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Abstract— Over 22 million people worldwide are affected by
Parkinson’s disease, stroke, and Bell’s palsy (BP), which can
cause facial paralysis (FP). People with FP have trouble having
their expressions understood: both laypersons and clinicians
have difficulty understanding them and often misinterpret them,
which can result in poor social interactions and poor care
delivery. One way to address this problem is through better
education and training, of which computational tools may prove
invaluable. Thus, in this paper, we explore how to build systems
that can recognize and synthesize asymmetrical facial expres-
sions. We introduce a novel computational model of asymmetric
facial expressions for BP, which we can synthesize on either
virtual and robetic patient simulators. We explore this within
the context of clinical education, and built a patient simulator
with synthesized FP in order to help clinicians perceive facial
paralysis in patients. We conducted both computational and
human-focused evaluations of the model, including the feedback
from clinical experts. Our results suggest that our BP model is
realistic, and comparable to the expressions of people with BP.
Thus, this work has the potential to provide a practical training
tool for clinical learners to better understand the expressions of
people with BP. Our work can also help researchers in the facial
recognition community to explore new methods for asymmetric
facial expression analysis and synthesis.

I. INTRODUCTION

Every year, 22 million people experience stroke, Parkin-
son’s disease, Moebius syndrome, and Bell’s Palsy (BP) [1],
[22], [40], which can cause facial paralysis (FP). FP is the
inability to move one’s facial muscles on the affected side
of the face, leading to asymmetric facial expressions [6].
The quality of social interaction that people with asymmetric
facial expressions experience can be poor  due to others
who have difficulty understanding their emotions [9]. Studies
show observers perceive the emotions of a person with
FP differently from their actual emotional states [37]. For
example, people with severe FP are perceived as less happy
than people with mild FP [10]. For people with Parkinson’s
disease, observers may mistake expressions of happiness, as
signifying depression or deception [2], [38].

In clinical contexts, these misperceptions can lead to
poor care delivery. Healthcare providers frequently have
negatively biased impressions of patients with facial  nerve
paralysis [39], which may adversely affect the quality of care
they receive [35], [36]. If a patient and a healthcare provider
do not communicate effectively, there is a higher chance that
their treatment will be unsuccessful [2], [37]. Therefore, new
training tools which enable clinical learners to practice their
interaction with FP patients may result in improved care for
people with FP, and also improve how clinicians calibrate
their perception of asymmetric expressions.
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Virtual and robotic patient simulators are one of the
most commonly used training tools  in clinical education
[34]. They provide clinical learners with a low-risk, high-
fidelity learning environment to practice their procedural and
communication skills [29]. Robotic patient simulators (RPS),
in particular, can convey realistic, immersive training experi-
ences for learners. They are lifelike, patient-sized humanoid
robots that can simulate human physiological responses.

Research suggests that using these simulators may re-
duce preventable medical errors, which cause approximately
400,000 deaths per year in the US hospitals  alone [19],
[25]. However, current commercial simulators suffer from
a major design flaw: they completely lack facial expressions
(see Figure 1). Our team has created expressive virtual and
robot patient simulators, which show promise as an important
clinical education tool [32], [25], [28], [27], [33]. The devel-
opment of these simulators was based on the assumption that
human faces are structurally symmetric. However, due to the
large number of people affected by FP, it is also important
to explore the synthesis of asymmetric facial expressions in
these contexts. To our knowledge, FP patient simulators have
not been explored in this way. Employing simulators in this
way may help providers avoid forming biased impressions,
improve clinical communication, and, therefore, improve
care delivery for people with FP.

In this paper, we introduce the concept of using masked
synthesis on patient simulators in order to model asymmetric
facial expressions, situated within a clinical education con-
text. Masks are computational models derived from recog-
nized expressions of real people with FP. Masked synthesis
is a process of using pre-built masks based on the face of a
person with FP, and overlaying it on the stream of standard
performance driven synthesis to recreate the asymmetric
facial expressions [27]. The longitudinal goal of our research
is to build accurate models of people with asymmetric facial
expressions, and to help support clinical engagement with
people who have FP.

