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ABSTRACT
DFTB+ is a versatile community developed open source software package offering fast and efficient methods for carrying out atomistic
quantum mechanical simulations. By implementing various methods approximating density functional theory (DFT), such as the density
functional based tight binding (DFTB) and the extended tight binding method, it enables simulations of large systems and long timescales
with reasonable accuracy while being considerably faster for typical simulations than the respective ab initio methods. Based on the DFTB
framework, it additionally offers approximated versions of various DFT extensions including hybrid functionals, time dependent formalism
for treating excited systems, electron transport using non-equilibrium Green’s functions, and many more. DFTB+ can be used as a user-
friendly standalone application in addition to being embedded into other software packages as a library or acting as a calculation-server
accessed by socket communication. We give an overview of the recently developed capabilities of the DFTB+ code, demonstrating with a few
use case examples, discuss the strengths and weaknesses of the various features, and also discuss on-going developments and possible future
perspectives.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5143190., s

I. INTRODUCTION
Density Functional Theory (DFT)1,2 dominates the landscape

of electronic structure methods, being the usual go-to technique
to model large, chemically complex systems at good accuracy. For
larger systems and time scales, force-field models instead dominate
materials and chemical modeling. Between these is the domain of
semi-empirical methods, derived from approximations to Hartree–
Fock or DFT based methods. Within this space, density functional
based tight binding (DFTB)3–5 effectively offers a reduced complex-
ity DFTmethod, being derived from a simplification of Kohn–Sham
DFT to a tight binding form.6

This paper describes the DFTB+ code,7 an open source imple-
mentation, which aims at collecting the developments of this family
of methods and making them generally available to the chemical,
materials, and condensedmatter communities. This article describes
extensions to this code since its original release in 2007,8 there being
a lack of a more recent overview of its features and underlying
theory.

II. DFTB+ FEATURES
A. The core DFTB-model

The basic DFTB-equations are presented below. They can be
easily generalized for periodic cases (k-points) as well as for other
boundary conditions, as implemented in DFTB+. All equations
throughout this paper are given in atomic units with Hartree as the
energy unit.

1. Expansion of the total energy
The DFTBmodels are derived from Kohn–Sham (KS) DFT2 by

expansion of the total energy functional. Starting from a properly
chosen reference density ρ0 (e.g., superposition of neutral atomic
densities), the ground state density is then represented by this ref-
erence, as perturbed by density fluctuations: ρ(r) = ρ0(r) + δρ(r).
The total energy expression then expands the energy functional in a

Taylor series up to third order,

EDFTB3
[ρ0 + δρ] = E0

[ρ0] + E1
[ρ0, δρ] + E2

[ρ0, (δρ)2]

+E3
[ρ0, (δρ)3] (1)

with

E0
[ρ0] =

1
2∑AB

ZAZB

RAB
−
1
2∬

ρ0(r)ρ0(r′)
∣r − r′∣

drdr′

− ∫ Vxc
[ρ0]ρ0(r)dr + Exc

[ρ0],

E1
[ρ0, δρ] =∑

i
ni⟨ψi∣Ĥ[ρ0]∣ψi⟩,

E2
[ρ0, (δρ)2] =

1
2∬

⎛
⎜
⎝

1
∣r − r′∣

+
δ2Exc

[ρ]
δρ(r)δρ(r′)

RRRRRRRRRRRρ0

⎞
⎟
⎠
δρ(r)δρ(r′)drdr′,

E3
[ρ0, (δρ)3] =

1
6∭

δ3Exc
[ρ]

δρ(r)δρ(r′)δρ(r′′)

RRRRRRRRRRRρ0

× δρ(r)δρ(r′)δρ(r′′)drdr′dr′′, (2)

with XC being the exchange correlation energy and potential. Several
DFTB models have been implemented, starting from the first order
non-self-consistent DFTB13,4 [originally called DFTB or non-SCC
DFTB], the second order DFTB2 (originally called SCC-DFTB),5

and the more recent extension to third order, DFTB3.9–12

2. DFTB1
The first order DFTB1 method is based on three major approx-

imations: (i) it takes only E0[ρ0] and E1[ρ0, δρ] from Eq. (2) into
account, (ii) it is based on a valence-only minimal basis set (ϕμ)
within a linear combination of atomic orbitals (LCAO) ansatz,

ψi =∑
μ
cμiϕμ, (3)
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for the orbitals ψi, and (iii) it applies a two-center approximation to
the hamiltonian operator Ĥ[ρ0].

a. Minimal atomic basis set. The atomic orbital basis set ϕμ
is explicitly computed from DFT by solving the atomic Kohn–
Sham equations with an additional (usually harmonic) confining
potential,

[−
1
2
∇

2 + V eff
[ρ atom] + (

r
r0
)
n
]ϕμ = ϵμϕμ. (4)

This leads to slightly compressed atomic-like orbitals for describ-
ing the density in bonding situations. The actual values for r0 are
usually given in the publications describing the specific parameter-
ization. The operator Ĥ[ρ0] also depends on the superposition of
atomic densities, ρA (or potentials, Veff

A ) of neutral atoms, {A}, in the
geometry being modeled. This density is usually determined from
the same atomic KS equations using a slightly different confinement
radius, rd0 .

b. DFTBmatrix elements. The hamiltonian can be represented
in an LCAO basis as

H0
μν = ⟨ϕμ∣Ĥ[ρ0]∣ϕν⟩ ≈ ⟨ϕμ∣−

1
2
∇

2 + V[ρA + ρB]∣ϕν⟩, μ ∈ A, ν ∈ B,

(5)

where the neglect of the three center terms and pseudo-potential
contributions6 lead to a representation, which can be easily com-
puted by evaluating the Kohn–Sham equations for dimers. These
matrix elements are computed once as a function of inter-atomic
distance for all element pairs. The Slater–Koster13 combination rules
are applied for the actual orientation of these “dimers” within a
molecule or solid.

c. Total energy. E0[ρ0] depends only on the reference density,
so is universal in the sense that it does not specifically depend on the
chemical environment (which would determine any charge transfer
(CT), δρ, occurring). It can, therefore, be determined for a “reference
system” and then applied to other environments. This is the key to
transferability of the parameters. In DFTB, E0[ρ0] is approximated
as a sum of pair potentials called repulsive energy terms,

E0
[ρ0] ≈ Erep =

1
2∑AB

Vrep
AB (6)

(see Ref. 14), which are either determined by comparison with DFT
calculations4 or fitted to empirical data.15 Forces are calculated with
the Hellmann–Feynman theorem and derivatives of the repulsive
energy.

3. DFTB2 and DFTB3
To approximate the E2 and E3 terms in Eq. (2), the density

fluctuations are written as a superposition of atomic contributions,
taken to be exponentially decaying spherically symmetric charge
densities

δρ(r) =∑
A
δρA(r − RA) ≈

1
√
4π
∑
A
(
τ3A
8π

e−τA ∣r−RA ∣)ΔqA. (7)

By neglecting the XC-contributions for the moment, the second
order integral E2 leads to an analytical function, γAB, with energy,5

E2
(τA, τB,RAB) =

1
2 ∑

AB(≠A)
γAB(τA, τB,RAB)ΔqAΔqB. (8)

The energy depends on the Mulliken charges {qA} (where the atomic
charge fluctuation, ΔqA = qA − ZA, is with respect to the neutral
atom), which are, in turn, dependent on the molecular orbital coef-
ficients, cμi. Thus, the resulting equations have to be solved self-
consistently. At large distances, γAB approaches 1/RAB, while at short
distances, it represents electron–electron interactions within one
atom. For the limit RAB → 0, one finds τA = 16

5 UA, i.e., the so-called
Hubbard parameter UA (twice the chemical hardness) is inversely
proportional to the width of the atomic charge density τA. This rela-
tion is intuitive in that more diffuse atoms (or anions) have a smaller
chemical hardness. For DFTB, the chemical hardness is computed
from DFT, not fitted.

The third order terms describe the change of the chemical hard-
ness of an atom and are also computed from DFT. A function ΓAB
results as the derivative of the γ-function with respect to charge, and
the DFTB3 total energy is then given by

EDFTB3
= ∑

i
∑
AB
∑
μ∈A
∑
ν∈B

nicμicνiH0
μν +

1
2∑AB

ΔqAΔqBγhAB

+
1
3∑AB

Δq2AΔqBΓAB +
1
2∑AB

Vrep
AB . (9)

The third order terms become important when local densities devi-
ate significantly from the reference, i.e., ΔqA is large. Apart from
including the third order terms, DFTB3 also modifies γAB for the
interactions between hydrogen and first row elements,9 where the
deviation from the relation between the charge width and the chem-
ical hardness, as formulated above, is most pronounced.

The resulting DFTB3 hamiltonian takes the form

Hμν = H0
μν +H2

μν[γ
h,Δq] +H3

μν[Γ,Δq], μ ∈ A, ν ∈ B, (10)

H2
μν =

Sμν
2 ∑C

(γhBC + γhAC)ΔqC, (11)

H3
μν = Sμν∑

C
(
ΔqAΓAC

3
+
ΔqBΓBC

3
+ (ΓAC + ΓBC)

Δqc
6
)ΔqC, (12)

where Sμν is the overlap matrix between orbitals ϕμ and ϕν, and γh is
the modified DFTB2 interaction.

