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Abstract 8 

Marine microbes form the base of ocean food webs and drive ocean biogeochemical 9 

cycling. Yet little is known about the ability of microbial populations to adapt as they are 10 

advected through changing conditions. Here we investigated the interplay between physical 11 

and biological timescales using a model of adaptation and an eddy-resolving ocean 12 

circulation climate model. Two criteria were identified that relate the timing and nature of 13 

adaptation to the ratio of physical to biological timescales. Genetic adaptation was impeded 14 

in highly variable regimes by non-genetic modifications but was promoted in more stable 15 

environments. An evolutionary trade-off emerged where greater short-term non-genetic 16 

transgenerational effects (low-g-strategy) enabled rapid responses to environmental 17 

fluctuations but delayed genetic adaptation, while fewer short-term transgenerational effects 18 

(high-g-strategy) allowed faster genetic adaptation but inhibited short-term responses. Our 19 

results demonstrate that the selective pressures for organisms within a single water mass 20 

vary based on differences in generation timescales resulting in different evolutionary 21 

strategies being favored. Organisms that experience more variable environments should 22 

favor a low-g-strategy. Furthermore, faster cell division rates should be a key factor in 23 

genetic adaptation in a changing ocean. Understanding and quantifying the relationship 24 

between evolutionary and physical timescales is critical for robust predictions of future 25 

microbial dynamics. 26 

 27 

Significance Statement 28 

 Robust predictions of future changes in global biogeochemical cycling require an 29 

understanding of how microorganisms adapt to stressful and changing environments. In the ocean, 30 

rates of adaptation will be a function of both evolutionary timescales and physical dynamics. 31 
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However, little is known about this interaction. We examined evolutionary dynamics of marine 32 

microbes by combining a model of microbial adaptation with varying selection pressures with a 33 

high-resolution ocean circulation model. A trade-off emerged between two evolutionary strategies: 34 

1) ability to adapt plastically to short-term environmental fluctuations with delayed genetic 35 

adaptation and 2) more rapid genetic adaptation with limited response to short-term environmental 36 

fluctuations. This trade-off determines evolutionary timescales and provides a foundation for 37 

understanding distributions of microbial traits and biogeochemistry. 38 

 39 

Introduction 40 

Planktonic microorganisms in the oceans are at the mercy of ocean circulation which 41 

transports cells throughout the ocean basins and results in significant variations in the physical and 42 

chemical environment experienced by the cells (1-3). As a result, long-term shifts in the average 43 

ocean environment, such as a temperature increase from global warming, are experienced by 44 

phytoplankton as gradual changes overlain on top of a highly dynamic regime of environmental 45 

fluctuations. Previous work has shown that microbes have the potential to evolve faster through 46 

neutral genetic processes than their dispersal by large-scale currents, thereby creating 47 

biogeographic provinces even in the absence of selection (2). However, little is known about the 48 

interaction of ocean circulation with adaptive evolution of microbial populations to new 49 

environments. Constraining rates of adaptive evolution in the ocean presents a significant 50 

challenge because evolutionary timescales are a function of many factors including environmental 51 

fluctuations driven by physical dynamics, chemical cycling, microbial growth rates, population 52 

sizes, and the rate at which genetic variation can be generated – all of which are variable in the 53 

marine systems. Improving our understanding of these interactions is critical for accurately 54 

predicting future shifts in microbial diversity, ecosystem dynamics, and biogeochemical cycling 55 

as the oceans respond to global warming induced changes.  56 

Microbial populations – defined as clusters of closely related organisms exhibiting 57 

population-specific gene flow – are acted upon by both natural selection and neutral evolutionary 58 

processes. Laboratory based experimental evolution studies have demonstrated relatively fast 59 

timescales (<350 generations) of selective adaptation for marine microbes under constant 60 

conditions (4), and shown that fluctuations impact the outcome of evolution (5). These studies are 61 

