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One fundamental task in network analysis is detecting “hotspots” or “anomalies” in the network; that is,
detecting subgraphs where there is significantly more activity than one would expect given historical data
or some baseline process. Scan statistics is one popular approach used for anomalous subgraph detection.
This methodology involves maximizing a score function over all connected subgraphs, which is a challeng-
ing computational problem. A number of heuristics have been proposed for these problems, but they do not
provide any quality guarantees. Here, we propose a framework for designing algorithms for optimizing a
large class of scan statistics for networks, subject to connectivity constraints. Our algorithms run in time that
scales linearly on the size of the graph and depends on a parameter we call the “effective solution size,” while
providing rigorous approximation guarantees. In contrast, most prior methods have super-linear running
times in terms of graph size. Extensive empirical evidence demonstrates the effectiveness and efficiency of
our proposed algorithms in comparison with state-of-the-art methods. Our approach improves on the perfor-
mance relative to all prior methods, giving up to over 25% increase in the score. Further, our algorithms scale
to networks with up to a million nodes, which is 1-2 orders of magnitude larger than all prior applications.
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1 INTRODUCTION

Detecting “hotspots” and “anomalies” is a recurring problem in a wide range of applications, such
as social network analysis, epidemiology, finance, and bio-surveillance (Ding et al. 2012; Eberle
and Holder 2009). Furthermore, the applications mentioned above involve network abstractions,
so anomaly detection in network data has become a very active area of research in recent years—
see Akoglu et al. (2015) and Cadena et al. (2018) for surveys on network anomaly detection. A
number of methods have been proposed for anomaly detection in networks: these approaches
typically formalize anomalies as subgraphs whose properties deviate from some kind of baseline.
For instance, Akoglu et al. (2010) use different kinds of metrics within the egonets of nodes, such
as the total weight, number of triangles, and principal eigenvalues, to identify anomalous nodes.
Hooi et al. (2016) use the density of a subgraph—i.e., the ratio of the number of edges within
the subgraph to the subgraph size—to identify anomalous subgraphs. However, the definition of
anomalies in graphs and algorithms to find these anomalies tend to be application specific and rely
on feature engineering.

One of the few approaches that has a sound and general statistical basis is the paradigm of scan
statistics (Kulldorff 1997). This is among the most powerful and widely used methods for anomaly
detection, not only for graphs, but also for spatio-temporal datasets. Scan statistics is based on
hypothesis testing. In this setting, we have a graph G = (V, E), with two kinds of counts—baseline
and event counts—associated with each node. The null hypothesis Hj in the simplest model is
that event counts for all nodes are generated proportional to their baseline counts. The alternative
hypothesis H; (S) is that within a subset S C V of vertices, the counts are generated from a different
process, typically at a higher rate than what the null hypothesis assumes. Then, the goal is to find
a subgraph that maximizes a “score” function that quantifies the likelihood of H;(S) compared to
Hy—for instance, a likelihood ratio.

Scan statistics were originally developed for spatial data (Kulldorff 1997; McFowland et al. 2013;
Neill 2012) with the goal of finding spatial clusters where the rate of incidence of a disease is higher
than the average rate in the entire data. Recently, these methods have been extended to network
data by considering connected subgraphs instead of spatial clusters. The connectivity constraint is
important because it ensures that subgraphs reflect changes due to localized in-network processes.
More generally, scan statistics require some kind of constraint on the anomalous regions for the
formulation to be of practical use. In the graph setting, for instance, without connectivity con-
straints, the most “anomalous” subset would trivially consist of the nodes with the highest event
counts, potentially spread out all over the graph. From a practical point of view, such subgraph is
not interpretable or actionable. Second, by mere randomness, it is expected to have several nodes
in the graph with much higher event counts than what the null hypothesis assumes. What is inter-
esting is when these high-count nodes are localized—either spatially or by being connected—since
this gives us evidence of some underlying anomalous process occurring in that part of the graph.

As an illustration of these concepts and the challenges, consider the snapshots of a toy sensor
network in Figure 1. This type of network has been used to detect pollution on a water distribution
system (Ostfeld et al. 2008). Each node is a sensor, and an edge represents a water pipe between
two sensors. We would like to detect pollution in the network, so that remedial action is taken.
However, a sensor could become active due to noisy observations; similarly, a sensor that should
be active may fail to detect pollution. For example, at times 2 and 3 in the figure, we observe some
active sensors (colored blue), but these are not indicative of pollution. At time 4, on the other hand,
we find a large subgraph of adjacent active sensors, which has a low likelihood of being just noise.
Note, however, that we may have to include some inactive nodes if this allows us to discover
a larger anomalous cluster. This event detection problem can be formalized as follows: given a
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Fig. 1. Anomalous subgraph detection. Four snapshots of a network of sensors. A blue node (sensor) indicates
pollution at that part of the network. However, individual sensors may become active due to noise. This is the
case at times 2 and 3. However, time 4 shows a large subgraph of active sensors. This event detection problem

can be cast as finding a connected subgraph with a high proportion of blue nodes—possibly connected by
some white nodes. In this case, we would like to detect the subgraph circled in red at time 4.

sensor graph G(V,E) and a score function F : 2V — R, we want to find a subset of connected
nodes S C V, such that F(S) is maximized.

A large number of scan statistics have been developed as a result of the diversity of applications
where they have been applied; we briefly describe some of them as follows:

— Social Science: Detection of human rights events (Chen and Neill 2015) and civil unrest (Chen
and Neill 2014a).

— Disease surveillance: Early detection of respiratory disease outbreaks (Neill 2012) and clus-
ters with high incidence of breast cancer (Boscoe et al. 2016).

— Security: Network intrusion detection and illicit activities in shipment data (McFowland
et al. 2013).

Depending on whether the notion of anomalousness is with respect to an underlying model for
the data or historical values, scan statistics can be parametric or non-parametric (Section 3). Para-
metric scan statistics assume that counts associated with each node are generated from a parame-
terized distribution, e.g., Poisson or Normal. One of the most widely used parametric scan statistic
is the Kulldorff statistic, which is commonly used in disease surveillance (Kulldorff 1997). Non-
parametric scan statistics are defined without assuming an underlying distribution or process on
the graph. Instead, they estimate a p-value for each node by comparing its event count with histor-
ical data. An example of this type is the Berk—Jones scan statistic (BJ) (Berk and Cohen 1979)—this
has been used for civil unrest events and network intrusion detection (Chen and Neill 2014a).

Finding a connected subgraph S which maximizes a function F(S) of this type generalizes Net-
work Design problems—this includes well-known graph optimization problems, such as the Steiner
Tree problem and its variants, Prize-Collecting Steiner Tree (PCST) and NetWorth, all NP-hard.
However, no formal proof of hardness of the common scan statistics (e.g., the BJ-statistic) on net-
works is known, to the best of our knowledge. Heuristics for these problems have been used for
network scan statistics (Bogdanov et al. 2011; Rozenshtein et al. 2014; Speakman et al. 2015, 2013),
but they do not give any rigorous guarantees on the solution quality.

1.1 Contributions

Here, we present a unified algorithmic framework for graph scan statistics with connectivity con-
straints. Our contributions are as follows:
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(1) We show formally that maximizing the BJ statistic on a network with connectivity con-
straint is NP-hard. While the problem has some similarity to steiner connectivity, formally
proving the hardness of the BJ-statistic is quite challenging because of the non-linear ob-
jective function.

(2) A unified framework for optimizing a large class of parametric and non-parametric scan
statistics for networks with connectivity constraints, which scales linearly in the network
size and is a function of a parameter defined as the “effective solution size.” We also give
rigorous bounds on the solution quality (summarized in Theorem 4.3). In other words, our
framework encompasses many different network scan statistics—this contrasts with all
prior methods, which are developed for specific statistics; further, our approach also holds
for the extensions of these functions with both node and edge weights, which generalize
Steiner connectivity problems. In practice, the effective solution size parameter is very small
(see Section 6.6), making the time complexity of our algorithms better than prior methods,
which are super-linear in the network size.

(3) Preprocessing and refinement techniques that reduce the solution size without degrading
the quality score beyond a provable constant factor (Section 4.4). The resulting algorithms
are able to scale to graphs with over a million nodes in minutes and are significantly faster
than state-of-the-art methods, which have only been run on graphs of up to 10* nodes.

(4) Significant improvement over the objective scores computed by different baselines, with
over 25% improvement in some instances, compared to the best baseline method (Sec-
tion 6.3). Better objective scores also translate to higher anomaly detection power with
3% improvement on accuracy and F1 score over state-of-the-art methods. Our algorithmic
framework has the added advantage that different score functions can be optimized by
just modifying the specific objective function within the same implementation.

2 RELATED WORK

There is a very large body of work related to our article because of the wide range of applications.
Below, we discuss the specific work related to scan statistics; we refer to the comprehensive survey
by Akoglu et al. (2015) for a general discussion on other methods for graph anomaly detection.

Although a large number of detection algorithms have been proposed for different kinds of scan
statistics in networks, no computationally tractable algorithms with rigorous guarantees are known
for any of the objectives discussed below, other than the PCST objective. Table 1 compares our
method with several state-of-the-art algorithms on supported scoring functions, time complexity,
and performance bound. Many of these heuristics have reasonable performance on some datasets,
but are not consistent, as we find in our experiments. Since better approximation bounds often
imply better detection power, this can be a problem in practice.

2.1 Algorithms for Optimization of Parametric Scan Statistics

These fall into three categories as follows:

(1) Exact algorithms, such as exhaustive search over all connected subgraphs (Takahashi et al.
2008), a branch-and-bound method for Kulldorff’s spatial scan statistic, and upper level set
scan statistic (Speakman et al. 2015). However, these methods do not scale to graphs with
more than 1,000 nodes.

(2) Heuristic algorithms, which include (a) a simulated annealing approach that is based on
a concept of “non-compactness” for penalizing clusters (Duczmal et al. 2006), (b) the Ad-
ditive GraphScan algorithm, which connects clusters based on shortest path distances
(Speakman et al. 2013), (c) sparse learning method based on edge-lasso regularization
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Table 1. Comparison between Subgraph Detection Methods

Method Score function Time Complexity | Performance Bound
MEDEN (Bogdanov et al. 2011) Linear O(ntlog? t) No
EventTree+ (Rozenshtein PCST objective O(n?log n) 2-approximation

et al. 2014) (Johnson et al. 2000)

AdditiveGraphScan Nonlinear O(mn + n? log n) No

(GS) (Speakman et al. 2013)

DepthFirstScan Nonlinear O(n - Zd) No

(DFS) (Speakman et al. 2015)

EdgelLasso (EL) (Sharpnack Quadratic o(l - n?) No

et al. 2012)

GraphLaplacian Quadratic o(l - n%) No

(GL) (Sharpnack et al. 2013b)

NPHGS (Chen and Neill 2014a) Nonlinear O(nlogn) No

Our algorithms Linear, Nonlinear 02k . ekm log 2) (1 — €)-approximation

n and m are the total numbers of nodes and edges in the input graph, respectively; d is a maximum depth parameter; [ is
the number of iterations; ¢ is the number of snapshots; k is the solution size of our algorithm and is <10 in most cases.