The contributions of this paper are twofold. First, we
present a novel algorithm to build accurate computational
models (masks) of people with BP that are constructible in
real time (See Section III) . Second, we applied the algorithm
to synthesize BP on virtual patients, and found that clinicians
perceive it to be realistic and comparable to humans with BP
(See Sections IV and V).

This work is important for the greater affective comput-
ing and patient simulation communities because it  allows
researchers to explore new methods for synthesizing facial
expressions. Moreover, by leveraging the BP patient simu-
lator approach presented in this paper, clinical learners may



Fig. 1.

have the potential to more accurately diagnose people with
BP, and to be better able to interact with them. We discuss
the implications of these findings in Section VI)

II. BACKGROUND

Recognizing and synthesizing facial expressions is desir-
able for a variety of different applications including: human
face and head modeling [11], [14], illofacial surgery [8], and
rendering robot faces [20]. While there is a significant body
of literature exploring symmetric expressions [14], [8], itis
also important to study asymmetric facial expressions.

Researchers have had success in identifying the salient
features of asymmetric and restricted facial expressions. For
example, Tickle-Degnen et al. [42] designed a study to
identify reliable emotional cues from expressive behavior in
women and men with Parkinson’s disease. Other researchers
proposed different quantitative analysis methods to measure
the facial asymmetry of facial images [5], [21], [30], [31].

While previous work has laid the foundation for exploring
asymmetry, it is critical to study synthesizing asymmetry,
especially in clinical education settings. People with asym-
metric facial expressions have limited facial expressivity,
which makes it difficult for others to form a reliable un-
derstanding of their emotions. Moreover, in clinical settings,
if a patient and provider cannot communicate effectively, it
can adversely affect rapport with the patient and their care
decisions [2], [37].

Building models to synthesize asymmetric facial expres-
sions on virtual or physical simulator faces may help to
improve the social and procedural skills of clinicians and
help promote the quality of care they give to patients
with BP. Many researchers have worked on both facially
expressive virtual simulators [11] and expressive physical
robots [32], [26], [25], [28], [27]. Still, there is a lack of work
done on developing patient simulators capable of expressing
asymmetric facial expressions.

One of the most commonly used modalities in clinical
simulation centers are virtual and robotic patient simulators.
Patient simulators help improve clinicians’ procedural and
communication skills and enable them to provide effective
treatment to patients [28]. These systems provide caregivers

Left: The simulation center setup where a team of clinical learners treat a non-expressive HPS,
control room. Center: a commonly used inexpressive mannequin head. Right: An example of an expressive RPS system our team built, synthesizing pain.

which is controlled by simulation operators in a

and clinical learners with a low-risk, high-fidelity, clinically-
similar learning environment to practice their skills [29].
Although using simulators may reduce preventable medical
errors [19], the absence of facial expressions on these simu-
lators may adversely affect patient outcomes [25], [23].

To address this issue, we have built both virtual and robotic
patient simulators able to express a range of pathologies,
including pain and stroke [32], [25]. We also introduced a
generalized automatic framework that can accurately map
facial expressions from a performer’s face to both simulated
and robotic faces in real-time [27], [28]. The method is based
on performance-driven synthesis, which maps motions from
video of an operator/educator onto the face of an embodiment
(e.g., virtual avatar or robot). In our current work, we build
on this to explore a new avenue: the recognition and synthesis
of asymmetric facial expressions.

III. METHODOLOGY

In our work, we are interested in a particular type of FP,
Bell’s Palsy (BP). We explore two main research questions in
this work. First, how can we computationally model the fa-
cial characteristics of BP and synthesize them on a simulator?
This is an important question because answering it would
enable the development simulators capable of expressing
asymmetric facial expressions. Second, how realistically does
our mask model convey signs of BP when synthesized on a
virtual patient? Addressing this question will  help inform
the potential clinical efficacy of such an approach using FP
simulators as clinical educational tools.