consistent with theory (6) and laboratory experiments in non-marine model systems (e.g., 7). 62 
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However, our understanding of how marine microbial evolution will proceed in situ in a fluctuating 63 

environment remains in its infancy. One reason for this is that models of microbial adaptation 64 

rarely include common non-genetic responses, which can affect adaptive outcomes (8-12). Second, 65 

until recently, we did not have the ability to model the dynamic environment experienced by 66 

pelagic microbes with high enough resolution to capture realistic environmental dynamics critical 67 

for driving evolution (1). Here we develop two criteria that describe microbial adaptation strategies 68 

as a function of physical fluctuations and both non-genetic and genetic biological response 69 

timescales.  These criteria identify constraints on different adaptive strategies and on rates of 70 

microbial adaptation to environmental change, which can be applied across vastly different 71 

oceanographic regions and to diverse microbial species. This new insight into marine microbial 72 

adaptation will allow for an improved understanding of general patterns of trait distributions (13) 73 

among marine microbial functional groups (14, 15) and how these distributions might shift in a 74 

changing world.  75 

 76 

Adaptation Under Variable Selection Pressures 77 

Correctly accounting for different biological response timescales is central to 78 

understanding adaptation in fluctuating environments. Adaptation to a new environment (defined 79 

as a heritable increase in fitness) can be generated through a range of processes from 80 

transgenerational plasticity (defined as any heritable, non-genetic change in phenotype) to genetic 81 

mutations. These processes for generating and transmitting trait variation can be classified on a 82 

spectrum from fast variation, low transmission (LT) to slow variation, high transmission (HT) 83 

modifications (16).  HT modifications are relatively rare, and so generate variation in fitness in 84 

growing populations slowly, but have a high probability of being transmitted to offspring through 85 

a large number of cell divisions. Classic examples of HT modifications are point mutations, 86 

genome rearrangement, horizontal gene transfer, and transposon insertions. In contrast, LT 87 

modifications are common relative to HT modifications, and so generate variation in fitness in 88 

growing populations quickly, but are non-genetic and so have a lower probability of being 89 

transmitted to offspring. LT modifications include – but aren’t limited to – transgenerational 90 

plastic effects and some changes to DNA methylation and acetylation patterns (i.e. epigenetics). 91 

Immediately following environmental change, LT modifications may allow for flexible and rapid 92 

diversification in phenotype within or over very few generations. This can result in different rates 93 
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of adaptation to a new environment (increase in fitness) relative to what would be expected due to 94 

HT modifications alone (8-11). However, because LT modifications are reversible, the fitness 95 

benefits and trait changes from LT modifications will be lost from the population more quickly 96 

than would be expected from HT modifications alone, especially in a dynamic environment where 97 

selective pressure can fluctuate. Theoretical (8, 17) and empirical (9, 12) data suggest that HT and 98 

LT modifications acting together best explain patterns of microbial evolution on timescales of 99 

hundreds of generations. For example, experimental evolution studies in yeast have shown that the 100 

interaction of short-term epigenetic inheritance with genetic mutation modifies the rate and type 101 

of adaptation, thereby impacting long-term evolution (12). 102 

Before tackling the complexities of adaptation in the ocean, we first quantified how the 103 

interplay between LT and HT modifications can affect both the timescale and outcome of marine 104 

microbial adaptation in an idealized fluctuating environment. When considering adaptation in a 105 

variable environment, it is necessary to clearly define the effects of selection pressure across 106 

different types of environments. We distinguish between two types of environments: the ‘new’ 107 

environment where populations are under directional selection (i.e. the selective fixation of new 108 

beneficial alleles where the population is in the process of adapting); and the ‘ancestral’ 109 

environment where the population is well adapted and assumed to be under stabilizing selection 110 

