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SUMMARY

Here, we present Scribe (https://github.com/
aristoteleo/Scribe-py), a toolkit for detecting and
visualizing causal regulatory interactions between
genes and explore the potential for single-cell exper-
iments to power network reconstruction. Scribe em-
ploys restricted directed information to determine
causality by estimating the strength of information
transferred from a potential regulator to its down-
stream target. We apply Scribe and other leading
approaches for causal network reconstruction to
several types of single-cell measurements and
show that there is a dramatic drop in performance
for “pseudotime”-ordered single-cell data compared
with true time-series data. We demonstrate that per-
forming causal inference requires temporal coupling
between measurements. We show that methods
such as “RNA velocity” restore some degree of
coupling through an analysis of chromaffin cell fate
commitment. These analyses highlight a short-
coming in experimental and computational methods
for analyzing gene regulation at single-cell resolution
and suggest ways of overcoming it.

INTRODUCTION

Most biological processes, either in development or disease pro-
gression (Faith et al., 2007; Friedman et al., 2000; Langfelder and
Horvath, 2008; Margolin et al., 2006; Meyer et al., 2008), are gov-
erned by complex gene regulatory networks. In the past few
decades, numerous algorithms for inferring networks from
observational gene expression data (Faith et al., 2007; Friedman
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et al., 2000; Langfelder and Horvath, 2008; Margolin et al., 2006;
Meyer et al., 2008) have been developed.

Inferring a network of regulatory interactions between genes is
challenging for two main reasons. The first challenge is that add-
ing even a handful of genes to a network inference analysis
requires that an algorithm consider many additional interactions
between them (Figure 1A). Each of these potential regulatory
interactions must be accepted or rejected on the basis of data.
If a network that includes a particular gene regulatory interaction
does not statistically “explain” the observed data substantially
better than the network that excludes it, the interaction should
be rejected. Deciding whether to include an interaction in a
network is especially difficult because adding interactions risks
overfitting to a particular dataset. Ultimately, as the number of
edges explodes as the number of genes grows, so does the
algorithms’ demand for input data.

A second challenge in regulatory network inference is distin-
guishing upstream regulatory genes from their targets directly
downstream. Most methods that aim to do so are predicated
on the notion that changes in regulators should precede changes
in their targets in time (Figure 1B) (Bar-Joseph et al., 2012).
Granger causality (GC) (Granger, 1969) is a statistical hypothesis
test for determining whether one time series (X;) is useful in fore-
casting another (X,), which has been applied to infer biological
networks (Zou et al., 2009). However, GC assumes a linear rela-
tionship between the regulator and the target, which is violated in
many biological settings (Hill et al., 2016). Convergent cross
mapping (CCM) (Sugihara et al., 2012), a more recent technique
based on state-space reconstruction (Takens, 1981) can detect
pairwise non-linear interactions. However, this method is limited
to deterministic systems, and thus may be poorly suited for many
cellular processes (e.g., cell differentiation), which are inherently
stochastic.

Single-cell RNA sequencing (scRNA-seq) experiments are
attractive for gene regulatory network inference for two reasons.
First, scRNA-seq experiments now routinely produce thousands
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Figure 1. Scribe, a Toolkit for Inferring and Visualizing Causal Regulations
(A) Inferring regulatory networks from gene expression data is challenging because the number of regulatory interactions that must be evaluated grows much

more quickly than the number of genes in the analysis.

(B) Ordering single-cell data in “pseudotime” or tracking how fluctuations in a regulatory network are followed by changes in a putative target in the same in-
dividual cells could boost power to detect causal regulatory interactions. Here, vertical dash lines indicate paired gene expression from the same cell, while
horizontal dash lines indicates smoothed gene expression across cells from different pseudotime points (left) or across real time from the same cell (middle). The
right panel represents the relationship of X/Y’s gene expression difference between any two consecutive pseudotime or real-time points across cells or from the

same cell.

(C) Scribe detects causality from four types of single-cell measurement (“pseudotime,” “live image,” “RNA velocity,” and “real time”) datasets with the metric,
restricted directed information (RDI). Scribe relies on RDI (Rahimzamani and Kannan, 2016) to quantify the information transferred from the potential regulator to
the target under some time delay while conditioned over its past on this pseudotime-series data. A gene often has a strong memory to its intermediate previous
state (Y;_;), but RDI will only give a highly positive causality score from the putative regulator to its target in cases where there is still a strong relationship between
the regulator’s history and the target’s present condition on target’s history (case 1 versus case 2).

of independent measurements, which may open the door to
sufficiently powered inference (Liu and Trapnell, 2016). Second,
algorithms that order the cells along “trajectories” that describe
development or disease progress offer a tremendously high
“pseudo-temporal” view of gene expression kinetics (Haghverdi
et al., 2016; Qiu et al., 2017a; Setty et al., 2016; Trapnell et al.,
2014). The recently introduced SCENIC method (Aibar et al.,
2017) combines GENIE3 (Huynh-Thu et al., 2010) with regulatory
binding motif enrichment to simultaneously cluster cells and infer
regulatory networks. Other studies have inferred regulatory
networks from scRNA-seq data using differential equations
(Matsumoto et al., 2017; Ocone et al., 2015), information
measures (Chan et al., 2017), Bayesian network analysis
(Sanchez-Castillo et al., 2018), Boolean network methods
(Hamey et al., 2017), or linear regression techniques (Huynh-
Thu et al., 2010; Papili Gao et al.,, 2017; Wei et al., 2017).
However, most methods do not explicitly leverage time-series
data to identify causal interactions and more importantly, most
fail to recover the correct network even in simple settings (Babtie
et al., 2017; Fiers et al., 2018).

Here, we introduce Scribe, a scalable toolkit for inferring
causal regulatory networks that relies on restricted directed
information (RDI) (Rahimzamani and Kannan, 2016). In contrast
to GC and CCM, Scribe learns both linear and non-linear causal-
ity in deterministic and stochastic systems. It also incorporates
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rigorous procedures to alleviate the sampling bias and builds
upon improved estimators and regularization techniques to
facilitate inference of large-scale causal networks. In concor-
dance with the theory, we demonstrate that Scribe has superior
performance compared to existing methods when the observa-
tions consist of true time-series data. However, current scRNA-
seq protocols do not follow the same cells over time, breaking
temporal coupling between measurements. We demonstrate
that there is a dramatic drop in performance in causal network
accuracy when the temporal coupling between measurements
is lost. We then demonstrate that “RNA velocity,” a recently
developed analytic technique for scRNA-seq analysis, restores
temporal coupling and improves causal regulatory network
inference. Our results suggest that preserving this coupling
should be a major objective of the next generation of single-
cell measurement technologies.

RESULTS

Previously, we proposed RDI (Rahimzamani and Kannan, 2016,
2017), an information metric to accurately and efficiently quantify
causality (STAR Methods). Here, we introduce Scribe, a toolkit
built upon RDI, that is designed for the analysis of time-series
datasets (either real time, RNA velocity, pseudotime or live imag-
ing datasets), and is especially tailored for scRNA-seq (Figure S1;
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Figure 2. Live Imaging Dataset of C. elegans Early Embryogenesis Captures Transcription Expression Dynamics Hierarchy
(A) Scheme used by Murray et al. for measuring transcription factor’s protein expression dynamics in real time for every cell during early C. elegans embryo-

(B) Single-cell lineage-resolved fluorescence data capture temporal dynamics of E lineage master regulators during C. elegans embryogenesis. The expression
for each gene is scaled to be between 0 and 1 and then smoothed using LOESS (locally estimated scatterplot smoothing) regression as in (Pliner et al., 2017), the
same as in (C).

(legend continued on next page)
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STAR Methods) and their visualization (Figure S2; STAR
Methods).

In order to assess the performance of Scribe, we examined
Caenorhabditis elegans’ early embryogenesis, where live imag-
ing has been used to measure nearly half of all transcription fac-
tors’ (TFs’) protein expression dynamics in every single cell in an
embryo (Murray et al., 2012). This dataset consists of 265 time
series each of which tracks the expression dynamics of a TF
using fluorescent reporter constructs. Measurements were
collected at 1-min intervals in every cell of the developing
embryo for the first ~350 min of embryogenesis (Figure 2A).

We tested whether Scribe was able to learn validated genetic
interactions that govern worm development. For example, it is
understood that in the intestinal cell lineage Ealap the TFs
end-1 and end-3 were upregulated prior to their targets elt-2
and elt-7 (Figure 2B and well before most other upregulated fac-
tors in this lineage (Figure 2C) (Wiesenfahrt et al., 2016). We ran
Scribe on these four genes to determine whether it could
correctly infer the causal regulatory interactions between them.
Although Scribe captured some known causal interactions
among the core TFs that specify this lineage (Owraghi et al.,
2010), it also reported both false positive and false negative inter-
actions based on previously curated networks (Owraghi et al.,
2010; Wiesenfahrt et al., 2016). For example, Scribe reports
that end-1 also strongly regulates end-3, which is not supported
by previous studies (Owraghi et al., 2010; Wiesenfahrt et al.,
2016) (Figure 2D). The entire Ealap lineage-specific network of
C. elegans early embryogenesis constructed by Scribe is shown
in Figures 2E-2G; zoomed-in versions of each network state is
available in the Supplemental Information and Scribe’s GitHub
repository. Overall, Scribe was able to accurately infer known
regulatory hierarchy (Figure 2F) (Murray et al., 2012).

Accurate Causal Network Inference Requires
Temporally Coupled Expression Data

Next, we explored Scribe’s ability to recover causal interactions
using scRNA-seq, which in contrast to live imaging measures
many genes in each cell. We first collected publicly available
datasets from several biological systems including developing
airway epithelium (Treutlein et al., 2014), dendritic cell response
to antigen stimulation (Shalek et al., 2014), and myelopoiesis
(Olsson et al., 2016). We then pseudo-temporally ordered these
cells as previously described using Monocle 2 (Qiu et al., 2017a).
Next, we ran Scribe on these pseudotime series (Figures 3 and
S3) and examined the regulatory interactions reported for known
transcriptional regulators of these systems. For each gene, we
summed the causal interaction scores to all other genes, deriving
a measure of its aggregate influence on the system. These
aggregate causality scores were significantly higher for known
transcriptional regulators than for genes believed to be targets
by the authors of the original studies (unpaired two-sample
t test, Figure S3).