We developed a new masked synthesis method for asym-
metric facial expressions, and addressed the aforementioned
research questions by engaging in the following activities.
First, we acquired videos of people with BP and extracted
facial features using a CLM-based approach (See Section III-
A). Next, we built computational models (masks) represent-
ing the facial characteristics of BP. We then overlaid these
prebuilt masks onto a stream of facial expressions generated
by standard performance-driven synthesis (See Fig. 2). Next,
we transferred the generated asymmetric expressions to the
face of a virtual patient simulator(See Section III-B). Finally,
we ran an expert-based study to evaluate the realism of the



Source Video Facial Features
Camera captures the
operator's face in real time,
or the operator selects a
pre-recorded video.

Frame by frame,
a CLM-based face tracker
extracts facial feature points
of the operator's face.

Masked Feature Points Stimuli Video
The ROS module synthesizes
rhe masked feature points to
the control points on a virtual
or robot patient simulator in
real-time.

The operator selects a
pre-built mask of Bell's Palsy.
The system then applies the

scaling parameter of the mask
to the extracted facial points.

Fig. 2. The context for performing masked synthesis.

synthesized expressions in comparison to actual patients (See
Section IV).

A. BP video acquisition and facial feature extraction

We focused on one example pathology, BP which affects
the facial nerve, causing facial weakness and an inability to
control the affected side of the face. The facial weakness
usually involves eyes, mouth, and forehead (See Fig. 5).

To build computational models of the facial character-
istics of asymmetric expressions, the first step was to ac-
quire source videos from people with BP expressing a
wide range of  expressions. Therefore, we collected self-
recorded, publically-available videos from people with BP
on YouTube.

Many people who have experienced BP have recorded
videos of their experience from their diagnosis to their
recovery. In these videos, people convey a wide range of
expressions including raising their eyebrow, furrowing their
brow, smiling, and closing their affected eye to show how
BP affects these expressions and how the condition improves
over time. Figure 5 presents some example frames from a
source video downloaded from YouTube, and shows how BP
affects different facial movements.

We downloaded ten source videos ~ from YouTube that
present people with BP conveying four expressions (raising
eyebrow, furrowing brow, smiling, and closing the eye)
required for assessing BP. To ensure that these videos have
BP, we only downloaded videos in which either people
verbally state their BP diagnosis or the video contains a
textual tag indicating BP.

We processed all the source videos to include only ones of
high quality in our work (e.g, limited noise and occlusion).
Additionally, since the source videos had different lengths,
we pre-processed them by cutting them to the same length
and only including parts where people were conveying facial
expressions.

To extract facial features, we used a CLM-based face
tracker implemented by Baltrusitus et al. [3] to track 68 facial
points frame-by-frame from each of the source videos (see
Fig. 3). We then asked two human judges to watch all  the

This can be performed on either a virtual or robotic patient simulator.

source videos and label the ones that the face tracker can
accurately track. We only included the well-tracked videos
in our work.

B. Build computational models of Bell’s palsy

We built a model for BP inspired by the methods used
in the virtual animation literature. Particularly, we have
developed our model based on the work by Boker et al. [11],
who performed research on manipulating facial expressions
and head movements in real time during face to face con-
versation in video conferencing. Their experiment included
two conversants who were sitting in separate rooms, each
facing a camera. The researchers used Active Appearance
Models (AAMs) [12] to track the facial features of the first
conversant. They modified the tracked facial expressions of
the first conversant and used them to re-synthesize an avatar
with the modified expressions.

The avatar interacted with the second conversant in a video
conference. Second conversants were asked if they noticed
anything unusual during the conversation. None of the par-
ticipants noticed they were talking to a computer-generated
avatar and none of them guessed that the expressions were
manipulated.

To modify the expressions, Boker et al. [11] used an
AAM-based face tracker. In Active Appearance Models, the
shape of the face is defined by a number of landmarks and
their interconnectivity, which shapes a triangulated mesh.
In other words, shape S is defined by 2D coordinates of
1 facial landmarks: s =[x 1. Y. 9. &% - X7, 4] . These
facial landmarks are vertices of the triangulated mesh.