(i.e. the selective removal of new non-neutral alleles, which are deleterious). We used an 111 

individual-based model of adaptation modified from Fisher’s model (18) in which the simulated 112 

population moved between the ‘new’ and ‘ancestral’ environment following a step function with 113 

varying frequencies. In the model simulations, adaptation – increases in fitness in the ‘new’ 114 

environment – could be driven by both LT and HT modifications. Critically, LT modifications 115 

were introduced at a higher frequency than HT modifications but were also associated with a 116 

transmission timescale or reversion rate (Methods). As a result, the model simulations captured 117 

both the high frequency occurrence of LT modifications (e.g. transgenerational plastic responses) 118 

in populations following an environmental change and the degradation of this signal over several 119 

generations once the environmental cue was removed (SI Appendix Fig. S2). In contrast, HT 120 

modifications (e.g. genetic mutations) occurred at low frequencies in the population, but were 121 

transmitted with high fidelity between generations.  122 

An ensemble of model simulations was conducted varying the time spent in each 123 

environment (tf) from short duration fluctuations (tf =10 generations) to long duration fluctuations 124 
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(tf = 500 generations). Similarly, a large range of transmission timescales for LT modifications 125 

(tLT) was explored from no LT modifications (tLT=1 generation), to maternal effects (tLT=4 126 

generations), to experimentally confirmed timescales (tLT=10 and 20 generations (19, 20)), and to 127 

a proof-of-concept long lasting LT effect (tLT=150 generations). In addition to tf and tLT, the 128 

timescale required for a beneficial HT modification to fix in the population through a selective 129 

sweep once it occurred in an individual (tHT) emerged as a critical timescale in the model (Figure 130 

1). tHT is an emergent property of the model that varied as a function of HT modification supply 131 

and effect (SI Appendix Fig. S1). tHT was systematically varied by running the model with varying 132 

strengths of stabilizing selection (SI Appendix S1 & Fig. S2-S4), and a range of population sizes 133 

and mutation rates (SI Appendix S2 & Fig. S7). These parameter ranges were sufficient to 134 

understand how model behavior varied as a function of tHT. Since our primary aim was to test the 135 

robustness of our predicted relationships between physical and biological timescales (described 136 

below), we examined ranges of physical and biological parameters around thresholds that 137 

determined evolutionary outcomes and showed that the overall patterns were robust (SI Appendix 138 

S1 & S2).  139 

In all model simulations, fitness increased rapidly with exposure to the ‘new’ environment, 140 

consistent with laboratory experiments (5, 21-27). With stabilizing selection applied during the 141 

‘ancestral environment’ periods, selective sweeps driven by HT modifications emerged if the 142 

fluctuation intervals (tf) were long enough. We identified two dimensionless criteria of the relative 143 

timescales of fluctuations to the timescales of high transmission (e) and low transmission (g) 144 

modifications:   145 

𝜀 = !!
!"#
 eq. 1 146 

𝛾 = !!
!$#
 eq. 2 147 

Together these criteria determined model behavior across the wide range of parameter values 148 

tested. When e <1, the timescales of environmental variability (tf) were short relative to the 149 

fixation timescale for HT modifications (tHT) and so selective sweeps based on HT modifications 150 

were inhibited (Figure 2a). Conversely, when e >1, HT selective sweeps always occurred and the 151 

time to sweep (tsweep) decreased as tf increased. In other words, longer exposure times to a new 152 
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environment drove higher rates of genetic adaptation to that environment, consistent with previous 153 

results using a variety of different modeling approaches (e.g., 28-30).  154 

 The second criteria, g, identifies a key evolutionary trade-off for organisms in a fluctuating 155 

environment. When g>1, HT modifications drove adaptive fitness changes while LT modifications 156 

played a minor role, resulting in little or no short-term responses (i.e. fitness changes) to 157 

environmental fluctuations (Figure 1a). However, when g<1, LT modifications enabled short-term 158 

fitness responses to environmental fluctuations both before and after a HT selective sweep, 159 

resembling previously observed short-term epigenetic dynamics (6) (Figure 1b). Although 160 

simulations with g<1 had a more rapid response to environmental change (faster increase in 161 

fitness), it also took longer for a HT sweep to occur (larger tsweep) than simulations where g>1 162 

