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Abstract

The unique physicochemical and luminescent properties of carbon dots (CDs) have
motivated research efforts towards their incorporation into commercial products. Increased use of
CDs will inevitably lead to their release into the environment where their fate and persistence will
be influenced by photochemical transformations, the nature of which is poorly understood. This
knowledge gap motivated the present investigation of the effects of direct and indirect photolysis
on citric and malic acid-based CDs. Our results indicate that natural sunlight will rapidly and non-
destructively photobleach CDs into optically inactive carbon nanoparticles. We demonstrate that
after photobleaching, "OH exposure degrades CDs in a two-step process that will span several
decades in natural waters. The first step, occurring over several years of "OH exposure, involves
depolymerization of the CD structure, characterized by volatilization of over 60% of nascent
carbon atoms and the oxidation of nitrogen atoms into nitro groups. This is followed by a slower
oxidation of residual carbon atoms first into carboxylic acids and then volatile carbon species,
while nitrogen atoms are oxidized into nitrate ions. Considered alongside related CD studies, our
findings suggest that the environmental behavior of CDs will be strongly influenced by the

molecular precursors used in their synthesis.
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Introduction

Carbon dots (CDs) are an emerging class of colloidally stable carbon-based nanomaterials
with high fluorescence quantum yields and tunable emission properties.' As an environmentally
benign alternative to inorganic quantum dots that contain toxic metals, CDs have attracted great
interest for their potential in sensing,? fuel cells,*> drug delivery,®”’ and bioimaging.®* As a result,
the quantity of CDs entering aquatic environments will inevitably increase during the production,
use, and disposal of CD-enabled products. While CDs are of similar size to other carbon-based
nanomaterials such as fullerenes, they are likely to exhibit different environmental behavior due
to the high surface charge imparted by the functional groups (e.g., carboxylic acid, amine, and
amide groups) embedded within their structure.'”

To date, research on the environmental behavior of CDs has largely focused on their

colloidal stability,'!!* transport,'”® and toxicity'®!’

in environmental media. Bayati et al.
investigated the effect of ionic strength, pH, and natural organic matter (NOM) on the aggregation
of glycerol-based CDs and aminated CDs, finding both species largely stable at the upper bound
of environmental ionic strength (i.e., 10 mmol/L NaCl and CaCl,) and across a pH range of 3-11.!2
Li et al. showed that graphene CDs were colloidally stable in solutions of NaCl, KCl, and MgCl
with an ionic strength of >1000 mM, but were prone to aggregation in solutions containing 1 mM
CaCl,."3 Liu et al. determined that hydrothermally synthesized sodium citrate-based CDs were
stable to homoaggregation in environmentally relevant pH and ionic strength conditions, but this
stability could be perturbed by low pH (pH < 3) and high ionic strength conditions (> 30 mM
NaCl).!! The high degree of colloidal stability exhibited by CDs translates into high transport

capacity, as exhibited by Kamrani et al., in which citric acid-based CDs readily eluted through

quartz media at environmentally relevant conditions and were only partially retained in the column
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even at extremely high ionic strength and low pH.'> As a result of their colloidal stability and
transport properties, CDs are likely to be present in the water column for significant periods of
time. Consequently, their interactions with sunlight are likely to play an important role in
determining their fate and persistence in aquatic environments.

The primary photolytic processes acting on CDs in the environment will be direct
irradiation by natural sunlight and indirect photolysis via exposure to reactive oxygen species
(ROS) of which hydroxyl radicals ("OH) produced by the interaction of sunlight with naturally
occurring species (e.g., natural organic matter (NOM) or nitrate/nitrite)'3-2° are typically the most
reactive, and as such are often used experimentally to simulate the indirect photolysis of
environmental contaminants.?!"?> While the effects of direct and indirect photolysis on other carbon
nanomaterials (e.g., CNTs,?*?” GO,** ?* fullerenes®°) have been the subject of significant
research, the unique chemical and fluorescent properties of CDs are likely to impart different
photochemical behavior. A recent study by Chen et al. identified that CDs synthesized via a
hydrothermal route using citric acid and urea rapidly degraded into low molecular weight
compounds and could be mineralized to carbon dioxide under both UVB irradiation and natural
sunlight exposure.’! These transformations occurred over the course of 2 h UVB or 8 h natural
sunlight exposure and were attributed to processes involving ROS formed by the irradiation of the
CDs themselves, with "OH being the dominant radical species. The rapid photodegradation and
mineralization of these CDs suggest they will not persist once they are released into the
environment. However, these results cannot necessarily be generalized to all CDs, as an enormous
array of precursors and methods (e.g. hydrothermal, isolation from organic waste, thermal
decomposition, microwave)*? are currently being used in their synthesis, the effect of which on