The training step of AAM models requires manually label-
ing facial landmarks in some frames and running Principal
Component Analysis (PCA) to find the shape model of a
face. After the training step, the shape model is defined as
below: .

)(7 ]

S=5pt
=1

PS5 (1)

Sp is the mean shape and the S vectors are the m vectors
that show the shape variation of  facial landmarks (mesh



Fig. 3. Comparing the calculated coordinates of feature points with the
actual coordinates of the points on the affected side of the face

vertices) from the mean. The coefficients © are the shape
parameters which define the contribution of each of the shape
vectors S in the shape S. Therefore, scaling the £ parameters
will exaggerate or attenuate the facial expressions.

X'
s=so+ SB 2)
=1

B is a scalar which will exaggerate the expressions if it
is bigger than one and will attenuate the expressions if it is
smaller than one. Boker et al. [11] used B values smaller
than one to reduce expressiveness  of a conversant. They
wanted to study if changing the expressiveness would affect
the behavior during a conversation.

We used a similar  approach to build a model  for BP.
However, in our work, we used a CLM-based face tracker
to track 68 facial points. Constrained Local Models (CLM)
[13] are similar to Appearance Local ~Models (AAM) [12]
except they do not require manual labeling, and therefore
are an improvement over AAMs. Similar to Boker et al.
[11], we scaled the CLM parameters by using equation 2.
However, instead of attenuating the parameters like Boker et
al. [11], we scaled them based on the scaling parameters that
we calculated for a pathology (BP) in the following section.

The CLM-based face tracker that we used in our work
tracks 68 facial points frame-by-frame (See Fig. 3). These
68 facial points are vertices of a triangulated mesh. To build
the model of a pathology (e.g. BP), we found the 68 scaling
parameters for the facial feature points for that pathology.
We did this in three steps which are explained below.

First, we selected a well-tracked source video that included
a wide range of facial expressions expressed by a person
with BP. From the video, we selected 20 frames in which
the asymmetry is most noticeable.

Second, using the CLM-based face tracker, we tracked 68
facial points in each of the 20 chosen frames. We preprocess
the feature points to remove the effect of translation, rotation,
and distance to the camera. Then, using the 2D coordinates
of the 34 facial features of the unaffected side of the face,
we calculated the 2D coordinates of ~ the other part of the
face, assuming that the person did not have asymmetric
facial expressions. To do so, we used the tip of  the nose

as a reference point. The tip of the nose stays static through
transitioning from one facial expression to the other.

In a person without FP, each facial feature of one side
of the face has the same distance to the tip of the nose as
its corresponding point on the other side of the face. For
example, the left eye corner and the right eye corner each
have the same distance to the tip of the nose. In a person with
asymmetric facial expressions, this is not true. Therefore, we
used the distance from the tip of the nose to calculate the
2D coordinates of 34 feature points on the affected side of
the face, assuming the person did not have FP.

Without loss of generality, assume that the left side of the
face is affected by FP. In each frame, we track 2D coordinates
of 68 facial features. As seen in Fig. 3, there are 29 feature
points on each side of  the face and 10 feature points on
the line symmetry of a face. Feature points (0, . .. , 28xre
the 29 points on the right  side of the face, feature points
(29, . . ., 38re the 10 feature points on the line of symmetry
of the face, and feature points (39, . . ., 673re the 29 feature
points on the left side of the face. We used feature point 33
(the tip of the nose) as a reference point.

After removing the effect of translation and rotation in
each frame, - and ’Qy in 3 are two arrays  of xandy
coordinates of the 29 feature points on the right (unaffected)
side of the face. |« and L, in 4 are two arrays of x and
y coordinates of the 29 feature points on the left  (affected)
side of the face.

Ho=lxo % el R =[uo Y el (3)

|

Lo=Txs9 40 %67 L =[Use Yo ~ 7] (4)

L and L are the two arrays with the estimated x and y
coordinates of the left (affected) side of the face assuming
the person did not have asymmetric facial expressions.