(Figure 2b).  163 

These results provide a framework for understanding and predicting population level rates 164 

of adaptation based on the relationship between environmental and microevolutionary (genetic and 165 

non-genetic) timescales. Defining the critical model timescales in terms of generations instead of 166 

days allows us to generate intuition about microbial adaptation that applies to microbes with very 167 

different growth rates and experience different environmental conditions. In a stable environment, 168 

it is advantageous to minimize adaptive timescales (smaller tsweep) and so instances where g<1 will 169 

be detrimental. However, in a fluctuating environment, longer adaptive timescales may be 170 

advantageous because they avoid a HT selective sweep that may be beneficial in one environment 171 

but deleterious in the other. This trade-off between short-term and long-term benefits can be 172 

framed in terms of two opposing evolutionary strategies: 1) a low-g strategy with more persistent 173 

LT modifications which facilitates rapid environmental tracking with less heritability; and 2) a 174 

high-g strategy favoring more rapid selective sweeps of innovative HT modifications at the 175 

expense of shorter-term environmental fitness tracking. A low-g strategy should be favored under 176 

enhanced environmental variability (6), while a high-g strategy should be favored under stable 177 

conditions. In most oceanic regions, a range of strategies would be expected, since individual water 178 

masses experience different environmental fluctuation patterns before they arrive at a given 179 

location and, critically, the apparent timescale of the fluctuations will vary by species as a function 180 

of the generation time of the population (described in detail below). The e and g criteria provides 181 
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a way to make strong hypotheses about the diversity of strategies expected in different oceanic 182 

regions.   183 

 184 

Microevolution in a Dynamic Ocean  185 

In the oceans, environmental fluctuations (tf) will be driven by advection into different 186 

ecoregions with distinct chemical and physical characteristics, seasonal variability, and other 187 

physical dynamics (e.g. eddies). Understanding the implications of these fluctuations on rates of 188 

microbial adaptation requires translating our understanding of the timescales of environmental 189 

variability into a microbially relevant timescale (i.e. generation times), which will be a function of 190 

cell division rates. Critically, two populations in a single parcel of water can experience the same 191 

changes in environmental conditions differently based on differences in cell division rates. The e 192 

and g criteria provide a framework for distilling these complex interactions between organismal 193 

and environmental timescales and generating predictions about differences in evolutionary 194 

strategies and rates of adaptation between taxa, ocean regions, and environmental drivers.  195 

To demonstrate how the e and g criteria provide insight into marine microbial adaptation, 196 

we use temperature adaptation as a timely and important example. Warm temperature adaptation 197 

also provides a useful simplification in that the skewed nature of temperature tolerance curves 198 

means that the approximation of a rapid transition from ‘ancestral’ to ‘new’ environment is 199 

reasonable. However, the e and g criteria can be used to assess evolutionary strategies for any new 200 

environment with fluctuating selection. To quantify the relevant rates of environmental 201 

fluctuations, we focus on variability driven by Lagrangian movement in the ocean – as in (2). This 202 

is consistent with our current understanding of the primary driver of environmental variability for 203 

marine microbes (1). The impact of more complicated physical dynamics, for example mixing of 204 

water masses, will be similar to increasing mutation rates (decreasing tHT) in our model, as these 205 

dynamics have the potential to add genetic variation to the population through immigration instead 206 

of mutation.  207 

Using the output from the global eddy-resolving GFDL Coupled Climate CM2.6 Model 208 

(31) 2xCO2 simulation, we analyzed Lagrangian trajectories released at the surface every 1°x1° 209 

(36,895 ocean trajectories per analysis), integrated using the OceanParcels code (32) (Methods; SI 210 

Appendix Fig. S5&S6). For illustrative purposes, we contrast two populations being advected along 211 

the same trajectories with environmentally relevant growth rates for marine phytoplankton (33): 212 
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0.1 day-1 (popA) and 1 day-1 (popB). We analyzed trajectories for 350 generations for each 213 

hypothetical population (2,426 days and 242 days) and calculated environmental fluctuations over 214 

each trajectory relative to both a temperature threshold ( ³28°C) and to the generation time (tf). 215 

