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Abstract—Specialized hardware accelerators, particularly those that are
programmable and flexible to target multiple problems in their domain, have proven
to provide orders of magnitude speedup and energy efficiency. However, their
design requires extensive manual effort, due to the need for hardware-software
codesign to balance the degree and forms of specialization to the domains or
program behaviors of interest. This article provides the first steps towards one
approach for automating much of these processes. The insight behind our work is to
recognize that decoupled spatial architectures both define a rich design space with
many tradeoffs for different kinds of applications, and also can be composed out of a
simple set of well-defined primitives. Therefore, we propose a modular accelerator
design framework, DAEGEN, a.k.a. Decoupled Access Excution Accelerator
Generator. This article defines an initial compiler and architecture primitives, and

we discuss key challenges.

Index Terms—Reconfigurable accelerators, design automation, hardware/software
co-design, spatial architectures
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1 INTRODUCTION

As a response to technology scaling challenges, specialized acceler-
ators have proliferated in many areas (datacenters, mobile phones,
edge devices, etc.). Two basic strategies have emerged for generat-
ing new accelerators, each with their own benefits and limitations:

o Application Specific (eg. HLS): High-level synthesis compiles
languages like C with pragmas to hardware. While HLS is
nearly automatic and produces designs that have a fully
customized hardware and software interface, the design
space is limited, and designs are not programmable.

e Domain Specific (eg. TPU): This approach customizes hard-
ware for the kernels within a domain, and provides a
domain-specific software interface. The advantages are
high performance and flexibility, at the expense of hard-
ware and software design effort, an effort that must be
repeated as workloads change.

There is a large space of applications for which neither approach

is satisfying: where some flexibility is needed, but the cost of a
domain specific design cannot be justified. For such settings, an
ideal specialization approach would yield the level of automation
provided by HLS, but still enable exploration of programmable
architectures without redesigning hardware software interfaces.

One of the primary challenges is defining a searchable design

space which is both large enough for potentially broad applicabil-
ity and customizable enough to achieve the benefits of specializa-
tion. Prior work (eg. [1], [2], [3], [4], [5], [6]) suggests that spatial
decoupled access execute accelerators are a good candidate. Spatial
refers to designs with hardware/software interfaces that expose
low-level communication and scheduling decisions—-this can enable
high parallelism at low cost. Decoupled refers to the separation of
concerns between the hardware for memory access and computa-
tion, enabling specialization of each. Moreover, these architectures
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are attractive as it is possible to define a set of primitives which
have semantics that can be understood by a compiler, so that they
can be composed in flexible ways (refer to Section 3). A number of
example designs are shown in Fig. 1. These architectures are attrac-
tive both because they are efficient, but more importantly because
their primitives are composable.

Therefore, our goal is to develop the concept and a usable frame-
work for developing programmable decoupled spatial accelerators.

Central to our approach is a representation of the hardware
called the architecture description graph (ADG), which is com-
posed of parameterizable primitives like processing elements (PEs)
and switches. This is used in the compiler, simulator, and hard-
ware generator without manual intervention, as outlined in Fig. 2.
The first step in compilation is for each kernel to be transformed
into a representation suitable for decoupled spatial architectures;
several different versions of each kernel are created with different
sets of transformations, each targeted to optional architecture fea-
tures. Then the hardware mapper will distribute each instance of
the program to hardware resources, and the legal one with the best
performance. Architects can use information like hardware utiliza-
tion and performance sensitivity to guide ADG exploration. Dur-
ing this process, no compiler backends need be implemented; the
ISA is effectively determined by the ADG, and the compiler is
modular to handle arbitrary sets of features in the design space.
This is what makes deep exploration feasible.

In our evaluation, we show that the ADG is general enough to
express variants of five spatial architectures (Softbrain [3], TIA [1],
MAERI [4], SPU [2], and REVEL [7]). For these, our compiler can
generate code with mean 1.32x execution time of manual versions
across several workload sets, including those with control and
memory irregularity. Finally, we show how our tool can be used to
help uncover the best set of hardware/software features for a given
workload set.

The main contribution of this work is to demonstrate that
decoupled spatial architectures have composable primitives
which can form a rich design space, and that it is possible and
useful to explore hardware/software interfaces within such a
framework.

Organization. We first describe our spatial architecture design
space and hardware generation (Section 2), and then outline the
compilation techniques (Section 3). We evaluate DAEGEN by its
breadth of architecture scope as well as comparison to manual opti-
mization (Sections 4, 5).