We next explored whether Scribe can accurately reconstruct
causal regulatory networks. Recently, Olsson and colleagues
suggested a core network of TFs for regulating myelopoiesis
(Olsson et al., 2016) by performing bulk ATAC-seq (assay for
transposase-accessible chromatin using sequencing), chro-
matin immunoprecipitation sequencing (ChlP-seq), perturbation
experiments, and profiling the transcriptomes of 382 cells from
flow-sorted populations undergoing the transition (Figure 3A).
We used Scribe to calculate causal scores for each regulator-
target pair from the Irf8 and Gfi1 master regulators of the
monocyte or granulocyte lineage as identified by Olsson et al.,
respectively, to the other six genes in the core network, using
scRNA-seq data alone. We hypothesized that Scribe would re-
turn strong causal scores for the targets ascribed to each regu-
lator but not others. We observed that expression kinetics over
pseudotime correctly reflect the network architecture (Figures
3A and 3B). We represent the causal network inferred by Scribe
as a heatmap where each row corresponds to the causal score
from the regulator to all other genes and the color corresponds
to the magnitude of the causal score (Figure 3C). Scribe assigns
a high causality score for all targets of Irf8 (Gfi1, Irf5, Kif4, Per3,
and Zeb?2) but lowest causality score to Irf8 and Ets1, which are
not its direct targets. Similarly, Scribe assigns a high causality
score for the majority of Gfil's targets (Irf8, Kif4, and Per3)
even though Gfi1 has low expression values (Figure 3C). Visual-
ization of the combinatorial regulation of /rf8 and Gfi1 to either
Zeb2 or Per3, based on the Scribe visualization toolkit, captures
the conflicting regulation pattern between two regulators and
their two targets (Figure 3D).

Todetermine Scribe’s capabilities to reconstruct transcriptome-
level causal networks containing edges between TFs as well as
from TFs to putative downstream targets, we applied Scribe to
scRNA-seq data of hematopoiesis (Paul et al., 2015). We find
that the lineage-specific genes tend to have a high total outgoing
RDI sum among all significant TFs (Figure 3E). When restricting
to asmall subset of previously identified erythropoiesis-associated
TFs, we find Scribe identified several regulatory interactions, such
as Gata1-Gfi1-KIf4, which are known to play an important role in
myelopoiesis (Laslo et al., 2006; Stopka et al., 2005; Tamura
et al., 2015) (Figure 3F). However, in recovering known regulatory
interactions in each system based on a manually curated network
from the literature, Scribe only marginally outperformed GC and
CCM but all three methods generally performed poorly, with no
method reaching an area under curve (AUC) of greater than 0.7
(Figures 3G-3I).

We hypothesized that as with live imaging datasets, a lack of
coupling between the expression measurements in pseudo-
temporally ordered scRNA-seq data leads to poor accuracy dur-
ing regulatory network inference. In contrast to a true time series
in which an individual cell is tracked and measured longitudinally,
in pseudo-temporal datasets, each expression measurement
comes from a different cell. Therefore, although pseudotime

(C) Expression dynamics for 265 reported TFs along the lineage leading to the Ealap cell.
(D) Scribe reconstructs the causal regulatory network for the four master regulators (end-1/3 and elt-2/7). Note that the outlined box corresponds to the previously

known regulations.
(E) A scheme for the multiscale network for (F).

(F) An integrative multiscale model for the (E) lineage specification. Zoom in to see the network architecture in details.
(G) Lineage (AB, P, MS, E, D, C; Sulston et al., 1983 -specific causal networks for the curated master regulators constructed with Scribe shown as a hive plot.
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Figure 3. Scribe Recovers a Core Regulatory Network Responsible for Myelopoiesis

(A) A core network describes key regulators during the specification of monocytes and granulocytes (Olsson et al., 2016).

(B) Examples of gene-target pair kinetic curves over pseudotime along the monocyte lineage.

(C) Scribe infers the expected core regulatory network interactions for myelopoiesis.

(D) Visualization of combinatorial gene regulation from /rf8 and Gfi1 to Zeb2 or Per3.

(E) The normalized rank of lineage-specific genes’ total outgoing RDI sum.

(F) Lineage-specific network of significant regulators during erythropoiesis. Edges supported by the spring database are colored as red lines. For (E) and (F),
BEAM analysis was used to identify significant branching genes associated with the four (one) lineage bifurcation events shown in the hematopoietic trajectory
from Qiu et al. (2017a) based on the Paul dataset (Paul et al., 2015). The top 1,000 differentially expressed genes associated with each bifurcation were chosen to
build a causal network for each relevant lineage. A set of TFs relevant to specific lineages described previously is used for (E) or (F). Neu, neutrophil; Ery, erythroid;
Mk, megakaryocyte; mono, monocyte; DC, dendritic cell; BE, basophil and eosinophil.

(G and H) Receiver operating curves (ROC) (G, top) and area under curve (AUC) (H, bottom) of the inferred causal network based on Scribe, GC, and CCM, from
left to right, on the dendritic cell (DC) dataset, granulocyte or monocyte branch of the Olsson dataset, and erythroid branch of the Paul dataset. Four different
variants of causal inference implemented in Scribe are tested: RD/ (L =0), the default RDI method without conditioning on any other gene; RDI (L = 1), the RDI
method based on conditioning on the incoming gene with highest causality score, except the current target; uRDI, the method based on the uniformization
technique applied on the actual distribution in RDI; and uRDI (L = 1), the uRDI method but also with the conditioning on the incoming gene with the highest
causality score, except the current target.

(I) The network of the gene set as included in (F) retrieved from the STRING database.

reveals overall trends of the gene expression dynamics, the real-
time gene expression “micro-fluctuations” (fluctuations that
happen within short time-scales) of a regulator to a target is
not captured in pseudotime.

To test whether causal network inference requires temporal
coupling between genes across measurements, we ran Scribe

on simulated data based on a core network of neurogenesis
(STAR Methods) collected using four strategies for obtaining lon-
gitudinal measurements from individual cells. First, we consider
“real time,” an ideal theoretical technology in which all genes are
tracked in each individual cell as that cell differentiates. We
therefore consider a second setting “live imaging,” in which
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C, chromaffin; SCP, Schwann cell progenitor. The color of each cell corresponds to the cluster id from Figure 5B of (Furlan et al., 2017).

(B) A core causal network for chromaffin cell commitment inferred based on RNA velocity. Gene set is collected from (Furlan et al., 2017). Context likelihood of
relatedness (CLR) regularization is used to remove spurious causal edges in the network (see STAR Methods).

(C) Two potential coherent feed-forward loop (FFL) motifs of chromaffin differentiation are discovered from the core network. Edge width corresponds to causal

regulation strength.

(D) Visualization of the six causal regulation pairs in the feed-forward loops of Eya1-Phox2a-Erbb3 and Gata3-Phox2a-Notch1 (see STAR Methods for details).
(E) Visualizing combinatorial regulation logic for the two feed-forward loops in (C) with Scribe. For both (D) and (E), a grid with 625 cells (25 on each dimension) is
used. Similarly, expected values are scaled by the maximum to obtain a range from 0 to 1.

(F) Scribe’s ability to detect causal regulatory interactions is limited by the single-cell measurement technology used. Technologies that provide measurements
that are coupled across time and between genes provide more power for inference than conventional single-cell RNA-seq experiments.

each cell is tracked over time but only one gene is measured.
Third, we examine pseudotime, where all genes are measured
only once in distinct cells that have been sampled from a popu-
lation undergoing differentiation. Finally, we tested Scribe on
RNA velocity data, which consists of a snapshot measurement
of each cell’s current transcriptome along with a prediction of
that same cell’'s expression levels at a short time in the future
(Figure S4A).

Using pseudo-temporal measurements, GC, CCM, and Scribe
all performed very poorly in recovering direct, causal interactions
between genes in the hypothetical network (Figure S4B). The
inability of these methods to recover regulatory interactions is
unlikely to be due to the undersampling of the system, as the per-
formance was insensitive to varying the number of cells captured
in the simulated datasets (Figures S4C and S4D). Performance of
the three methods was only modestly better when using data
captured by “live imaging.”

We next evaluated two alternative modes of measuring gene
expression dynamics in single cells in which fluctuations are
coupled. Using conditional RDI, Scribe produced highly accu-
rate reconstructions from “real-time” measurements of gene
expression (AUC: 0.859 + 0.0283), in which every gene is
measured repeatedly in a set of cells as they differentiate. This
demonstrates that when measurements are fully coupled across
time, and fluctuations in a regulator can propagate to its targets,
restricted directed information correctly reveals causal regulato-
ry interactions. Scribe also recovered accurate networks (AUC:
0.837 +0.0189) with “RNA velocity” measurements (Figure S4A).
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Although RNA velocity does not repeatedly measure cells, it pro-
vides a “prediction” of the future expression levels of each gene
based on comparing mature to immature transcript levels, in
effect introducing a form of temporal coupling to the data. These
simulations show that methods for regulatory inference based on
information transfer fail using data from measurement modalities
in which fluctuation of a regulator’s expression across cells is
“uncoupled” from fluctuations in its targets.

Causal Network Inference with “RNA Velocity” Reveals
Regulatory Interactions that Drive Chromaffin Cell
Differentiation
We next sought to test whether Scribe could recover causal
network interactions using real RNA velocity measurements.
Recently, La Manno and colleagues applied RNA velocity to
study chromaffin cell differentiation as well as their associated
cell cycle dynamics (La Manno et al., 2018). We used this chro-
maffin dataset as a proof of principle for incorporating “RNA
velocity” into Scribe. We first reconstructed a developmental tra-
jectory from mature mRNA expression levels from each cell in
this dataset and then applied branch expression analysis odel-
ing, or BEAM (Qiu et al., 2017b), to identify genes that signifi-
cantly bifurcate between Schwann and chromaffin cell branches
(Figure 4). These genes were enriched in processes related to
neuron differentiation along the path from Schwann cell progen-
itors (SCPs) to mature chromaffin cells (Figure S4E).

We then applied Scribe to the RNA velocity measure-
ments from the 3,665 significantly branch-dependent genes



(g value < 0.01, Benjamini-Hochberg correction) (Figures 4C and
S4). We first built a network between significant branching TFs as
well as from TFs to the significant targets in chromaffin lineage
and found that only 0.75% of TFs interact with each
other while 8.40% of TFs regulate potential targets (causality
score > 0.05) (Figures 4E-4G). We then inferred a core network
between fourteen TFs believed to drive chromaffin cell
differentiation (Furlan et al., 2017). Within this core network,
Scribe identified two feed-forward loop (FFL) motifs (Alon,
2007): Eya1-Phox2a-Erbb3 and Gata3-Phox2a-Notch1 (Figures
4C—-4E). The STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) database of genetic and molecular interactions
(Szklarczyk et al., 2017) provided additional support for these
regulatory motifs (Figure S4H). From the RNA velocity network,
we also find that SCP-related TFs, such as Sh3tc2, tend to
have stronger causal regulation (ranked higher in terms of hub-
ness as shown in the arc plot), while chromaffin cell-related
TFs, including Chga and Th, have much smaller causal regula-
tions, reflecting the network capture transition from SCPs to
chromaffin cells (Furlan et al., 2017).