This provides a quantitative comparison of how the same environmental variability (tf) can be 216 

experienced very differently by populations with different growth rates. For example, 30 days in 217 

waters ³28°C would translate into a tf=4.3 generations for popA and tf= 43 generations for popB. 218 

In other words, for the same physical dynamics, a slower growing population (popA) would 219 

experience a more variable environment while a faster growing population (popB) would 220 

experience a more stable environment. Assuming constant growth rates is a simplification as 221 

growth rates in the real ocean will clearly vary in response to environmental fluctuations.  222 

However, one could reasonably expect that the adaptive dynamics of a population with variable 223 

growth rates would fall between the adaptive dynamics of the slow growth and fast growth 224 

populations presented here. The 350-generation timeframe was selected as experimental evolution 225 

studies have demonstrated that this is a sufficient period for adaptation to occur (25-27, 34, 35), 226 

although the conclusions of this study are not impacted by this choice. Finally, we conducted a 227 

sensitivity analysis of the 28°C threshold and showed that the results were not a function of this 228 

specific temperature choice (SI Appendix Fig. S9 & S10). 229 

Differences in generation times of the two populations resulted in significantly different 230 

adaptive dynamics along the same trajectories. As a result of a shorter generation time, the 231 

exposure times of popB to ³28°C waters were long enough that adaption through genetic 232 

modifications (HT) was predicted to occur. Specifically, based on the duration of physical 233 

fluctuations (tf) and a conservative estimate of tHT = 50 generations, we predict that e >1 for 70-234 

79% of the popB trajectories that experienced ³28°C (Figure 3c).  A faster tHT, due to higher 235 

genetic modification supply rates, would increase the fraction with e >1. In contrast, because popA 236 

experienced a more variable environment due to its longer generation time, we estimate that 237 

selective sweeps (e >1) would occur in only 2-11% of the popA trajectories (Figure 3a).  Critically, 238 

even when popA was exposed to the 'new’ environment every year (e.g. through seasonal 239 

fluctuations), we predict that the duration of the exposure was not sufficient to result in a selective 240 

sweep for the majority of trajectories. PopA trajectories that experienced selective sweeps were 241 

retained in warm waters for an extended period of time (> 346 days).  As growth rate increases 242 

and generation time decreases, the perceived environment will become less variable and seasonal 243 
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fluctuations will become sufficient to drive selective sweeps. We confirmed our predictions using 244 

2 representative trajectories (SI Appendix S3). These results suggest that, within a given water 245 

parcel, directional selection is more effective for faster growing marine microbes than slower 246 

growing populations, making it more likely for HT selective sweeps to occur. This is because faster 247 

growing populations experience the selective environment for a larger number of generations (tf). 248 

Consideration of the g criteria allows us to identify the most effective strategy for each 249 

population and each trajectory. Slow growing populations (popA) experienced fluctuation 250 

timescales that were short enough (in terms of generational time) that a low-g strategy was 251 

beneficial based on reasonable LT transmission timescales (tLT=10-50). Specifically, we find that 252 

41% of the popA trajectories could employ a low-g strategy to better track environmental 253 

fluctuations (Figure 3b). This is in contrast to the popB trajectories where only 24% could employ 254 

a low-g strategy (Figure 3d); 76% of trajectories experienced environmental fluctuations that were 255 

either too fast (tf<10) or too slow (tf>50). Combining these results with the idealized simulations 256 

(Figure 2) suggests that the average adaptation timescale for warm temperature adaptation (time 257 

to sweep, tsweep) could be less than 170 generations for the majority (70-79%) of popB trajectories 258 

and over 430 generations for the majority (89-98%) of popA trajectories. 259 

This analysis identifies two contrasting strategies for marine microbes: 1) faster response 260 

to variable environments through a low-g strategy where LT modifications provide a competitive 261 

advantage versus 2) faster selective sweeps that provide an advantage based on HT modifications. 262 