4. Spin
Analogous toDFTB2, expanding the energywith respect to spin

fluctuations16–18 leads to the spin-polarized expressions for DFTB.
By introducing the magnetization density m(r) = ρ↑(r) − ρ↓(r) as
difference of the densities of spin-up and spin-down electrons and
its corresponding fluctuations [δm(r)] around the spin-unpolarized
reference state [|m(r)| = 0], a spin dependent term is added to the
spin-independent E2 of Eq. (2),

E2
[ρ0, (δρ)2, (δm)2] = E2

[ρ0, (δρ)2] +
1
2 ∫

δ2Exc
[ρ,m]

δm(r)2

RRRRRRRRRRRρ0 ,m=0

× δm(r)2dr, (13)
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where a local or semi-local Exc has been assumed.
Identifying the spin density fluctuations with up- and down-

spin Mulliken charge differences, ΔpAl, for angular momentum shell
l at atom A, and approximating the second derivative of Exc[ρ, m]
as an atomic constant WAll ′ (similar to the Hubbard UA) lead to an
on-site energy contribution

E2
spin =

1
2∑A

∑
l∈A
∑
l′∈A

WAll′ΔpAlΔpAl′ . (14)

This term in Eq. (14) is to be added to Eq. (8). It captures the
spin-polarization contribution to the total energy and couples dif-
ferent atomic angular momentum shells via magnetic interaction.
The WAll ′ are usually an order of magnitude less than the UA and
are multiplied with a (typically) small ΔpAl; hence, inclusion of spin-
polarization via Eq. (14) gives only a small energy contribution.
If there is a net imbalance of up- and down-spin electrons in the
system, the occupation of electronic states alone carries most of
the effect of the unpaired electron(s) without including Eq. (14).
The use of Mulliken charges leads to an additional hamiltonian
contribution17 to the (now) shell resolved form of Eq. (10),

Hspin±
μν = ±

Sμν
2
(∑
l′′∈A

WAll′′ΔpAl′′ + ∑
l′′∈B

WBl′ l′′ΔpBl′′),

μ ∈ l ∈ A, ν ∈ l′ ∈ B,
(15)

where the spin up (down) hamiltonian has this term added (sub-
tracted).

Expanding further to local (not global) up and down spin
populations via Pauli spinors gives the non-collinear spin model.19

Equation (14) becomes

E2
spin =

1
2∑A

∑
l∈A
∑
l′∈A

WAll′Δp⃗Al ⋅ Δp⃗Al′ , (16)

and the wave-function generalizes to two component spinors. The
hamiltonian contributions take the form

(H0
μν +H2

μν +H3
μν)⊗ (

1 0
0 1) +

3

∑
i=1

Hσi
μν ⊗ σi, (17)

where σi is the Pauli matrix for spin component i(=x, y, z) and
Hσi is constructed from the ith spin component of Δp⃗. This spin-
block two component hamiltonian then also enables spin–orbit cou-
pling19,20 to be included in DFTB+. The spin-block hamiltonian
addition is

HL⋅S
μν =

Sμν
2
⊗ (ξAl(

Lz L−

L+ −Lz
)

l
+ ξBl′(

Lz L−

L+ −Lz
)

l′
),

μ ∈ l ∈ A, ν ∈ l′ ∈ B,
(18)

where ξAl is the spin orbit coupling constant for shell l of atom A
with L± and Lz being the angular momentum operators for atomic
shells.

5. Limitations of the core DFTB-model
DFTB is an approximate method, and as such shows limita-

tions, which can be traced back to the different approximations
applied. However, the fitting of Eq. (6) can compensate for some
of the inaccuracies. Since until now, only bonding contributions
are addressed by the two-center nature of the repulsive potentials,
bond-lengths, bond-stretch frequencies, and bond-energies can be

targeted (properties such as bond angles or dihedral angles cannot
be influenced by repulsive pair parameterization). This is the reason
why DFTB performs better than a fixed minimal basis DFT method,
which would be only of limited use in most of the applications. In
some cases, DFTB can even perform better than double-zeta (DZ)
DFT using generalized gradient approximation (GGA) functionals,
as shown, e.g., in Ref. 12. This accuracy definitely can be traced back
to the parameterization.

a. Integral approximations. There are some approximations in
DFTB that cannot be compensated by parameterization, effecting,
e.g., bond angles and dihedrals, which on average show an accuracy
slightly less than DFT/DZ. Furthermore, the integral approximation
leads to an imbalanced description of bonds with different bond
order. For example, C–O single, double, and triple bonds have to
be covered by a single repulsive potential, which shows only a lim-
ited transferability over the three bonding situations. This is the
reason why both good atomization energies and vibrational frequen-
cies cannot be covered with a single fit.12 Hence, in that work, two
parameterizations were proposed, one for obtaining accurate ener-
gies and one for the vibrational frequencies. Similarly, description
of different crystal phases with the same chemical composition but
with very different coordination numbers can be challenging. Recent
examples show,21,22 however, that it is possible to reach a reason-
able accuracy if special care is taken during the parameterization
process.

b. Minimal basis set. The minimal basis set used has several
clear limitations, which show up in the overall DFTB performance:
First, for a good description of hydrogen in different bonding sit-
uations, relatively diffuse wave functions have to be chosen. For
this atomic wave-function, however, the H2 atomization energy is
in error, which is dealt with by an ad hoc solution, again providing a
special repulsive parameter set.12 Furthermore, nitrogen hybridiza-
tion and proton affinities require at least the inclusion of d-orbitals
in the basis set: this again can be compensated by a special parameter
set, which has to be applied under certain conditions.12 A simi-
lar problem occurs for highly coordinated phosphorus containing
species.23 The minimal basis can also become problematic when
describing the high lying (conduction band) states in solids. For
example, silicon needs d-orbitals in order to describe the conduc-
tion band minimum properly. The valence band, on the other hand,
can be reasonably described with an sp-only basis.

c. Basis set confinement. As a result of the orbital confinement,
Pauli repulsion forces are underestimated, which leads to DFTB
non-bonding interactions being on average too short by 10%–15%.
This has been investigated in detail for liquid water, where a dif-
ferent repulsive potential has been suggested.24 A related problem
concerns molecular polarizabilities, which are underestimated using
a minimal basis set. Approaches to correct for this shortcoming
have been summarized recently in Ref. 25. The too-confined range
of basis functions also impairs the calculation of electron-transfer
couplings. Here, unconfined basis sets have to be used.26 Simi-
larly, it can be challenging to find a good compromise for the basis
confinement when describing 2D-layered materials. As the inter-
layer distances are significantly longer than the intra-layer ones,
the binding between the layers often becomes weaker compared
to DFT.
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d. DFT inherited weaknesses. DFTB is derived from DFT and
uses standard DFT functionals, which also come with some well-
known limitations. There, several strategies applied within DFT are
also viable for DFTB, as discussed below in more detail.

B. Density matrix functionals
The typical behavior of the SCC-DFTB ground state resem-

bles local-density approximation (LDA) or GGA,27 i.e., a mean-field
(MF) electronic structure method with associated self-interaction
errors and, for some systems, qualitatively incorrect ground states.
This is in contrast to non-SCC DFTB, which gives the correct
linearity of total energy and step-wise chemical potentials28 for
fractionally charged systems. However, non-SCC can also pro-
duce MF-DFT limits, such as in the case of dimer dissocia-
tion29,30 due to self-interaction errors in the underlying atomic DFT
potentials.

DFTB+ now also supports long-range corrected hybrid func-
tionals for exchange and correlation. With respect to conventional
local/semi-local functionals, these are known to provide a better
description of wave function localization and significantly reduce
self-interaction.31 In the longer term, DFTB+ will continue to
develop post-DFT based methods with the aim of making large
(≳1000 atom) correlated systems tractable via methods with corre-
lated self-energies or wave-functions.

1. Onsite corrections
DFTB2 neglects on-site hamiltonian integrals of the type

(μν|μν), where ϕμ and ϕν are two different atomic orbitals of the
same atom [both Eq. (5) and the use of Mulliken charges give on-
site elements only for δμν = 1]. A generalized dual population32 can
be introduced as

QA,l
μν =

1
2∑κ
(ρμκSκν + Sμκρκν), l ∈ A; μ, ν ∈ l, (19)

where QA,l
μν is a population matrix for shell l of atom A and the diag-

onal of each block represents the conventional Mulliken charges for
orbitals in the lth shell. Based on this population, all fluctuations
of the atomic parts of the density matrix from the reference can
be included, not only the diagonal (charge) elements. These must
then be treated self-consistently during the calculation. This gener-
alization leads, for example, to an improved description of hydrogen
bonds in neutral, protonated, and hydroxide water clusters as well as
other water-containing complexes.33

The onsite-corrected DFTB requires additional atomic param-
eters; these are not tunable but computed numerically using DFT
(see Ref. 34 for details of their evaluation). The onsite parameter
for some chemical elements can be found in the DFTB+ manual.
The calculation requires convergence in the dual density popula-
tions. This is a somewhat heavier convergence criterion than just
charge convergence, and thus, the computational time is moderately
affected.

2. DFTB+U and mean-field correlation corrections
For correlated materials such as NiO, a popular correction

choice in DFT is the LDA+U family of methods,35 which add a con-
tribution to the energy of the specified local orbitals obtained from
the Hubbard model. The rotationally invariant36 form of LDA+U

can be written in terms of several choices of local projections of
the density matrix.32 Likewise, the double-counting between the
Hubbard-model and the density functional mean-field functional
take several limiting cases.37 In DFTB+, the fully localized limit
of this functional was implemented early in the code’s history27

using the populations of Eq. (19). Originally applied for rare-earth
systems,38 DFTB+U gives excellent agreement with GGA+U.39 A
closely related correction, pseudo-SIC,40 where the local part of the
self-interaction is removed, modifying only the occupied orbitals,
is also available. These approximations lower the energies of occu-
pied atomic orbitals within the specified atomic shells with the aim
of removing self-interaction or more accurately representing self-
energy. However, as with its use in DFT, this approximation suf-
fers from three main drawbacks. First, the form of the correction
depends on the choice of double counting removal.41 The corre-
lation is also mean-field in nature; hence, all equally filled orbitals
within a shell receive the same correction, and therefore, cases
not well described by a single determinant are not systematically
improved. Finally, the choice of the U (and J) values is not neces-
sarily obvious, with a number of different empirical, linear response,
and self-consistent choices possible. Specific to DFTB,42 theU values
may also require co-optimization with the repulsive parameters, in
particular, for systemswhere the electronic structure is geometrically
sensitive.