(Sharpnack et al. 2012), (d) spectral scan method based on graph Laplacian (GL) regulariza-
tion (Sharpnack et al. 2013b), and (e) submodular optimization algorithm based on Lovasz
extensions (Sharpnack et al. 2013a). No quality guarantees are known for these methods,
when used for optimizing parametric scan statistics, in general.

(3) Algorithms based on density or Steiner connectivity, a semi-definite-programming-based
method (Qian et al. 2014), and the use of standard solutions of MAXCUT and PCST (Rozen-
shtein et al. 2014). These methods work well in practice and give guarantees for the PCST
objective (based on (Goemans and Williamson 1997)), but they do not directly optimize a
specific scan statistic function.

A number of other methods in this category consider relatively simple graphs, such as lines,
lattices or trees, and planar graphs, and optimize over subgraphs of special forms, such as rectan-
gles, balls, or some other low-dimensional parametric shapes (Agarwal et al. 2006; Dai et al. 2010;
Kulldorff 1997; Neill 2009). For example, Khezerlou et al. (2017) consider scan statistic optimiza-
tion over paths for early detection of “gathering events”—where many moving objects move to the
same location from different paths. These methods are inapplicable to general graphs and are not
reviewed here.

We also note that there has been a lot of work on parametric scan statistic optimization in
non-network data (Kulldorff 1997; Neill 2012). An important result due to Neill (2012) is that un-
constrained maximization of scan statistics can be performed efficiently.

2.2 Algorithms for Optimization of Non-Parametric Scan Statistics

Although non-parametric scan statistics have been widely used in a variety of pattern detec-
tion applications (Donoho and Jin 2015; Jin and Ke 2014), their applications to anomalous clus-
ter detection have only been explored recently. Several papers apply non-parametric scan statis-
tics to detect anomalous clusters in non-graph data (McFowland et al. 2013; Neill 2008; Neill and
Lingwall 2007). Chen and Neill presented a fast heuristic algorithm to optimize non-parametric
scan statistics on general graphs (Chen and Neill 2014a), with applications to detection of civil
unrest, disease outbreaks (Chen and Neill 2014b), and human rights events (Chen and Neill 2015),
but this algorithm does not provide worst-case theoretical guarantees.
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2.3 Reduction to Variants of Network Design

A common approach for dealing with connectivity requirements is to use algorithms for PCST
(Johnson et al. 2000) and other kinds of network design problems. For instance, the EVENTTREE
and EVENTTREE+ problems in Rozenshtein et al. (2014) are exactly the PCST problem. The authors
propose a simple greedy heuristic. In Bogdanov et al. (2011) and Mongiovi et al. (2013), the au-
thors propose the heaviest dynamic subgraph (HDS) problem and a more general version called
significant anomalous regions. Both formulations reduce to the NetWorth objective, which is a
complement of PCST. In Chen and Neill (2014a) and Qian et al. (2014), two different scan statistic
methods are proposed. These formulations have connections to the Quota Steiner tree problem and
Budgeted Steiner tree, respectively. Rigorous guarantees are known for some of these objectives,
such as for PCST and the budgeted Steiner tree objective. However, no guarantees are known for
the NetWorth objective.

3 PRELIMINARIES

We are given a graph G = (V,E), where V is a set of n vertices or nodes, and E C V X V is a set
of m edges. Each vertex v € V has two values associated with it as follows: (1) a population count,
b(v), which indicates the count that we expect to see at the node v—for instance, the number
of people in a county, corresponding to node v and (2) an event count, c(v), which indicates how
many occurrences of an event of interest are seen at the node—for instance, the number of cases of
a disease in a county. These values vary over time, but we will not indicate the time in the notation
in order to keep it simple. Our notation is summarized in Table 3.

3.1 Non-Parametric Scan Statistics

Non-parametric scan statistics do not assume an underlying distribution or process on the graph.
Instead, they first estimate a p-value for each vertex based on empirical calibration by comparing
the current feature (c(v) and b(v)) of this vertex with its features in the historical data. The problem
of anomaly detection has been formalized as a hypothesis testing problem for testing whether the
empirical p-values are uniformly distributed on [0, 1] (Awini et al. 2010; Margai and Henry 2003;
Neill 2012; Qian et al. 2014; Sharpnack et al. 2013a; Vaneckova et al. 2010; Zeoli et al. 2014). Let
a € [0, 1] be significance level and let w(v, a) denote the weight of a node v as a function of a. For
a set of nodes S, let W(S, a) = Y, ,es w(v, ) and N(S) be a function of the cardinality of the set.
Then, the score functions can be expressed in the following general form:

F(S) = max $(W(S. @), N(S).a), 1)

where ¢ is a function of S and « that depends on the particular score function to be optimized—see
Table 2 for examples of ¢. The significance level & can be optimized between 0 and some constant
Qmax- We use w(v) and W(S) to denote w(v, ) and W (S, ), respectively, whenever «a is clear
from the context. For clarity, from now on, we consider the specific case when N(S) = |S] is the
cardinality of S and w(v, ) is 1 if the p-value of v is less than «, 0 otherwise—we say these nodes
are significant at level a. Then, W(S, ) is the number of significant nodes in S. An example of a
scan statistic with this structure is the BJ scan statistic (Berk and Jones 1979) defined as

max |S|- KL (M,a) s

& < max |S]

where KL(p, q) is Kullback-Leibler (KL) divergence for two Bernoulli distributions with parameters
pand g
p

1-—
KL(p.) = plog ; + (1~ p)log 1
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Table 2. Scan Statistics Functions that can be Optimized with Our Framework

Non-parametric scan statistics (The following definitions are by default, unless otherwise indicated)
F(S) = maXg<ap, P(W(S, @), N(S), @), p(v) refers to the p-value of node v,

(Donoho and Jin 2004)

N(S) = IS, W(S, @) = Y pes I(p(v) < a), where I(True) = 1 and I(False) = 1.
Name Original form General form
Berk—Jones (Berk and F(S) = max N(S)KL( Wl\gf:g‘;), ) ¢(a, b, ) =b - KL(a/b, ), where
Jones 1979) T KL(x, ) = xlog (ﬁ) +
(1-x)log ()
Higher criticism F(S) = WS o) NiS)a dla b a)=(a-b-a)/\b all-a)

Lt YNS)a (1)

Kolmogorov-Smirnov
(Wilcox 2005)

F(S) =

wW(S,a)
Jmax YNGS) - (M55

B

$a. b,a)=Vb (% -a)

Anderson-Darling F(S) = max +/N(S) - ¢(a, b, ) = Vb (% - a) /
(Eicker 1979) o= max - -
(W<s,a) _a)/ w(s,a) ,(1_ w<s,a>) #(1-%)
N(S) N(S) N(S)
Jager-Wellner (Jager and | F(S) = max \/N(S) . ¢(a, b, @) =
Wellner 2007
) =T ‘/Z(lf‘/%-af (17%)(1701))
1- (1- R -a)

Stochastic ordering of F(S) = N(S) fa““" (WS, @)/ N(S)=c)” az{]\;()s) CaL, P d(a, b,a) =10 Oa‘"“" —(‘;/(?:Z))z da

p-values (Alves and Yu

2014)

Fisher’s test (Fisher 1925) | F(S) = — Y yes log p(v)/N(S) W(S, a) = Y pes logp(v),
¢(a, b, x) = —alb

Truncated Fisher’s test F(S) = max - W W(S, a) = Y pes I(p(v) < a)logp(v),

QA< Omax

¢(a, b, x) = —a/b

Weighted Fisher’s test F(S) = =Y peslog(w(v)p(v))/ Y oves w(v), W(S, a) = Y pes log(w(v)p(v)), N(S) =

where w(v) is the predefined weight of vertex v. | Y ,es w(v), ¢(a, b, @) = —a/b

Stouffer’s test (Stouffer F(S) = —w WS, @) = Ypes @11 - p(v)),

et al. 1949) N(S) ¢(a, b, @) = —a/b, where ®~1(-) refers to
the inverse cumulative density function of
standard Gaussian distribution

Edgington’s test F(S) = = Xoeslogp(v)/N(S) W(S, a) = Yoes logp(v),

(Edgington 1972) $(a, b, a) =-a/b

Parametric scan statistics (The following defintions are by default, unless otherwise indicated)

statistic (Qian et al. 2014)

F(8) = g(C(S), B(5)), C(S) = Yoes ¢(v), B(S) = Ypes b(v)
Positive elevated mean F(S) = Yies xi/\N(S) g(a, b) = a/\Nb
scan statistic (Qian et al.
2014)
Elevated mean scan F(S) = (Xies xi)*/N(S) gla, b) = a?/b

Expectation-based
Poisson scan
statistic (Neill 2012)

F(S) = C(S)log(C(S)/B(S)) + B(S) - C(5)

g(a, b) = alog(a/b) +b—a

Kulldorff scan
statistic (Kulldorff 1997)

F(S) = C(S)log(w) +(C-

B(S)
C(S))log ( C—C(S)) —Clog (%), where
C = Syev c(®) and B= Sy b(©).

g(a, b) =
alog($) + (C - a)log(§=%) - Clog (%)

Expectation-based
Gaussian scan
statistic (Neill 2012)

B-B(S)
F(S) = (C(S) — B(S))?/(2B(S)), where o (v)
refers to the standard deviation of ¢(v) that is
calibrated based on its historical observations,
C(S) = Loes(c(v)b(v))/o(v)?, and
B(S) = Yves b(v)/a(v)?

g(a, b) = (a - b)*/(2b)

(Continued)
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Expectation-based
exponential scan
statistic (Neill 2012)

F(S) = B(S) log(B(S)/C(S)) + C(S) - B(S),
where C(S) = Yoes c(0)/b(v), B(S) = IS|

g(a, b) = alog(a/c)+b—-a

Spatial scan statistic for

F($) = S {Cr(S) log( S + (Cr -

Cr(S)

C(S) = ZiACk(S) log(-zrgy) + (Cr =

multinomial data (Jun, Cr—Cr(S Cr—Cr(S
etal. 2010) | Cr(8)log =S} - 54 Crlog(Cie/C). | Cre(5)) log “E=gk &),
where Cy(S) refers to the count of vertices of | B(S) = Y x Cx log(Cx/C),
category k, C(S) = |S|,and C = |V|. gla,b)y=a-b
Table 3. Definitions and Notation Used in the Article
Term Description
b(v), c(v) Population and event counts of node v
o, Omax Significance level, maximum significance level
Significant node (at level @) | A node with p value below «
Nbr(v) Set of neighbors of v

w(v), w(v, @) Weight of node v, based on its p-value and the

significance level o

W(S), W(S, ) Denotes Y, cs w(v, )

F(S) Any of the functions in Table 2

K The set {1,...,k}

col(u) Color of node u from set K

T Subset of K (denotes colors)

M(v,T) maxg W (S), where the maximization is over
connected colorful sets S C V, such that v € S and
{col(u) :ueS}=T

Vi, (@) maxrr|=; M(v, T). Maximum weight over
connected colorful sets of size i

St S (a) Set with weight i/,

OPT(F,k) maxs;|s|<k F(S), where the maximum is over

connected subsets S of size < k

Intuitively, the B]J statistic measures how much the fraction of significant nodes in a set S deviates
from «, which is the fraction of significant nodes we expect to see if the p-values were uniformly
distributed in V..