DISCUSSION

Despite extensive research into gene regulatory network infer-
ence over the past several decades, the fundamental source of
poor performance by these methods on single-cell data remains
uncertain. One possibility is that, even with the tremendous gains
in the throughput achieved by the developers of scRNA-seq
technology over the past decade (Svensson and Vento-Tormo,
2017), these methods still have not been provided with sufficient
data to accurately reconstruct networks. Alternatively, the basic
approach of inferring genetic interactions based on statistical
interactions between their measured expression levels may be
fundamentally limited.

We developed Scribe, which uses recently reported advances
in information theory to infer complex causal regulatory interac-
tions between genes. Scribe employs RDI, overcoming limita-
tions inherent to GC and CCM. Scribe also provides several
ways to visualize causal information transfer, helping users
distinguish between direct and indirect interactions and unravel
combinatorial regulatory logic.

Although Scribe correctly infers causal regulatory interactions
in simulated measurements that track all the genes in an individ-
ual cell over time, it performs poorly on live imaging or pseudo-
temporally ordered single-cell datasets. We demonstrate that
poor performance is due to the loss of temporal coupling
between measurements of genes that interact, in which fluctua-
tions in the levels of a regulator propagate to measurements of its
targets. This may explain poor performance by a broad class of
information-theoretic or statistical approaches for inferring regu-
latory networks from scRNA-seq data. If so, then simply
improving the throughput of scRNA-seq protocols will not be
sufficient to power inference methods. Pseudo-temporally
ordering scRNA-seq data provides a boost to the number of
genes that may be considered, and the temporal coupling
provided from joint measurement via live imaging of pairs of
genes could boost power further (Figure 4F).

Improvements to single-cell expression assays that produce
measurements for multiple genes that are coupled across time

may enable the accurate regulatory network inference possible
using Scribe or similar approaches. Although methods for
nondestructively tracking expression levels of many genes in
single cells over time have not been described, several assays
have been reported that provide snapshot estimates of both
steady-state mRNA levels along with their rates of synthesis.
These assays report measurements of the current and future
transcriptome of individual cells, essentially providing temporal
coupling over a short time horizon. For example, SLAM-seq (thi-
ol(SH)-linked alkylation for the metabolic sequencing of RNA)
(Herzog et al., 2017; Muhar et al., 2018) or TUC-seq (thiouridi-
ne-to-cytidine sequencing) (Riml et al., 2017) assay mature
RNA levels and estimate the rate of their synthesis via nucleo-
tide-labeling or conversion-based approaches. Importantly, sin-
gle-cell versions of those technologies (Cao et al., 2019; Erhard
et al., 2019; Hendriks et al., 2018; Qiu et al., 2019) have recently
been developed when this paper was under review and awaits
integrating Scribe with those technologies as future investiga-
tion. Sequential, multiplex RNA fluorescence in situ hybridization
(FISH) or “Seq-FISH” (Shah et al., 2018) which probes both
exons and introns of RNAs can also provide similar measure-
ments. RNA velocity, which analyzes scRNA-seq reads falling
within introns and estimates both mature mRNA levels and their
immature intermediates to predict the transcriptome over a short
time in the future, also generates coupled measurements.
Accordingly, using RNA velocity measurements greatly im-
proves Scribe’s accuracy compared to running it on pseudo-
temporal scRNA-seq measurements. These assays and algo-
rithmic improvements boost Scribe’s ability to recover causal
interactions because they provide increasingly comprehensive
and temporally coupled measurements across the transcrip-
tome. Concentrating efforts to improve temporal coupling in
new experimental methods should, in our view, be a priority for
the field.

scRNA-seq holds great promise for powering various algo-
rithms for network inference but as we have shown, major obsta-
cles remain in the way of doing so in practice. Once provided
with temporally coupled measurements, Scribe accurately
reconstructs networks of modest scale. As experimental and
computational improvements to single-cell expression tech-
niques couple measurements across time, we expect Scribe to
be increasingly capable of dissecting the complex genetic
circuits that drive development and disease.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

e KEY RESOURCES TABLE
o LEAD CONTACT AND MATERIALS AVAILABILITY
e METHOD DETAILS
O Four Possible Single-Cell Time-Series Measurement
Modalities
The Problem of Causal Regulatory Network Inference
Causal Inference
Granger Causality
Kernel Granger Causality
Convergent Cross Mapping

O OO OO0

Cell Systems 10, 265-274, March 25, 2020 271

CellPress




Restricted Directed Information (RDI)
Uniformization Method for Adjusting Sampling Bias
Scribe: A Toolkit for Visualization and Detection of
Complex Causal Regulation from Single-Cell Geno-
mics Datasets
Preparing Pseudotime-Series or RNA-Velocity for
scRNA-seq Datasets
Visualizing Pairwise Gene Interaction
Visualizing Combinatorial Gene Regulation
Causal Network Inference: an RDI-Based Algorithm
Inferring and Visualizing Transcriptomic Gene Regula-
tory Network
Parameters of RDI
Algorithm Complexity
Regularizing Causal Interaction Networks
Benchmarking Scribe with Alternative Algorithms on
Inferring Causal Regulatory Network
O Ordinary Differential Equations for the Neuron System
O Details on Analyzing Datasets Used in This Study
o DATA AND CODE AVAILABILITY
O Code Availability
O Data Availability

o O OO

o O OO0

o 00O

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/.
cels.2020.02.008.

ACKNOWLEDGMENTS

We thank Robert Waterston and his lab for guidance in analyzing C. elegans
early embryogenesis, Gioele La Manno for discussing causal network infer-
ence with RNA velocity, Andysheh Mohajeri for helping to prepare a website
for this work, and members of the Trapnell laboratory for comments on the
manuscript. This work was supported by a US National Institutes of Health
(NIH) grant DP2 HD088158, the Paul G. Allen Frontiers Group (Allen Discovery
Center grant to C.T.), and the W.M. Keck Foundation (to C.T.). C.T. is partly
supported by an Alfred P. Sloan Foundation Research Fellowship. A.R. and
S.K. were funded in part by an NIH award 1R01HG008164, an NSF Career
award 1651236, and an NSF CCF award 1703403.

AUTHOR CONTRIBUTIONS

X.Q., ARR., C.T., and S.K. designed Scribe. X.Q. and A.R. implemented the
methods. X.Q. and A.R. performed the analysis. L.W., B.R.,, Q.M., T.D.,
J.L.LM.-F., and L.S. contributed to the data analysis. X.Q., C.T., and S.K.
conceived the project. All authors wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: September 12, 2018
Revised: June 8, 2019
Accepted: February 5, 2020
Published: March 4, 2020

REFERENCES

Aibar, S., Gonzélez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H.,
Hulselmans, G., Rambow, F., Marine, J.C., Geurts, P., Aerts, J., et al. (2017).
SCENIC: single-cell regulatory network inference and clustering. Nat.
Methods 74, 1083-1086.
Alon, U. (2007). Network motifs: theory and experimental approaches. Nat.
Rev. Genet. 8, 450-461.

272 Cell Systems 10, 265-274, March 25, 2020

Amit, I, Garber, M., Chevrier, N., Leite, A.P., Donner, Y., Eisenhaure, T.,
Guttman, M., Grenier, J.K., Li, W., Zuk, O., et al. (2009). Unbiased reconstruc-
tion of a mammalian transcriptional network mediating pathogen responses.
Science 326, 257-263.

Babtie, A.C., Chan, T.E., and Stumpf, M.P.H. (2017). Learning regulatory
models for cell development from single cell transcriptomic data. Curr. Opin.
Syst. Biol. 5, 72-81.

Bar-Joseph, Z., Gitter, A., and Simon, |. (2012). Studying and modelling
dynamic biological processes using time-series gene expression data. Nat.
Rev. Genet. 13, 552-564.

Cao, J., Zhou, W., Steemers, F., Trapnell, C., and Shendure, J. (2019).
Characterizing the temporal dynamics of gene expression in single cells with
sci-fate. bioRxiv. https://doi.org/10.1101/666081.

Chan, T.E., Stumpf, M.P.H., and Babtie, A.C. (2017). Gene regulatory network
inference from single-cell data using multivariate information measures. Cell
Syst. 5, 251-267.€3.

Cover, T.A., and Thomas, J.A. (2006). Elements of information theory (John
Wiley & Sons).

Erhard, F., Baptista, M.A.P., Krammer, T., Hennig, T., Lange, M., Arampatzi,
P., Jurges, C.S., Theis, F.J., Saliba, A.E., and Délken, L. (2019). scSLAM-
seq reveals core features of transcription dynamics in single cells. Nature
571, 419-423.

Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G.,
Kasif, S., Collins, J.J., and Gardner, T.S. (2007). Large-scale mapping and vali-
dation of Escherichia coli transcriptional regulation from a compendium of
expression profiles. PLoS Biol. 5, €8.

Fiers, M.W.E.J., Minnoye, L., Aibar, S., Bravo Gonzalez-Blas, C., Kalender
Atak, Z., and Aerts, S. (2018). Mapping gene regulatory networks from
single-cell omics data. Brief. Funct. Genomics 17, 246-254.

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using Bayesian
networks to analyze expression data. J. Comput. Biol. 7, 601-620.

Furlan, A., Dyachuk, V., Kastriti, M.E., Calvo-Enrique, L., Abdo, H., Hadjab, S.,
Chontorotzea, T., Akkuratova, N., Usoskin, D., Kamenev, D., et al. (2017).
Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal
medulla. Science 357, eaal3753.

Garber, M., Yosef, N., Goren, A., Raychowdhury, R., Thielke, A., Guttman, M.,
Robinson, J., Minie, B., Chevrier, N, ltzhaki, Z., et al. (2012). A high-throughput
chromatin immunoprecipitation approach reveals principles of dynamic gene
regulation in mammals. Mol. Cell 47, 810-822.

Granger, C.W.J. (1969). Investigating causal relations by econometric models
and cross-spectral methods. Econometrica 37, 424.

Haghverdi, L., Buttner, M., Wolf, F.A., Buettner, F., and Theis, F.J. (2016).
Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods
13, 845-848.

Hamey, F.K., Nestorowa, S., Kinston, S.J., Kent, D.G., Wilson, N.K., and
Gottgens, B. (2017). Reconstructing blood stem cell regulatory network
models from single-cell molecular profiles. Proc. Natl. Acad. Sci. USA 1714,
5822-5829.