3. Long-range corrected hybrid functionals

a. Single determinant formulation. To correct longer range
errors, the electron–electron interactions can be split into short and
long range components based on a single parameter ω,

1
r
=
exp(−ωr)

r
+
(1 − exp(−ωr))

r
. (20)

The short range contribution is treated in a local or semi-local den-
sity functional approximation, while the long range term gives rise to
a Hartree–Fock-like exchange term in the hamiltonian.31 The nec-
essary adaptions for the DFTB method (termed LC-DFTB) were
introduced in Refs. 43 and 44. Note that quite generally for DFTB+,
the exchange-correlation functional is effectively chosen by loading
the appropriate Slater–Koster files created for the desired level of
theory. This also holds for LC-DFTB, where different values for the
range-separation parameter, ω, lead to different Slater–Koster files.
The database at www.dftb.org currently hosts the ob2 set45 for the
elements O, N, C, and H with ω = 0.3 a−10 .

LC-DFTB calculations can also be performed for spin-polarized
systems, enabling evaluation of triplet excited states and their cor-
responding relaxed geometries. It also paves the way for a rational
determination and tuning31 of the range-separation parameter ω,
which amounts to total energy evaluations for neutral and singly
ionized species. Note that the required atomic spin constants are
functional specific. The spin parameters for the ob2 Slater–Koster
set are available in the manual.

b. Spin restricted ensemble references. Instead of single
determinants, the spin-restricted ensemble-referenced Kohn–Sham
(REKS) method and its state-interaction state-averaged variant (SI-
SA-REKS or SSR)46–51 based on ensemble density functional theory
are now available in DFTB+. SSR can describe electronic states with
multi-reference character and can accurately calculate excitation
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energies between them (see Sec. II C 2). The SSR method is formu-
lated in the context of the LC-DFTBmethod (LC-DFTB/SSR)52 since
a long-range corrected functional is crucial to correctly describe the
electronic structure particularly for the excited states (see Ref. 52
for details of the formalism). Spin-polarization parameters are also
required to describe open-shell microstates. It was observed that
LC-DFTB/SSR sometimes gives different stability of the open-shell
singlet microstates from the conventional SSR results, depending
on excitation characters. In such a case, a simple scaling of atomic
spin constants is helpful to account for correct excitation ener-
gies (see Ref. 52 for the required scaling of spin constants). The
LC-DFTB/SSR method can be extended in the future by using larger
active spaces or with additional corrections such as the onsite or
DFTB3 terms.

4. Non-covalent interactions
In large systems, non-covalent interactions (van derWaals/vdW

forces) between molecules and between individual parts of struc-
tures become of key importance. The computational performance of
DFTB makes these systems accessible, but large errors are observed
for these weaker interactions. Being derived from (semi-)local
density-functional theory, DFTB naturally shares the shortcom-
ings of these approximations. This includes the lack of long-range
electron correlation that translates to underestimated or missing
London dispersion. An accurate account of vdW forces is essen-
tial in order to reliably describe a wide range of systems in biology,
chemistry, and materials science. DFTB has already been success-
fully combined with a range of different correction schemes53–58

to account for these weaker interactions, but here we outline some
newer methods available in DFTB+.

a. H5 correction for hydrogen bonds. The H5 correction59

addresses the issue of hydrogen bonding at the level of the electronic
structure. For DFTB2 and DFTB3, interaction energies of H-bonds
are severely underestimated for twomain reasons: most importantly,
the monopole approximation does not allow on-atom polarization;
even if this limitation is lifted, the use of minimal basis does not
allow polarization of hydrogen. In the H5 correction, the gamma
function (Sec. II A 3) is multiplied by an empirical term enhancing
the interactions at hydrogen bonding distances between hydrogen
atoms and electronegative elements (N, O, and S). TheH5 correction

is applied within the SCC cycle, thus including many-body effects
(the source of the important cooperativity inH-bond networks). The
H5 correction was developed for DFTB3 with the 3OB parameters
and a specific version of the DFT-D360,61 dispersion correction. Note
that this D3 correction also includes an additional term augment-
ing hydrogen–hydrogen repulsion at short range (necessary for an
accurate description of aliphatic hydrocarbons62,63).

b. DFT-D4 dispersion correction. The D4 model64,65 is now
available in DFTB+ as a dispersion correction. Like D3, pairwise
CAB
6 dispersion coefficients are obtained from a Casimir–Polder

integration of effective atomic polarizabilities αeffA/B(iu),

CAB
6 =

3
π ∫

∞

0
αeffA (iu)α

eff
B (iu)du. (21)

The influence of the chemical environment is captured by using a
range of reference surroundings, weighted by a coordination num-
ber. D4 improves on its predecessor by also including a charge scal-
ing based on atomic partial charges determined as either Mulliken64

or classical electronegativity equilibration.65 Especially for metal-
containing systems, the introduced charge dependence improves
thermochemical properties.66 Large improvements can also be
observed for solid-state polarizabilities of inorganic salts.67 For a full
discussion on the methodology behind D4, we refer the reader to
Ref. 65, and the implementation details are presented in Ref. 67. The
damping parameters for several Slater–Koster sets are provided in
the supplementary material.

To investigate the performance of the DFTB-D4 parameteri-
zations, we evaluate the association energies for the S30L bench-
mark set.68,69 DFTB-D4 is compared to DFTB3(3ob)-D3(BJ),54

GFN1-xTB,70 and GFN2-xTB;71 additionally, we include the dis-
persion corrected SCAN72 functional in comparison to DFT. The
deviation from the reference values is shown in Fig. 1. For the
mio parameterization, complexes 4, 15, and 16 were excluded due
to missing Slater–Koster parameters. The direct comparison of
DFTB3(3ob)-D3(BJ) with a MAD of 7.1 kcal/mol to the respective
D4 corrected method with a MAD of 6.5 kcal/mol shows a signifi-
cant improvement over its predecessor. The DFTB2(mio)-D4 gives
an improved description with aMAD of 4.5 kcal/mol, which is better
than GFN1-xTB with a MAD of 5.5 kcal/mol. The best performance
is reached with GFN2-xTB due to the anisotropic electrostatics

FIG. 1. Performance of different disper-
sion corrected tight binding methods on
the S30L benchmark set, and the values
for SCAN-D4 are taken from Ref. 65.
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and the density dependent D4 dispersion, giving a MAD of
3.6 kcal/mol.

c. Tkatchenko–Scheffler (TS) dispersion. The Tkatchenko–
Scheffler (TS)73 correction includes vdW interactions as London-
type atom-pairwise C6/R6-potentials with damping at short inter-
atomic separations, where the electronic structure method already
captures electron correlation. The suggested damping parameters
for the mio and 3ob parameter sets are listed in the supplemen-
tary material. In the TS approach, all vdW parameters including the
static atomic dipole polarizability, α, and C6-dispersion coefficients
depend on the local electronic structure and the chemical environ-
ment.73 High-accuracy in vacuo reference values (labeled by vac) are
rescaled via

x2 = (
αeffA
αvacA
)

2

=
CAA
6,eff

CAA
6,vac

. (22)

In the case of DFT, x is approximated based on the Hirshfeld
atomic volumes.74 When combined with DFTB, a fast yet accurate
alternative has been proposed,58 which does not require evaluat-
ing a real-space representation of the electron density. Instead, the
ratio between atom-in-molecule and in vacuo net atomic electron
populations [i.e., tr(ρ)A/ZA] is used to define x.

d. Many-body dispersion (MBD). Going beyond pairwise
interactions, many-body dispersion (MBD)75,76 accounts for many-
atom interactions in a dipolar approximation up to infinite order
in perturbation theory. This is achieved by describing the system
as a set of coupled polarizable dipoles75 with rescaled in vacuo ref-
erence polarizabilities [as in Eq. (22)]. At short-ranges, this model
switches, via a Fermi-like function with a range of β, to the local
atomic environment as accounted for by solving a Dyson-like self-
consistent screening equation.76 β represents ameasure for the range
of dynamic correlation captured by the underlying electronic struc-
ture method, so it depends on the density functional or DFTB
parameterization. The recommended β-values for the mio and 3ob
parameter sets are listed in the supplementary material.

Figure 2 and Ref. 58 demonstrate that DFTB and MBD
represent a promising framework to accurately study long-range
correlation forces and emergent behavior at larger length- and
timescales. Recently, the DFTB+MBD approach has allowed the
study of organic molecular crystals55 and solvated biomolecules,
revealing the complex implications of many-body vdW forces for
proteins and their interaction with aqueous environments.82 Fur-
ther improvements of TS and MBD, including a better descrip-
tion of charge transfer effects83 and variational self-consistency,84

may also be incorporated into DFTB in the future. Both methods
are formulated independently of the underlying electronic-structure
methods. As a result, DFTB+ outsources the evaluation of the
MBD and TS interactions to Libmbd,85 an external open-source
library.