the chemical, physical, and photochemical properties of CDs remains unknown.
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CDs produced from small organic acid molecules, via microwave irradiation, are some of
the most widely studied for consumer and research applications due to the low cost and ease of
“bottom-up” synthesis.*? Therefore it is important to develop a mechanistic understanding of their
behavior in aquatic environments. In this study, the effects of direct and indirect photolysis on
microwave synthesized citric acid-based CDs (CACDs) and malic acid-based CDs (MACDs) were
investigated. CDs were exposed to natural sunlight for up to 6 weeks, while the effects of indirect
photolysis were simulated by exposing CD solutions to ‘OH radicals generated by the photolysis
of H202 under UV light. Total carbon analysis (TC), total nitrogen analysis (TN), and ion
chromatography (IC) were used to identify the changes in carbon content, nitrogen content, and
nitrogen speciation over time. Changes to optical properties were examined using
photoluminescence (PL) spectroscopy. The physicochemical transformations of CDs were
characterized by a combination of attenuated total reflectance Fourier transform infrared
spectroscopy (ATR-FTIR), 'H- and '3*C-nuclear magnetic resonance spectroscopy (NMR), and X-
ray photoelectron spectroscopy (XPS). Using this suite of analytical techniques, we have identified
both the photochemical transformations and the kinetics of such transformations that these CDs

will undergo upon release into natural waters.

Materials and Methods

Additional details of synthetic procedures, characterization methods, photochemical
exposures, and ‘OH radical quantification are included in the SI. For all suspensions prepared, the
initial concentration of CDs was first determined via the recorded mass of dry CD powder added

to a known volume of water.
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Materials
All chemicals were purchased from Sigma-Aldrich and used without further purification. Milli-
Q® water (18.2 Q, Millipore, USA) was used to prepare all aqueous solutions.

Synthesis of CDs
CDs were prepared using a bottom-up microwave-assisted pyrolysis method as described by Zhi

et al.>?

Two types of CDs were synthesized, using ethylene diamine (EDA) and either citric or
malic acid as precursors to form CACDs and MACDs, respectively.
Characterization of CDs
CDs were characterized initially and after exposure to the effects of direct and indirect photolysis
using a combination of TC, TN, IC, ATR-FTIR, XPS, 'H- and '*C-NMR, and PL. Transmission
electron microscopy (TEM) and UV-Vis spectroscopy were used to further characterize the as-
synthesized CDs.
Exposure to Natural Sunlight

Solar irradiation experiments were conducted by adding suspensions of CDs in Milli-Q water to
borosilicate glass test-tubes (16 mm outer diameter x 125 mm, Corning, USA). Sample test-tubes
were sealed with PTFE-lined caps, and placed outside on a rooftop in Baltimore, MD (39° 19’ W,
76° 37’ N). Equivalent dark controls were prepared by wrapping glass test-tubes in aluminum foil,
and CD-free controls were prepared identically without CDs. At time points ranging from 0 to 6
weeks, samples and controls were retrieved sacrificially for analysis. Unless otherwise specified,
natural sunlight exposures were performed under ambient conditions with no sparging of the

samples. Therefore, dissolved oxygen levels should be representative of those encountered in

natural waters.
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Exposure to "OH Radicals
Suspensions of MACDs and CACDs were prepared and added to quartz test tubes, sealed with an
aluminum foil cap, and vented via a syringe tip. Samples were exposed to “OH radicals generated
by the photolysis of H>O> in a photochemical reactor equipped with 16 low pressure mercury lamps
emitting 300 nm light (RPR 100, Southern New England Ultraviolet Company, Branford, CT,
approx. 1.5x10' photons/s). ‘OH exposure studies performed for TC, TN, ATR-FTIR, and XPS
were all carried out at concentrations at or below 350 mg/L CD. 3C-NMR experiments required a
higher CD concentration (1.7x10* mg/L) to achieve reasonable signal-to-noise ratio.
Determination of ‘OH Radical Dose