Hendriks, G.-J., Jung, L.A., Larsson, A.J.M., Forsman, O.A., Lidschreiber, M.,
Lidschreiber, K., Cramer, P., and Sandberg, R. (2018). NASC-seq monitors
RNA synthesis in single cells. Nat. Commun. 70, 3138.

Herzog, V.A., Reichholf, B., Neumann, T., Rescheneder, P., Bhat, P., Burkard,
T.R., Wlotzka, W., von Haeseler, A., Zuber, J., and Ameres, S.L. (2017). Thiol-
linked alkylation of RNA to assess expression dynamics. Nat. Methods 74,
1198-1204.

Hill, S.M., Heiser, L.M., Cokelaer, T., Unger, M., Nesser, N.K., Carlin, D.E.,
Zhang, Y., Sokolov, A., Paull, E.O., Wong, C.K., et al. (2016). Inferring causal
molecular networks: empirical assessment through a community-based effort.
Nat. Methods 73, 310-318.

Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring
regulatory networks from expression data using tree-based methods. PLoS
One 5.

Kleinberg, J.M. (1999). Authoritative sources in a hyperlinked environment.
J. ACM 46, 604-632.


https://doi.org/10.1016/j.cels.2020.02.003
https://doi.org/10.1016/j.cels.2020.02.003
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref1
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref1
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref1
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref1
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref2
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref2
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref3
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref3
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref3
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref3
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref4
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref4
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref4
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref5
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref5
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref5
https://doi.org/10.1101/666081
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref7
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref7
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref7
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref8
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref8
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref9
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref9
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref9
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref9
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref9
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref10
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref10
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref10
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref10
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref11
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref11
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref11
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref12
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref12
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref13
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref13
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref13
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref13
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref14
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref14
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref14
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref14
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref15
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref15
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref16
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref16
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref16
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref16
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref17
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref17
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref17
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref17
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref18
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref18
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref18
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref19
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref19
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref19
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref19
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref20
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref20
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref20
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref20
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref21
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref21
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref21
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref22
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref22

Kraskov, A., Stégbauer, H., and Grassberger, P. (2004). Estimating mutual
information. Phys Rev E Stat Nonlin Soft Matter Phys 69, 066138.
Krishnaswamy, S., Spitzer, M.H., Mingueneau, M., Bendall, S.C., Litvin, O.,
Stone, E., Pe’er, D., and Nolan, G.P. (2014). Systems biology. Conditional den-
sity-based analysis of T cell signaling in single-cell data. Science 346,
1250689.

LaManno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V.,
Lidschreiber, K., Kastriti, M.E., Lonnerberg, P., Furlan, A., et al. (2018). RNA
velocity of single cells. Nature 560, 494-498.

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 9, 559.

Laslo, P., Spooner, C.J., Warmflash, A., Lancki, D.W., Lee, H.J., Sciammas, R.,
Gantner, B.N., Dinner, A.R., and Singh, H. (2006). Multilineage transcriptional
priming and determination of alternate hematopoietic cell fates. Cell 126,
755-766.

Liu, S., and Trapnell, C. (2016). Single-cell transcriptome sequencing: recent
advances and remaining challenges. F1000Res 5, https://doi.org/10.12688/
f1000research.7223.1.

Ma, W., Trusina, A., EI-Samad, H., Lim, W.A., and Tang, C. (2009). Defining
network topologies that can achieve biochemical adaptation. Cell 738,
760-773.

Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla
Favera, R., and Califano, A. (2006). ARACNE: an algorithm for the reconstruc-
tion of gene regulatory networks in a mammalian cellular context. BMC
Bioinformatics 7, S7.

Marinazzo, D., Pellicoro, M., and Stramaglia, S. (2008). Kernel method for
nonlinear granger causality. Phys. Rev. Lett. 700, 144103.

Matsumoto, H., Kiryu, H., Furusawa, C., Ko, M.S.H., Ko, S.B.H., Gouda, N.,
Hayashi, T., and Nikaido, |. (2017). SCODE: an efficient regulatory network
inference algorithm from single-cell RNA-Seq during differentiation.
Bioinformatics 33, 2314-2321.

Meyer, P.E., Lafitte, F., and Bontempi, G. (2008). minet: A R/bioconductor
package for inferring large transcriptional networks using mutual information.
BMC Bioinformatics 9, 461.

Muhar, M., Ebert, A., Neumann, T., Umkehrer, C., Jude, J., Wieshofer, C.,
Rescheneder, P., Lipp, J.J., Herzog, V.A., Reichholf, B., et al. (2018). SLAM-
seq defines direct gene-regulatory functions of the BRD4-MYC axis.
Science 360, 800-805.

Murray, J.l., Boyle, T.J., Preston, E., Vafeados, D., Mericle, B., Weisdepp, P.,
Zhao, Z., Bao, Z., Boeck, M., and Waterston, R.H. (2012). Multidimensional
regulation of gene expression in the C. elegans embryo. Genome Res. 22,
1282-1294.

Ocone, A., Haghverdi, L., Mueller, N.S., and Theis, F.J. (2015). Reconstructing
gene regulatory dynamics from high-dimensional single-cell snapshot data.
Bioinformatics 37, i89-i96.

Olsson, A., Venkatasubramanian, M., Chaudhri, V.K., Aronow, B.J.,
Salomonis, N., Singh, H., and Grimes, H.L. (2016). Single-cell analysis of
mixed-lineage states leading to a binary cell fate choice. Nature 537, 698-702.
Owraghi, M., Broitman-Maduro, G., Luu, T., Roberson, H., and Maduro, M.F.
(2010). Roles of the Wnt effector POP-1/TCF in the C. elegans endomesoderm
specification gene network. Dev. Biol. 340, 209-221.

Papili Gao, N., Ud-Dean, S.M.M., Gandrillon, O., and Gunawan, R. (2017).
SINCERITIES: inferring gene regulatory networks from time-stamped single
cell transcriptional expression profiles. Bioinformatics 34, 258-266.

Paul, F., Arkin, Y., Giladi, A., Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H.,
Winter, D., Lara-Astiaso, D., Gury, M., Weiner, A., et al. (2015).
Transcriptional Heterogeneity and Lineage Commitment in Myeloid
Progenitors. Cell 163, 1663-1677.

Peter, I.S., and Davidson, E.H. (2011). A gene regulatory network controlling
the embryonic specification of endoderm. Nature 474, 635-639.

Pliner, H., Packer, J., McFaline-Figueroa, J., Cusanovich, D., Daza, R.,
Srivatsan, S., Qiu, X., Jackson, D., Minkina, A., Adey, A., et al. (2017).
Chromatin accessibility dynamics of myogenesis at single cell resolution.
bioRxiv. https://doi.org/10.1101/155473v1.

Qiu, X., Ding, S., and Shi, T. (2012). From understanding the development land-
scape of the canonical fate-switch pair to constructing a dynamic landscape
for two-step neural differentiation. PLoS One 7, e49271.

Qiu, X., Hill, A., Packer, J., Lin, D., Ma, Y.A., and Trapnell, C. (2017b). Single-
cell mRNA quantification and differential analysis with census. Nat. Methods
14, 309-315.

Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., and Trapnell, C.
(2017a). Reversed graph embedding resolves complex single-cell trajectories.
Nat. Methods 74, 979-982.

Qiu, X., Zhang, Y., Yang, D., Hosseinzadeh, S., Wang, L., Yuan, R., Xu, S., Ma,
Y., Replogle, J., Darmanis, S., et al. (2019). Mapping vector field of single cells.
bioRxiv. https://doi.org/10.1101/696724.

Rahimzamani, A., and Kannan, S. (2016). Network inference using directed
information: the deterministic limit. In 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton) 2016, pp. 156-163.

Rahimzamani, A., and Kannan, S. (2017). Potential conditional mutual informa-
tion: estimators and properties. In 55th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), (IEEE) 2017, pp.
1228-1235.

Riml, C., Amort, T., Rieder, D., Gasser, C., Lusser, A., and Micura, R. (2017).
Osmium-mediated transformation of 4-thiouridine to cytidine as key to study
RNA dynamics by sequencing. Angew. Chem. Int. Ed. Engl. 56, 13479-13483.

Sanchez-Castillo, M., Blanco, D., Tienda-Luna, I.M., Carrion, M.C., and
Huang, Y. (2018). A bayesian framework for the inference of gene regulatory
networks from time and pseudo-time series data. Bioinformatics 34, 964-970.

Schofield, J.A., Duffy, E.E., Kiefer, L., Sullivan, M.C., and Simon, M.D. (2018).
TimeLapse-seq: adding a temporal dimension to RNA sequencing through
nucleoside recoding. Time. Nat. Methods 15, 221-225.

Schreiber, T. (2000). Measuring information transfer. Phys. Rev. Lett. 85,
461-464.

Setty, M., Tadmor, M.D., Reich-Zeliger, S., Angel, O., Salame, T.M., Kathalil,
P., Choi, K., Bendall, S., Friedman, N., and Pe’er, D. (2016). Wishbone iden-
tifies bifurcating developmental trajectories from single-cell data. Nat.
Biotechnol. 34, 637-645.

Shah, S., Takei, Y., Zhou, W., Lubeck, E., Yun, J., Eng, C.-H.L., Koulena, N.,
Cronin, C., Karp, C., Liaw, E.J., et al. (2018). Dynamics and spatial genomics
of the nascent transcriptome by intron seqFISH. Cell 174, 363-376.e16.
Shalek, A.K., Satija, R., Shuga, J., Trombetta, J.J., Gennert, D., Lu, D., Chen, P.,
Gertner, R.S., Gaublomme, J.T., Yosef, N., et al. (2014). Single-cell RNA-seq re-
veals dynamic paracrine control of cellular variation. Nature 570, 363-369.
Stopka, T., Amanatullah, D.F., Papetti, M., and Skoultchi, A.l. (2005). PU.1
inhibits the erythroid program by binding to GATA-1 on DNA and creating a
repressive chromatin structure. EMBO J. 24, 3712-3723.

Su, H., Wang, G., Yuan, R., Wang, J., Tang, Y., Ao, P., and Zhu, X. (2017).
Decoding early myelopoiesis from dynamics of core endogenous network.
Sci. China Life Sci. 60, 627-646.

Sugihara, G., May, R., Ye, H., Hsieh, C.H., Deyle, E., Fogarty, M., and Munch,
S. (2012). Detecting causality in complex ecosystems. Science 338, 496-500.
Sulston, J., Schierenberg, E., White, J.G., and Thomson, J.N. (1983). The
Embryonic Cell Lineage of the Nematode Caenorhabditis Elegans. Dev Biol.
100, 64-119.