C. Excited states and property calculations
1. Time dependent DFTB with Casida formalism

Electronic excited states are accessible in DFTB+ through time
dependent DFTB methods (see Ref. 86 for a review and detailed
discussion of this formalism). In a linear response treatment in
the frequency domain, excitation energies are obtained by solving
an eigenvalue problem known as Casida or RPA (random phase
approximation) equations. Compared to first-principles time depen-
dent DFT, the computational scaling can be reduced in DFTB
from N6 to N3. This is due to the Mulliken approximation for
two-electron integrals,87 which uses transition charges qpqσA ,

qpqσA =
1
4∑μ∈A

∑
ν
(cσμpc̃

σ
νq + cσμqc̃

σ
νp + cσνpc̃

σ
μq + cσνqc̃

σ
μp), c̃p = cp ⋅ S, (23)

for transitions from the Kohn–Sham orbital pσ to qσ.
For fixed geometry, DFTB+ provides a user defined number of

low lying excitation energies, oscillator strengths, and orbital partic-
ipations. In another mode of operation, the code computes excited
state charges, eigenvectors of the Casida equation, and energy gra-
dients for a specific state of interest, which can be combined with

FIG. 2. Mean absolute errors (MAEs)
and mean absolute relative errors
(MAREs) in inter-molecular interaction
energies of bare DFTB and with different
van der Waals models in comparison
to high-level reference data. S66 and
S66x8: small organic dimers and their
dissociation curves,77,78 SMC13: set of
13 supra-molecular complexes.79–81
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MD or geometry relaxation. For spin-unpolarized calculations, the
response matrix is block diagonal for the singlet and triplet chan-
nels to speed up the computation. DFTB+ allows for the computa-
tion of the excited state properties of systems with general fractional
occupation of the KS orbitals. This is useful, for example, for the
simulations of metals and semi-metals at a finite temperature. For a
detailed discussion on spin-polarization and fractional occupation
within time dependent (TD) DFTB, see Ref. 34. The onsite cor-
rection, discussed in Sec. II B 1, is also possible for excited state
calculations and was shown to lead to marked improvements.34

Due to their improved treatment of charge-transfer transi-
tions, range-separated functionals are also relevant in the con-
text of excited states. DFTB+ implements the time dependent
long range corrected (TD-LC) DFTB method, as described in
Ref. 88. Compared to the conventional TD-DFTB, the lower sym-
metry of the response matrix leads to a non-Hermitian eigen-
value problem, which we solve by the algorithm of Stratmann
and co-workers.89 Somewhat surprisingly, it turns out that TD-LC-
DFTB calculations are, in practice, not significantly slower than
TD-DFTB calculations (see Ref. 88 for a deeper discussion). Gra-
dients can also be calculated with TD-LC-DFTB, making it possible
to perform geometry optimizations and MD simulations in singlet
excited states.

Note that energetically high lying states and Rydberg excita-
tions are clearly outside of the scope of TD(-LC)-DFTB since their
description generally requires very diffuse basis sets. Apart from
this class, the photochemically more relevant set of low energy
valence excitations are predicted with similar accuracy to first prin-
ciples TD-DFT, as several benchmarks indicate.34,90,91 Asmentioned
above, charge-transfer excitations can now be also treated using
TD-LC-DFTB.88

2. SSR and excitations
Currently, the SSR method implemented in DFTB+ is for-

mulated for active spaces including two electrons in two fraction-
ally occupied orbitals [i.e., SSR(2,2)], which is suitable for a singlet
ground state and the lowest singlet excited state as well as a dou-
bly excited state.52 In addition, since the SSR method is based on
an ensemble representation and includes the electronic correlation,
it can give correct state-interactions among nearly degenerate elec-
tronic states. Thus, the SSR approach is useful to investigate conical
intersections. The LC-DFTB/SSR method with scaled spin constants
can accurately describe the ground and excited states including π/π∗
or n/π∗ character, undergoing bond cleavage/bond formation reac-
tions as well as the conical intersections where the conventional
(TD)DFTB fails to obtain the electronic properties. Analytic energy
gradients as well as non-adiabatic couplings are also available.

3. Time-independent excited states from ΔDFTB
The linear response approach to excited-state properties in

DFTB is efficient and powerful, but there exist circumstances where
a more direct route to the excited states is desirable. For example,
the excited-state properties obtained from linear response theory
require an additional order of derivatives relative to the ground state.
As noted in Sec. II C 1, linear-response TD-DFTB (like its par-
ent method TD-DFT)92 should invoke range-separation to achieve
a qualitatively correct picture of charge-transfer excitations and
related long-range phenomena.88

As an alternative to the time-dependent linear-response
approach, it is possible to variationally optimize certain electroni-
cally excited states directly. The ΔDFTB method, modeled on the
Δ-self-consistent-field (ΔSCF) approach to excited states inDFT,93,94
involves solving the SCC-DFTB equations subject to an orbital occu-
pation constraint that forces the adoption of a non-aufbau electronic
configuration consistent with the target excited state. This method
is implemented for the lowest-lying singlet excited state of closed-
shell molecules inDFTB+.95 The converged, non-aufbau SCC-DFTB
determinant is a spin-contaminated or “mixed” spin state, but the
excitation energy can be approximately spin-purified through the
Ziegler sum rule, which extracts the energy of a pure singlet from
the energies of the mixed state and the triplet ground state.

A significant advantage of the ΔDFTB approach is that excited-
state gradients and hessians are quite straightforward to compute,
both mathematically and in terms of computational cost, relative
to linear response approaches. Benchmarks of ΔDFTB excited-
state geometries and Stokes shifts95 demonstrate the suitability of
the method for simulating excited-state energetics and dynamics
of common organic chromophores along the S1 potential energy
surface.

4. Real-time propagation of electrons
and Ehrenfest dynamics

It is often desirable to study time dependent properties outside
the linear response regime, e.g., under strong external fields. The
numerical propagation of the electronic states enables the simula-
tion of such phenomena, and its coupling to the nuclear dynamics
in a semi-classical level can be included to the lowest order within
the Ehrenfest method. Purely electronic (frozen-nuclei) dynamics as
well as Ehrenfest dynamics are included in DFTB+. We solve the
equation of motion of the reduced density matrix ρ given by the
Liouville-von Neumann equation

ρ̇ = −i(S−1H[ρ]ρ − ρH[ρ]S−1) − (S−1Dρ + ρD†S−1), (24)

with D being the non-adiabatic coupling matrix Dμν = ṘB ⋅ ∇BSμν
and ṘB being the velocity of atom B. The on-site blocks can be cal-
culated taking the RB → 0 limit, although neglecting those does not
introduce significant changes to the dynamics.96

Unitary evolution of ρ with no change in its eigenvalues would
require D† = −D, which is normally not the case. Therefore, nuclear
dynamics can induce electronic transitions leading to thermaliza-
tion.97 Unitary evolution is recovered when all nuclear velocities
are equal (frozen-nuclei dynamics) and the second term in Eq. (24)
vanishes.

The force in the Ehrenfest-dynamics can be expressed as96,98

FA = −Tr{ρ(∇AH0 +∇AS∑
B
γABΔqB +∇ASS−1H +HS−1∇AS)}

− i Tr{ρ∇ASS−1D + h.c.} + i ∑
μν
{ρνμ⟨∇Aϕμ∣∇Bϕν⟩ ⋅ ṘB + h.c.}

− ΔqA∑
B
∇AγABΔqB −∇AErep − ΔqAE(t), (25)

where E(t) is the external electric field. In the present implemen-
tation, the velocity dependent terms have been neglected, and they
would vanish for a complete basis96 and are necessary for momen-
tum, but not for energy conservation.98 When the system is driven
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externally by an electric field, a dipole coupling term is added in the
time-dependent hamiltonian in Eq. (24).

Some applications that have been enabled by the speedup
over time-dependent DFT are the simulation of the plasmon-driven
breathing-mode excitation in silver nanoparticles of 1–2 nm in
diameter99 and the simulation of transient absorption pump–probe
spectra in molecules.100,101

Whenever a time propagation approach is used for the cal-
culation of absorption spectra in the linear regime, this method is
equivalent to calculations using the Casida formalism and shares
its strengths and limitations. Specific pitfalls of the time depen-
dent approach come into play whenever simulating the response
to intense external fields. In these cases, the poor description of
highly lying excited states due to the use of a minimal basis set
would likely be inaccurate if these states are populated during the
dynamics.

5. pp-RPA
An approximate particle–particle RPA scheme, the so-called

pp-DFTB,88 is now implemented in DFTB+. Particle–particle RPA,
based on the pairing matrix fluctuation formalism, has been shown
to be an efficient approach for the accurate description of double
and charge-transfer (CT) excitations involving the highest occupied
molecular orbital (HOMO) (see Ref. 102 for details). In Ref. 88, we
compare against TD-LC-DFTB for CT excitation energies of donor–
acceptor complexes. TD-LC-DFTB has the advantage that transi-
tions do not necessarily have to involve the HOMO of the system.
Alternatively, pp-DFTB does not require parameter tuning and is
efficient for the lowest lying excitations.

Although one of the strengths of the original pp-RPA formu-
lation lies on the accurate description of Rydberg excitations, our
approximate formalism based on DFTB fails to describe these kinds
of transitions, as explained in Sec. II C 1.

6. Coupled perturbed responses
DFTB+ supports several types of response calculations for

second-order derivatives. The general form of the response evalu-
ation is via standard perturbation theory,

Pij = ⟨ci∣H(1)ij − ϵjS
(1)
ij ∣cj⟩, (26)

ϵ(1)i = Pijδij, (27)

Uij = Pij/(ϵj − ϵi), (28)

c(1)i =∑
j
Uijc(0)j , (29)

ρ(1) =∑
i
n(1)i ∣c

(0)
⟩⟨c(0)∣ +∑

i
n(0)i (∣c

(1)
⟩⟨c(0)∣ + c.c. ), (30)

where the sums for the states that U mixes together may be over
all states or only the virtual space (parallel gauge) depending on
application. U is anti-symmetric (anti-Hermitian) or has no sym-
metry depending on whether the derivative of the overlap matrix is
non-zero.