The total dose of "OH generated by the photodegradation of H>O; as well as the equivalent
environmental exposure time in natural surface waters (Table S1) were determined using methods
described by Lankone et al.** Briefly, the steady-state ‘OH concentration in solution generated
during the photolysis of H2O was determined via monitoring the rate of salicylic acid (i.e., a probe
molecule) decomposition from an initial concentration of 0.07 mM. With this methodology, the
steady-state concentration of "‘OH with CDs present in solution could be determined with a
standard error of less than 10%. Duration of "OH exposure was also recorded, enabling a
molar*time "OH dose to be determined. This dose (M*min) was then related to an equivalent
duration of exposure to ‘OH in the natural environment, wherein the steady-state concentration

ranges between 1071°-1017 M. 1% 2435 For example, a "OH concentration of 10'> M, results in a
monthly ‘OH dose of 10> M * 2.2 x 10* min/month = 2.2 x 107! % Importantly, control

studies found that CD concentrations used in this study (< 319 mg/L) had no effect on the steady-
state "OH concentration (Figure S1).

CD Settling Tests
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135  Suspensions of CACDs (15 mg/L) were allowed to settle for 1 week in either MilliQ water or a
136  mixture of NaCl, KCI, and CaCl, (4 mM Ca*, 13 mM CI', 0.3 mM Na*, 5 mM K*) at pH 7 or 8.
137  Supernatant was analyzed for suspended CDs using PL.

138

139  Results and Discussion

140 Initial CD Characterization

141 The as-synthesized CACDs were characterized by an emission peak at 480 nm and an
142 absorbance below 400 nm, with a peak centered at 350 nm (Figure S2a). As-synthesized MACDs
143 emitted most strongly at 470 nm with a broad absorbance below 400 nm and a weak peak around
144 350 nm (Figure S2b). TEM images (Figure S2c¢ and S2d) of the as-synthesized CACDs and
145 MACDs reveal spherical nanoparticles with sub-10 nm diameters. ATR-FTIR of CACDs and
146 MACDs (Figure S3a and S3b) both exhibited broad IR features at 3280 cm™, 3085 cm™!, and 2927
147  cm’! corresponding to N-H, O-H, and C-H stretching modes, respectively.?*3” For CACDs,
148  features at 1700 cm! (carboxyl) and 1646 cm™ (amide) are attributed to carbonyl (C=0)
149  stretches,*® while the feature at 1547 cm™ is indicative of an N-H bend in an amide group (O=C-
150  NH);*”%° MACDs share the same carbonyl bands, however the N-H bend occurs at 1527 cm™ 2"
151 %41 The C (1s) envelope of the native CDs, as measured by XPS, contained contributions from
152  C-C and C-H species centered at 285 eV, with a higher binding energy shoulder at ~ 288 eV due
153  to the presence of more oxidized carbon atoms (e.g. amide and carboxyl groups; Figure S4 and
154  S5). It should be noted that due to their small size (i.e., diameters < 10 nm), XPS spectra reflect
155  the entire CD nanoparticle with respect to composition and chemical bonding environment.

156
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Effects of Direct Photolysis

Upon entering aquatic environments, CDs will immediately experience the effects of direct
photolysis due to their absorbance within the solar power distribution reaching the earth’s surface
(Figure S6a). Photoluminescence (PL) spectroscopy was used to monitor the fluorescent properties
of CDs after exposure to sunlight and artificial indoor light, while changes in composition and
chemical bonding were evaluated using a combination of TC/TN, XPS, ATR-FTIR, and 'H-NMR.

CACDs exposed to natural sunlight experienced rapid photobleaching, as their
fluorescence disappeared after 12 h of irradiation, observed both spectroscopically (Figure 1a, S7)
and visually (Figure S8). This low photostability is in stark contrast to the persistence of
fluorescence (Figure S9a) observed under artificial laboratory lighting. This difference in
photostability is attributed to the differences in overlap between the absorbance spectrum of the
CDs and the respective emission spectra from natural sunlight (solar irradiance, Figure S6a) and
fluorescent bulbs (Figure S9b). Thus, it is likely that the <400 nm component of natural sunlight
drives photobleaching of CDs in the environment. The loss of fluorescence induced by exposure
to sunlight was also found to be more rapid in solutions initially saturated with O2, but unaffected
in solutions sparged with N> (Figure 1b). This behavior indicates that photobleaching in natural
sunlight likely involves reactions with ROS formed via the presence of dissolved oxygen in
solution.

