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Extremophiles are overwhelmingly single-celled microbes that teach us about the limits of life, both on this planet and beyond. Life evolved under conditions that were 
harsher than those today and continues to thrive in environments that humans consider extreme. Earthly environments hosting extremophiles resemble extraterrestrial loca-
tions; therefore, characterizing extremophile adaptations and mechanisms of survival is essential to guide our search for life elsewhere. Knowledge of extremophiles and their 
enzymes has driven industrial and technological advances.

Poly-extremophiles are adapted to more than one extreme condition and are surprisingly common. Adaptation to one harsh condition often facilitates resistance to another 
condition as a by-product. However, the condition-based categories used to classify extremophiles do not adequately reflect their natural environment or phylogenetic history 
and, instead, reflect convergent evolution. Nonetheless, these categories are useful for illustrating the cellular and molecular adaptations that have evolved for thriving at the 
extremes, which we delineate in this SnapShot. See the online interactive map for additional detail on biogeography, record holders, and literature references: http://bit.ly/
Schmid-extremophiles-map.

Psychrophiles | Temperature <15°C
Psychrophiles are found in low-temperature environments, such as polar oceans, lakes, and permafrost (DeMaere et al., 2013). Altered properties of psychrophilic cells 

include compatible solutes and chaperones, increased membrane fluidity due to shorter side chains and decreased lipid saturation, and exopolysaccharides with cryopro-
tective roles (Siliakus et al., 2017). To maintain flexibility and activity, psychrophilic proteins are enriched for small amino acids such as glycine; they also have fewer prolines, 
a reduced hydrophobic core, and a protein surface with fewer charged residues (Reed et al., 2013). These adaptations ensure a lower energy barrier between the various 
conformations of psychrophilic proteins.

Thermophiles | Temperature >60°C (>80°C for hyperthermophiles)
Thermophiles are found in volcanic hot springs and oceanic hydrothermal vents. Their proteins maintain activity at high temperatures via prominent hydrophobic cores, 

increased electrostatic interactions, and enrichment in salt and disulfide bridges (Reed et al., 2013). The thermophile-specific enzyme reverse gyrase introduces positive 
supercoils into DNA to maintain the double-stranded helical structure at high temperatures (Ogawa et al., 2015). The membranes of thermophiles feature lipids that often form 
monolayers, comprising tetra-ester (bacteria) or tetra-ether (archaea) lipids enriched for branched, saturated hydrocarbon chains (Siliakus et al., 2017). These adaptations 
ensure thermal stability, thereby maintaining nutrient transport and a chemiosmotic gradient.

Acidophiles | Acidic pH <3
Acidophiles are found in volcanic hot springs and acidic mine drainage. Most acidophiles keep their cytoplasm close to neutral pH using powerful proton efflux pumps and 

proton-deflecting membranes with reduced permeability (branched ether monolayers resembling those of thermophiles [Siliakus et al., 2017]). Some species have an acidified 
cytoplasm and use chaperones to maintain correct protein folding under acidic conditions; their proteins have an overabundance of acidic residues on the surface, which 
minimizes low pH destabilization. Many acidophiles are also resistant to high concentrations of metal ions.

Alkaliphiles | Alkaline pH >9
Alkaliphiles are found in mineral-rich soda lakes and hydrothermal alkaline vents (Banciu and Muntyan, 2015). They maintain an intracellular neutral pH by cytosolic acidifi-

cation, an active mechanism that uses Na+/H+ antiporters to accumulate intracellular protons (Padan et al., 2005). A passive mechanism found in some alkaliphilic bacteria is 
an acidic polymer cell wall matrix. This matrix protects the membrane by preventing the entry of hydroxide ions.

Halophiles | NaCl >0.5 M (or very high sugar for osmophiles)
Halophiles are found in salt lakes and marine salterns and use either “salt-out” or “salt-in” adaptations. The former strategy is found in bacteria and eukaryotes, which 

accumulate high intracellular concentrations of compatible osmolytes (e.g., glycerol, betaine) to maintain osmotic homeostasis. The latter strategy is found mainly in archaea 
that accumulate high levels of KCl in their cytoplasm using a K+/Na+ antiporter (Gunde-Cimerman et al., 2018). This requires protein adaptions, including an increased nega-
tive surface charge due to a high acidic amino acid content (Reed et al., 2013). In high light and low oxygen, many halophiles use bacteriorhodopsin (BR), a light-driven proton 
pump, to generate ATP to drive the antiporter and maintain osmobalance (Gunde-Cimerman et al., 2018). Photoprotective membrane-associated pigments (e.g., carotenoids) 
protect against frequent UV damage in hypersaline environments. Many hypersaline-adapted archaea are also polyextremophiles adapted to low temperatures and high pH 
(Banciu and Muntyan, 2015; DeMaere et al., 2013).

Xerophiles | Desiccation, water activity (aw ) <0.8
Xerophiles are found in dry environments such as hot and cold deserts, including the Dry Valleys of Antarctica. Xerophiles use similar adaptations to salt-out halophiles, 

accumulating high intracellular concentrations of compatible osmolytes (glycine, betaine, trehalose or glycerol) to cope with low aw (Lebre et al., 2017). Xerophiles are often 
radioresistant because the mechanisms for dealing with desiccation render them resistant to ionizing radiation and oxidative stress (Hallsworth, 2018). Xerophiles have 
elevated levels of antioxidants to protect against desiccation and radiation-induced damage to proteins. For example, Deinococcus radiodurans uses manganese complexes 
as antioxidants (Daly, 2009).
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