In the case of systems with degenerate levels, a unitary trans-
formation, Z, that diagonalizes the block of P associated with that

manifold can be applied to the states; note that this sub-block is
always symmetric (Hermitian), leading to orthogonality between
states in the perturbation operation,

P̃ij = zikPklz
†
li , (31)

c̃i = cjzji. (32)

For fractionally occupied levels, the derivatives of the occupa-
tions for q = 0 perturbations (where the change in the Fermi energy
should be included) are then evaluated.103

Time dependent perturbations at an energy of h̵ω can be
written as

U±ij = Pij/(ϵj − ϵi ± h̵ω + iη), (33)

c(1)±i =∑
j
U±ij c

(0)
j , (34)

ρ(1) = ∑
i
n(1)i ∣c

(0)
⟩⟨c(0)∣ +∑

i
n(1)i ∣c

(0)
⟩⟨c(0)∣

+ ∑
±

∑
i
n(0)i (∣c

(1)±
⟩⟨c(0)⟩ + c.c. ). (35)

Here, the small constant η prevents divergence exactly at excitation
poles.

Derivatives with respect to external electric fields and potentials
are included (giving polarizabilities and dipole excitation energies),
with respect to atom positions (at q = 0, providing Born charges
and electronic derivatives for the hessian) and with respect to k
in periodic systems (effective masses and also the Berry connec-
tion via ⟨u∣∂u/∂k⟩). In the longer term, perturbation with respect to
magnetic fields, boundary conditions (elastic tensors), and alterna-
tive approaches (Sternheimer equations for q ≠ 0, and also lower
computationally scaling density matrix perturbation theory) are
planned.

D. Non-equilibrium Green’s function based
electron transport

Electron transport in the steady-state regime is described
in DFTB+ within a non-equilibrium Green’s function (NEGF)
method,104,105 as implemented in the code-independent libNEGF106

library. The density matrix is evaluated in terms of the electron–
electron correlation matrix G<,105

ρ =
1
2πi ∫

+∞

−∞
G<(E)dE. (36)

Open boundary conditions are included in terms of electron baths
with an arbitrary spectrum and chemical potential, allowing for a
seamless description of charge injection from electrodes with an
applied bias. The density matrix is then used to evaluate a real-space
electron density distribution, which is coupled self-consistently with
a Poisson solver. We perform a full band integration of Eq. (36),
utilizing a complex contour integral to reduce the number of inte-
gration points.104 This allows for an implicit description of dielectric
properties, which is crucial for an accurate modeling of ultra-scaled
electron devices.107,108 After self-consistency is achieved, the total
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current flowing in the system is calculated with the Landauer/Caroli
formula for the non-interacting case or with theMeir–Wingreen for-
mula for the interacting case.105 A detailed description of the numer-
ical algorithms and self-consistent coupling is presented in Ref. 109.
Here, we summarize the main features that might differentiate
DFTB+ from other nano-device simulation packages: (i) support for
N ⩾ 1 electrodes (enabling structures from surfaces and semi-infinite
wires to multiple terminal geometries), (ii) O(L) memory and time
scaling (where L is the system length) via a block-iterative algorithm,
(iii) a real space Poisson solver with support for gates and dielectric
regions, and (iv) evaluation of local currents. Being a parameterized
tight bindingmethod, its usage is bounded by the availability of good
parameters for the system under investigation.

Carbon-based materials and molecular junctions have been a
typical use-case since the first integration of DFTB and NEGF.110–112

In Fig. 3, we show a non-SCC calculation example of transmission
in linear response for a multi-terminal device. The simulated system
is a cross-junction between two (10,10) Carbon nanotubes (CNTs).
One CNT is tilted by 60○ with respect to the second, and the trans-
mission is calculated by displacing one CNT along the axis of the
other. The transmission follows, as expected, a periodic pattern in
accordance with the lattice repeat of 0.25 nm along the axis of the
CNT.

Currently, we are working on extending transport functionality
in DFTB+ with electron–phonon coupling,113–116 electron–photon
coupling, spin polarized transport, and phonon transport.117–120

Overall, DFTB-NEGF shares many similarities with DFT based
implementations, and it also inherits some shortcomings the less
experienced users should be aware of. For example, the open bound-
ary treatment demands that external and non-equilibrium potentials
are screened at the boundaries.105 Therefore, the simulated system
should be large enough compared to the screening length. This con-
dition is easily achieved with bulk metallic electrodes, but it can be
difficult with low dimensional systems that exhibit poor screening.

When this condition is not fulfilled, unphysical discontinuities in the
potential may be obtained. In addition, compared to band structure
calculations, NEGF tends to converge with more difficulty.121 Aside
from these common challenges, it is important that for DFTB-NEGF
calculations, any set of parameters should be evaluated by verifying
at the least band structure properties in the energy range of interest.
DFTB parameters fitted to reproduce total energies and forces might
be excellent in those applications but lack the necessary accuracy in
the band structure. Depending on the degree of accuracy required,
an ad hoc fitting for transport calculations could also be necessary,
for example, in the case of silicon.122

E. Extended Lagrangian Born–Oppenheimer dynamics
The Extended Lagrangian Born–Oppenheimer molecular

dynamics (XLBOMD) framework allows123,124 molecular dynam-
ics on the Born–Oppenheimer surface with only one hamiltonian
diagonalization per time step without the need for self-consistency
cycles. The basic idea is based on a backward error analysis, i.e.,
instead of calculating approximate forces through an expensive
non-linear iterative optimization procedure for an underlying exact
potential energy surface, XL-BOMD calculates exact forces for an
approximate “shadow” potential energy surface, U(R, n). This is
approximated from a constrained minimization of a linearized
Kohn–Sham energy functional.124,125 The functional is linearized
around an approximate ground state density, n. This density is
included as a dynamical field variable driven by an extended har-
monic oscillator centered on an approximate ground state, q[n],
which is given by the minimization of the linearized Kohn–Sham
functional. The harmonic well is defined in terms of a metric tensor,
T = KTK, where the kernel K is assumed to be the inverse Jacobian
of the residual function, q[n] − n.124 The equations of motion are
given by

FIG. 3. Transmission across two (10,10)
CNTs as a function of the displacement
of the top CNT along the axis of the bot-
tom CNT. The two curves represent the
transmission resolved between electrode
1 of the bottom CNT, and, respectively,
electrodes 2 and 3 of the top CNT (as
labeled in the inset).
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MIR̈I = −
∂U(R,n)

∂RI
∣
n

and n̈ = −ω2K(q[n] − n). (37)

Here,MI are the atomic masses, RI are the nuclear coordinates, ω is
the frequency of the harmonic oscillator, q[n] are the net Mulliken
charge vectors (from an optimized linearized energy expression),
and n is the extended dynamical variable that is set to the optimized
ground state net Mulliken charge vector in the initial time step. The
details of the DFTB + implementation are given in Ref. 126.

We currently approximate the kernel by a scaled identity
matrix,

K = −cI, c ∈ [0, 1]. (38)

For many problems, this is a sufficiently accurate approximation.
However, for the most challenging problems including simulations
of reactive chemical systems or metals, the scaled delta function is
not a sufficiently stable approximation. Improved approximations
have been developed124 and will be implemented in the DFTB+
program in the near future.

F. Objective geometries
Objective structures127 (OSs) describe geometries consisting of

a set of identical cells, where the corresponding atoms in differ-
ent cells can be mapped onto each other by orthogonal transfor-
mation(s). Both finite and infinite OSs are possible. Currently, we
describe structures127–129 possessing Cn rotational symmetry and a
Cm ⊗ T screw axis, where n ∈ N∗ andm ∈ R+,

Xi,ζ,ξ = (Cn)
ξ
(Cm)

ζXi + Tζ , i ∈ N, (39)

with N atoms in the reference objective cell ({Xi}) and {ζ, ξ} ∈ N,
where −∞ < ζ <∞ and 0 < ξ < n. Exploiting the objective bound-
ary conditions (OBCs) can introduce substantial computational sav-
ings, for example, irrational values of m lead to structures with
a small OS cell, but an infinitely long one dimensional periodic
boundary condition (PBC), i.e., intractable purely as a T opera-
tion. OBCs generalize symmetry-adapted Bloch sums for orbitals.
As with molecular and periodic structures,8 most expressions in
DFTB+ can be performed in real space via the boundary-condition
agnostic and sparse representation ofmatrices in real space, the solu-
tion of the hamiltonian only requires dense matrices and k-points.
For the long-range Coulombic and dispersion interactions in DFTB,
we also require lattice sums that are generalized to these boundary
conditions.130

Further examples can be found in Refs. 131–133, but here we
demonstrate the bending of a BN bi-layer. Figure 4 shows a double-
walled tubular OS with a curvature of 1/R (from the tube radius)
that represents the bent bi-layer. Bending along the a (b) direction
of the sheet is an “armchair” (“zig-zag”) tube with a Cn proper axis,
described as an eight atom objective cell in which we select T = a
(T = b), with no tube twist. The bi-layer bends as a plate, with the
outer wall stretching and the inner wall compressing along their cir-
cumferential directions; its energy change is interpreted as bending
strain (Ebend). It is important to note that the corresponding curva-
ture is not an imposed constraint, but a result of the calculation: R
is the average tube radius. Figure 4(b) demonstrates linearity with

FIG. 4. (a) OS of a BN bi-layer tube with a B4N4 unit (red and blue atoms). Angu-
lar, but not translational, objective images are shown in gray. (b) Bending energy
(circles) vs curvature with a linear fit.

bending, and fitting to Ebend = (1/2)D(|a||b|)(1/R)2 gives a bi-layer
bending constant of D = 120 eV.