Fo=l0ag 90 Yesl L0 = [Usg o o Les]  (9)

As Fig. 3 presents:

W= yiag 37 -/ -66 (6)
XU=(xg X3 )+ X3 =2x3 X 38 37 </ <66
(N

Third, we compared the calculated coordinates of points
from the second step (. and [ ) with the actual co-
ordinates of the feature points on the affected side of the
face ( L. and [, ). Dividing the actual coordinates by the
calculated coordinates gave us scaling parameter for X and
Y coordinates of each of the facial points. Therefore, the
scaling parameters, B. and B forxand y coordinates of
each facial point on the left side of face will be calculated
as below:

37 -/ -66 (8)

0
Y,
U
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Fig. 4. Sample frames from the stimuli videos.

All the B/ scales are one for the 29 facial points on the
unaffected side of the face. All the B scales are less than
one for the 29 facial points on the affected side of the face.
This is because FP causes weakness in the affected side of
the face and therefore, feature points of that side will have
less movement.

For each feature point on the affected side of  the face,
we calculated its scaling parameter in all of the frames and
averaged them. For our work, we will consider frames with
the highest intensity to build our model. Possible future work
could be building a model of different pathologies in different
stages of the disease with different intensities.

Additionally, applying the same method on different peo-
ple with BP may output different scales and yield different
models. This is because BP has some idiosyncratic charac-
teristics; although all cases of BP include some degree of
weakened mobility on one side of the face, the severity may
vary across individuals. Thus, we built three masks using

source videos of three people with BP (see Fig. 5).
IV. EXPERIMENTAL VALIDATION
To evaluate our masked synthesis module and get feed-
back for further refinement, we ran a qualitative, expert-

based perceptual experiment. This is a common method for
evaluating synthesized facial expressions [7], [24]. Getting
initial feedback from clinicians is very valuable because it
provides insights for improving the model and exploring its
potential for being used as part of an educational tool for
clinicians. Additionally, future users of our masked synthesis
module are clinicians, and developing an educational tool
for clinicians should be an interdisciplinary collaboration
involving medical educators and computer scientists [15],
[17], [18]. The experts in our study were four clinicians
familiar with assessing facial paralysis in BP patients.

We first collected videos from a performer  without BP.
As ultimately we want this masked synthesis approach to be

used by operators without BP in a clinical simulation context
(see Fig. 2), it was important to study the likely expressions
clinicians would make, and how they would appear when
masked. We recorded two sets of videos that are required in
BP diagnosis: diagnostic expressions of the eyes, brow, and
lower face, and expressions that happen during interviews
between clinicians and BP patients.

In the first set (diagnostic), a performer without BP was
recorded while performing five expressions required for as-
sessing paralysis [16]: closing the eyes, raising the eyebrows,
Sfurrowing the brow, smiling, and raising the cheeks. The
performer was instructed to repeat each expression five times.
This resulted in five videos, each about 10 seconds long.

In the second set  (interview), a performer without BP
answered a list of questions that a clinician asks when
diagnosing a BP patient [16]. Our goal was to record natural
expressions that happen during interaction between a BP
patient and a clinician. The interview video was 40 seconds
long. This yielded five diagnostic video and one interview
video.

From these six source videos, we used a face tracker [4]
to track 68 facial points frame-by-frame, and extracted facial
features of the performer’s face. We then applied the scaling
parameters corresponding to each of the pre-built masks of
BP to the extracted feature points of each source video. Since
we had six source videos and three pre-built masks, this
process gave us 18 sets of masked feature points.

For each set of masked feature points, we ran the Robot
Operating System (ROS) module from [27] to synthesize the
masked expressions to a virtual character’s control points for
animation in Steam Source SDK. At the end of this step,
we had 18 stimuli  videos (15 diagnostic stimuli videos of
expressions required for assessing BP, and three naturalistic
stimuli videos).



Fig. 5. Sample frames from three people with Bell’s palsy. We used these
videos to develop our masks.