Despite the rapid loss of fluorescence in CD solutions (i.e., < 12 h), exposure of up to 6
weeks of sunlight had no observable effect on the carbon or nitrogen content as exhibited by TC
and TN (Figure 1c). Similarly, XPS data revealed that the composition within the CACDs (Figure
2a) and MACDs (Figure S10) as well as the chemical bonding environment within both CACDs

(Figures 2b, S4) and MACDs (Figures S5) also remained constant over the course of the 6-week

9

ACS Paragon Plus Environment



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Environmental Science & Technology

exposure. ATR-FTIR spectra of CACDs and MACDs (Figure 2¢) were largely unchanged after 6
weeks of exposure to sunlight, though for CACDs, loss of intensity at 1547 cm™ was observed
during the first two weeks of outdoor exposure, suggesting photobleaching could be driven through
proton abstraction from the amide groups initially present in the CD structure, though not
extensively enough to meaningfully change the CD composition.

"H-NMR spectra of CACDs acquired before and after photobleaching also indicated only
minor chemical changes to proton bonding environments (Figure 2d). As-synthesized CACDs
featured clusters of 'TH-NMR peaks in several diagnostic regions: 1.8 ppm to 2.5 ppm, 2.5 ppm to
4.5 ppm, and at 8.4 ppm, indicative of protons in the a- or B-position to carbonyl or amide

groups,**** protons bound to or in the o-position to oxidized carbon species (i.e., alcohol, ether,

)42 45 46-48
9

ester, carbonyl and non-exchangeable amide protons respectively. In contrast, no
carboxylic acid protons were observed due to exchange of these acidic protons in the (D20)
solvent. The photobleached CACDs exhibited a largely similar 'TH-NMR spectrum to the parent
CACDs. The only changes observed were the loss of peak intensity at 4.2 ppm and the increase in
intensity of the peak at 8.4 ppm, likely indicating some degradation of the amide groups initially
present in the CDs.

Collectively, these findings indicate that the principle effect of natural sunlight on organic
acid-based CDs immediately after entering an aquatic environment is rapid (i.e., < 12 h)
photobleaching (Figure 1a) in a process modulated by the relative level of dissolved oxygen therein
(Figure 1b). While the initial rate of photobleaching may vary to some degree dependent on the
concentration of dissolved oxygen available to generate ROS, the complete photobleaching of CDs

is expected to occur in all aqueous environments, irrespective of dissolved oxygen content (Figure

1b). Findings also indicate that the CD structure and composition will remain largely unchanged
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during photobleaching, supported by mass-recovery studies which demonstrated that 101.4 % +/-
2.1 % of CD mass is recovered after 21 d of natural sunlight exposure (see SI for details).

Interestingly, these findings contrast with a study published by Chen et al., in which it was
reported that citric acid/urea CDs were rapidly volatilized in totality after 8 h of natural sunlight
exposure due to extensive structural decomposition driven by CD-produced "OH.*! We posit one
possibility for the contrasting photochemical behavior observed between these studies is that the
different structural features present in the two different types of CDs, arising by virtue of the
different precursors used (e.g., urea features a carbonyl group which EDA lacks), strongly regulate
the persistence of CD photoactivity, the overall phototransformation pathway, and resultant
kinetics of sunlight driven degradation. While we did not observe degradation or volatilization for
CDs exposed to sunlight in the present study, the photobleaching and comparatively small changes
that did occur to the CDs indeed could arise from similar reactions between CD-generated ROS
and the CDs themselves®! (e.g., “OH-driven proton abstraction)*’ as suggested by the increase in
photobleaching rate with increased dissolved oxygen content.