Sun, J., Taylor, D., and Bollt, E.M. (2015). Causal network inference by optimal
causation entropy. SIAM J. Appl. Dyn. Syst. 14, 73-106.

Svensson, V., and Vento-Tormo, R. (2017). Exponential scaling of single-cell
RNA-seq in the last decade. arXiv, arXiv:1704.01379.

Swiers, G., Patient, R., and Loose, M. (2006). Genetic regulatory networks
programming hematopoietic stem cells and erythroid lineage specification.
Dev. Biol. 294, 525-540.

Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M.,
Santos, A., Doncheva, N.T., Roth, A., Bork, P., et al. (2017). The STRING data-
base in 2017: quality-controlled protein-protein association networks, made
broadly accessible. Nucleic Acids Res. 45, D362-D368.

Cell Systems 10, 265-274, March 25, 2020 273


http://refhub.elsevier.com/S2405-4712(20)30036-3/sref23
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref23
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref24
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref24
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref24
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref24
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref25
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref25
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref25
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref26
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref26
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref27
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref27
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref27
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref27
https://doi.org/10.12688/f1000research.7223.1
https://doi.org/10.12688/f1000research.7223.1
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref29
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref29
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref29
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref30
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref30
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref30
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref30
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref31
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref31
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref32
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref32
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref32
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref32
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref33
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref33
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref33
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref34
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref34
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref34
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref34
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref35
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref35
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref35
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref35
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref36
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref36
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref36
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref37
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref37
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref37
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref38
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref38
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref38
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref39
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref39
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref39
http://refhub.elsevier.com/S2405-4712(20)30036-3/opt07dPXdK9fJ
http://refhub.elsevier.com/S2405-4712(20)30036-3/opt07dPXdK9fJ
http://refhub.elsevier.com/S2405-4712(20)30036-3/opt07dPXdK9fJ
http://refhub.elsevier.com/S2405-4712(20)30036-3/opt07dPXdK9fJ
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref40
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref40
https://doi.org/10.1101/155473v1
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref42
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref42
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref42
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref43
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref43
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref43
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref44
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref44
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref44
https://doi.org/10.1101/696724
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref48
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref48
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref48
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref49
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref49
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref49
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref50
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref50
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref50
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref51
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref51
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref52
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref52
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref52
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref52
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref53
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref53
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref53
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref54
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref54
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref54
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref55
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref55
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref55
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref56
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref56
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref56
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref57
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref57
http://refhub.elsevier.com/S2405-4712(20)30036-3/optb2aNHhHhVP
http://refhub.elsevier.com/S2405-4712(20)30036-3/optb2aNHhHhVP
http://refhub.elsevier.com/S2405-4712(20)30036-3/optb2aNHhHhVP
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref58
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref58
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref59
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref59
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref60
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref60
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref60
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref61
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref61
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref61
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref61

Takens, F. (1981). Detecting strange attractors in turbulence. Lect. Notes
Math. 366-381.

Tamura, T., Kurotaki, D., and Koizumi, S.-I. (2015). Regulation of myelopoiesis
by the transcription factor IRF8. Int. J. Hematol. 707, 342-351.

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M.,
Lennon, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics
and regulators of cell fate decisions are revealed by pseudotemporal ordering
of single cells. Nat. Biotechnol. 32, 381-386.

Treutlein, B., Brownfield, D.G., Wu, A.R., Neff, N.F., Mantalas, G.L., Espinoza,
F.H., Desai, T.J., Krasnow, M.A., and Quake, S.R. (2014). Reconstructing line-

274 Cell Systems 10, 265-274, March 25, 2020

age hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature
509, 371-375.

Wei, J., Hu, X., Zou, X., and Tian, T. (2017). Reverse-engineering of gene
networks for regulating early blood development from single-cell measure-
ments. BMC Med. Genomics 10, 72.

Wiesenfahrt, T., Berg, J.Y., Osborne Nishimura, E.O., Robinson, A.G.,
Goszczynski, B., Lieb, J.D., and McGhee, J.D. (2016). The function and regu-
lation of the GATA factor ELT-2 in the C. elegans endoderm. Development 743,
483-491.

Zou, C., Denby, K.J., and Feng, J. (2009). Granger causality vs. dynamic
Bayesian network inference: a comparative study. BMC Bioinformatics 70, 122.


http://refhub.elsevier.com/S2405-4712(20)30036-3/sref62
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref62
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref63
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref63
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref64
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref64
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref64
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref64
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref65
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref65
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref65
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref65
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref66
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref66
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref66
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref67
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref67
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref67
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref67
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref68
http://refhub.elsevier.com/S2405-4712(20)30036-3/sref68

STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Lung dataset (Treutlein et al., 2014) GEO id: GSE52583

LPS dataset (Shalek et al., 2014) GEO id: GSE41265

MARS-seq dataset (Paul et al., 2015) http://compgenomics.weizmann.ac.il/tanay/?page id=649

Olsson dataset (Olsson et al., 2016) synapse id syn4975060

Live imaging dataset for the C. elegans (Murray et al., 2012) Waterston lab

Software and Algorithms

Scribe This paper https://github.com/aristoteleo

Rcem Implemented based on: https://github.com/cole-trapnell-lab/rccm
https://github.com/cjbayesian/rccm

scRNASeqSim This paper https://github.com/cole-trapnell-lab/scRNASeqSim

Other

Supplementary software This paper Supplementary software

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Cole
Trapnell (coletrap@uw.edu).
This study did not generate new materials.

METHOD DETAILS

Four Possible Single-Cell Time-Series Measurement Modalities

Cell differentiation is an intrinsically noisy and asynchronous process. Even for the same developmental process, every cell in any
given time should be regarded as a distinct sample. We consider four possible types of gene expression measurements in those sin-
gle-cell samples:

1. Real-time, where we measure the gene expression for all the genes simultaneously in a single cell over time. This is the ideal
situation but no existing technology can produce data like this yet.

2. “RNA-velocity” where we only capture the current state and the next state for all genes in different cells. “RNA-velocity” can be
computationally inferred from single-cell RNA-seq datasets, or directly measured with Seg-FISH (Shah et al., 2018), and sin-
gle-cell version of SLAM-seq (Erhard et al., 2019; Hendriks et al., 2018; Herzog et al., 2017; Muhar et al., 2018; Qiu et al., 2019),
TUC-seq (Riml et al., 2017) and TimeLapse-seq (Schofield et al., 2018), among others.

3. Live-imaging datasets are those generated with multiple separate live-imagings for a single protein in a single-cell which are
then aligned along the same developmental process to form a time-series for all genes.

4. Pseudo-time is where we apply a trajectory reconstruction algorithm to order the single-cell RNA-seq snapshot dataset to form
a time-series.

The Problem of Causal Regulatory Network Inference

In this work, we formulate the problem of causal regulatory network inference as the inference of the underlying structure of influ-
ences in a stochastic dynamical system where the time series of each gene is causally regulated by a subset of other genes. We
assume that there are no unobserved confounders in order to make the problem tractable. In this setting, we can potentially infer
the causal regulators based on estimating the amount of information transferred from one variable (a potential regulator) to another
time-delayed response variable (a potential target). In the context of single-cell genomics (e.g. scRNA-seq, live-cell imaging), we ask
how we can reconstruct a regulatory network consisting of causal regulations that accurately describe the gene expression dynamics
and the associated cell fate transitions.
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Cell’ress

Causal Inference

In the setting stated above, various techniques, including Granger Causality and CCM, each associated with different assumptions
have been proposed to detect the structure of the causal regulatory network. In the following, we briefly summarize these methods
and introduce RDI, the method we developed and used in this study.

Granger Causality

In order to determine whether one time series (X;) is useful in forecasting another (X5) in economics, Clive Granger first proposed Granger
Causality (GC)in 1969 (Granger, 1969). According to GG, if X1 "Granger causes" X5, then the predictability of X, based on past values of X,
and X4 together is significantly greater than that of predicting purely based on the past values of X,. GC inits original formulation, however,
is only able to detect linear causal regulation: i.e., when the regulators regulate the target through a linear relationship.

Kernel Granger Causality

In (Marinazzo et al., 2008), a generalization of the Granger causality (kernel Granger causality or KGC) to the nonlinear case was intro-
duced using the theory of reproducing kernel Hilbert spaces. They showed kGC outperforms linear Granger causality in the feature
space of suitable kernel functions, assuming an arbitrary degree of nonlinearity. Hence choosing the proper kernel function with
proper parameters is crucial for this method to perform acceptably. Furthermore, introducing kernel functions operating on the linear
inner products means significantly higher computational complexity over that of naive Granger causality.

Convergent Cross Mapping

In order to detect pairwise non-linear interactions in deterministic ecology systems, George Sugihara and colleagues proposed
Convergent Cross Mapping (CCM) which is based on state-space reconstruction (Sugihara et al., 2012). One fundamental and some-
what counterintuitive idea of CCM, distinct from GC, is that it is possible to estimate X; from X5, but not the other way if causation is
from X; to X,. CCM first constructs shadow manifolds My, and My, from lagged coordinates of the time-series X, and X;. It then tests
whether states in the shadow manifold My, can be used for estimating the states in My, and vice versa via mapping through nearest
neighbors (cross-mapping). Another key idea of CCM is convergence which means that as the length of the time-series increases, the
shadow manifolds become denser and the ellipsoid or space formed by nearest neighbors shrinks, leading to improvement of cross-
map estimates. Although CCM is appealing, it cannot be generalized to stochastic systems as Takens’ theorem, the cornerstone of
CCM, will break down in such scenarios (Takens, 1981). Furthermore, CCM can only infer pairwise relationships and complex multi-
factorial interactions common in gene regulatory networks are not captured in CCM.

Restricted Directed Information (RDI)

As mentioned earlier, the causal inference method in Scribe is based on Restricted Directed Information (RDI). This measure deter-
mines the amount of statistical inter-dependence (or more formally the mutual information) between the past state of the regulator and
current state of the target gene conditioned on the target’s immediate previous state.