3.2 Parametric Scan Statistics

Parametric scan statistics assume that counts observed at each node are generated from some
parameterized distribution and formalize anomaly detection as a hypothesis testing problem
(Kulldorff 1997; Neill 2012). Common choices are distributions from the exponential family, such
as Poisson or Normal. Under the alternative hypothesis H; (S), an underlying anomalous phenom-
enon is characterized in the following manner: features of a majority of the vertices are generated
from the same background distribution, and features of a small connected subset S C V of vertices
are generated from a different distribution. The goal is to maximize an appropriate scan statistic
function F(S), typically a likelihood ratio. These score functions can be expressed as

F(S) = g(C(5), B(S)), (2)
ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 2, Article 20. Publication date: April 2019.
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where C(S) = Y, es ¢(v), B(S) = Y yes b(v), and the function g is defined depending on the score
function considered. A well-known example of this class of functions is the Kulldorff scan statistic,
commonly used in disease surveillance (Duczmal et al. 2006; Kulldorff 1997; Kulldorff et al. 2003;
Neill 2012) and defined as

C(S) log (%) +(C(V) = C(5)) log (—ggi : Zgi) ~B(V)log (%) ’

Table 2 shows non-parametric and parametric scan statistics that can be optimized using our pro-
posed methods.

Limitations of scan statistics. The suitability of scan statistics depends on the application and
the assumptions underlying the dataset. We refer to Margai and Henry (2003), Neill (2012),
Kulldorff (1997), and Neill and Lingwall (2007) for a more detailed discussion of the advantages
and limitations of these approaches.

3.3 Problem Formulation

From the discussion above, the graph anomaly detection task can be posed as the following con-
strained optimization problem.

ProOBLEM 1. Given a graph G = (V, E), a scan statistic F(-), and the associated counts for vertices—
represented by vectors ¢ and b—find a connected subset S C V that maximizes F(S).

3.4 Hardness

In the absence of any connectivity requirement, many of the scan statistics in Table 2 can be op-
timized efficiently. In particular, functions like the BJ and Kulldorff scan statistics satisfy a linear
ordering property, which leads to a linear time algorithm (Neill 2012). In the presence of connec-
tivity constraints, optimizing scan statistics on graphs becomes much harder. However, no formal
proof of hardness is known for any of the common scan statistics, such as the B]J statistic. Here,
we show formally that maximizing the BJ statistic with connectivity requirement is NP-hard.

THEOREM 3.1. Maximizing the BJ statistic on a network with connectivity requirements is NP-
complete.

Since the proof is quite complex, we have presented this in the Appendix. We note that the hard-
ness is actually for a decision version of the problem, formalized as problem BJ-D in the Appendix.

3.5 Final Problem Formulation: Scan Statistics with Size Constraint

In light of the NP-completeness in Theorem 3.1, it is unlikely that we would be able to compute
the optimal solutions to the score functions efficiently. One approach that has been successfully
used to combat computational hardness is fixed parameter tractable algorithms: the idea is to find
an algorithm whose running time is O(c* f (n, m)), where f(n, m) is a polynomial function of the
number of nodes, n, and the number of edges, m, c is a constant, and k is a parameter. In other
words, the algorithm is exponential in a parameter other than the input size, but polynomial in
the input size. We consider the solution size as a parameter: the objective is to maximize F(S),
restricted to sets with |S| < k, where k is a parameter that represents the solution size.

PROBLEM 2. Given a graph G = (V,E), a scan statistic F(-), associated counts for vertices—
represented by vectors ¢ and b, and a parameter k, find a connected subset S C'V with |S| < k, that
maximizes F(S).

In Section 4, we develop algorithms for the above problem. In Section 4.4, we show that we can
compress specific subsets of nodes into “supernodes,” using a process we refer to as refinement.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 2, Article 20. Publication date: April 2019.

RIGHTSE LI MN iy



20:10 J. Cadena et al.

The size of a set S computed in terms of these supernodes will be referred to as the effective solution
size, and it becomes significantly smaller than the original size of S. Our final algorithms will find
solutions with effective solution size at most k.

4 ALGORITHMS FOR NON-PARAMETRIC SCAN STATISTICS

In this section, we present an algorithm for non-parametric functions that are characterized by
Equation (1), and then we discuss techniques to scale it without losing the quality guarantees. Our
algorithm takes as input a network G = (V,E), a p-value p(v) for each node in the graph, and
parameters that we discuss below. The p-values are computed based on modeling assumptions
about the statistical process that generates the event counts. For example, for some application, if
we assume that all the event counts are generated from a Poisson distribution with parameter A,
the p-value of a node with event count ¢(v) could be the probability of observing counts at least
as extreme as ¢(v).
Our algorithm relies on two main ideas, namely monotonicity and constraining the solutions.

4.1 First lIdea: Monotonicity

A key observation is that the functions ¢(W (S, «), N(S), @) are monotonically increasing functions
of W(S, @) under some conditions, as described below.

LEMMA 4.1. The non-parametric scan statistics functions characterized by Equation (1) are increas-

ing functions of W (S, @) lfwl\ﬁfs()x) > a and N(S) is constant.

For example, in the BJ statistic from Table 2, the function increases with the number of signifi-
cant nodes—nodes with p-value less than «. Further, given two node sets of the same size, the set
with more significant nodes scores higher according to the BJ statistic. This provides us with a
way to optimize F(S) by maximizing the function ¢(-) for sets of fixed size. In the next subsection,
we describe how exactly to optimize F(S) for a fixed subgraph size efficiently by constraining the
space of possible solutions.

4.2 Second Idea: Constraining the Solutions

We introduce the idea of a coloring of the nodes and only consider connected subgraphs in which
all nodes have distinct colors. Our approach builds on the color-coding technique of Alon et al.
(1995), but it involves several new techniques to scale the algorithm up to graphs with millions of
nodes.

Let K = {1,2,...,k} be a set of colors—where k is a parameter—and let col(v) € K denote the
color for node v. We say that a subgraph induced by set S € V is colorful if col(u) # col(v), for
all u,v € S. For a node v and subset of colors T C K, we let M(v,T) = maxs W(S), where the
maximization is over all connected and colorful sets S C V, such that v € S, |S| = |T|, and {col(u) :
u € S} = T.In other words, we only consider a set S if each node in the set has a distinct color from
T. These definitions are illustrated in Figure 2. M(v, T) can be computed by a dynamic program
with a recurrence given in the lemma below.

LEMMA 4.2. Let M(v,T) be defined as above. For any node v and color s, M(v,{s}) = w(v) if
col(v) =s, else M(v, {s}) = —oco. If|T| > 2:

M@, T)= max {M(v,T1) + M(u,T2)},
u € Nbr(v)
T,,T,CT

where the maximum is over all partitions Ty U T, = T of the set T and all neighbors u of v.
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M(A, @#00) = max { M(A, #®) + M(B,®),

@ % oo, m::)’: M(A, @) + M(C, ®),

w(G)=1 M(C, ®)=1 M(A,®@) + M(B,®),
M(A, ®9) + M(C, ®)...}

= ) M(D, ®)=0
w(D)=0, & = ;%E:}’E’;@g:@ = m{g ')) 1 5 mia, 000) = M(A, ®0)+M(C,0)=2+1=3
D -

MG, 00 M(D,800)=M(D,®0) + M(F,0)=1+1=2 V5= A,B,C,D,E
M(v, T) = -c0 Y6 =5 sﬁ:(A B,C,D,E,F}
elsewhere M(A, 000000)=M(A,000) + M(D,®#090)=5
w(E)=1 Ww(f)=1

1. Input Graph G 2. We create several 3. Run for one particular 4. Compute M(v, T) bottom-up 5. Return the connected set with
different random colorings coloring. First, compute the maximum weight for each size
base cases (color sets of size 1). from1tok

wA)=1  w(B)=1

Fig. 2. Example illustrating the MAXWEIGHT procedure for k = 6 colors. (1) Nodes A, B, C, E, and F in the
input graph have weight 1; D and G have weight 0. (2) We generate many random colorings of the nodes, as
per the error parameter €’. (3) For each coloring, we solve the dynamic program given in Lemma 4.2. M(A,
{red}) is 1 because node A has weight 1 and its color is red; in other words, there exists a tree that is colorful
with respect to {red} and contains node A. For all other colors ¢, we set M(A, {c}) = —c0. (4) We compute
M(v,T) bottom up. M(A, {red, blue, orange}) is maximized by adding M(A, {red, blue}) and M(C, {orange}).
The corresponding colorful subtrees have nodes {A, B, C}, {A, B}, and {C}, respectively. In other words, the
weight of tree {A, B, C} is the sum of weights of its subtrees {A, B}, and {C}. (5) We return the maximum
weight and corresponding subtree of sizes 1 to k. The optimal subtree may not be colorful in one particular
coloring, but, over all the random colorings, we will find the optimal subtree for each size up to k with high
probability.

Proor. Suppose M(v,T) is achieved for a connected set S, such that |S| = |T| and {col(u) :
ue St =T, with M(v,T) = };es w(i, ). We claim that there exists u € Nbr(v), and partitions
T=TiUT,,and S = S; U Sy, such that (1) M(v,T) = M(v, T;) + M(u, T»), (2) {col(i) : i € S1} =Ty
and {col(i) : i € S} = T, and (3) the subsets of nodes S; and S, are connected. Since S is connected,
there exists a tree H that spans S and contains node v. Further, there must exist a node u € Nbr(v)
such that (u,v) € T, since |T| = |H| > 2. Let H; and H be the trees rooted at nodes v and u, re-
spectively, that result when edge (u, v) is deleted in H. Let S; and S, denote the sets of nodes in H;
and H,, respectively. Let T} and T, be the colors used by S; and S, respectively. By construction,
we have M(v, T) = M(v,Ty) + M(u, T,), so that the partitions S = S; U S, and T = T; U T, satisfy
the requirements mentioned earlier. Therefore, the recurrence follows. O

4.3 CoLCobpeENP

In Algorithm 1, we present CoLCODENP for optimizing non-parametric scan statistics. Recall the
notation in Table 3. Let F(S) denote any of the non-parametric functions in Table 2, and let
OPT(F, k) = maxs. s|<k F(S), where the maximum is over all connected subsets S of size < k, for
a given ayay. Algorithm CoLCoDENP takes the size bound k as input, and an error parameter e,
which indicates the probability of not finding the optimum solution. We describe the main steps
of CoLCoDENP connecting with the two ideas from above.