A wider range of OSs will be made available in later DFTB+
releases, along with adapted electrostatic evaluation for these struc-
tures.

G. Extended tight binding hamiltonian
The extended tight binding (xTB) methods were primarily

designed for the fast calculation of structures and non-covalent
interaction energies for finite systems with a few thousand atoms.
The main parameterizations, GFNn-xTB, target molecular geome-
tries, frequencies, and non-covalent interactions follow mostly a
global and element-specific parameter only strategy. The historically
first parameterization, GFN1-xTB, covers all elements up to Z = 86
and is now supported in DFTB+. Its successor, GFN2-xTB,71 will
also be made available in the future.

We briefly outline the xTB methods; for a more detailed dis-
cussion and comparison to other methods, we refer to Refs. 70
and 71. The xTB core hamiltonian is constructed in a partially
polarized STO-nG basis set with diagonal terms made flexible by
adding a dependence on the local chemical environment accord-
ing to a coordination number (CN), similar to that used in
DFT-D3,60

Hλλ = H
l
A −H

l
CNACNA. (40)

The off-diagonal terms are approximated as an average of the diag-
onal terms proportional to the overlap between the corresponding
basis functions.

Both GFN1-xTB and GFN2-xTB include density fluctuation
up to third order diagonal terms, while the distance dependence of
the Coulomb interaction within the isotropic second order term is
described by a generalized form of the Mataga–Nishimoto–Ohno–
Klopman134–136 expression. In GFN2-xTB, the expansion of the
second order density fluctuations goes beyond the usual isotropic
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energy terms and includes interactions up to R−3, i.e., charge–dipole,
dipole–dipole, and charge–quadrupole interactions, which signif-
icantly improves the description of inter-molecular interactions,
such as halogen bonds and hydrogen bonds, without the need to
include force-field-like corrections as in DFTB or GFN1-xTB. It is
planned to implement full multipole electrostatics with Ewald sum-
mation in DFTB+ to enable GFN2-xTB and other generalized DFTB
models.137

GFN1-xTB and GFN2-xTB have been extensively tested for
their target properties,71 and further studies regarding structures
for lanthanoid complexes138 and transition metal complexes66 have
shown xTB methods to be robust for all its parameterized elements.
Errors in these methods are very systematic, which can be used to
devise correction schemes for off-target properties such as reaction
enthalpies.139

H. DFTB parameterization
1. Parameterization workflow

a. Electronic parameters. The electronic parameterization for
DFTB involves two principal steps. First, the compressed atomic
densities and the atomic basis functions have to be determined (a
one-center problem), followed by the calculation of the hamiltonian
and overlap elements at various distances (a two-center problem).
The compressed densities and wave-functions come from solving
a Kohn–Sham-problem for a single atom with an additional con-
finement potential (usually a power function), as shown in Eq. (4).
One may use different compression radii (and make separate cal-
culations) to obtain the compressed density and the compressed
atomic wave-functions for a given atom. The atomic calculations
are currently carried out with a code implementing the Hartree–
Fock theory based atomic problem140,141 extended with the possi-
bility of including DFT exchange-correlation potentials via the libxc
library142 and scalar relativistic effects via the zero-order relativis-
tic approximation (ZORA).143 The resulting densities and atomic
wave-functions are stored on a grid. The two-center integration
tool reads those grid-based quantities and calculates the hamilto-
nian and overlap two-center integrals for various distances using the
Becke-method.144

b. Repulsive parameters. Once the electronic parameters for
certain species have been determined, the first three terms of Eq. (9)
can be calculated for any systems composed of those species. The
missing fourth term, the repulsive energy, is composed of pair-
wise contributions, Vrep

AB , between all possible atomic pairs of A and
B in the system [see Eq. (6)]. During the parameterization pro-
cess, one aims to determine repulsive potentials between the atomic
species as a function of the distance between the atoms RAB so that
Vrep
AB = fsp(A),sp(B)(RAB), where sp(X) refers to the species of atom

X. In contrast to the electronic parameters, which are determined
by species-specific parameters only, the repulsive functions must be
defined for each combination of species pairs separately. They are
usually determined by minimizing the difference between the refer-
ence (usually ab initio) total energies and the DFTB total energies
for a given set of atomic geometries. If one uses only one (or a
few simple) reference system(s), the optimal repulsive function can
be determined manually, while for more complex scenarios, usually
semi-automatic approaches15,21,145–147 are used.

2. Outlook
In recent years, machine learning has been utilized with

DFTB+, usually to enhance the generation and description of the
repulsive potentials148–152 or try to improve on electronic param-
eters.151,153 Related Δ-machine learning154 methodologies based on
neural network corrections for DFTB energies and forces have been
also reported recently.155,156 We are currently in the process of devel-
oping a new unified machine-learning framework, which for a target
system allows optimal adaption of both the electronic and the repul-
sive contributions. Given the predicted DFTBmodel, one would still
have to solve it in order to obtain the system properties. On the other
hand, changing external conditions (temperature, electric field, and
applied bias) would not require additional training in this approach,
and long range effects (e.g., metallic states) could also be described
easily.

III. TECHNICAL ASPECTS OF THE DFTB+ PACKAGE
A. Parallel scaling

In large-scale simulations, the solution of the DFTB hamilto-
nian to obtain the density matrix eventually becomes prohibitively
expensive, scaling cubically with the size of the system being simu-
lated. The diagonalization infrastructure in DFTB+ has undergone
a major upgrade, including distributed parallelism and GPU accel-
erated solutions to address this cost. If instead the density matrix is
directly obtained from the hamiltonian, circumventing diagonaliza-
tion, then linear or quadratic scaling can now be obtained, depend-
ing on the chosen method. DFTB+ will continue to benefit from
developments in these advanced solvers as we move into the era of
exascale computing.

1. The ELSI interface and supported solvers
ELSI157 features a unified software interface that simplifies the

use of various high-performance eigensolvers (ELPA158 EigenExa,159

SLEPc,160 and MAGMA161) and density matrix solvers (libOMM,162

PEXSI,163 and NTPoly164). We convert the sparse DFTB+ H and S
structures8 into either standard 2D block-cyclic distributed dense
matrices or sparse 1D block distributed matrices compatible with
the ELSI interface. All k-points and spin channels are then solved in
parallel.

The ELSI-supported solvers, when applied in appropriate cases,
can lead to a substantial speedup over the default distributed par-
allel diagonalization method in DFTB+, i.e., eigensolvers in the
ScaLAPACK library.165–167 Figure 5 demonstrates two examples:
non-self-consistent-charge, spin-non-polarized, Γ-point calcula-
tions for a C64000 nanotube (CNT) and a Si6750 supercell, with 25 600
and 27 000 basis functions, respectively. Figure 5(c) shows the time
to build the density matrix for the CNTmodel with three solvers, the
pdsyevr eigensolver in theMKL implementation of ScaLAPACK, the
ELPA2 eigensolver, and the PEXSI density matrix solver. Here, both
theMKL’s version of pdsyevr eigensolver and the ELPA2 eigensolver
adopt a two-stage tri-diagonalization algorithm.158,168,169 In terms of
performance, ELPA2 and MKL pdsyevr are similar, while both are
outperformed by the PEXSI solver by more than an order of magni-
tude. The PEXSI163 method directly constructs the density matrix
from the hamiltonian and overlap matrices with a computational
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FIG. 5. Atomic structures of (a) the carbon nanotube (CNT) model (6400 atoms)
and (b) the silicon supercell model (6750 atoms). The length of the actual CNT
model is 16 times that of the structure shown in (a). (c) and (d) show the time to
compute the density matrix for models (a) and (b), respectively. Calculations are
performed on the NewRiver computer. MKL pdsyevr and ELPA2 first compute all
the eigenvalues and eigenvectors of the eigensystem of H and S and then build
the density matrix. PEXSI and NTPoly directly construct the density matrix from H
and S.

complexity ofO(N(d+1)/2) for d = 1 . . . 3D systems. This reduced scal-
ing property stems from sparse linear algebra, not the existence of
an energy gap. Therefore, for any low-dimensional system, regard-
less of the electronic structure, PEXSI can be used as a powerful
alternative to diagonalization. A similar comparison of solver per-
formance for the silicon supercell model is shown in Fig. 5(d), where
the NTPoly density matrix solver shows greater performance than
the MKL pdsyevr and ELPA2 eigensolvers. Around its massively
parallel sparse matrix multiplication routine, NTPoly implements
various linear scaling density matrix purification methods, includ-
ing the 2nd order trace-resetting purificationmethod (TRS2)170 used
here. While PEXSI is not particularly suited for 3D systems, NTPoly
offers an alternative as long as the system has a non-trivial energy
gap.