2 DECOUPLED-SPATIAL ARCHITECTURES

2.1 Design Space

At the heart of our programmable accelerator framework is a
graph-based representation of the decoupled spatial hardware
components primitives, described in Fig. 3 (processing elements,
switches, memories, delay elements, and synchronization ele-
ments). Changing parameters of PEs, (eg. which set of functions
they can perform), or parameters of memories (eg. degree of bank-
ing), enable a tradeoff between flexibility and specialization.

Fig. 1 shows examples of architecture description graphs
(ADGs) composed from these primitives. Each node has its own
attributes which correspond to the parameters shown in Fig. 3. For
example, the “S” components in Fig. 1 are switches. Each would be
annotated with their bitwidth, ability to support dynamic schedul-
ing, and their routing connectivity (which inputs may flow to which
outputs). These designs demonstrate the wide range of efficiency
versus generality which is possible to express. For example, the ratio
of datapath flexibility versus switch overhead. CCA [5] has the few-
est switches, but has only limited flexibility. The Softbrain(d) [3] is
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Fig. 1. Decoupled spatial architectures These are represented as an architecture
description graph (ADG) in DAEGEN (primitives in Fig. 3).

the most flexible but with the highest overhead. The MAERI(c) [4] is
somewhere in the middle, customized for DNNs.

The high-level execution model for these architectures is that
programs execute in a series of phases, where in each phase the
memory and compute units are configured with the appropriate
parameters. We assume a Von Neumann control core to execute
the control finite state machine (FSM), but our approach is not spe-
cific to this decision.

One large benefit of the ADG abstraction is the ability to specify
arbitrarily application-specific accelerators, in that the datapath
and set of memories can exactly match the needs of the original
program or closely match a set of related programs. Later, we dis-
cuss how the compiler framework will attempt to take advantage
of whatever resources and topology is available.

Breadth of Design Space. A key distinguishing feature of our
decoupled spatial design space is that we enable composition of
computation and network elements which have different execution
models. As a simplification, there are two major execution model
dimensions: 1. Processing and network elements can be either stati-
cally or dynamically scheduled. 2. They may also be dedicated to a sin-
gle instruction (eg. akin to a systolic array), or be temporally shared
amongst multiple instructions (eg. like a traditional coarse grain
reconfigurable architecture (CGRA)).

One final important aspect of the design is the support for irreg-
ular memory and control. One option we consider here is for the
memories to enable indirect-atomic access at high bandwidth
(eg.alf(b[1i])]1++), similar to SPU [2];

Principles of Composition. We overview the basic principles and
considerations for composition. First, statically scheduled elements have
less hardware overhead, but require a synchronization point to guar-
antee that all inputs are available at a known time. The synchronization
element, which buffers a configurable set of inputs and releases when
all are ready, aids the compiler to provide this guarantee.

Analogously, dedicated elements have less hardware overhead as
they do not store or arbitrate between multiple instructions. How-
ever, if the timing of input operands is not matched, there is no
other work which can be performed, and the pipeline will become
imbalanced. Indeed, the throughput loss will be proportional to
this imbalance [8]. The delay element allows a configurable delay
to aid the compiler to compensate to enable the use of dedicated
elements efficiently.

Central to composability support is the switch, which can con-
nect inputs and outputs with differing bitwidths. A routing con-
nectivity matrix describes which inputs can connect to which
outputs, down to the granularity of bytes. Switches can connect
PEs regardless of whether they use static/dynamic scheduling, or
if they are dedicated or shared. The compiler will then enforce that
values do not flow from static to dynamic PEs (without going
through sync. element) or from dedicated to temporal PEs (due to
overwhelming temporal PE).

2.2 ISA and Hardware Generation

DAEGEN generates an ISA and hardware design,' by selecting
an encoding of instructions, and also generating a configuration
path.

For speed and efficiency, the hardware generator reuses the
datapath for configuration. All elements are routed a configuration
enable signal to start configuration mode. The configuration infor-
mation encoding is composed of a module id and control informa-
tion, so that configuration may be pipelined. According to different
types of modules, the control information may include opcode,
explicit timing delay (static-dedicated PE), routing information
(switch), etc.

In order to be able to reconfigure all modules in network, one
or more configuration paths (depending on the bandwidth)
should be constructed to reach each nodes in the ADG. DAEGEN
will generate config path(s) to cover all nodes in ADG, with the
goal of minimizing the maximum path length (which dictates
configuration time). By treating this problem as non-cycle graph
traversal problem with multiple start nodes, DAEGEN framework
will first generate config paths by connecting all nodes randomly
and then move nodes from the longest path to the shortest to
correct for imbalance in the path length. The overall ISA is deter-
mined by the set of components, their parameters, and the config-
uration path through them.