—The set A in line 3 of CoLCoDENP denotes the set of distinct p-values of the nodes less
than apay; it suffices to find the maximum of (W (S, @), N(S), «) for a € A. The for loop in
lines 4—6 finds the best solution for each i € K and any given « (by calling MAXWEIGHT in
line 6), and the maximum is computed in line 7.

—MAaxXWEIGHT finds the best solution S of size i for each i € K using the idea described in
Section 4.2. We show an example in Figure 2 and the pseudocode appears in Algorithm 1.
Each iteration of the outer for loop in lines 14—20 starts with a random coloring (line 15
in the pseudocode and Step 2 in Figure 2). The inner for loop in lines 16—17 computes the
base case of the dynamic program from Lemma 4.2; then, we solve the program bottom-up
in lines 18-19. These are Steps 3 and 4 in Figure 2.
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ALGORITHM 1: CoLCODENP((G(V,, E), ttmax), k. €).

: Input: Instance (G(V, E), max ), parameters k, €
: Output: Set §* with score OPT(F, k)
: Let A be the set of p-values of nodes in V below apmax
:forae A
Let w be a weight vector with w(v) = w(v, @)
{Si() : i € K} = MaAXWEIGHT(G(V,E), w. k, e/n?)
S* = argmaxieck,aeaF(S}(@))
: return S*

—
(=}

: procedure MAXWEIGHT(G(V, E), w, k, €’)

: Input: Instance (G(V, E), w) and parameters k, €’
: Output: {S7 : i € K}, such that S} has weight ;

: Let); = —coforalli e K

. for j = 1to ek log (1/€’)

= S S
BWw N =

15:  For each node v, pick random color col(v) € K
16: forveV,sekK

17: M(v,{s}) = w(v) if col(v) = s; —c0 otherwise
18: forv e VandT C K, with |T| > 2

19: Use Lemma 4.2 to compute M (v, T)

20: If M(v,T) > l//|T\ update lﬂ‘ﬂ = M(v,T)

21: return {S7 : Yves: w(v) = ¢, fori € K}

—1; keeps track of the maximum weight solution restricted to size i, and it is updated if
M(v, T) denotes a better solution for size |T]|.

THEOREM 4.3. For any non-parametric function F(-) in Table 2, algorithm CoLCODENP returns
solution S* satisfying Pr[F(S*) = OPT(F, k)] > 1 — ¢, in time O(2Xe¥|A|mlog (n/€)), and using space
O(2kn), where A is the set defined in line 3 of Algorithm 1.

Before proving this theorem, the following lemma establishes that we can find the set with max-
imum weight for a particular size i by solving the recurrence from Lemma 4.2 for many different
random colorings.

LEMMA 4.4. Let € € (0,1) be any constant and define. For any fixed i, a, consider { random col-
orings of the nodes of graph G using a random color from the set {1,...,i} for each node. Let
X; = max, 1:7|=: M (v, T) for the jth coloring. Then, Primax; X; = ¢;(2)] > 1 —€, if ¢ > e’ log1/e.

Proor. Let T = {1,2,...,i} be a color set and let S} be the node set that achieves ;. For a
random coloring of G, the probability that the set S} is colorful is

i!

P=ﬁ~

For ¢ random colorings of G, the probability that S} is not colorful in any of the colorings is (1 — p)*.
We want this probability to be bounded by some small constant €. Then, the number of random
colorings that we should explore can be estimated as follows:

¢

w2y <)
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If we let £ be at least —e’ log(e), we have

4 —e’log(e)
(1_1) < (1_1) ¢ < elogle) — ¢ O
el) el - '

Now, we present the proof of Theorem 4.3.

Proor. We start with the proof of correctness of our algorithm, which involves three parts. The
first observation is that within the outer for loop in the procedure MAXWEIGHT, for each random
coloring col(+), max, M(v,{1,...,k}) is correctly computed. This follows because the algorithm
is a dynamic program that computes all M (v, T) for T C K using the recurrence in Lemma 4.2.

Next, we observe that the algorithm correctly finds 1; (¢)—the maximum weight among sets of
size i for a given a—for each i, a, with probability at least 1 — €/n?. The procedure MAXWEIGHT is
called with parameter ¢’ = €/n? and X log (1/€’) colorings. Let X;; be the maximum weight found
over subsets of size i in the jth random coloring. By Lemma 4.4, Primax; X;; # ¢;(a)] < €’ = ¢/n?.
The number of possible choices for « is |A|, which satisfies |A| < n. Therefore, by a union bound, it
follows that for all i, « € A, we have Pr[max; X;; # ¢i(a)] < n%e’ < €, and the algorithm correctly
computes ; () for all i, « with probability 1 — €.

Finally, for any fixed i, @, by Lemma 4.1, $(W(S), N(S), @) is an increasing function of W (S)
when N(S) is fixed. This implies that maxs.n(s)=; 9(W(S), N(S), &) = ¢i(a) = F(S] («)). Therefore,
max;eg,aeca F(S; (a)) = OPT(F, k), and it follows that Algorithm CoLCoDENP correctly computes
OPT(F, k) with probability at least 1 — e.

Next, we consider the space and time complexity. The algorithm maintains the array M, indexed
by nodes and all possible color sets, which leads to the space complexity of O(2n), since there
are at most 2% — 1 possible non-empty color sets. The running time is the result of solving the
recurrence for each node v, and for each color set T’ this requires examining each possible partition
T; UT, = T, and each neighbor u € Nbr(v), which requires time O(|[Nbr(v)|2!T!). Therefore, the
total running time for each coloring is O(}.,, i‘(:o INbr(v)]2') = O(3,, INbr(v)|2F) = O(2¥m). The
algorithm considers O(e* log (n®/€)) = O(e* log (n/€)) colorings, so the running time follows. 0O

4.4 Techniques for Scaling

CoLCoDENP has rigorous guarantees on the quality of the solution; however, if applied directly,
it would only be feasible to discover small anomalies due to the exponential dependence in k, the
solution size. We discuss two techniques to scale CoLCODENP to networks with over a million
nodes without losing the approximation guarantees significantly.

4.4.1  Graph Refinement and Effective Solution Size. Graph refinement involves compressing
subsets of nodes into “supernodes.” The size of a set S after refinement is determined in terms of the
nodes and supernodes in it. This new size is called effective size, and, in practice, it is significantly
smaller than the original size of S.

We observe that neighboring significant nodes can be merged without loss in quality. We illus-
trate with an example in Figure 3(a). In the figure, orange nodes are significant and have weight
1. The key idea is that any solution containing node A should also include nodes B and C, since
P(W(S, a), N(S), @) is increasing in the number of significant nodes. In the figure, we replace five
nodes of weight 1 for two nodes of weights 3 and 2. The effective size of the subgraph A through
F is 3. In Section 6.6, we show that this refinement is very effective in real networks, and we can
usually discover large solutions by setting k < 10.

We formalize this idea in the following lemma.
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RefineNP RefineNP-
{A, B, C}
| | ©) ’ {A,B,C,DE, F}{G}
(9> @m0 © > @
(0 (o)
S & -
EF
(a) (b)

Fig. 3. (a) Graph refinement. Colored nodes are significant. Nodes A, B, and C are merged into a supernode
of weight 3, and E and F form a supernode of weight 2. The effective size of the set {A,B,C, D, E, F} is 3.
(b) Graph refinement with = 5/6. By allowing non-significant node D to be merged, the effective size of
{A,B,C, D, E, F} becomes 1 with an approximation guarantee bounded by f.

LEMMA 4.5. Let G(V,E) be a network, and let F(-) be a non-parametric scan statistic function.
Given a set S C 'V, suppose there exists a significant node u ¢ S and an edge (u,v) € E, for some
v € S. Then, F(S U {u}) > F(S).

. - . . W(S) o
Proor. Non-parametric scan statistics are increasing on ﬁ Since u is significant, we have

that
WS U{u))  W(S)+1 . W(S)

NS U{u)  N@©)+1 - N(©S)’
and the proof follows. o

Exact refinement. An implication of Lemma 4.5 is that we can collapse components of significant
nodes into a single node prior to running CoLCoDENP. We propose a graph refinement to reduce
the total number of significant nodes in a graph. Given a network G(V, E), p-values for the nodes in
V, and a significance level a, we define Vi, . .., V, as the connected components (or supernodes) of
G induced by the set of significant nodes. We create a new graph H(V’, E’), whose node set consists
of Vi, ..., V, and the non-significant nodes in G, V' \ |Ji_, V;. Edges between non-significant nodes
are preserved in H, and we put an edge from a non-significant node u to V; if the edge (u, v) exists,
for some v € V;. Finally, we create a vector of weights, w’. The weight of a node in H is |V;| for
each supernode V;, and 0 otherwise. This procedure is equivalent to removing all the significant
nodes and replacing them with the respective supernode V;. Figure 3(a) illustrates the procedure.
After this preprocessing step, we run procedure MAXWEIGHT for the instance (H(V',E’), w’).

LeEmMMA 4.6. Let ((G(V, E), @), k, €) be an input to COLCODENP, and let S, be the solution returned
by the algorithm. Similarly, let (H(V',E’), @), k, €) with weights w’ be the corresponding instance
generated by graph refinement, and let S5, be the solution returned by CoLCoDENP in this instance.
Then, F(S};) = F(S;,). Furthermore, suppose S| = k, then, |S};| = k', for somek’ < k, so it is possible
to execute CoLCODENP with parameter k" and still obtain F(Sy;) = F(S(,).

Proor. The lemma follows from Lemma 4.5. |

Approximate refinement. It is possible to further compress the graph by including non-significant
nodes into the components described above. As before, we first obtain connected components of
significant nodes, Vi, ..., V,, but now, we keep adding nodes to a component V; as long as the
number of significant nodes is at least §|V;|, where f is a parameter between 0 and 1. We show an
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example in Figure 3(b). By doing this, we are able to reduce the number of anomalous supernodes.
We may not find the optimal solution now; however, we can control the error with the parameter f.

Figure 3(b) shows an example for = 5/6. By allowing non-significant node D to be merged,
we are able to combine nodes A through F in a subgraph of effective size 1 and weight 5. Note that
when f < 1, the solution may not be optimal, but Lemma 4.7 describes the effect on the approxi-
mation bound.

LEMMA 4.7. Denote the number of nodes signicant at level o in a set S as Ny (S). Let S* be the set that

IX;‘((;)) There is a solution on the instance H with ratio r(S) > pr(S*).

maximizes F and let r(S*) =

Proor. We split the set S* into significant nodes, N, (S*), and non-significant nodes, N, (5*),
such that N(S) = Ny (5) + N, (5"). We now show that, in the instance H, there exists a set S with
ratio
_N(S) Na(S")

S = > .
DTN N5 v + N

We define S’ as the set formed by the supernodes V; corresponding to the significant nodes in
S*, and we note that N, (S") > N,(S*); for simplicity, we assume equality. By construction, the

cardinality of S" is N(S) = N, (S") + %Na (8") = No(S™) + %Na (S7). Note that the nodes in S’
may be disconnected; however, we can connect them using a set of anomalous nodes S” of size at
most N, (S§*). Finally, we form a set S = §” U S” that has the desired ratio.