We predict that the low-g strategy with more persistent LT modifications will be favored by 263 

organisms that experience subjectively shorter timescale fluctuations. The above example 264 

contrasts two populations experiencing the same physical environment. However, the hypothesis 265 

also applies to organisms living in different regions. For example, relatively stable environments 266 

(e.g. oligotrophic) should favor a high-g strategy (less LT mechanisms) while more variable 267 

environments (e.g. upwelling/coastal) should favor a low-g strategy (more LT mechanisms). One 268 

condition needed for these dynamics to occur is that at least a subset of individuals in the 269 

population show adaptive plastic responses to the new environment before a beneficial genetic 270 

modification can occur and rise to a high frequency.  271 

The results of our model are consistent with several recent environmental genomic studies 272 

that have attributed patterns in marine microbial diversity to local adaptation to environmental 273 
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gradients driven by large-scale ocean circulation (36-38). Here we propose an evolutionary 274 

mechanism for these biogeographical patterns and develop a mathematical framework for distilling 275 

the complexity of marine microbial adaptation into a testable hypothesis for future targeted 276 

sampling and experimental efforts. While we present a single case study for warm temperature 277 

adaptation which is constrained to low latitudes, as the climate changes new combinations of 278 

environmental parameters (39) will drive microbial adaptation throughout the global ocean – the 279 

timescales of which can be understood in terms of the e and g criteria. 280 

Untangling the interactions between the physical timescales of advection and the biological 281 

timescales of evolution is necessary to accurately predict how and where marine microbes will 282 

adapt to novel environments. Specifically, our results demonstrate that different evolutionary 283 

strategies (e.g. low-g versus high-g) are favored by different combinations of fluctuation patterns 284 

and cell growth rates and that these strategies can play key roles in shaping microbial fitness and 285 

underlying trait values. The importance of the interaction between physical and biological 286 

timescales in determining adaptation outcomes identifies the need to incorporate these dynamics 287 

into global carbon cycle models. Understanding these dynamics and constraining marine microbial 288 

adaptation timescales will require an improved mechanistic understanding of adaptation that 289 

includes variation from LT modifications and the quantification of critical biological timescales 290 

including tLT and tHT. This work suggests that marine microbial populations commonly experience 291 

dynamic ocean conditions that favor short-term adaptive strategies (i.e. low-g). Expanding models 292 

of adaptive evolution to include both non-genetic processes and highly dynamic environments 293 

provides a foundation for understanding future shifts in microbial trait distributions and 294 

biogeochemical cycling in oceans. 295 

 296 

Methods 297 

EpiGen model and simulations: To model an individual-based adaptive walk, we used a modified 298 

version of Fisher’s (18) geometric adaptation model from Kronholm and Collins (8) – the EpiGen 299 

model. LT and HT modifications drove changes in fitness where HT modifications were fixed and 300 

LT modifications reverted with probability µrev (LT reversion rate). The model was initialized with 301 

a population of N uniform individuals: here N was varied from N = 103 to N = 105. The 302 

modification supply (population size x modification rate) remained constant in each generation 303 

and no more than one LT and one HT modification per generation was allowed to occur in a single 304 
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individual. Simulations were run for 15,000 generations and each simulation was done with 50 305 

replicates.  306 

We analyzed variable selection pressures through the introduction of intervals during the 307 

adaptive walk where the population moved between a ‘new’ environment (Figure 1 white shading) 308 

and the ‘ancestral’ environment (Figure 1 grey shading). Selection was based on fitness in the 309 

‘new’ environment such that the sampling probability of an individual was weighted by its fitness 310 

in the ‘new’ environment until N offspring had been produced. In the ‘ancestral’ environment, 311 

selection occurred through the stochastic removal of organisms with relatively more HT 312 

modifications (i.e. higher HT modification abundance), which corresponds to stabilizing selection. 313 