A. Case Study

We sought feedback on the realism of our model when
applied to a virtual character for synthesizing BP, and how
similar the synthesized expressions are to those of real people
with BP. We recruited four clinicians (one male and three
female) from a US-based medical school. Participants were
all native English speakers, and aged between 35 to 59 years
old (mean age 48.7 years old). Three of the clinicians were
physicians, and one was a clinical nurse. They all had on
average 21 years of face-to-face interaction with patients and
all had encountered BP patients in their careers.

We designed a structured online questionnaire to show
them our stimuli videos, and ask for their feedback on
various aspects of our synthesis results. At the beginning
of the study, clinicians received instructions and a brief
summary of the project. Next, they watched a video of a real
person with BP performing various expressions. We showed
them this video to refresh their memory on facial expressions
of patients with BP. This video was not used in developing
any of the three models.

We then asked participants questions in two parts. In the
first part, they watched the 15 diagnostic stimuli  videos in
arandom order. In each video, a cross-hair was shown for
three seconds, followed by a virtual avatar conveying one of

the expressions required for assessing BP.  They then rated

the similarity of each avatar’s expressions to those of real
BP patients for the entire face, and for that particular facial

part (e.g. eyebrows for the raising eyebrow videos).

The similarity rating was a 4-point Discrete Visual Ana-
logue Scale (DVAS). A one on the scale corresponded to
“not at all similar to real patients” and a four on the scale
corresponded to “very similar to real patients”. They could
watch each video as many times as they need. Figure 4 shows
sample frames from the first part of the study.

In the second part of the study, participants watched
the three stimuli videos of naturalistic expressions in a
random order. In each video, a cross-hair was shown for
three seconds, followed by a virtual avatar conveying natural
expressions that would happen during interaction with a
clinician. Participants were then asked to rate the similarity of
the avatar’s expressions to those of real Bell’s palsy patients
overall (entire face), and for each facial part (eyes, eyebrows,
cheeks, and mouth) on the same 4-point  Discrete Visual
Analogue Scale (DVAS).

Additionally, after watching each naturalistic video, they
were asked to provide feedback by answering these open-
ended questions: “Based on the video you just watched, what
aspects did you think were the most  realistic?” and “What
areas did you think could be improved?”. After completing
both parts of the study, clinicians were asked to answer these
two open-ended questions: “How useful could this kind of
simulation tool used in clinical education?” and “Please
share any additional feedback or comments.”

V. RESULTS

The overall average score for similarity between the
synthesized masked expressions and real patients for the
diagnostic expressions was 2.66 (s.d. =0.98). Table I reports
the full results for each of the five diagnostic expressions
and the entire face. This table suggests that overall clinicians
thought that closing eyes and smiling were the most similar
expressions to real patients. Cheeks had the lowest overall
similarity scores, suggesting that we need to improve our
model around the cheeks.

These similarity scores also show that overall the second
mask created more realistic diagnostic expressions.  For all
the diagnostic expressions (closing eyes, smiling, furrowing
brow, and raising cheeks), except raising eyebrows, the
second mask outperformed (or was as good as) the other two

TABLE
MEAN SIMILARITY SCORES FOR EACH FACIAL PART AND THE ENTIRE FACE FOR THE DIAGNOSTIC STIMULI VIDEOS ON A 4-POINT DVAS.
Mask 1 Mask 2 Mask 3 Overall

Mean S.D. | Mean S.D. | Mean S.D. | Mean S.D.
Raising cheeks (Cheeks) .75 095 | 275 095 .75 050 | 2.08 0.90
Furrowing brow (Inner eyebrows) 2.75 1.25 2.75 0.95 2.75 1.50 | 2.75 1.13
Closing eyes (Eyes) 325 095 | 325 050 | 250 129 | 300 095
Smiling (Mouth) 250 057 | 350 057 | 3.00 1.15 3.00 0.85
Raising eyebrows (Outer eyebrows) 2.75 0.95 2.50 1.29 2.25 0.50 250  0.90
Overall (entire face) 2.60 0.99 2.95 0.88 2.45 1.05 2.66 0.98




TABLE II

MEAN SIMILARITY SCORES FOR THE SYNTHESIZED INTERVIEW EXPRESSIONS ON A

4-POINT DVAS.