To conclude the proof, we compute r(S)/r(S*):

Nu(S) Ne(5%)
) _ N® N(S)+F Na(ST) 1
#) 7 Na(S9) = N (57) - 1-f ., Na(59)°
) Fe o WMo NS
Noticing that ]X?((SS)) < 1, we obtain r(S) > pr(S*). O

4.4.2 Low Radius Subgraphs. Let Bg(v,r) (referred to the ball of radius r at v) denote the set
of nodes at distance at most r from v in the graph G. It suffices to run the algorithm restricted to
the balls centered around significant nodes. The balls are smaller than the full graph, so they can
be processed faster; furthermore, they can be processed in parallel.

We use these two techniques to reduce the size of the input graph before running MAXWEIGHT.
Our algorithm, FAsTCoLCoDENP, with these addition is shown in Algorithm 2.

ALGORITHM 2: FasTCoLCODENP(G(V, E), tmax k. €, ).

Input: Instance (G(V, E), @max ), parameters k, € and f§

Output: Set S* with score OPT(F, k)

Let A be the set of p-values of nodes in V below a4

forae A
Perform approximate refinement with parameter S.
Let H = (V’,E’) be the refined graph with weights w’
{Si(a) : i € K} = MAXWEIGHT(H (V’, E'), W', k, €/n?)

§* = argmax;cp, k), aeaF (S} (@))

return S*
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5 ALGORITHMS FOR PARAMETRIC SCAN STATISTICS AND EXTENSIONS

In parametric scan statistics, both ¢(v) and b(v) are used as arguments to the function, which
makes the problem more challenging than for non-parametric functions. Furthermore, there ex-
ist other score functions for graph anomaly detection where both nodes and edges have weights
(Bogdanov et al. 2011; Rozenshtein et al. 2014). Optimizing such functions reduces to the PCST
problem (Johnson et al. 2000), which is NP-Hard. We can extend the methods described above
to these settings by keeping additional information in the dynamic program. We propose algo-
rithm FASTCoLCODEP for parametric scan statistics and algorithm CoLCopENW for PCST and its
variants.

5.1 Extensions to Parametric Scan Statistics

In Algorithm 3, we describe CoLCoDEP for parametric scan statistics maximization. For these func-
tions, each node v of the input graph has two weights associated with it: ¢(v) and b(v). Therefore,
we need a more general algorithm than CoLCopeENP. Analogous to Lemma 4.1, we make use of
the following property:

LEMMA 5.1. The parametric scan statistics functions characterized by Equation (2) are increasing
functions of C(S) if C(S) > B(S) and B(S) is constant.

Given a graph G(V, E) and vectors ¢ and b, let M(v, T, j) be the maximum value C(S) over all
connected subsets S, such that (1) v € S, (2) S is colorful with respect to T, and (3) B(S) = j. Here,
Jj ranges from 1 to B(V). M(v,T,j) can be computed by a dynamic program with the following
recurrence.

LEMMA 5.2. Let M(v,T,j) be defined as above. For any node v and color s, M(v, {s},j) = c(v) if
col(v) = s and b(v) = j, else M(v, {s},]) = —o0. If|T| > 2,
M(v,T,j)= max {M(v,T,j1)+ M(u, Tz, j2)},
u € Nbr(v)
T,T, CT
Jitja=]
where the maximum is over all partitions Ty U T, of the set T, all integers ji, j» with ji + j, = j and

all neighbors u of v.

Proor. Suppose M(v,T,j) is achieved for a connected set S, such that |S| = |T|, {col(u) :
u €S} =T, and B(S) =j with M(0v,T,j) = > ;cs c(s). We claim that there exists u € Nbr(v), in-
tegers ji,jo: j = j1 +j2, and partitions T =Ty UT,, and S = S; U S,, such that (1) M(v,T,B) =
M(v, Ty, j1) + M(u, T», j2), (2) {col(i) : i € S;} = Ty and {col(i) : i € So} = T», and (3) the node sets
S; and S, are connected. Since S is connected, there exists a tree H that spans S rooted at node v.
Further, there must exist a node u € Nbr(v) such that (u,v) € T, since |T| = |H| > 2. Let H; and
H, be the trees rooted at nodes v and u, respectively, that results when edge (u, v) is deleted in H.
Let S; and S; denote the sets of nodes in H; and H,, respectively. Let T; and T; be the colors used
by S; and S, respectively. By construction, we have (v, T, j) = ¥ (v, T1,j1) + ¥ (u, T2, j2), so that
the partitions S = S; U S, and T = Ty U T, satisfy the requirements mentioned earlier. Therefore,
the recurrence follows. |

5.1.1 CoLCopEP. Our algorithm for maximizing parametric scan statistics, CoLCODEP, is
presented in Algorithm 3. The procedure MAXWEIGHTP uses Lemma 5.2 to compute ¢; =
maxr. 1= M(v,T,j) forall i < k.

THEOREM 5.3. Let F(-) be any of the parametric scan statistics in Table 2, and let OPT(F, k) =
maxs.|s|<k F(S), where the maximum is over all connected subsets S of size < k. COLCODEP returns
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ALGORITHM 3: CoLCopeP((G(V, E), C, B), k, €).

Input: Instance (G(V, E), C, B), parameters k and €
Output: Set S* with score OPT(F, k)

{S} :i € K} = MAxWEIGHTP(G(V, E),C,B, k, €/n)
§* = argmaxie[1, k) F(S})

return S*

procedure MAxWEIGHTP(G(V, E),C,B, k, ¢’)

Input: Instance (G(V, E), C, B) and parameter k
Output: Set S} with maximal weight ¢; for all i € [1, k]
Let ¢; = —coforall i € [1,k]

. for t = 1to e¥log (1/€’)

R A A SR o AT

_ =
=

12:  For each node v, pick random color col(v) € K

13: forveV,seK,j<B(V)

14: M(v, {s},j) = c(v) if col(v) = s and j = b(v); —c0 otherwise
15: forv eV, T C K,with |T| > 2,j < B(V)

16: Use Lemma 5.2 to compute M(v, T, j)

17: If M(v,T,j) > 1| update 7| = M(v,T,J)

18: return {5} : Zues; c(v) = ¢, for i € K}

solution S* satisfying Pr[F(S*) = OPT(F,k)] > 1 — ¢, in time O(2KeXmB?,, log (n/€)), and using
space O(2%nBax ), where Bpax = B(V).

Proor. We prove below that the procedure MAXWEIGHTP correctly returns ¢; for i <k,
within the required time and space bounds. From Lemma 5.1, it follows that max;ey,x) i =
maxs|<k 9(C(S), B(S)). The correctness of the algorithm follows from the proof of the recurrence
in Lemma 5.2 and the bound on the success probability from Lemma 4.4. The algorithm maintains
the array M, indexed by nodes, all possible color sets, and all integers in [1, Byay |, which leads to
the space complexity of O(2KnBp.y), since there are at most 28~! possible non-empty color sets.
Lemma 4.4 considers the probability of error, i.e., Pr[max; X; # ¢;] for one value of i. We need
to consider this for k possible values. Therefore, taking €’ = €/n in Lemma 4.4 ensures that for
each i, the probability Pr[max; X; # ;] < €/n?, so that for all i, a, the algorithm correctly finds
;. The running time is the result of solving the recurrence for each node v, for each color set
T, and value B; this requires examining each possible partition T; U T, = T, B; + B, = B, and each
neighbor u € Nbr(v), which requires time O(|Nbr(v)|B2!T!). Therefore, the total running time for
each coloring is O(3,, Z?:o Zf;“f" [Nbr(v)|2(j) = O(3,, Nbr(v)|2KB2,,.) = O(2¥mB2,,). Since the
algorithm considers O(e¥ log n/e) colorings, the running time bound follows. O

We note that by approximating B(S) within a factor of (1 + §), the running time in Theorem 5.3
can be improved to O(2Fe* m%z log (n/€)), while losing a constant factor in terms of the approxima-
tion. We define i = 8 Bpax/n, for some & > 0. Then, we define a vector b’, where b’ (v) = | b(v)/u],
for each node v. By invoking CoLCoDEP on the instance (G = (V, E),c’,b’), we obtain a (1 + )
approximation on the weight of S*.

5.1.2  Scaling. There is a notion of graph refinement for parametric scan statistics analogous to
the one presented for non-parametric functions. We note that the parametric functions in Table 2
are increasing on the ratio r(S) = C(S)/B(S). Therefore, if we are given a set S with score F(S), we
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can increase the score of the set by adding any node that is a neighbor of a node already in S as
long as r(S) does not decrease. This idea is formalized in the following lemma.

LeEmMA 5.4. Let G(V,E) be a network, and let F(-) be a parametric scan statistic function. Given
a set S C V, suppose there exists an node u ¢ S and an edge (u,v) € E, for some v € S, such that
C(SU {u})/B(SU {u}) = C(S)/B(S), then, F(SU {u}) > F(S).

Exact refinement. For parametric scan statistics, the exact refinement consists of merging nodes
into components as long as the ratio 7(S) of the component does not decrease. Given a network
G(V,E) and event (c(v)) and population (b(v)) counts for every v € V, we maintain a list of com-
ponents or supernodes V =V, ..., V, and the graph H(V’, E’) induced by those. There is an edge
between V; and V; if there exist nodes v; € V; and v; € V, such that v; and v; are neighbors in
G. Initially, every node is its own component. The exact refinement iterates through the list of
current components trying to merge them until no more merges are possible. In each iteration, we
first sort the current components in descending order of ratio r(S). Then, in that order, we merge
a component with its neighbors if the ratio does not decrease. After this exact refinement, we run
Algorithm 3 for the instance (H(V’, E’), ¢/, b’), where ¢’ and b’ are the event and population counts
of the supernodes, respectively.

Approximate refinement. We can obtain larger components by allowing merges that decrease the
ratio of the component. Our approximate refinement procedure takes two parameters: f§ € [0, 1]
and § > 1. We allow a component V; to grow as long as two constraints are not violated:

(1) Population size constraint. The population size of V; is at most § times the smallest popu-
lation size in the component: B(V;) < § mingev, b(v).

(2) Event size constraint. The event size of V; is at least §J times the largest event size in the
component: % > fmaxyey, c(v).

C(SY)

LEMMA 5.5. Let S* be the set that maximizes a parametric scan statistic G and let r(S*) = B

There is a solution S on the instance H constructed as above with ratio r(S) > pr(S*).