Importantly, because as-synthesized CDs remained colloidally stable in the presence of
divalent cations known to destabilize other nanomaterials (Figure S11), the lack of significant
changes to the physicochemical properties of CDs after photobleaching suggests that they will
remain colloidally stable in natural environments after irradiation by natural sunlight. Specifically,
spectroscopic measurements (i.e., XPS, ATR-FTIR) of the photobleached CDs indicate the
retention of negatively charged oxygen-containing functional groups (i.e., carboxyl, hydroxyl)

which are responsible for the electrostatic repulsion between CDs, an effect which is responsible

50-54 55-57

for the colloidal stability of carbon dots as well as other carbon nanomaterials (CNTs,

graphene®®%) in aqueous environments. Consequently, photobleached CDs can be expected to

11
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226  remain stable for long periods in the water column where they will be subject to reactions with
227  ROS (primarily *OH) generated by the irradiation of common constituents of natural water (NOM,

228  NOy).!82

229
230 Effects of Indirect Photolysis.
231 To assess the effects of indirect photolysis on CDs, CACD and MACD suspensions were

232 exposed to "OH produced via 300 nm irradiation of H>O». 300 nm irradiation of CDs in the absence
233 of H20> photobleached CDs without any measurable structural changes. A previous analytical
234 study enabled us to determine the Molar % time dose of "OH generated during H>O> photolysis
235 (Table S1), permitting comparison to the equivalent dose of ‘'OH CDs would experience in the
236  natural environment. The kinetics of CD photodegradation by "OH was assessed using TC and TN,
237  while reaction products were identified through a combination of IC, ATR-FTIR, '*C-NMR, and
238  XPS.

239 TC data indicated that during "OH exposure, both CACDs and MACDs reacted in two well
240  defined temporal stages. First, ~ 60% of carbon atoms initially present in both CD types were lost
241  after a 1.4x10 M*min exposure to "OH (Figure 3a). Following this rapid and extensive loss of
242 carbon atoms, the residual carbon-containing species were significantly less susceptible to further
243 "OH-mediated degradation during the second stage of the reaction as the ‘OH dose increased
244 beyond 1.4x10° M*min "OH. At an 'OH dose of 2.8x10® M*min, the carbon content only
245  decreased by an additional 10% for MACDs, while a dose of 4.0x10"® M*min "OH only decreased
246  the carbon content by 15% for CACDs.

247 Complementary TN analysis (Figure 3b) revealed that the total nitrogen content was

248  relatively insensitive to "OH exposure ("OH doses of 4.0x10"® M*min), in marked contrast to the

12
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considerable loss of carbon (compare Figures 3a and 3b). Although the total nitrogen content
remained essentially constant during “OH exposure, nitrogen speciation evolved. Specifically, the
production of nitrate was observed for "OH doses in excess of 5.5x10° M*min (Figure 3b) and
increased steadily until all CD nitrogen atoms were converted into nitrate ions. The constant TN
content coupled with the steady increase in nitrate concentration in solution indicates that over
time the "OH-driven degradation of CDs will produce nitrate ions.

ATR-FTIR spectra shown in Figure 4a provide spectroscopic evidence of two distinct
phases in the reaction of MACDs with "OH. The first phase of degradation was initiated upon
exposure to an ‘OH dose of 6.9x1071° M*min, which resulted in a decrease in intensity of the amide
N-H bending mode at 1527 cm’, and a red-shift of the (carboxylic) C=0 stretch to 1680 cm!
indicative of a change in the chemical bonding environment in the MACDs. The simultaneous
diminishment and transformation of these features indicates that "OH-mediated decomposition of
CDs involves a cleavage of the amide moieties initially present in the CD backbone. After ‘'OH
exposure increased from 6.9x1071 M*min to 1.4x10" M*min, the amide groups initially present
in the CDs had been oxidized into nitro groups( i.e., NOz), as evidenced by the simultaneous loss
of the O=C-NH bend at 1527 cm™! and the appearance of the va/vi stretches of nitro groups at 1590
cmand 1414 cm™, respectively.®' Additionally, the appearance of peaks at ~ 3400 cm™ and 1100

cm’! indicate the formation of hydroxyl groups in the photoproducts®® 62

whose sharpness and
peak positions are very similar to the hydroxyl features present in malic acid (Figure 4b). By a "OH
dose of 1.4x10° M*min, the previous carbonyl feature at 1700 cm™ had shifted and is now
centered on 1680 cm™, indicating that the carbonyl species are now in a more highly hydrogen-

bound chemical environment (i.e., small carboxylic acids, such as malic acid). As the ‘"OH dose

increases, new bands at 1313 cm™'/831 cm™! also emerge which can be assigned to and the v3 stretch
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(E’)/v2 bend (Az") of nitrate ions.®® Collectively, the formation of these oxidized nitrogen groups
and the similarity of degraded CD spectra to malic acid strongly suggests that CDs were
depolymerized in the presence of “OH through the cleavage of their initial amide bonds to form
nitro groups and malic acid photofragments.