Mask 1 Mask 2 Mask 3 Overall
Mean S.D. | Mean S.D. | Mean S.D. | Mean S.D.
Cheeks 2.00 1.00 2.00 1.00 2.33 0.57 2.11 0.78
Eyebrows 2.33 0.57 2.66 0.57 3.00 1.00 2.66 0.70
Eyes 3.66 0.57 3.33 0.57 3.33 1.15 3.44 0.72
Mouth 2.33 0.57 2.00 1.00 2.66 1.15 2.33 0.86
Overall (entire face) 2.66 0.57 2.66 0.57 3.33 0.57 2.88 0.60

models. This suggests that before using the second model in
a larger study, its appearance around the eyebrows needs
improvement.

For the naturalistic expression videos, we were only able
to include the ratings from three of the clinicians as one was
not able to participate in the second part of our study. Table
II reports the full results for the naturalistic expressions. For
the entire face, and all the facial parts except eyes, the third
mask created natural expressions that are more similar to real
BP patients. This table also suggests that overall clinicians
thought that eyes were the most similar part of the face to
real patients and cheeks were the least  similar part of the
face to real BP patients.

VI. DISCUSSION

The work described in this paper is the first step towards
building a complete, expressive patient simulator system
capable of recognizing and synthesizing asymmetric facial
expressions. Our work addresses the aforementioned gap in
the literature by providing clinical learners with a training
tool to practice their procedural and communication skills.
In this paper, we introduced methods for modelling and
synthesizing asymmetric facial expressions associated with
BP, and experimentally validated our  approach within a
clinical education context.

Our experimental results are encouraging, and suggest
that these techniques can be useful in affective computing,
clinical education, and related fields. Our proposed algorithm
generated a reliable computational model of BP. Moreover,
our synthesis method is also suitable for  use in real-time
clinical simulation and training contexts. We were able to
generate realistic face models conveying asymmetric facial
expressions.

There are several ways to further enhance the models and
techniques described. First, employing more control points
can make the models more realistic. The avatar used in this
work did not have any control points for creating wrinkles
around the cheeks and nose.  This led clinicians to select
low ratings for the similarity of the expressions around the
avatar’s cheeks, when assessing both the diagnostic and the
naturalistic expressions. Clinicians also suggested that adding
control points for the eyes could increase the realism of the
model, since the affected eyeball of people with BP often
rolls into their head when they try to blink.

Second, we can explore including static asymmetry (e.g.,
facial drooping) to the synthesized expressions  in future

experiments. Clinicians recommended adding forehead lines
to create a more realistic furrowed brow expression, making
it possible torecognize the intensity of BP. Moreover,
they mentioned that adding “puffing out the cheeks” to the
diagnostic set can also improve the expressions, as they are
useful for assessing asymmetry of the mouth and lips.

Third, ideally, we can create a general model for BP that
encompasses all the predominant features of BP in order
to generally represent all BP patients. If we have enough
input source videos of people with BP, we may be able to
extract the common features of this specific pathology to
create one general BP model. Similarly, if datasets for other
pathologies become publicly available, we could also extend
this technique to them (e.g., stroke, dystonia).

Finally, we ultimately want to run a similar experiment
with clinical learners using an expressive RPS.  This may
help clinicians avoid forming biased impressions of people
with FP and improve their cultural competency. Also, it may
improve their skills in understanding the emotions of people
with asymmetric facial expressions, which can lead to better
health outcomes and reduce health disparities.

Our work is important for the affective computing and
robotics communities because it allows researchers to explore
new methods of facial expression synthesis. For example,
our work can be used in teleconferencing or  animation to
control and manipulate the expressions  and identity of a
virtual character. It can also be used in computer  games,
to mask the identity or  expressions of a user, or in social
assistive robots to be used to support health and well being.

Overall, this work makes contributions to both interactions
with virtual humans, and the study of clinical conditions that
alter expressive behaviour, which are two critical applications
of facial expression analysis [41]. More specifically, the ex-
ploration of recognizing and synthesizing asymmetric facial
expressions have significant implications for human emotion
analysis.
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