Finally, generated hardware requires a method to program and
coordinate memories, as well as configure and synchronize the
spatial architecture over multiple phases. We leverage the stream-
dataflow ISA [3] for this, so this part of the ISA is fixed.

3 MoDULAR DECOUPLED SPATIAL COMPILATION

We developed a C+pragma interface to enable simple program-
ming, and implemented within Clang. The pragmas both aid in the
compilation of decoupled spatial architectures, and yet are agnostic
to specific hardware features. The compiler has two basic responsi-
bilities: 1. extracting and mapping the computations to the spatial
accelerator, and 2. decoupling the involved data access and encod-
ing them.

Programming Interface. To achieve the above, the code trans-
formation pass should first be aware of: 1. the instructions to
be offloaded to the spatial fabric and how they occupy/share
the resources on it, and 2. the data access instructions that can
be decoupled without violating the original semantics. There-
fore we support the following pragmas, with an example in
Listing 1.

#pragma dae offload: This pragma defines a code region
whose computations will be offloaded to the spatial fabric.

#pragma dae decouple: This pragma informs the compiler
that all memory dependences are enforced through data-dependences
(ie. no unknown aliasing). This enables the compiler to decouple
and hoist memory operations to the loop level annotated with this
pragma.

1.In Chisel RTL, though we note that generated RTL validation is
incomplete.
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Fig. 2. Overview of DAEGEN architecture design framework.

#pragma dae config: This pragma defines the program scope
where reconfiguration occurs — ie. regions within this scope are
concurrent on the spatial fabric.

Listing 1. An Example of C+Pragma Annotation

1 #pragma dae config
{
3 #pragma dae decouple
for (i=0; i<n; ++1i) {
5 v=0;
# pragma dae offload
7 for (j=0;3j<n; ++Jj)
v+=ali*n+3j] *b[j];
9 #pragma dae offload
for (j=0; j <n; ++3)
11 ali*n+3jl-=v*bl[jl;

Decoupling Memory and Compute. To extract data accesses, we
inspect each code block marked with offload pragma, and extract
memory access patterns by finding the program slice from the
address of each memory access. The sliced memory operations will
be analyzed by LLVM’s SCEV module. We use this infrastructure
to gather the stride and trip count information of each loop level
over the memory pattern. Address computations are hoisted to the
appropriate loop level, which is similar to the approach in Clair-
voyance [9], and we encode each pattern as a “stream” intrinsic [3].
Remaining operations are fed to a spatial mapper, and eliminated
in the LLVM IR.

Spatial Hardware Mapper. The responsibility of the spatial hard-
ware mapper is to map instructions to spatial PEs, dependences to
the network, memory access to memories, and manage with the
timing of data arrival (if necessary). We use a simulated annea-
ling algorithm to map the instructions onto the spatial fabric, and a
heuristic-based search to route the network (an improved version
of [8]).

Modularized Code Generation. Our compiler takes a modular
approach to compilation, where certain features are used if they
exist and can be legally used within the defined architecture. There
is always a slower fallback if the feature does not exist.

One example of this is region selection. The compiler first tries to
offload as many regions as possible, but if the spatial compiler fails
to map every region onto the fabric because of insufficient instruc-
tion slots, the compiler will first drop those regions with relatively
low execution frequency and re-invoke the spatial compiler. We use
LLVM'’s static BlockFrequencyInfo module to estimate fre-
quency. We use a similar technique to increase the unrolling degree
of frequent blocks to attain better utilization of the spatial fabric.

Second, the compiler can convert control flow to predicate-
based dataflow (referred to as stream-join in [2]). If the underlying

hardware does not support this idiom, the mapper will inform
the compiler so that it can fall back to leaving these code on the
host.

Third, the compiler can detect and encode indirect memory
accesses like a [b[1]]. If the underlying hardware cannot support
these intrinsics, our compiler may invoke the fall-back module to
generate scalar data to feed the offloaded code region.

4 EVALUATION METHODOLOGY

Target Accelerators. We chose five accelerators to stress DAEGEN on
different hardware execution models: Softbrain [3] and MAERI [4]
are both static-dedicated, but MAERI has a tree-based interconnect
(all others have a mesh). SPU [2] has dedicated-dynamic network,
Triggered-Insts [1] has a temporal-dynamic network, and REVEL [7]
uses both static-dedicated and temporal-dynamic PEs/switches.
For simplicity, we assume all designs have floating point units and
a 16-KB scratchpad with 512-bit bandwidth, so these are not exactly
identical to the original architectures. Table 2 shows the parameters
of the target accelerators. We construct a unified cycle-level simula-
tor for performance results, and assume 1.25 GHz frequency.
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Fig. 3. Decoupled spatial architecture components.
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Fig. 4. Compiler versus manual-tuned performance.