Proor. Let S be the set formed by the supernodes V; containing the nodes in 5*:
S={Vi:(veS)A(veV)}

For simplicity, and without loss of generality, let us assume that each node of S* is in a separate
component in H. Then, we can analyze the ratio r(S)/r(S*):
C()+--+C(Vis))
r(S) _ BOA)++B(Vs)
r(S*)  c)tte(ys)
b(vl)+~~~+b(v|5‘)

By the population size constraint 9,

C(V1)+---+C(V‘5|) C(Vl)+---+C(V‘5‘) C(Vl)+“A+C(V|S‘)
B(V1)+---+B(Vjs|) S Ob(v1)+-+6b(vis)) - 35
c(u)+-+c(ys) —  c(u)+--+c(ys)) - clo)+---+clv :
b(vl)+---+b(v‘5‘) b(vl)+---+b(v‘5|) ( 1) ( |S|)
And, by the event size constraint 3, we have
C(V)++C(Vis)) c(Vy) C(Vis))
5 A

c(vy) + -+ c(vis)) Coc(v) -+ c(vs))
e + -+ felvys)
= c(vy) + -+ e(ys))
so we conclude that r(S) > pr(S*). O

bl
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5.2 Functions with Node and Edge Weights

Both the heaviest subgraph (Bogdanov et al. 2011) and EVENTTREE+ problems (Rozenshtein et al.
2014) reduce to PCST with NetWorth objective (Johnson et al. 2000). In PCST, we are given a graph
G(V, E) with non-negative node prizes, s, and non-negative edge costs, w, and the goal is to find
a tree S(V(S), E(S)) that maximizes the NetWorth objective:

W(S) = Z 7(v) - Z w(e).

veV(S) ecE(S)
Using our framework, we can design an algorithm to find a tree with maximal NetWorth and size
up to k, where k is a parameter. This implies an algorithm for HS and EVENTTREE+.
Let M(v, T) = maxgs W(S), where the maximization is over all connected and colorful sets S C V,
such that v € S, |S| = |T|, and {col(u) : u € S} = T. M(v, T) can be computed by a dynamic pro-
gram:

LEMMA 5.6. Let M(v,T) be defined as above. For any node v and color s, M(v,{s}) = m(v) if
col(v) = s, else M(v, {s}) = —oco0. If|T| > 2:
M(v,T) = max {M(v,T;) + max{M(u,T) — w(v,u),0}},

u € Nbr(v)
T, T, CT

where the maximum is over all partitions Ty U T, of the set T and all neighbors u of v.

Proor. The proof is analogous to that of Lemma 4.2, but this time we have to account for the
weight of the edge connecting two subsets in the recursive step. Suppose M(v, T) is achieved for a
connected set S, such that |S| = |T| and {col(u) : u € S} = T, with M(v,T) = 3};cs 7(i). We claim
that there exists u € Nbr(v), and partitions T = T; U Ty, and S = S; U S,, such that (1) M(v,T) =
M(v, Ty) + M(u, T,) — w(v,u), (2) {col(i) : i € S;} = T; and {col(i) : i € S;} = T», and (3) G[S;] and
G[S;] are connected. Since G[S] is connected, there exists a tree H that spans G[S], rooted at node
v. Further, there must exist a node u € Nbr(v) such that (u,v) € T, since |T| = |H| > 2. Let H; and
H, be the trees rooted at nodes v and u, respectively, that result when edge (u, v) is deleted in H.
Let S; and S; denote the sets of nodes in Hy and Hy, respectively. Let Ty and T, be the colors used by
Sy and Sy, respectively. By construction, we have M (v, T) = M(v, Ty) + max{M(u, T;) — w(v, u), 0},
where the second term is negative if the weight w(v, u) is greater than the NetWorth M(u, T3), in
which case M(v, T) = M(v, T1). The partitions S = S; U Sz and T = Ty U T, satisfy the requirements
mentioned earlier. Therefore, the recurrence follows. O

6 EXPERIMENTS

Our experiments address the following questions.

(1) Optimization power. Do our algorithms find high-scoring subgraphs in real networks and
synthetic benchmarks? How do they compare with existing methods? (Section 6.3).

(2) Event detection power. Do our algorithms correctly identify anomalous subgraphs? How do
precision and recall compare with baselines? (Section 6.4).

(3) Scalability. How do our algorithms scale to networks with more than 10° nodes? (Section 6.5).

(4) Performance in real datasets. How does the performance in real datasets compare with the
worst case bounds? (Section 6.6).

For brevity, we focus on one scan statistic from each class as illustrative examples: (1) BJ statistic
(Berk and Jones 1979) with ayax = 0.15, (2) positively elevated mean statistic (EMS) (Qian et al.
2014), and (3) the Heaviest Subgraph (HS) (Bogdanov et al. 2011) and EVENTTREE+ (Rozenshtein
et al. 2014) functions, as examples of non-parametric, parametric, and generalized functions with
edge weights, respectively.
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Table 4. Datasets Used in Our Experiments

Dataset | Description | Nodes | Edges | Instances

Datasets with real events

CitHepPh Citation network 11,895 76,284 4

NEast Network of counties 245 683 10,000
in Northeastern USA

Traffic Traffic network of 1,870 1,993 1,488
Los Angeles Country, CA

Twitter Follower network collected 2,645 17,108 182
through Twitter API

BWSN Battle of the 12,527 14,831 22
water sensors

PCST Benchmark for the prize collecting | 100 to 400 | 284 to 1,576 34

Steiner tree problem
Datasets with planted anomalies for scalability experiments

Email-FEuAll Email network 224,832 340,795 1

Higgs—Retweet | Retweet network 223,833 307,884 1

RoadNet-PA Traffic network of 1,088,092 1,541,898 1
Pennsylvania

Random Erdos-Renyi graphs of 100 to 0(100) to 5
with 100 to 1,000,000 nodes 1,000,000 | O(1,000,000)

6.1 Datasets

We use datasets from different domains, including social networks, infrastructure networks, and
standard synthetic benchmarks. Most of these datasets contain multiple instances, corresponding
to snapshots of the networks at different times. A brief summary of the datasets is provided in
Table 4.

CitHepPh.! This is a network of scientific collaborations between authors of papers submitted
to the High Energy Physics—Phenomenology category of arXiv. The p-value of each node v for a
specific snapshot was calculated as the ratio of nodes in the current graph snapshot whose citations
are greater than or equal to the citations of this node.

NEast (Kulldorff et al. 2003). The Northeastern USA Benchmark is a well-known dataset in the
spatial scan statistics community. Each node v represents one of 245 counties with a population size
b(v) and a synthetically generated number of infected people c¢(v). Under the null hypothesis of “no
anomalous cluster,” the infected people are uniformly distributed in the counties with probability
proportional to the population. That is, the number of infected people at node v follow a Poisson
distribution with parameter A - b(v), where A = C(V)/B(V) is the average infection rate in the
graph. For the non-parametric scan statistics experiments, we define the p-value of a node as the
probability of observing counts at least as extreme as c(v).

Traffic.” The highway network of Los Angeles County, California and its activity on May, 2014.
Nodes in the graph are sensors that record traffic statistics, such as average speed and the number
of vehicles passing through. We assume a normal distribution for the average speed recorded by
each sensor. In each snapshot ¢, the p-value of a node v is the cumulative distribution function of

https://snap.stanford.edu/data/cit-HepPh.html.
Zhttp://pems.dot.ca.gov/.
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a normal distribution with mean x,[}’t*l] and standard deviation 07[,1"%1], where xz[,l’ 1 and UZ[,

are, respectively, the sample mean and standard deviation for node v from snapshots 1 to ¢ — 1.
Twitter. A sample of the follower graph of Venezuela collected between July 1, 2013 and De-
cember 31, 2013. We assign p-values based on the tweeting behavior of the users. Formally, let x/,
be the number of tweets generated by node u at time ¢; we model x/, as a draw from a Poisson
distribution with parameter 1,,. We take a Bayesian approach and consider 4, to be drawn from
a Gamma distribution with parameters «,, and f,. These parameters are updated as we see new

1,6-1]

data every snapshot. The p-value of a node at time ¢ is its posterior probability p(n’ Ing’ t-1] ), which
follows a negative binomial distribution by our choice of prior.

Battle of the Water Sensor Networks (BWSN) (Ostfeld et al. 2008). This dataset is a benchmark
originally used to evaluate different sensor network designs in terms of early detection of contam-
inants in a water system. The dataset includes “ground truth” subgraphs representing parts of the
network that are contaminated, which we use for evaluation in Section 6.4.

PCST (Johnson et al. 2000). A standard benchmark to evaluate algorithms for the PCST Problem.
We use the “K” instances of the benchmark to evaluate methods that reduce to PCST (Section 6.3.3).

In addition, we also consider three large networks (i.e., over 10° nodes) from the SNAP repository
(Leskovec and Krevl 2014) to evaluate the scalability and performance-runtime tradeoff of our
proposed methods (Section 6.5). Since we do not have data of events in these networks, we plant
events according to the statistical assumptions of the B]J scan statistic. We select a set of seed nodes
and their neighbors in the graph. With probability «, each node has p-value less than 0.05. The
remaning nodes have p-value uniformly distributed in [0, 1].

6.2 Baseline Methods

We compare our proposed algorithm with the following state-of-the-art methods for scan statistics.
A summary of these algorithms can be found in Section 2 and Table 1.

(1) NPHGS (Chen and Neill 2014a): A local search heuristic for optimizing the BJ scan statistic.

(2) AdditiveGraphScan (GS) (Speakman et al. 2013) and DepthFirstScan (DFS) (Speakman
et al. 2015): The state-of-the-art algorithms for optimizing parametric scan statistics that
satisfy the linear-time-subset-scanning property. The EMS statistic also belongs to this
category.

(3) GL (Sharpnack et al. 2013b) and EdgelLasso (Sharpnack et al. 2012): The representative
methods for anomalous subgraph detection that optimize their own specific score func-
tions, but are often considered as baseline methods in connected subgraph detection pa-
pers (Qian et al. 2014).

(4) EventTreet (Rozenshtein et al. 2014) and MEDEN (Bogdanov et al. 2011): For optimizing
anomaly score functions with node and edge weights.

Parameter Tuning. The methods under evaluation, including ours, depend on user-specified pa-
rameters. We set k to 10 or below for our algorithms. When possible, we use the values prescribed
by the authors of the method; this is the case with NPHGS, EventTree+, and MEDEN. In the case of GL
and EdgelLasso, we tune the parameters separately for each dataset. In particular, we take a sam-
ple of 20 instances for each dataset and choose a parameter from {0.001, 0.003, 0.01, 0.03,0.1,0.3, 1}
that maximizes the average score. Notice that the parameter for each dataset may be different.

6.3 Optimization Power

6.3.1 Non-Parametric Scan Statistics. We compare FASTCOLCODENP to other algorithms on the
BJ statistic. In Table 5, we report the average BJ score obtained by each method, where the average
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Table 5. Non-Parametric Scan Statistics Optimization

Berk—Jones scan statistic
FasTCoLCODENP GS EL GL DFS NPHGS
CitHepPh 1138.011 1135.029  559.176 1118.352 1130.874 1118.353
NEast 68.525 64.214 23.366 23.211 55.541 17.696
Trafhic 128.740 128.722 116.732 125.824 14.412 121.632
Twitter 1722.790 1722.388 1722.388 1722.388 1720.243  1457.410
BWSN 602.164 599.972 530.850 530.457 536.200 531.280

Our algorithm FASTCoLCODENP obtains higher scores than previous methods in real-world datasets.