The second phase of degradation shown by ATR-FTIR was observed for “OH doses beyond
1.4x10" M*min, and is defined as being the period of exposure during which the spectra remained
relatively unchanged with increasing ‘OH dose, aside from an increase in nitrate and nitro peak
intensities. ATR-FTIR spectra observed for the solid phase (i.e., lyophilized) species produced by
MACD:s exposed to "OH doses in excess of 5.5%10 M*min continued to exhibit peaks similar to
those of sodium nitrate and the solid malic acid precursor (Figure 4b, common peaks: free O-H at
3400 cm™!, carboxy C=0 at 1680 cm™!, and O-H deformation at 1100 cm™"). Furthermore, Figure
4b demonstrates sustained exposure of both MACDs and CACDs to "OH in excess of 5.5x1071°
M*min resulted in the formation of near identical photoproducts as suggested by the similarity of
their spectra. It should be noted that XPS and ATR-FTIR analysis was not possible for ‘OH doses
above 1.1x10"® M*min, as the mass loss due to volatilization of carbon (as shown by TC) precluded
sufficient sample recovery.

XPS spectra of CACDs exposed to "OH also indicate a two-phase degradation process.
During the first period of degradation, *OH exposure up to 1.4x10® M*min "OH resulted in a loss
of higher binding energy features (i.e., carbonyl carbon), and the C (1s) region was dominated by
the C-C/C-H species at 285 eV with only a small shoulder at 288 eV (Figure 5a). The CDs then
entered the second phase of "OH exposure from doses of 5.5%10° M*min to 1.1*¥10® M*min, at
which point the carbonyl feature reemerged in the C (1s) region at 288 eV. XPS analysis also

revealed that exposure to ‘OH produced an overall decrease in the carbon content and a small
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increase in the nitrogen content of the non-volatile photoproducts (Figure S12). Specifically,
CACDs were initially composed of 55% carbon and 15% nitrogen, but exposure to 1.1*¥10®
M*min "OH led to products that contained 35% carbon and 20% nitrogen. This enrichment of
nitrogen with increasing ‘OH exposure as measured by XPS is qualitatively consistent with the
trends observed by TC/TN in that it further indicates that carbon was lost and volatilized from the
CDs, while nitrogen atoms remain associated with the CD photoproduct.

The "*C-NMR of CACDs exposed to ‘OH also indicated extensive degradation to the CDs.
Photobleached CACDs (Figure 5b) prior to ‘OH exposure contained various carbon functional
groups including carboxylic acids/amides (160-180 ppm)®*, alcohols/ethers (70-90 ppm),®>-%¢ and
both substituted (i.e., branched) and primary alkane carbons centered around 30-50 ppm and 10-
30 ppm, respectively.’”-%® After a "OH dose sufficient to cause a loss of 60% TC, *C-NMR was
performed again to assess the CDs nearing the end of the first phase of degradation (see Figure 3).
The resultant '*C-NMR indicates that the CDs degraded through the loss of substituted/branched
alkane groups (30 ppm to 50 ppm). This suggests that the crosslinked network initially present in
the CDs was degraded during ‘OH exposure. Interestingly, the growth of one peak around 165
ppm, likely a carboxyl species, agrees with the increase in such species as shown with ATR-FTIR
and XPS spectra.