Benchmarks. We selected 6 workloads from Machsuite [10], 2 micro
benchmarks from SPU’s workloads, 5 benchmarks from PolyBench
[11], and 4 DSP workloads for TIA and REVEL. Table 1 shows the
data size of each workload and the hardware features they may
use. We compile these original C programs with GCC-8 -03,
and run on Intel Xeon Silver 4116 @2.10 GHz as the baseline.

Area Analysis. We synthesized DAEGEN’s generated RTL with
Synopsys DC with UMC 28nm UHD library (HVT, ff, 0.99v).

5 DAEGEN EVALUATION

Our evaluation answers two main questions about DAEGEN.
First, how well can the compiler target diverse accelerators
with its modular approach as compared to hand-tuned code?
Second, what are the opportunities for modular-architecture
codesign?

Modular Compilation Efficiency. Fig. 4 shows performance of
each accelerator with respect to baseline CPU. Our compiler is
able to achieve in average 75 percent of the performance of man-
ually tuned kernels. The primary reason for the difference is that
manually tuned kernels use fewer instructions to configure
memory, and do not overburden the core (a problem for short
loops only).

Each of the designs above makes a tradeoff in hardware com-
plexity versus generality. Fig. 5 shows the power and area per
operation in each accelerator-the fact that they are so different
comes both from their topology (tree versus mesh) and the features
that they employ. MAERI is the most efficient-it has the highest
computation to memory ratio, use static routing, and has lower-
degree switches — but it comes at the price of not being effective for
irregular computations.

Modular Codesign Opportunities. To better demonstrate the gen-
erality versus efficiency tradeoffs for modular hardware/software
features, we evaluate different combinations of features on top of a

TABLE 2
Hardware Parameters (d:Dynamic Sched,
s:Temporal Shared, mix:Some of Both)

Architecture #PEs #Switch Z#Add. #Mult. #Div.
Softbrain 4 x4 5x5 8 8 0
SPU 5x4 6 x5 (d) 12 8 0
Trigger 3x3 4 x 4 (d&s) 4 4 1
REVEL 4x4 5 % 5 (mix) 8 8 1
MAERI 31 31: tree 16 15 0

consistent base architecture: 4x4 mesh of dedicated static PEs,
64-bit network, and 512-bit wide scratchpad. We consider adding
three key features:

e “shared” designs replace four dedicated PEs with shared
PEs to better balance resource utilization across inner/
outer loops.

e “dynamic” scheduling confers the ability to handle control-
dependent data-reuse (aka. stream join [2]).

e “indirect” designs support vectorized indirect load /update.

Fig. 6 shows how each feature affects the performance. Here, “0

0 0” means no features are selected, and “1 1 1” means all features
are selected. PolyBench does not require optional features, as they
are regular, so performance/mm? only degrades with more fea-
tures. However, DSP workloads heavily benefit from shared PEs
for their outer-loop computations, and Sparse workloads benefit
from indirect access and dynamic scheduling due to frequent data-
dependence. Across all workloads, the best design includes all
features.

6 RELATED WORK

Custom fit processors [12] is a framework to build application-spe-
cialized VLIW designs only. A related area is network synthesis
(eg. SUNMAP [13]), but this only addresses network design with-
out considering computation.

The most related body of work are tools for CGRA explora-
tion, of which a few include Plasticine [6], CGRA-ME [14], and
ADRES explorer [15]. To our knowledge, none of the above 1.
have a design space including multiple execution models (eg.
dynamic and static scheduling), and 2. allow for irregular topolo-
gies to potentially specialize to the datapath of a particular pro-
gram or set of programs.

DAEGEN’s C pragmas bear similarity to those in OpenMP:
dae offload is similar to omp task and dae config is like omp
taskgroup.
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Fig. 5. Area and power normalized by peak FLOPs.
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7 CONCLUSION

This work demonstrates that there exists a broad decoupled spatial
accelerator design space, capable of high performance and effi-
ciency on regular and irregular workloads. This design space can be
expressed as a composition of simple architecture primitives. This
enables exploration because 1. these primitives are composable and
can be understood by a compiler, and 2. have parameters which fun-
damentally alter the tradeoffs for workloads with different proper-
ties. We show that compilation from high-level languages is made
possible with simple pragmas and a modular approach with per-
feature fallbacks.

There are many challenges left, including broadening the design
space to include tradeoffs in multicore architectures, using higher-
level program representations to eliminate the need for pragmas and
enable deeper loop transformations in the search, and enabling trac-
table automatic search of a vast programmable accelerator design
space.
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