Table 6. Parametric Scan Statistics Optimization

Elevated mean scan statistic
FastCoLCoDpEP GS EL GL
CitHepPh 43.611 8.578 14.959 41.830
NEast 41.903 42.164 5.570 7.607
Traffic 11.763 9.920 4.526 8.752
Twitter 23.019 11.337 22.660 19.110
BWSN 109.097 21.64 108.933 107.459

We evaluate different methods with respect to the EMS. In almost all datasets, FAsTCoLCODEP
has better performace than existing methods.

is taken over all the instances in each dataset. We observe that FASTCOoLCODENP achieves higher
scores than all other methods. The difference in score is more pronounced in the NEast dataset,
where FASTCoLCODENP more than doubles the score of EdgeLasso (EL) and GL. We also note
that AdditiveGraphScan has performance close to our algorithm, which is reasonable, since this
method uses a sophisticated heuristic for Steiner connectivity problems.

6.3.2  Parametric Scan Statistics. Next, we compare FASTCOLCODEP to other methods with re-
spect to the EMS function. Table 6 shows the average score for different datasets. We find that FAsT-
CoLCoDEP has the best performance in all datasets, except for NEast, where AdditiveGraphScan
(GS) scores sligthly higher.

6.3.3  Functions with Node and Edge Weights. We also test our algorithm on two objective
functions for event detection that consider edge weights in addition to node weights: the HS
(Bogdanov et al. 2011) and EventTree+ (Rozenshtein et al. 2014) problems. The methods proposed
in these two works are MEDEN (Bogdanov et al. 2011) and GreedyT (Rozenshtein et al. 2014), respec-
tively. Both problem formulations reduce to the PCST problem (Johnson et al. 2000). We use our
framework to design an algorithm for the PCST objective; we call this algorithm CoLCODENW,
and we compare it in terms of objective score to MEDEN and GreedyT on the PCST benchmark of
(Johnson et al. 2000). For MEDEN, we convert the PCST instances to HS instances and run the Top-
Down heuristic described in (Bogdanov et al. 2011). For GreedyT, we convert the instances to a
complete graph where an edge between two nodes has weight equal to the shortest path between
the nodes, as described in (Rozenshtein et al. 2014). Figure 4 shows the scores of the two heuristics
relative to the score of CoLCODENW. Our algorithm finds subgraphs of higher quality than the
heuristics. The score is as much as four times higher compared to GreedyT and 1.5 times higher
compared to MEDEN.
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Fig.4. PCST objective score in a set of hard PCST benchmarks. CoLCopeENW finds solutions of higher quality
than state-of-the-art heuristics.

Table 7. Average Precision, Recall, F1 Score, Accuracy, and Objective Value at Different Levels of Noise

Precision Recall F1 score Accuracy F(S)
FastCoL FastCoL FastCoL FastCoL FastCoL
GS EL GL CopeNP GS EL GL CopeNP GS EL GL CopbeNP GS EL GL CopbeNP GS EL GL  CopeNP

0%[0.980 0.999 0.901 0.977 0.943 0.856 0.856 0.955 0.948 0.895 0.820 0.952 0.966 0.855 0.820 0.973 599.972 530.850 530.457 602.164
2%|0.974 0.991 0.995 0.973 0.967 0.796 0.772 0.975 0.970 0.854 0.842 0.957 0.946 0.789 0.769 0.950 579.197 427.984 437.783 580.977
4% 0.945 0.985 0.984 0.966 0.955 0.687 0.663 0.971 0.952 0.775 0.757 0.963 0.912 0.678 0.652 0.929 565.363 393.930 387.914 571.231
6%]0.959 0.964 0.973 0.954 0.937 0.567 0.542 0.953 0.946 0.683 0.664 0.953 0.901 0.558 0.536 0.912 522.694 318.593 300.118 531.497

8% 0.928 0.960 0.966 0.931 0.888 0.561 0.502 0.919 0.905 0.670 0.626 0.923 0.830 0.544 0.490 0.860 483.127 315.720 291.227 491.657

6.4 Event Detection Power

Now, we evaluate FASTCOLCODENP in terms of event detection power. We use the ground truth
provided with the BWSN dataset, and we evaluate in terms of accuracy, precision, recall, and the
F1 score. Let R be the set of nodes in the anomalous subgraphs and let S be the detected subgraph;
then, we define

El
5
K2

B
c

(1) Accuracy(R,S)
(2) Precision(R,S) l

(3) Recall(R,S) = 251 and
4)

[R]
_ Precision(R, S)-Recall(R, S)
4) F1 score = 2(Precision(R,S)+Recall(R,S))'

In order to assess the performance of our method under noise, we introduce a random percent-
age of uniform noise in each instance. For a given noise level I, each non-significant node becomes
significant with probability .

In Table 7, we compare the performance of FAsTCoLCODENP with other algorithms at different
noise levels. As in the previous section, we observe that our algorithm achieves higher objective
scores compared to other methods, even when noise is present. As for the event detection power,
FAsTCoLCoDENP has higher accuracy and recall for all the noise levels and higher F1 score at
almost every level. Finally, we note that the results in this section provide evidence that better
objective scores also lead to better detection power, thus the importance of algorithms with good the-
oretical bounds.
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Table 8. Performace-Runtime Tradeoff in Large Datasets for Non-Parametric Scan Statistic Evaluation

Berk—Jones scan statistic (Time in seconds)
FasTCoLCODENP GS EL GL DFS NPHGS
Email-EuAll 420.46 (2,376)  420.46 (20,254) 275.08 (679) -  392.53 (3,671) 275.08 (10)
Higgs-Retweet | 839.18 (1,015)  839.18 (32,340) 421.16 (585) - 72170 (3213)  421.16 (5)
RoadNet-PA 24.66 (22) - 24.66 (7919) -  21.22(1,584)  13.28 (15)

Scalability of Graph Scan Statistics Algorithms
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Fig. 5. Comparison of running time as a function of number of nodes in Erdos—Renyi graphs.

6.5 Scalability

With the techniques presented in Section 4.4, we are able to run FASTCOLCODENP in networks
with over one million nodes. We note that in previous work only networks of up to 80,000 nodes
have been considered. In Table 8, we compare our algorithm to existing methods in terms of ob-
jective score and running time. First, we compare FAsTCOLCODENP to the best-performing heuris-
tic: AdditiveGraphScan (GS). We note that both methods achieve the same score in all datasets,
but the running time of the latter is one order of magnitude larger, and it did not complete after
10 hours for the road network. Second, we observe that GL does not scale to large networks due to
the fact high time and space complexity of constrained quadratic programming methods. We also
note that our algorithm is much faster on the road network than on the other two because nodes
in this planar network have low degree, thus making our low-radius technique more effective. Fi-
nally, EdgelLasso, DFS, and NPHGS are faster than FAsSTCoLCoDENP; however, the scores obtained
are significantly lower than using our algorithm.

In Figure 5, we show the scalability of all the algorithms we consider as a function of graph
size in the Random dataset. FAsSTCOLCODENP is faster than other methods for graph of size 10*
and above, and it was the only algorithm to run to completion on graphs with one million nodes
within 24 hours.

6.6 Performance Guarantees in Real Datasets

Graph refinement. Our graph refinement operation reduces the number of significant nodes in real
datasets to less than a third of the original number. In Table 9, we report the number of significant
nodes before and after graph refinement for § € {1,0.95,0.90}. Each dataset initially contains hun-
dreds of significant nodes, with Twitter being close to 1,000. However, after graph refinement, this
number goes down to less than 100. With approximate refinement, we are able to further reduce
the effective number of significant nodes, down to a single digit in most cases. Because there are
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Table 9. Number of Significant Nodes with Graph Refinement

Dataset W(S,a) Graph refinement
(a = 0.15) B=1 B =0.95 B =0.90

CitHepPh 624 20 3 1
NEast 65 24 24 21
Traffic 157 61 61 60
Twitter 991 80 2 1
BWSN 333 4 2

1.0 77 7

0.8}

0.6}

0.4}

0.2

009 5 10 15 20

Iteration

Fig. 6. Score of the solution found (normalized by that of the optimum) as a function of the number of
iterations.

only a few significant supernodes, solutions of high score are small. In fact, if we set k to 10 or
less in FAsTCOLCODENP, we are able to discover solutions of higher scores than previous methods
(Section 6.3).

Convergence in few iterations. Algorithm FAsTCoLCODENP uses ¢ = e log n?/e random color-
ings to guarantee a solution with probability 1 — €. In practice, we find the number of colorings
needed is much smaller—this is shown in Figure 6 for the PCST benchmark. Each line in the plot
represents the solution obtained for one instance of size 100; the y-axis shows the objective value
obtained normalized by the objective obtained in the last iteration of the algorithm. The theoretical
bound requires 3,285 random colorings to guarantee 95% probability. However, the best solution is
found in less than 20 iterations for all instances, and sooner for most of them. We observed similar
results in the other networks in Table 4.

7 APPLICATION

We use our methods for event detection in Twitter follower graphs of Mexico and Venezuela. We
model interactions—i.e., retweets and replies—between users as Poisson counts. The weight of an
edge is given by — log(p(nfelng’t*l])/p, where p(nfelng,l’t*l]) is the posterior probability of seeing
n! interactions given the counts in the previous days, and z = 0.05 is a significance threshold. This
weighing function (Mongiovi et al. 2013) is positive-increasing if the posterior probability is less
than p and negative-decreasing otherwise. After assigning weights to edges, we solve the HDS
problem (Bogdanov et al. 2011) using algorithm CoLCODENW (See Section 6.3.3). For Venezuela,
the temporal anomalous subgraph spans the time period between January 4, 2014 and March 31,
2014, which was a time of nationwide protests against the central government of that country. We
also extracted the tweets corresponding to the heavy subgraphs, and we find that these tweets
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Fig. 7. Examples of events found in the heavy subgraphs for Venezuela (top) and Mexico (bottom) using our
methods.

contain chatter about important national events. Figure 7(a) shows one such event. The predomi-
nant terms of the tweets relate to a protest organized in the city of Tachira demanding the liberation
of local students, who had been put in jail in the previous days for protesting. For Mexico, the two
most common words in the extracted tweets form the phrase “energy reform” referring to a bill
recently proposed by Mexican president Enrique Pena Nieto that would have a significant impact
in the economy of the country (Figure 7(c)).

8 CONCLUSIONS

Anomaly detection is a fundamental task in network analysis with a large number of applications
to different domains, and scan statistics is one particular methodology that has been widely applied
for this task.

The detection power of methods based on scan statistics is reliant on the degree to which we
can optimize a given “anomalousness” function over connected subgraphs. This connectivity con-
straint makes the problem very challenging, compared to the looser constraint of spatial adjacency
that has been studied extensively. In fact, here, we show strong connections to the classical Steiner
Tree problem in graph theory.