B. Order-N scaling with the SP2 solver
The SP2 (second-order recursive spectral projection expan-

sion),170 which is valid at zero electronic temperature when
1/kBT→∞, recursively expands a Heaviside step function to project
the (occupied) density matrix,

ρ = lim
n→∞

Fn(Fn−1(. . .F0(H⊥) . . .)), (41)

where H� is the hamiltonian transformed into an orthogonalized
basis, given by the congruence transformation, H� = ZTHZ. Each
iteration of the SP2 Fermi-operator expansion consists of a gen-
eralized matrix–matrix multiplication that can be performed using
thresholded sparse matrix algebra. In this way, the computational
complexity in each iteration can be reduced to O(N) for sufficiently
large sparse matrices. Note that we cannot expect linear scaling com-
plexity for metals, since the inter-atomic elements of the density
matrix decay algebraically instead of exponentially.171 The spectral
projection functions in the SP2 expansion can be chosen to correct
Tr(ρ) such that the step is formed automatically around the chemi-
cal potential separating the occupied from the unoccupied states.170

Obtaining the congruence matrix, Z, introduces a potential O(N3)
bottleneck. To avoid this, the sparsity of S can be exploited and the
Z matrix can be obtained recursively with linear scaling complexity
applying the “ZSP method” developed in Refs. 172 and 173.

Several versions of the SP2 algorithm can be found in
the PROGRESS library,174 which uses the Basic Matrix Library
(BML)175,176 for the thresholded sparse matrix–matrix operations.
The matrix data structure is based on the ELLPACK-R sparse
matrix format, which allows efficient shared memory parallelism
on a single node.177 The DFTB+ code was modified to use the
LANL PROGRESS library and, in particular, the SP2 and ZSP algo-
rithms. In combination with XL-BOMD, this allows efficient energy-
conserving, molecular dynamics simulations, where the compu-
tational cost scales only linearly with the system size. Figure 6
shows the performance of the SP2 algorithm compared to regular
diagonalization.

C. GPU computing
Graphics processing unit (GPU) acceleration is implemented

in DFTB+. Given the nature of the underlying theory, the time-
limiting step in routine calculations corresponds to the diagonaliza-
tion of the hamiltonian matrix, taking in the order of 90%–95% of

FIG. 6. CPU time for the density matrix construction for different varying sizes of
water box systems. Regular diagonalization (black curve) was compared to the
SP2 method (red curve). A numerical threshold of 10−5 was used in the sparse
matrix–matrix multiplications of the SP2 algorithm.

J. Chem. Phys. 152, 124101 (2020); doi: 10.1063/1.5143190 152, 124101-13

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 7. Wall clock running times for total energy calculations of water clusters (with
6 basis functions/water molecule). The black curve shows timings obtained using
the LAPACK compatible ESSL eigensolver on the CPU, and the red/green curves
show timings obtained using the MAGMA and the ESSL libraries without/with
ESSL-CUDA off-loading. Timings have been recorded on the Summit machine
using 42 threads for 42 physical cores.

the total running time. The hybrid CPU–GPU implementation in
DFTB+ replaces the LAPACK-based eigensolver with a GPU eigen-
solver based on the divide-and-conquer algorithm as implemented
in MAGMA.178

Benchmarking of the code shows that at least 5000 basis func-
tions are necessary to exploit the power of the GPUs and to produce
an observable speedup with respect to the CPU-only code. For sys-
tems spanning a vector space comprised of 70 000 basis functions,
speedups of 17× have been observed in a system with 6 NVIDIA®

Tesla® V100 with respect to the multi-threading CPU-only imple-
mentation (see Fig. 7).

IV. INTERFACING DFTB+ WITH OTHER SOFTWARE
PACKAGES

DFTB+ can be currently interfaced with other software pack-
ages using three different ways of communications: file communi-
cation, socket based, or direct connection via the DFTB + API as
a library. The first one is very easy to implement but comes with
an overhead for the file I/O, while the latter two enable a more
efficient coupling at the price of somewhat higher complexity in
implementation.

A. File based communication
When using file based communication, the external driver cre-

ates necessary input files and starts an individual DFTB+ program
for each of the inputs. After DFTB+ has finished, the driver analyses
the created output files and extracts the necessary information from
those. DFTB+ had been interfaced using file based communication
to, among others, the phonopy179 code for finite difference harmonic
and anharmonic phonon calculations and the Atomic Simulation

Environment (ASE) package180 (a set of tools and Python mod-
ules for setting up, manipulating, running, visualizing, and analyzing
atomistic simulations).

B. Socket interface
The i-PI181 interface for communication with external driving

codes is supported by DFTB+. DFTB+ can then be driven directly
instead of using file I/O. The initial input to DFTB+ specifies the
boundary conditions, type of calculation, and chemical information
for atoms, and the code then waits to be externally contacted. This
kind of communication with DFTB+ can be used by, among others,
the i-PI universal force engine package181 and ASE.180

C. DFTB+ library, QM/MM simulations
1. Gromacs integration

DFTB quantum-chemical models may be utilized as a
QM engine in hybrid quantum-mechanical/molecular mechanical
(QM/MM) approaches. This allows, for example, efficient simula-
tions of chemical processes taking place in bio-molecular complexes.
The DFTB+ library interface has been connected to the Gromacs182

MM-simulation software package. (The Gromacs part of the inte-
gration is contained in a fork of the Gromacs main branch.183) At
the start of the simulation, the DFTB + input file is read in, and a
DFTB calculation environment is created, containing all of the nec-
essary information (parameters), but no atomic coordinates yet. In
every step ofMD simulation or energy minimization, the calculation
of forces starts with a call to the DFTB+ API, passing the coordinates
of QM atoms and the values of electrostatic potentials induced by the
MM atoms at the positions of the QM atoms. DFTB+ then returns
QM forces and QM charges back to Gromacs, where the QM/MM
forces are calculated in the QM/MM routines. Gromacs then con-
tinues by calculating the MM forces, integration of equations of
motion, etc.

Sometimes the electrostatic interactions cannot be represented
as an external potential but also depend on the actual values of the
QM-charges (i.e., polarizable surroundings). In those cases, a call-
back function can be passed to DFTB+, which is then invoked at
every SCC iteration to update the potential by the driver program
whenever the QM charges change. In the DFTB+/Gromacs integra-
tion, we use this technique to calculate the QM–QM electrostatic
interactions in periodic systems with the highly efficient particle
mesh Ewald method184 implemented in Gromacs.

2. DL_POLY_4 integration with MPI support
DL_POLY_4 is a general-purpose package for classical molec-

ular dynamics (MD) simulations.185 In conjunction with the recent
extension of DFTB+’s API, DL_POLY_4.10 supports the use of
DFTB+ for self-consistent force calculations in place of empirical
force fields for Born–Oppenheimer molecular dynamics.

The interface fully supports passing MPI communicators
between the programs, allowing users to run simulations in par-
allel, across multiple processes. The MPI parallelization schemes
of DL_POLY_4 and DFTB+ differ considerably. DL_POLY_4
utilizes domain decomposition to spatially distribute the atoms
that comprise the system across multiple processes, whereas
DFTB+ distributes the hamiltonian matrix elements using BLACS
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decomposition. This does not impose any serious restrictions as
DL_POLY_4 and DFTB+ run sequentially, with DFTB+ being called
once per MD time step.

The DL_POLY_4–DFTB+ interface works by gathering the
atoms from each DL_POLY_4 process such that all processes have
a complete copy of all the atoms. Coordinates, species types, and the
atomic ordering are then passed to DFTB+. The calculated forces
are returned to DL_POLY_4, which redistributes them according to
its domain decomposition, and the atomic positions are propagated
one time step.

Spatial decomposition means that atoms can propagate
between processes. Because atoms are gathered sequentially accord-
ing to their process id (or rank), when atoms propagate between pro-
cesses, their ordering effectively changes. The DFTB+ API facilitates
this and is, therefore, able to support any molecular dynamics soft-
ware that implements domain decomposition parallelization; how-
ever, the total number of atoms (and atom types) must be conserved
during the simulation.

D. Meta-dynamics using PLUMED
Molecular dynamics is often plagued by high energy barriers

that trap the nuclear ensemble in one or several local minima. This
leads to inefficient or inadequate sampling of the ensemble and thus
inaccurate predictions of physicochemical properties.186–188 This
“timescale” problem is typical for rare-event systems or those in
which ergodicity of a particular state is impeded by the local topol-
ogy of the potential energy surface. A variety of methods have been
conceived to circumvent this, including umbrella sampling189 and
meta-dynamics.190

Umbrella sampling and meta-dynamics can now be performed
using DFTB+ via its interface to the PLUMED plugin.191,192 Using
PLUMED, MD trajectories generated in DFTB+ can be analyzed,
sampled, and biased in a variety of ways along user-defined col-
lective variables (CVs), enabling accelerated MD simulations and
determination of the free energy surface. A CV is a subspace of the
full potential energy surface that can be arbitrarily defined to sam-
ple atomic dynamics along dimensions/pathways of physicochemi-
cal interest. PLUMED also includes bias functions such as the upper
and lower wall biases, enabling a constraint of MD configurations
to specific areas on the potential energy surface. The utility of the
DFTB+/PLUMED interface has been demonstrated on several chal-
lenging systems, including malonaldehyde intra-molecular proton
transfer (Fig. 8), corannulene bowl inversion, and the diffusion of
epoxide groups on graphene.192

E. DFTB+ in Materials Studio
DFTB+ is included as a module in the commercial modeling

and simulation software package, BIOVIAMaterials Studio (MS).193

DFTB+ runs as an in-process energy server, supplying energies,
forces, and stresses to drive the MS in-house simulations tools.
Supported tasks include energy calculation, geometry optimiza-
tion, molecular dynamics, electron transport calculation, mechani-
cal properties, and parameterization. The module also supports cal-
culation and visualization of standard electronic properties, such as
band structure, density of states, orbitals, and so on. The DFTB+
module integrates closely with the data model and the Materials

FIG. 8. Intra-molecular proton transfer in malonaldehyde at 298 K. Contours show
the DFTB3-D3/3ob free energy surface of malonaldehyde obtained using well-
tempered meta-dynamics, with collective variables d(O1–H) and d(O2–H). Each
point is colored according to its sampling frequency during the meta-dynamics
simulation, yellow (blue) indicating high (low) sampling frequency. The DFTB3-
D/3ob free energy surface yields a proton transfer barrier of 13.1 ± 0.4 kJ mol−1.