To contextualize these results in terms of the equivalent environmental "OH exposure, we
applied a methodology developed by Lankone et al. which allowed the integrated "OH dose to be

benchmarked to the maximum "OH dose a sample would experience during one month of exposure
in sunlit waters (107> M * 2.2x10* min/month = 2.2x10!! %). For example, exposure to a

solution of H20: at an initial concentration of 100 mM, as it is photolyzed for 4 hours results in

CD exposure of 1.4x10" M*min; this dose corresponds to an equivalent environmental exposure
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* IV xmi
of approximately 64 months (:-‘2*10&

—-mm )- 10 this study, relations to environmental timescale
#1077t —0r

month

were done under the assumption that CDs consistently experience the maximum ‘OH dose (i.e.,
10713 M) in the environment, though calculations based on the full range of ["OH]ss are reported in
the SI (Table S1). Using these calculations and assuming an environmental steady state ‘OH
concentration of 101> M, we can discuss CD photodegradation by indirect photolysis in terms of
the equivalent environmental timescale.

The two-step degradation process first observed with TC and TN data (Figure 3a and 3b)
can now be interpreted to indicate that the period of initial CD degradation in the presence of "OH
occurs over approximately 64 +/- 5 months of indirect photolysis in sunlit waters. During this time,
as indicated by ATR-FTIR and XPS, the CDs are depolymerized via the cleavage of amide groups,
resulting in the formation of nitro groups and carboxylic acid species. Additionally, TC indicates
that 60% of carbon atoms are lost from solution, most likely as volatile species, similar to the
reactions of ‘'OH with GO which evolve CO; as an end product.>* We note the rate of loss of the
amide feature at 1527 cm™! closely corresponds to the rate at which the initial carbon volatilization
occurs (compare TC and ATR-FTIR data in Figures 3a and 4a, respectively), suggesting that the
first step in the degradation of CDs by *OH is hydrogen abstraction from N-H and/or C-H groups,*-
6970 Jeading to the degradation of amide linkages. Additional evidence of this depolymerization is
seen in *C-NMR data via the loss of C=C (120 ppm) and substituted/branched alkane character
(30-50 ppm), representing the degradation of crosslinked character within the CDs, resulting in the
primary alkane signature which persists in the resultant photoproducts (10-30 ppm) which are also
carboxylated as seen in both ATR-FTIR (1680 cm™'; Figure 4a) and '*C-NMR (165 ppm; Figure
5b). The redshift of the carboxyl C=O0 stretch coupled with the persistence of primary alkanes seen
in 3C-NMR provides evidence for the evolution of low molecular weight carboxylic acids after
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depolymerization which are less sterically hindered than in the parent CD, thus able to participate
in more extensive hydrogen bonding.*®

In contrast to the significant loss/volatilization of carbon atoms, the TN and ATR-FTIR
data reveal that during the first 64 +/- 5 months of environmental exposure, there is little to no
change in the total nitrogen content, although the nitrogen species initially present in the CDs have
been converted/oxidized into nitro groups by ‘OH. This oxidation occurs over the same ‘OH dose
as the loss in amide character in ATR-FTIR (1646 cm™), suggesting that nitrogen atoms involved
in amide linkages in the parent CDs are oxidized into nitro groups after cleavage during indirect
photolysis.

Following the initial ‘OH-mediated depolymerization of the CD structure, the second phase
of indirect photolysis is observed for cumulative “OH doses in excess of approximately 1.4%10”
M*min, or beyond the first 64 +/- 5 months of environmental exposure, and is characterized by a
much slower decrease in carbon content. During this phase, residual carbon atoms are further
oxidized by ‘OH, leading to a significant increase in the concentration of highly oxidized
photoproducts structurally similar to the dicarboxylic acids used in the original CD synthesis (e.g.
malic acid as shown with ATR-FTIR in Figure 4b), and related carboxylic acids (e.g. glutaric acid,
Figure S13). The formation of carboxylated carbon species is consistent with the increase in
concentration of the C(1s) shoulder above 286 eV in XPS. Because both CACDs and MACDs
generated photoproducts with similar spectroscopic signatures, this degradation pathway is likely
generalizable to CDs synthesized from EDA and carboxylic acid precursors.

When the changes in composition and structure are considered together, our results indicate
that during this second stage of indirect photolysis, residual carbon atoms are oxidized by "OH to

carboxyl groups which then serve as precursors for the formation of volatile species’® such as
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CO2* or acetone.”! Continued "OH-mediated oxidation of previously formed nitro groups leads to
the evolution of nitrate ions’? as indicated by the IC and ATR-FTIR data (Figures 3b and 4a). Thus,
extrapolation of these trends to sustained (maximum) ‘OH exposure in the natural environment, in
excess of the 43 years of equivalent exposure simulated in laboratory studies, indicates CDs would
eventually degrade such that all carbon atoms will be volatilized while nitrogen atoms are
stoichiometrically converted into nitrate ions.