In order to tackle the computational complexity, recent papers have proposed various heuristics
for scan statistics on graphs, which have been shown to have good empirical performance while,
at the same time, being very efficient and scalable. However, one notable drawback of heuristics is
that they seldom offer rigorous theoretical guarantees on the quality of the solutions discovered.
Because of the lack of guarantees, heuristics may perform poorly in some datasets, and this will
affect the ability to detect anomalous events in the graph. Furthermore, the lack of guarantees also
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makes it challenging to compare two competing heuristics. It is not clear whether one method is
always superior to the other or whether both are better in different parts of the problem space.

Instead, we propose algorithms based on parameterized complexity. We find that fixed parame-
ter tractability is a powerful, but underexplored approach for designing efficient algorithms, and it
is likely to be useful in other graph mining applications. We present a unified framework for opti-
mizing a broad class of graph scan statistics with connectivity constraints, with the following novel
characteristics: (1) it gives rigorous guarantees for a large class of parametric and non-parametric
score functions, and (2) it can be scaled to large graphs with over a million nodes.

Our methods will lead to direct improvements in performance quality for other uses of graph
scan statistics in different applications.

APPENDIX
A  HARDNESS OF MAXIMIZING BERK-JONES STATISTIC

We present the proof of hardness for maximizing the B]J statistic over connected subgraphs. A sim-
ilar style of proof can be used to establish hardness results for other functions in Table 2. Through
the results below, we formalize connections between scan statistic optimization and Steiner con-
nectivity, which is of both theoretical and practical interest.
The BJ statistic for a subset of nodes S is defined as
F(S) = max |S|-KL(W(S,a)/|S|,a).

A<Amax

Here, each node has a p-value, p(v) € [0,1], W(S, «) is the number of nodes in S with p-value at
most @, and amay is a parameter. KL(-, -) is the truncated KL-divergence:

0 0<d<y
KL, y) = { Olog (2) + 1= log (E2) y<s<1
o )

Sometimes, we will only be interested in the number of nodes with p-value at most @ and not
in the particular set being evaluated. In those cases, we will consider the following version of the
BJ statistic:

0 0<i/(i+]))<a
Flijoa) = (i +J) - KL/ G+ ), ) = | ilog (F52) + jlog (HE2) @ <if(i+)) <1
ilog(;) if(i+j)=1

Notice that F(-) can be computed from F’(-) by letting F(S) = maxy<q,, F'(W(S,a),|S| -

W(S,a),a).
LEMMA A.1. The function F’ (i, j, &) is increasing on i and decreasing on j when # is in the interval
(a,1).
Proor. The derivative of F’(-) with respect to i is
OF’ i
=log|—| -1 ,
0i °8 (i +]) o)
which is greater than 0 in the desired interval. Similarly, the derivative of F’(-) with respect to j is
OF' j
—Ig( ) log(1 - ),
dj +J

which is less than 0 in the interval. O
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In the decision version of anomalous subgraph detection, we want to find whether or not there
is a connected subgraph with objective value F(-) at least some lower bound.

ProBLEM 3 (BJ-DEcIDE (BJ-D)). Given: an undirected graph G = (V,E) with p-values, p(v) €
[0, 1], a parameter a;qx, and a parameter T > 0. Decide: Is there a connected set of nodes S C 'V,
such that F(S) > ?

For the proof, we will consider the node version of the Steiner Tree problem.

ProBLEM 4 (STEINER TREE (ST)). Given: an undirected graphG = (V,E), a set of terminalsT C V,
such that |T| = a, and a parameter b > 0. Decide: Is there a connected set of nodes S C V, such that
IS|<a+band T C S?i.e., Is it possible to connect all the terminals using at most b non-terminal
nodes?

Proor. (of Theorem 3.1) BJ-D is the decision version of this problem. First, we note that BJ-D
is in NP. Given any set of nodes S, we can verify that the nodes are connected in time polynomial
in the size of the input graph, and we can evaluate F(S) in time O(|S|?) to check whether or
not F(S) > 7. The O(|S|?) bound comes from the facts that (1) for a fixed «, we have to compute
W(S, &), which involves checking whether each node has p-value at most @ or not—this takes
O(|S]) time and (2) we have to evaluate the function for at most |S| different values of «a.

Now, we show that ST is polynomial-time reducible to BJ-D. Given an instance (G = (V,E), T, b)
of ST, we construct an instance (H = (V’, E’), p, @max, 7) of BJ-D as follows. Let n be the number of
nodes in G; H is going to be a graph with the same nodes and edges as G, but, in addition, we are
going to attach n” — 1 new vertices to each terminal node. We will refer to these new vertices as
spokes. Formally, for a terminal ¢t € T, let $* = {sf, ... ,52271}; then, V=V U({S!|Vt € T}and E’ =
EU{(t,s]),-.,(t,;s’, )|Vt € T}. For the p-values, the terminals and the spokes have p(v) = 1/2;
all other nodes have p-value 1. Finally, we let ama = 1/2 and 7 = F’(an?, b, 1/2), where a is the
number of terminals and b is the parameter in the instance of ST. This reduction is illustrated in
Figure 8. O

CraiM. There is a Steiner tree Sg with b non-terminal nodes in G if and only if there is a connected
set of nodes Sy with B score T in H.

Proor. The first direction—i.e., Sg implies Sy—is straightforward. By construction of H, Sg is a
connected set of nodes in H. Let Sy be the set formed by Si and all the spokes in the graph. That
is, Sy = Sg U {S*|Vt € T}. Sy has b + a + a(n? — 1) vertices—i.e., the non-terminals, the terminals,
and the spokes. Out of those, an? nodes have p-value 1/2 and the remaining b have p-value 1.
Therefore, this subgraph has BJ score of

F(Sy) = max F'(an® b,a) = F'(an®,b,1/2) = 1.
a<(1/2)

To prove the converse, notice that a connected subgraph Sy with F(Sy) > 7 has at most b nodes
with p-value greater than 1/2. By construction, these b nodes correspond to non-terminal nodes
in G. All that is left to show is all the terminals are included in Sy, as this implies that G contains
a connected graph with all the terminals and at most b non-terminals.

To see that Sy must in fact have all the terminal nodes, consider the highest scoring subgraph
that does not include some terminal. In the best possible case, we would be able to connect the
remaining (a — 1) terminals and their respective spokes without using any Steiner nodes. Such
subgraph would have a score of

F'((a—1)n*0,1/2) = (a — 1)n*log(2).
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Steiner Tree (G, T, b) BJ-Decide (H, p, Cmaz, T)

G = (V,E),n =7 nodes H = (V', E'),48 spokes attached to each terminal
T={1,2, 3} a = |T| = 3 terminals p(v) = 1/2 if node is terminal or spoke
b = 2 non-terminals Qmaz = 1/2

7= F'(an®b,1/2) = F'(147,2,1/2) = 92.67

Fig. 8. An example of the reduction in Theorem 3.1. For each terminal in the instance of Steiner Tree, we
add n? — 1 spokes to the corresponding node in the instance of BJ-Decide. There is a Steiner Tree containing
at most b non-terminal nodes in G if and only if there is a connected subgraph with BJ objective at least
7 = F'(an®,b,1/2) in H.

We want to compare this value to 7, which is given by

T =F'(an® b,1/2)

>F(an n-a,1/2)
2

an*+n-—a

2
=an’log |2 X ———
g( an’+n-a

n—a
)+(n—a)log(2x —),
where the inequality holds because (1) F’(-) is decreasing on b (Lemma A.1) and (2) in the worst
case, we need to use all the vertices in G to connect the terminals—i.e., (n — a) non-terminal nodes.

Now, we have a lower bound on 7 and an upper bound on the best score that does not have all the
terminals. We want to show that

2

> (a—1)n*log(2) (3)

an*+n-a an2+n—a)

2

anzlog(ZX )+(n—a)log(2><

an? log( a) +(n-a) log( )> (n +n—a)log(1/2),  (4)

an’? +n-— an’+n-a
where we get inequality (4) by moving the an®log(2) and (n — a) log(2) terms to the right-hand
side and rearranging. We show that the following two inequalities, which together imply (4), hold

for sufficiently large n.

2
an® log(#) %(n +n—a)log(1/2) (5)
- 1
(n—a) log(#) ~(0* 4 - @) log(1/2). ©)
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Proving (5):
1
2 _
an log(an2+n—a) > 2(n +n—a)log(1/2)
anzlog( L +n—a) <%(n +n —a)log(2)
10g(1+ 2“) < (1+ a)log(z)
an
1+ 220(”7
an

Because 1 < a < n, we can express a as fn, such that 1 > > 1/n. Replacing, we obtain

n—fn 1L, nfn
< 22 P (w2 @)
oy
1-f  h+55)
1+ —L <22 Fa" /fnz (8)
pn?
é 1L, 1-
1+ — < 27750 (letcS:Tﬁ) )
n
1(_ L 1) 148 1L
270-7m) (1 + —2) < 220%3) (multiply both sides by 227 7#)). (10)
n

Let € = log, (1 + §/n?), so that 1 + §/n® = 2€; then, inequality (10) holds for

2107 7n)ge < 23 (11)
1 1
E (1 - ﬂ_) +e <2671 (12)
n
1 €
1—E+2€<2. (13)

Substituting 1 + §/n? = 2€ into (13), we obtain
1oL hae<14l
42 <
pn 2

2log |1+ o < 5 !
o e 24—
& n? ﬁn
Since (1 - f) < 1, we prove the stronger inequality 2log(1 + §/n?) < % + % by analyzing the
growth rate of both functions:
25

lim 5= = lim
n—oo 210g(1 + F) n—oo 2#‘

3w
n2

(taking the derivative of both functions)

(taking out n* and §)

|
.é’—..‘

[
g
S

S

[
8
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Proving (6):

(n - a)log (ﬁ) > %(n2 +n—a)log(1/2)

2
- 1
(n— a)log (%) < (41— a) log(2)
an® 1 n?
log |1+ <—(1+ log(2
og( n—a) 2( n—a) 08(2)
2
1+ ﬂ < 2%(“’%).
By letting a = finfor 1 > > 1/n,
2 n2
PGP (14)
n—pn
2
1+ P gheep) (15)
1+ 6n? < 220+7%) lets = b (16)
1-p
2%(5"2_#)(1 +6n%) < 27 (1+8n’) (multiply both sides by 2%(5'12_#)). (17)
Let 1 + 6n® = 2€. Then, inequality (17) holds for
23(0m =) ge < 932 (18)
1
5(5n2— 1f‘3)+e<26_1 (19)
st — — 426 < 2¢. (20)
1-

Substituting 1 + §n? = 2€ into (20), we obtain
n

1-p

Sn’ — +2¢e < (1+6n%)

n> (2e -1)(1-p)
n > (2log,(1+n%) —1)(1 - p).
The stricter inequality n > (2log,(1 + 6n®) — 1) is true for sufficiently large n, since the function

on the left of the “>” sign grows faster. m]

We have shown that BJ-D is in NP and that ST is polynomial-time reducible to BJ-D. This com-
pletes the proof. O
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