Studio Visualizer, allowing the user to construct structures and start
calculations quickly, with fully automated creation of the DFTB+
input file. The DFTB+ module is also supported in the MS Mate-
rialsScript interface and the Materials Studio Collection for Pipeline
Pilot,194 allowing creation of more complicated workflows.195,196

The DFTB+ parameterization workflow in MS supports fitting
of both electronic parameters and repulsive pair potentials using
DFT calculations with the DMol3 module197,198 as a reference. The
DFTB+ module includes scripts for validation of parameters in
terms of band structure, bond length, bond angles, and so on, as well
as visualization for the hamiltonian, overlap matrix elements, and
the repulsive pair potentials. The parameterization tools allow exten-
sion of existing parameters or incremental development of a param-
eter set. Parameters developed using the DFTB+ module can, after
conversion, be used outside MS. Several default DFTB+ parameter
sets, generated using these parameterization tools, are also included.
In 2019, MS introduced a new parameter set that includes the Li,
C, H, N, O, P, and F elements and is aimed toward Li-ion battery
modeling.

F. Outlook
In order to enable flexible general communication with vari-

ous types of external components (external drivers, QM/MM, and
machine learning models), we are in the process of developing a
communication library,199 which allows for data exchange between
mixed language (e.g., Fortran and C) components via API-bindings
as well as between different processes via socket communications.
After engagement with other stakeholders, this will be released as a
set of BSD-licensed tools and a library.

V. SOFTWARE ENGINEERING IN DFTB+
This section presents a few aspects of our software develop-

ment, which may have some interest beyond the DFTB+ software
package.
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A. Modern Fortran wrappers for MPI and ScaLAPACK
functions

Modern scientific modeling packages must be able to run on
massive parallel architectures to utilize high performance comput-
ing, often using the Message Passing Interface (MPI) framework.
While the MPI offers a versatile parallelization framework, its appli-
cation interface was designed to support C and Fortran 77-like inter-
faces. This requires the programmer to explicitly pass arguments
to the MPI-routines, which should be automatically deduced by the
compiler for languages with higher abstraction levels (C++ or For-
tran 95 and newer versions). In order to eliminate developer need to
pass redundant information (and to reduce associated programming
bugs), we have developed modern Fortran wrappers around the
MPI-routines. These have been collected in the MPIFX-library,200

which is an independent software project outside of the DFTB+ soft-
ware suite, being licensed under the more permissive BSD-license. It
enables shorter MPI-calls by automatically deducing data types and
data sizes from the call signature. Additionally, several MPI parame-
ters have been made optional using their most commonly used value
as a default value. For example, in order to broadcast a real array
from themaster process to all other process, one would have tomake
the following MPI-call:

call mpi_bcast(array, size(array), MPI_FLOAT, 0,
comm, err)

while MPIFX-wrappers reduce it to a much shorter and less error-
prone line:

call mpifx_bcast(comm, array)

where comm is an MPIFX derived type containing the MPI-
communicator. The type (MPI_FLOAT) and number of broadcasted
items [size(array)] are automatically deduced. The process ini-
tiating the broadcasting has been assumed to be process 0 (master
process), as this is probably the most common use case but can
be customized when needed with an optional parameter. The error
argument is optional as well, if it is not passed (as in the example
above), the routine would stop the code in the case of any errors.

Likewise, the commonly used parallel linear algebra library
ScaLAPACK uses Fortran 77-type interfaces. The open source
SCALAPACKFX library201 offers higher level modern Fortran wrap-
pers around routines used by DFTB+.

B. Fortran meta-programming using Fypp
Although the latest Fortran standard (Fortran 2018) offers

many constructs to support modern programming paradigms, it
does not allow for generic template based programming. This
would avoid substantial code duplication and offer useful meta-
programming capabilities for Fortran programmers. We have devel-
oped the Python based pre-processor, Fypp,202 which offers a
workaround for the missing features. Fypp is used during the build
process to turn the meta-programming constructs into the stan-
dard Fortran code. The Fypp project is independent of the DFTB+
software package and is licensed under the BSD-license, being
also used by other scientific software packages, for example, by
the CP2K code203 and both the MPIFX and the SCALAPACKFX
libraries.

VI. SUMMARY
DFTB+ is an atomistic quantum mechanical simulation soft-

ware package allowing fast and efficient simulations of large sys-
tems for long timescales. It implements the DFTB- and the xTB-
methods and various extensions of those, such as range-separated
functionals, multiple methods of excited state calculations, and elec-
tron transport simulations. It can be used either as a standalone
application or as a library and has been already interfaced to sev-
eral other simulation packages. DFTB+ is a community devel-
oped open source project under the GNU Lesser General Pub-
lic License, which can be freely used, modified, and extended by
everybody.

SUPPLEMENTARY MATERIAL

See the supplementary material for the damping parameters for
the D4, the TS, and the MBD dispersion models.
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77J. Řezáč, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 3466 (2011).

J. Chem. Phys. 152, 124101 (2020); doi: 10.1063/1.5143190 152, 124101-17

© Author(s) 2020

https://scitation.org/journal/jcp
https://doi.org/10.1103/physrev.136.b864
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1002/(sici)1097-461x(1996)58:2<185::aid-qua7>3.0.co;2-u
https://doi.org/10.1103/physrevb.51.12947
https://doi.org/10.1103/physrevb.58.7260
https://doi.org/10.1098/rsta.2012.0483
https://github.com/dftbplus/dftbplus
https://doi.org/10.1021/jp070186p
https://doi.org/10.1021/jp071338j
https://doi.org/10.1021/jp074167r
https://doi.org/10.1021/ct100684s
https://doi.org/10.1021/ct300849w
https://doi.org/10.1103/physrev.94.1498
https://doi.org/10.1002/wcms.1094
https://doi.org/10.1021/jp902973m
https://doi.org/10.1002/(sici)1521-3951(200001)217:1<41::aid-pssb41>3.0.co;2-v
https://doi.org/10.1016/j.chemphys.2004.03.034
https://doi.org/10.1039/b105782k
https://doi.org/10.1021/jp068802p
https://doi.org/10.1021/jp068802p
https://doi.org/10.1557/opl.2011.525
https://doi.org/10.1021/jp404095x
https://doi.org/10.1002/jcc.24046
https://doi.org/10.1021/ct401002w
https://doi.org/10.1021/jp503372v
https://doi.org/10.1021/acs.chemrev.5b00584
https://doi.org/10.1063/1.4867077
https://doi.org/10.1021/jp070173b
https://doi.org/10.1103/physrevlett.49.1691
https://doi.org/10.1021/ct100412f
https://doi.org/10.1021/ct100412f
https://doi.org/10.1002/qua.23178
https://doi.org/10.1146/annurev.physchem.012809.103321
https://doi.org/10.1103/physrevb.73.045110
https://doi.org/10.1021/acs.jpca.5b01732
https://doi.org/10.1021/ct400123t
https://doi.org/10.1021/ct400123t
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1103/physrevb.57.1505
https://doi.org/10.1103/physrevb.67.153106
https://doi.org/10.1002/pssc.200778667
https://doi.org/10.1002/pssc.200778667
https://doi.org/10.1063/1.5085190
https://doi.org/10.1103/physrevb.67.125109
https://doi.org/10.1103/physrevb.79.035103
https://doi.org/10.1021/acs.jpcc.6b10557
https://doi.org/10.1002/pssb.201100694
https://doi.org/10.1063/1.4935095
https://doi.org/10.1021/acs.jctc.9b00108
https://doi.org/10.1021/jp8033837
https://doi.org/10.1002/wcms.1209
https://doi.org/10.1016/s0009-2614(99)00336-x
https://doi.org/10.1021/ct7000057
https://doi.org/10.1063/1.4994542
https://doi.org/10.1021/acs.jctc.9b00132
https://doi.org/10.1063/1.1329889
https://doi.org/10.1021/jz500755u
https://doi.org/10.1021/acs.jpclett.7b03234
https://doi.org/10.1021/acs.jpclett.7b03234
https://doi.org/10.1063/1.3152882
https://doi.org/10.1002/qua.24887
https://doi.org/10.1063/1.4947214
https://doi.org/10.1063/1.4947214
https://doi.org/10.1021/acs.jctc.7b00629
https://doi.org/10.1063/1.3382344
https://doi.org/10.1002/jcc.21759
https://doi.org/10.1021/ct200751e
https://doi.org/10.1016/j.ejmech.2014.10.043
https://doi.org/10.1016/j.ejmech.2014.10.043
https://doi.org/10.1063/1.4993215
https://doi.org/10.1063/1.5090222
https://doi.org/10.1021/acs.accounts.8b00505
https://doi.org/10.26434/chemrxiv.10299428
https://doi.org/10.1021/acs.jctc.5b00296
https://doi.org/10.1063/1.5012601
https://doi.org/10.1021/acs.jctc.7b00118
https://doi.org/10.1021/acs.jctc.8b01176
https://doi.org/10.1103/physrevlett.115.036402
https://doi.org/10.1103/physrevlett.102.073005
https://doi.org/10.1007/bf00549096
https://doi.org/10.1103/physrevlett.108.236402
https://doi.org/10.1063/1.4865104
https://doi.org/10.1063/1.4865104
https://doi.org/10.1021/ct200523a


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp
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