We assumed that all modifications had an equal chance of being conditionally deleterious (being 314 

neutral or adaptive in the ‘selection’ or ‘new’ environment, but deleterious in some other 315 

environment) so that individuals who had accumulated a high number of modifications in the 316 

selection environment had a higher probability of decreased fitness in the ancestral environment. 317 

Simulations were conducted with a range of population sizes, LT transmission timescales, and 318 

strength of stabilizing selection. A full description of the model framework and simulations are 319 

detailed in the SI Appendix Supplement Methods. The EpiGen model code is available on GitHub 320 

(github.com/LevineLab/EpiGen). 321 

 322 

Global Trajectory Analysis:  Lagrangian trajectories were computed with surface velocity and sea 323 

surface temperature output from the eddy resolving, 0.1° x 0.1° horizontal resolution, GFDL 324 

Coupled Climate CM2.6 Model (31) with 2xCO2 forcing. For this study, we analyzed trajectories 325 

initialized on a 1°x1° horizontal grid from 80°S to 70°N (resulting in 36,895 trajectories released 326 

in the ocean). Trajectories were integrated using OceanParcels code (32) version 1.0.3 with a 327 

timestep of 10 minutes. Location and temperature along the trajectories were recorded for 328 

illustration once per day. Two trajectory lengths were analyzed: 2,426 days (6.6 years) and 242 329 

days of output both starting 60 years after the branch. 2,426 days corresponds to 350 generations 330 

of a phytoplankton population growing at an average rate of 0.1 d-1 and 242 days corresponds to 331 

350 generations of a phytoplankton population growing at an average rate of 1 d-1. These growth 332 

rates were chosen for illustrative purposes as representative of typical growth rates for eukaryotic 333 

phytoplankton(33). 27-29% of particle trajectories experienced ³28°C at least once within 350 334 
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generations. Additional details on the global trajectory analysis can be found in the SI Appendix 335 

Supplement Methods. 336 

 337 
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 352 

Figure 1:  Illustrative example of model dynamics for a high-g (a) and low-g (b) simulation.  Fitness 353 

changes (black line) are primarily driven by HT modifications (purple line) in the high-354 

g simulation and by both HT and LT (blue line) modifications in the low-g simulation. The time-355 

to-sweep (tsweep) is longer for the low-g simulation (b) than the high-g simulation (a). White 356 

shading denotes the ‘new’ environment while grey shading denotes the ‘ancestral’ environment. 357 

 358 

Figure 2: Timescales and outcomes of adaptation are determined by the values e and g. Panel a 359 

illustrates the e criteria by showing the impact of environmental fluctuations (tf) on tsweep 360 

normalized to tHT. Panel b illustrates the trade-off associated with a low-g strategy by showing the 361 

relationship between the rate of fitness increase in a ‘new’ environment (colorbar) with tsweep 362 

normalized to tHT. In panel b, tf is represented by the size of the symbol. 363 

 364 
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Figure 3: Differences in selective pressure for popA (panels a and b) versus popB (panels c and 365 

d).  Panels a and c show trajectories predicted to have e>1 and so experience a HT selective 366 

sweep. Here we assume that tHT<50 generations and so e>1 for trajectories with mean tf >50 (red 367 

trajectories). This is a conservative estimate since the average model tHT = 15±7 with max tHT = 368 

60. Trajectories with the potential for a HT sweep (mean tf <50 but the maximum tf >50) are 369 

shown in yellow, and trajectories where a sweep is unlikely (maximum tf <50) are shown in 370 

grey. Panels b and d show the estimated timescale of tLT necessary for a low-g strategy.  371 

Trajectories with tLT<50 generations are shown in shades of blue while trajectories with tLT>50 372 

are shown in grey. Here, we plot a subset of the trajectories (2°x2° grid) for clarity (see SI 373 

Appendix Fig. S11 for all trajectories). 374 

 375 

  376 
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