Cell state transitions are controlled by hierarchical regulatory networks (Peter and Davidson, 2011). In such networks, as the
expression of the regulator changes, their downstream target responds accordingly after some time delay d. A canonical measure
of mutual dependence which accounts for both linear and nonlinear associations between two genes (or more generally, two random
variables) Xand Y, is mutual information (MI) (Cover and Thomas 2006). Ml is symmetric and can quantify the "amount of information"
obtained about gene X or Y, through the other gene Y or X. It essentially determines how similar the joint distribution (oxy) of the two
genes Xand Yis to the products of factored marginal distribution pxpy, or formally:

Pxy (X,y)

106Y) = 3 _por o log e

If I(X;Y) is zero, then the two genes Xand Y are independent; otherwise it implies there exists some dependency between them
(e.g. in the case of a regulator and its target). It is often useful to quantify the mutual dependence between two random variables

(for example, regulator X and target Y) while removing the effect of a third random variable (for example another regulator Z or the
history state of the target). This leads to developing of conditional mutual information, which is defined as:

Pxviz(X,y|Z)
IX;Y|12) = X,y,2Z)log——2E )
X:Y12) %xyz( Y,2) gpx\z(X|Z)Py\z(y\Z)

MI provides a powerful approach to quantify the symmetric interdependence between genes. However, a favorable approach
would be to measure the causal score from a potential regulator to its target. We can achieve this by considering the time-series
of regulators and targets (X!, Y ) and quantifying the information transfer from the past state(s) of X to the current state of the variable
Y denoted by Y;.
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Previously, T. Schreiber reported Directed Information (Dl) as a measure for the amount of information flowing from the past state(s)

of X, the regulator, to the current state of the variable Y, the target (Schreiber, 2000). Dl is defined as:
DI(X = Y) = Z;/()LH;YJE")

In order to remove indirect interactions, we can calculate the information transferred from the regulator to the target while condi-
tioning on all the other genes ({X®, X?}€), which is,

DI(X = X0 {x0, x0}°) = 377 1(x0 " )

t=1

) t—1 0) t—1
X ’{X_ }/e{xm,xv)}c)

Furthermore, for a set of genes of interest, X(V' X® .. XM from a single-cell genomics dataset, we can infer a Directed
Information graph, Gp; = (V,E) where the vertex set V corresponds to the genes X" X@ .. X and the edge e; = (X?,X%)

from gene X to X¥ exists if and only if DI(X" —’X(’)’{X(i),XU)}C)io and the edge weight corresponds to the quantified DI
value DI(X) — X0 [{X® X1},

It was shown that if a system is not purely deterministic, the directed information graph Gp, inferred from DI will correctly recover the
true causal graph G¢ (the network which includes all causal interactions as directed edges) (Sun et al., 2015). Although Dl is able to
detect both linear and non-linear causality as opposed to the linear Granger causality and is applicable to stochastic systems, it (1)
can not deal with deterministic systems which may be of interest for certain scenarios and (2) poses huge computational burden
because it conditions on all possible previous states of the regulator or target and (3) requires an enormous amount of data which
is not affordable even with current single-cell genomic datasets.

We recently proposed a formulation of DI to alleviate those issues by employing only the immediate past of the target or regulators
instead of all the past states assuming a first-order Markov system, which is generally applicable to most biological processes. In this
method, the randomness is present due to the random initialization of the Markov system, hence creating arandom process on which
information measures are well defined. We term this method “Restricted Directed Information” (RDI) and define it as,

RDI4(X = Y) = I(Xe_q: Ye|Ye1)

Despite the fact that the original RDI measure is defined only for the immediate past of the regulator X, this measure can be flexibly
defined for arbitrary effect delay d from X to Y as we have done here.

Conditional Restricted Directed Information (cRDI): Similar to (Schreiber, 2000), RDI can also be extended to the case where the
information transfer from X to Y is conditioned on other potential regulator(s) Z to rule out the possible indirect causal effects and
confounding factors. Thus the Conditional RDI (abbreviated as cRDI) can be formulated as:

RD/m (X - Y|Zt—d2) = I(Xt—d1 ; Yt|Yt—1 7Zt—d2)

In (Rahimzamani and Kannan, 2016), it’s shown that cRDI works in many stochastic or deterministic cases and under some mild
assumptions is capable of inferring the correct regulatory network G¢. Moreover, it has shown that if the conditions are violated, no
other method will be able to recover the correct network (see Section IV. in (Rahimzamani and Kannan, 2016)).

In the upcoming sections we will discuss how RDI and cRDI are utilized in the Scribe toolkit.

Uniformization Method for Adjusting Sampling Bias
During our studies over the simulated benchmark data, we found that as the number of samples increases, the performance of RDI
first increases and then starts to decrease. This problem was particularly acute in simulations where gene expression reached a
plateau after cells committing to a cell fate. In general, while the transitional states are of higher importance in the discovery of causal
interactions, oversampled equilibrium states will outnumber the transitional samples resulting in a sampling bias towards less infor-
mative equilibrium states. This phenomenon can in turn reduce the inference accuracy since RDI requires calculating conditional
mutual information (/(X:_q; Yt|Y:-1)) by design, which is a function of the joint distribution (o(xt—a, ¥t,¥:-1) = p(VtlXt-a, Yi—1)P Xt—a,
Yt-1)). That is, the distribution is influential in the RDI calculation, despite the fact that the RDI score should be fully determined
only by the conditional distribution. Hence we devised a scheme to correct for sampling bias by re-weighting samples so that those
from the system during transitional periods are weighted higher than cells sampled from the system at equilibrium. One may assume
the input distribution is uniform and redistribute the observed samples in a more homogeneous fashion before calculating the
RDI value.

This bias correction scheme, which we term Uniformized conditional mutual information (UCMI) replaces the actual distribution
P (Xt—d,Yt-1) with a uniform distribution u(x;_4,y:-1) and then calculates the conditional mutual information for p(y:|x¢—a,yt—1)u(Xt—q,
yt—1). This is made possible thanks to the concept of potential Conditional Mutual Information (qCMI) (Rahimzamani and Kannan,
2017) and an estimator, in which the actual distribution p(x:_4,y:—1) of samples is replaced by any arbitrary distribution
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g(x:—q,yt—1) before estimating the conditional mutual information. uCMI is thus a special case of gCMI, in which the replacement
distribution g(x;_q,y:—1) is uniform. By replacing the conditional mutual information (CMI) in RDI with uCMI, we obtain a new way
of computing information transfer called uniformized Restricted Directed Information (uRDI).

The discussion above is especially relevant for single-cell genomics datasets as single cells are not homogeneously spread across
many biological processes and they often will be heavily sampled from steady states while rarely from transition states. A compelling
discussion of this phenomenon can be found in c.f. (Olsson et al., 2016). This imbalance of sampling confounds the performance of
RDI (or other mutual information based methods) and thus leads to ignorance of rare but critical regulation that happened during tran-
sition states. We noticed that empirical methods have been reported to account for sampling biases from single-cell measures (Krish-
naswamy et al., 2014). However, the uRDI method incorporated in Scribe provides a rigorous approach to replace the biased
sampling distribution with a uniform distribution to quantify potential causality (how much influence a regulator can potentially exert
on target without cognizance of the regulator’s distribution) and is thus arguably a superior approach to account for the sampling
biases issue (Rahimzamani and Kannan, 2017).

Scribe: A Toolkit for Visualization and Detection of Complex Causal Regulation from Single-Cell Genomics Datasets
Although Scribe is applicable to any time-series datasets, it is specifically designed for visualizing and detecting complex gene regu-
lation from single-cell genomics datasets (e.g. scRNA-seq). Scribe relies on (uniformized) restricted directed information to detect
causality but also supports other methods, including the well-known mutual information, Granger causality and the more recent
CCM. Scribe starts with time-series data, which can be based on “pseudotime-series” of a developmental trajectory reconstructed
from scRNA-seq data such as those constructed using Monocle 2, live imaging data or datasets with current and predicted spliced
RNA expression estimated using RNA-velocity. Scribe provides two main types of analysis:

1. Visualization and estimation of causal gene regulation;
2. Reconstruction of large-scale sparse causal regulatory networks.

Preparing Pseudotime-Series or RNA-Velocity for scRNA-seq Datasets

Scribe does not provide any built-in functionalities for pseudotime-series construction and relies on Monocle (http://cole-trapnell-lab.
github.io/monocle-release/) or similar tools, such as dpt (Haghverdi et al., 2016) or wishbone(Setty et al., 2016), for reconstructing the
single-cell trajectory before inferring causal networks. Scribe also doesn’t provide any built-in functionalities for RNA-velocity esti-
mation and relies on the velocyto framework (La Manno et al., 2018) for those estimations. In relation to physical time, pseudotime has
an arbitrary scale, thus Scribe doesn’t consider pseudotime value themselves instead using the ordering of each cell in pseudotime
for causal network inference. Similarly, we also assume the time delays 4t used in RNA-velocity estimations are constant across cells
and genes for the sake of simplicity.

Visualizing Pairwise Gene Interaction

In order to intuitively visualize casual regulations between genes, Scribe provides different strategies to visualize the response,
causality and combinatorial regulatory logic between gene pairs. The response visualization is similar to the DREVI approach
as proposed by Smita Krishnaswamy, et. Al (Krishnaswamy et al., 2014) with the exception that it considers time delay to
visualize the expected expression of potential targets given a potential regulator’s expression after a time delay. Response
visualization thus additionally aids in visualizing commonly appeared time-delayed regulations involved in cell differentiation
(Alon, 2007).

One limitation of response visualization is that it ignores the effects of a gene’s previous state to the current state or mem-
ory of its history. In order to also capture this effect and thus intuitively visualize causality, Scribe is equipped with causality
visualization. Essentially, this approach visualizes the causal regulation by considering the information transfer from the time-
delayed potential regulator to the target’s current expression, conditioned on the target’s previous state to remove effects from
auto-regulation. Causality visualization is a heatmap consisting of the expected value of the target’s current expression given
the target’s immediate past expression (y-axis) and the regulator’s expression with a time lag d (x-axis). For each column, it
represents the relationship for the target’s expression at the previous time point to the current state (memory of the history or
“auto-regulation”) given a fixed regulator value, while for each row, the information transfer from the regulator to its targets
given the previous target state.

Visualizing Combinatorial Gene Regulation

It is of great interest to understand the combinatorial gene regulation as it often determines how cells make decisions to choose a
particular cell fate or adapt to external stimuli (Ma et al., 2009). In order to visualize two-input combinatorial regulation, Scribe pro-
vides a third visualization tool. This visualization is a heatmap consisting of the expected value of the target’s current expression given
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knowledge of both of the regulators’ expressions with a time lag (x/y-axis). For both of the causality and the combinatorial logic
visualizations, the corresponding expected value is calculated through a local average with a Gaussian kernel.

