-based active learning as a mechanism to reduce
the training data demands of TRAIL, the state-of-the-art
supervised machine learning approach to automating TLR.
First, we show that ALCATRAL provides models with better
performance than training TRAIL on an equivalent amount
of training data. Second, we show that using ALCATRAL,
models can achieve performance similar to the TRAIL baseline
while reducing the amount of training data needed by up to
two-thirds. Specifically, we show that ALCATRAL achieves
average performance within 3% of TRAIL when only 30%
of the traceability data is labeled for training. Finally, we
also show that applying AL iteratively provides improved
performance over TRAIL with statistical significance in many
cases. ALCATRAL with iterative active learning represents
an improvement over TRAIL when there is little training data
available and maintains similar performance to TRAIL in rare
situations where a large amount of training data is available.

Future work will focus on further reducing the need for
training data by investigating two research directions. First,
we plan to consider smaller increments of additional data than
10%, with particular focus on the iterative approach. Second,
we will look at transfer learning, which has been success-
fully applied to defect prediction [38], [39], as an alternative
approach that completely eliminates the need for project-
specific training data by training models on data from similar
projects. By equipping a classification-based approach with
a means of completely circumventing the need for project-
specific training data, it becomes an even stronger candidate
for a fully automated approach to general TLR.
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