We noticed that gene regulation directly affects the rate of the target gene which then results in gene expression changes. For

. . . ) . aX

example, if a gene X is negatively regulated by gene Y. We may define the rate function of X as d—tt = 1/(Xf_1 + Yf_“). Therefore,
visualizing the expected rate of a target at its current state given knowledge of both the regulators’ expressions with a time lag
(x/y-axis) allows better intuition of regulations. Although we won’t have accurate estimates of the rate of gene expression with
pseudo-time series data, the RNA-velocity method can be used to obtain those estimates.

Causal Network Inference: an RDI-Based Algorithm

Causal inference in Scribe is based on RDI, which is an extension of directed information under the assumption that the underlying
processes can be described by a first-order Markov model. The method we implemented basically tries to calculate the RDI value for
each pair of genes (i,j) conditioned over the top L genes (default is 0 or no conditioning and 1 for cases where we used conditioning)
which are candidates of being regulators of the gene j.

To reach this goal, it first calculates all the pairwise unconditioned RDI values, for all the potential delays specified by the
user in vector d (by default, it is a vector including 5, 10, 20, 25). Note that for the RNA-velocity dataset, since we assume the
time delays At for the current and predicted future RNA expression level are constant across the cell and genes, there is no
need to scan for a window of potential time delays. Then for each pair (i, j), it treats the delay corresponding to the largest RDI
value as the “true” delay of effect, i.e. the actual time delay by which the effect of i appears in j. Having identified the “true”
delays, the method then re-calculates the pairwise RDI values for each pair of genes (i, j), this time conditioned over the top L
(Lcan be specified by the user) genes with the highest incoming RDI values to j associated with their corresponding true de-
lays, treating them as the potential regulators of j.

The algorithm of causal inference in Scribe is as follows:

Input: Gene Expression Time-Series (Either Based on Pseudotime-Series, “RNA-velocity” or Live Imaging Data, among Others)
X0 " for Each Gene i
Output: A Matrix of Pairwise Causality Scores
Parameters: d: Vector of Delays, L: Number of Conditioning Genes
Pseudocode:
1. For each pair of genes (i, j):
- For all delays éed: Calculate RDI; (X — X))

- Set o} : =argmaxRDI;(X() — X))
oed

2. For Each Gene j:
- for Alli: Sort RD/spex (X — X0 Values in Descending Order
- According to the Sorting above, Take the L + 1 Nodes i with the Highest Incoming RDI Values to j and Store Them in a Set
as inc/"®. Store Their Corresponding Delays 6;;** in a Set d;"a".
3. for Each Pair of Genes (i.j):
- If ieinc">, Remove i from inc[">. Otherwise, Remove the Node / with the Lowest RD/spax (X"} — X)) from incj™.

4. for Each Pair of Genes (i.): Output RD/spe: (X —X¥) {X;’lélmax Yiemere)
! i ]

To calculate the causal network with uRDI, we apply the same algorithm as above but simply replace RDI with uRDI. In addition to
what required in RDI, uRDI also needs to estimate the actual distribution, p(x;_4,y:—1), Which relies on kernel density estimation (KDE).
We use standard Gaussian kernels from R in the Scribe package to calculate KDE.

Inferring and Visualizing Transcriptomic Gene Regulatory Network

Scribe can estimate a causal network from a set of known TFs (and among the TFs) to a set of targets of interest (selected through, for
example the BEAM test) , or estimate the pairwise causality among all the genes in a set of genes of interest. For the first scenario,
Scribe estimates causality between all pairs of TFs and the causality from each TF to each putative target; for the second scenario,
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Scribe estimates causality for any pair of genes in both directions. In order to retrieve significant causal edges while removing
promiscuous edges and reconstruct a sparse causal regulatory network that satisfies known properties of biology networks, Scribe
relies on a modified CLR regularization method (Context Likelihood of Relatedness) regularization and a directed network regulariza-
tion inspired by some biological assumptions (see section Network sparsifier: CLR regularization and directed graph regulariza-
tion below).

In order to facilitate the visualization of complex networks, Scribe provides a variety of approaches to visualize the RDI network
either through a heatmap, a hierarchical layout, an arc diagram or a hive plot, implemented based on igraph, netbiov, ggraph, arcdia-
gram as well as the HiveR R packages.

We used the Kleinberg centrality to define the hubness used to order genes on the arc plot which is defined as the principal eigen-
vector of AA’, where A is the adjacency matrix of the graph (Kleinberg, 1999).

In addition to the core causality detection feature based on (uniformized) restricted direction information, Scribe also supports
various methods for inferring the regulatory relationships including mutual information, Granger causality, and CCM implemented
based on parmigene, vars, and the rEDM packages, respectively. We also provide a python package for most of the estimation
methods, although without extensive support for visualization which may be supported in the future.

Parameters of RDI
The estimation of mutual information is inspired by Kraskov’s method (Kraskov et al., 2004) which builds on counting nearest-
neighbor points. In the R implementation of Scribe, nearest-neighbor points are identified with a modified RANN package.

Parameter Type Effect of Tuning Parameters

d Vector of positive integers Default: 5, 20, 40
The vector of potential delays, for which the corresponding RDI values
are calculated.
Setting this argument too small may limit the ability of Scribe to detect
causal relationships, while setting it too large can result in the discovery of
incorrect or indirect causal relationships, resulting in false delays and
conditioning.

L Non-negative Integer Default: 0
The number of the top incoming node(s) to the target, excluding the
source, over which RDI is conditioned.
L =0 corresponds to no conditioning (Plain pair-wise RDI). Any L>0
corresponds to conditional RDI (cRDI).
Conditioning over more nodes approaches the theoretical prerequisite of
conditioning over all genes, excluding the source and target, needed for
inferring the true causal network, however itimposes more computational
burden and undesirably reduces the accuracy of the RDI estimator with
fixed number of samples N, as it exponentially increases the dimension of
the state space used to calculate the k-nearest neighbors.

k Positive Integer Default: 5
Number of the nearest neighbors in the kNN estimator for the conditional
mutual information. The parameter should be set in such a way so the
neighborhood captures an adequate number of samples for a good
estimate of the probability corresponding to each sample.

Uniformization Boolean Default: False
If True, uRDI instead of RDI will be used. While imposing higher
computational burden over the same data than RDI, uRDI is expected to
improve the causal inference in the cases with highly-biased sampling
distributions.
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Worst-Case Complexity

N: the Number of Samples;

d: the Dimension of the X and Y Manifolds
(Default 2);

k: the Number of Nearest Neighbors

L: the Number of Conditioning Genes

Algorithm Methodology Parameters I: the Dimension of the Features Data
CCM Determining the causality from X to Y E: The number of lags embedded inthe ~ O(2EN log N)*+O(2(E +1)N)**
based on how well one can reconstruct  shadow manifold *Complexity of kd-tree algorithm for kNN
the cross-mapped estimate of X from Tau: The time lag between each search
the nearest neighbors determined on consecutive pair of time samples ** Complexity of regression and weight
Y space (default: 1) estimation
Granger Determining the causality from X to Y Maxlag: The number of lags of the past ~ O(IN +2PN +[°)*
Causality based on how much the past samplesof  sample included in estimating the * The complexity of linear regression
X contribute in linearly estimating the current state of Y
current state of Y, compared to when
the Y'is estimated based merely upon its
own past
RDI and Determining the causality from X to Y k: The number of neighbors for KNN O((d +L +1)Nlog N)* +O(kN)**
cRDI based on the amount of mutual estimation of mutual information *Complexity of kd-tree algorithm
information between the past of X and d: The lags for which the mutual **Complexity of inquiry of each neighbor
the current state of Y conditioned over information from the lagged source to
the past of (potentially) all other the current state of target is estimated.
variables than X L: The number of the conditioning nodes
other than X and Y. While small L’s can
result in false positives since we won’t
filter out confounding and/or
intermediate factors, too large L’s will
result in curse of dimensionality in
smaller sample set regimes and
increasing the computational
complexity in larger sample set regimes.
uRDland  Same as RDI method, but including the  All Parameters from RDI plus: O((d +L +1)N log N)* +O(kN)** + O(N®)***
ucRDI replacement of the empirical BW: The bandwidth of the kernel *Complexity of kd-tree algorithm

distribution of the past samples with a
uniform distribution

estimator

**Complexity of inquiry of each neighbor
***Complexity of kernel density estimation

Regularizing Causal Interaction Networks

In theory, Scribe can remove potential indirect causal gene regulation from one gene X to another gene Y by conditioning on all other
genes in the transcriptome except X. However, this requires a huge number of samples which is infeasible even with current single
cell genomics techniques and is impractically slow for even modest sets of genes. Therefore, we sought alternative approaches
based on statistical significance and reasonable assumptions of biology structures to remove potential indirect edges. The first
method we applied is the CLR or Context Likelihood Relatedness regularization. Previously, CLR is used in conjunction with mutual
information (MI). RDI (cRDI, etc) is like MI, it calculates the pairwise "causality influence score". Simply computing Ml between all
pairs of genes would yield a dense network with many indirect interactions. CLR regularizes this network to enrich it for direct inter-
actions. Just as with MI, we need some means of sparsifying the network formed by RDI links between all pairs of genes. Thus, Scribe
uses a procedure for regularizing RDI networks that is analogous to the one CLR uses to regularize M| networks. It works as the
following: after computing the causality score with RDI (uRDI) without conditioning between all gene-pairs, CLR calculates a normal-
ized score based on the z-score (or 0 if the z-score is less than 0) from all the input edges to the potential target and all the output
edges from the potential regulator of the gene pair. This normalized score is used as a statistical likelihood of each causal edge
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regarding to its network context. More formally, denoting the asymmetric matrix R corresponds to all raw causality scores calculated
with Scribe, with R;; being the causality score from gene i to gene j, we can calculate the z-score z; based on all gene i’s output
causality scores and z; all gene j’s input causality scores. The normalized score of R;, Rj; is defined as:

,‘5,-/- = \/max(O,z,-)2 +max(0,z,-)2/2

The user can either use the normalized score or choose a threshold of the normalized scores and treat the edges above the
threshold as significant or real regulation comparing to the background distribution of the causality scores. As discussed in the orig-
inal study, CLR removes many of the false regulations in the network by eliminating “promiscuous” cases, where one regulator
weakly co-varies with a large numbers of genes, or one gene weakly co-varies with many transcription factors which may arise
when the assayed conditions are inadequately or unevenly sampled. We note that, however, the original CLR is only applied on a
symmetric mutual information based matrix while we are dealing with an asymmetric matrix of causality scores. To avoid potential
confusion, we name our modified procedure as “CLR regularization” in our text. After applying CLR, the network may be still dense
and contain spurious edges. Previous studies have shown that the biological networks have some special properties distinct from
those of random networks; for example, the network’s out-degree distribution is well approximated by a power law distribution where
its in-degree distribution is almost an exponential distribution. Based on those assumptions, we proposed a new regularization
method for a directed graph.

The goal of our method is to learn a sparse directed graph from a dense asymmetric causality network (retrieved after applying CLR
regularization) satisfying two aforementioned properties. The directed graph’s structure is represented by an indicator matrix de-
noted by ®< {0, 1 }NXN, where 6;;=1 stands for the existence of edge i to j, and 0 otherwise. Since the entries are indicators, the
in-degree and out-degree of each node in the network can be easily formulated. Specifically, the out-degree of the ith node can
be represented by hou (i) = ||6i]|; and the in-degree of the ith gene is correspondingly represented by hj,(i) = ||¢'|;, where ¢; and ¢
are the ith row and ith column of ©, and £1-norm counts the number of nonzero elements since 6;; {0, 1}. Given the asymmetric ma-
trix of causality score R with the (i,/)-th entry as Ry, the following optimization problem is formulated to learn the structure of the
network:

. N N .
gllg(— D iRy +ay  log(6lly + &) +2) ||9’|I1>
ij

where the feasible set of the network structure is

A= {@e {0, 1M 3" 0 = B}
i

The intuition of the objective function comes directly from the above three assumptions: the first term of the objective is to
select the edge with large value of Rj; the second term is the negative log likelihood of the power law distribution for the out-
degree of each gene; the last term is the negative log likelihood of the exponential distribution for the in-degree of each gene.
The budget parameter B is introduced to prevent trivial solution, and a small positive value ¢ is used to prevent the numerical
issue of log function. The parameter « is the exponent of the power law distribution and A is the parameter of the exponential
distribution.

Benchmarking Scribe with Alternative Algorithms on Inferring Causal Regulatory Network

We follow the same procedure as reported previously (Qiu et al., 2012) to simulate the differentiation of central nervous system (Equa-
tion 1), except here we replace the correlated noise in the previous study with independent additive noise for the purpose of
simplicity. The data generated through this simulation is regarded as “real-time” dataset.
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Ordinary Differential Equations for the Neuron System

For creating Figures S1B and S1D, we set the time step as 0.1, samples per simulation as 100, the total number of simulations as 20.
We then infer the causal network based on all the 2000 samples using CCM, GC and RDI or uRDI either without conditioning or
conditioning on one gene that has the maximal input causality other than the current regulator to the target. Time delay between regu-
lator and target used in all those algorithms is set to be 1. We compare the inferred network with the known network to calculate the
AUC (area under curve). The experiment is repeated for 25 times to ensure reliable conclusions. We also increase the standard
deviation of the intrinsic noise from 0 to 0.2. ROC (Receiver Operating Characteristic) curve in Figures S1C and S1D is obtained
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similarly while setting the simulation based on a linear system where the transition matrix A is generated according to the network with
non-zero coefficients randomly taken from a uniform distribution u(0.75,1.25). The A matrix is then normalized to 1.01 Xmax{eig(A)}
to avoid the divergence of the system. The intrinsic noise standard deviation (s.d) is set to be equal to 0.01. All the genes are initialized
with a random value u(0.5,2). To infer the causal network, we take 100 samples per simulation and perform the simulation five times,
then apply Scribe, CCM and GC on those simulated data points.

To visualize the response, causality and combinatorial regulations as in Figures S2C-S2I, a single simulation leading to the neuron
fate is used. To create the response and the causality visualization for the two-node motifs (Ma et al., 2009), the network motifs are
firstly converted into a set of SDE functions using similar formulations as that used in the above simulation for neuronal differentiation.
The expression dynamics is then simulated by setting the initial expression for both genes as 0.01 and followed based on the set of
SDE equations (Figure S2A). We used similar procedures to simulate expression of genes under combinatorial regulations with
different logic gates and then create the combinatorial regulation visualizations (Figure S2B).

To investigate the importance of temporal coupling and the number of samples on the performance of causal inference, we also
simulate three other types of dataset based on the simulated “real time” dataset as following:

1. The RNA-velocity analysis framework estimates both exon and intron expression levels for each cell i or C,. It then calculates
the RNA-velocity V/(j) for each gene j in each cell i and predicts the future exon expression of EPedict after At = 1. Assuming the
time delays from all regulators to their putative targets are the same as At (or 1), Scribe calculates causality from the potential
regulator to the target with the conditional mutual information between the current regulator’s exon expression X; to the
predicted target exon expression Y, 1 (or equivalently the estimated RNA velocity value Vi(Y)) conditioned on the current target
exon expression Y; or by the default formula /(X;; Y¢.1|Y:) (or alternatively /(Xz; Vi(Y)|Y:)). Since X, Yi.1(V:(Y)) and Y are all
estimated from the same cell, in theory the gene expression dynamics between X;, Y;. 1(V¢(Y)) and Y;is coupled. To generate
RNA-velocity simulation dataset, we randomly select one time point t for each cell and collect all genes’ current and the next
time point’s expression (Xi’l) and XE’L). RNA velocity for each cell in that time point is then simply calculated as the difference
between next time point and current time point’s gene expression ( V;(X®) = X§’11 - x9).

2. To generate live-imaging simulation dataset, we first randomly select 13 cells where for each cell, a different gene is chosen
and is followed over the entire developmental process.

3. To generate pseudotime dataset, similar to RNA-velocity, we randomly select one time point t for each cell and collect all
genes’ expression at that time point. Then all data points from each cell at different time point is pooled and used as input
to Monocle 2 for trajectory inference, we then set the beginning of the simulation as root state for the trajectory and order cells
based on the inferred pseudotime to form a pseudotime series.

To create Figure S4B, five replicates each with 2000 data points are used for each algorithm. For Figures S4C and S4D, the same
analysis is performed but with data (replicates) downsampled to 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800 or 2000 data points
(1, 5, 10, 15, 20 repeats).

Details on Analyzing Datasets Used in This Study

Benchmark Scribe with DREAM Challenge Datasets

In GeneNetWeaver, we looked at the DREAMS3 challenge in-silico data for three networks, each of which has a size of 50. All networks
were obtained from modeling network in yeast (Yeast-1, Yeast-2 or Yeast-3). For each network, GeneNewWeaver is used to simulate
the time series for 10 times (i.e. we had a total of 10 runs), for a duration of 1000 time-units, and the measurement is recorded at every
10 time-units, hence 100 total time points for each run. The intrinsic noise coefficient was set to be 0.05. The measurement noise was
set as the default model in microarrays which is also used in DREAM4 challenge. Each time series was then normalized after adding
the noise. For each of the three networks, we conducted the inference task by running different methods over the generated time
series data described above and compared the final AUC score for each network.

Inferring Causal Network with Pseudotime Ordered scRNA-seq Datasets

Lung data is processed as described previously. Expression matrix is downloaded from GEO (GSE52583). After filtering, log-trans-
formed TPM values of 183 single cells’ transcriptome are used for monocle 2 analysis. (Qiu et al., 2017a). Categorization of pneumo-
cyte specification markers into either early and late groups used for benchmarking is based on references (Qiu et al., 2017a; Treutlein
et al., 2014).

The LPS data was pre-processed as described previously. 510 cells annotated as unstimulated replicate (normal unstimulated
cells were observed to have low RNA library quality), LPS stimulated cells without any perturbations, and LPS stimulated cells
with Stat1 and Ifnar1 knocked out taken at each of the included time points are used. The pseudotime trajectory is reconstructed
with the reversed graph embedding (Qiu et al., 2017a) on the same set of ordering genes used in this study. Only the path with
wild-type cells is used for causal network inference. Regulators and targets, and the regulatory network used for benchmarking
are collected from references (Amit et al., 2009) and reference (Garber et al., 2012), respectively.

Olsson data is processed as described previously. The processed FPKM values is downloaded via synapse (id syn4975060) and
used for pseudotime ordering with Monocle 2. The master regulators, transcription factors and downstream targets, and the regu-
latory network used for benchmarking are collected from reference (Qiu et al., 2017a) and references (Su et al., 2017), respectively.

e10 Cell Systems 10, 265-274.e1-e11, March 25, 2020



Paul data is processed as described previously. We downloaded the UMI counts data and the cell cluster annotation information
for the Paul from http://compgenomics.weizmann.ac.il/tanay/?page id=649. Only the path leading to the erythrocytic fate is used for
reconstructing the causal regulatory network. The regulatory network responsible for the differentiation of erythrocyte cells used for
benchmarking is collected from (Swiers et al., 2006).

Infer Causal Network with RNA-Velocity

The data of the chromaffin cell “RNA-velocity” analysis is retrieved from (http://pklab.med.harvard.edu/velocyto/notebooks/R/
chromaffin.nb.html). We use the estimated exon expression to reconstruct the trajectory for the chromaffin cell commitment. Only
cells on the path from the Schwann cell progenitors to mature chromaffin cells are used to infer the casual network. Two different
formulations, I (X;; Y1 | Y2 (or I (X Vi (Y) | Y9), can be used to infer causal networks with data from RNA-velocity. In this study,
we apply the first formulation.

Inferring Causal Network with Live-Image Data

Lineage-resolved live-imaging data for C. elegans early embryogenesis is obtained from Waterston lab. Raw fluorescence intensity
signal is directly used for causal network inference. We note two caveats in analyzing the reporter data with Scribe. First, although the
promoter-fusion data sheds light on the induction kinetics of the TF of interest, once the fluorescent reporter is expressed it follows
the trafficking and degradation kinetics of the histone protein, and not the TF. Second, the time series for each TF was captured in a
different embryo, so this may introduce noise that obscures the regulator/target relationships between the TFs although the
C. elegans development process is highly robust. Nevertheless, this data set represents an unprecedented view of TF activity at
high spatiotemporal resolution during the early development of a complex organism.

DATA AND CODE AVAILABILITY

Code Availability

A version of Scribe (version: 0.99) used in this study is provided as Supplementary Software. The newest Scribe implemented as an R
package is available through GitHub (https://github.com/cole-trapnell-lab/Scribe), an equivalent python version is hosted at (https://
github.com/aristoteleo/Scribe-py). Notebooks for usage cases of Scribe is available at https://github.com/aristoteleo/Scribe-
Python-notebooks. CCM algorithm is implemented as the rccm package (https://github.com/cole-trapnell-lab/rccm) which is based
on https://github.com/cjbayesian/rccm. The neurogenesis simulation is implemented as the scRNASeqSim package (https://github.
com/cole-trapnell-lab/scRNASeqgSim). Supplementary Software also includes a helper package containing helper functions as well
as all analysis code that can be used to reproduce all figures and data in this study.

Data Availability
This study did not generate new data.
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