The reason for the two distinct temporal regimes of carbon loss, however, remains
somewhat unclear. One possible explanation is that the more recalcitrant carbon atoms seen in the
second phase of the process are associated with fragments containing carbon-nitrogen bonds
residual from reactions of "OH with the parent CDs. This interpretation is supported by IC data
which clearly shows that the formation of nitrate ions from the CDs requires a dose of ‘OH in
excess of 5.5x10° M*min. The evolution of nitrate ions from nitro groups requires C-N bond
cleavage, a limiting prerequisite step in the volatilization of these carbon atoms compared to those

in other bonding environments.

Environmental Implications

Due to their highly charged surface and small size, CDs are colloidally stable in the water
column.''"'* Thus, the effects of both direct and indirect photolysis will play an important role in
determining the fate and persistence of CDs in aquatic environments. In contrast to their
photostability under illumination in laboratory settings (i.e., under fluorescent lighting), the citric
and malic acid-based CDs investigated in this study will rapidly photobleach after only a few hours
of direct photolysis by natural sunlight, likely precluding the use of these particular CDs as sensors

in outdoor settings. Once the CACDs and MACDs have photobleached, the resultant carbon
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nanoparticles exhibit similar physicochemical properties to the parent CDs, suggesting a high
degree of colloidal stability. Consequently, these photobleached CDs will persist for extended
periods of time in the environment while being difficult to monitor or track due their poor light
scattering properties and lack of fluorescent signature.

Ultimately, photobleached CDs will be degraded by indirect photolysis via reactions with
ROS, primarily ‘OH produced by exposure of NOM and other constituents of water (e.g., metal

t.20 Based on the relation to environmental

ions, nitrate, dissolved oxygen) to natural sunligh
timescale which was used (assuming exposure to the maximum environmental ["OH]ss),** the first
stage of this indirect photolysis will occur over the course of approximately 5-6 years of
environmental exposure in sunlit waters, resulting in depolymerization of the CD via cleavage of
its amide bonds and the oxidation of a majority of the carbon atoms in the CDs into volatile carbon
species (e.g., CO; and acetone). Over the same time span, nitrogen atoms will be oxidized into
nitro groups bound to fragments of the parent CDs. Environmental exposure of the residual
photoproducts will lead to the formation of carboxylic acid species similar to the organic acids
used in the CD synthesis (e.g. malic acid). These carboxylic acids will serve as precursors to the
production of volatile carbon species, a process which will continue until all carbon atoms in the
CDs are ultimately mineralized (timespan of several decades based on TC trend). In contrast,
nitrogen atoms in the CDs will be stoichiometrically oxidized from nitro groups into nitrate ions
as indicated by IC data (half-life roughly 75 years). Given the projected lifetime and colloidal
stability of photobleached CDs and their photoproducts throughout this prolonged

photodegradation process, future studies identifying the environmental impact of these various

intermediate species will be prudent.
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A comparison of the results from this study with previous studies highlights the diversity
of photochemical transformations experienced by carbon-based nanomaterials in the environment.
For example, GO rapidly photofragments in natural sunlight as a result of the reactivity of the
highly strained epoxide groups that exist on its surface, leading to the formation of reduced
graphene oxide species (rGO) and the evolution of CO2.2® Conversely, oxidized carbon nanotubes
(CNTs) do not fragment upon exposure to sunlight or ROS, but rather undergo
photodecarboxylation, causing them to lose surface charge which leads to sedimentation.?®
Aggregates of fullerenes are prone to ROS-driven degradation by sunlight, leading to
disaggregation, the formation of dissolved organic species, and eventual mineralization.?’
However, under simulated sunlight*® and UVA light conditions,” fullerenes showed a higher level
of resistance to mineralization, only exhibiting surface oxidation. These observations clearly
indicate that the structure and physicochemical properties of carbon nanomaterials play a
determinant role in regulating their photochemical reactions in the environment. With this in mind,
it is not unreasonable that the photochemical transformations of CDs will be sensitive to their
chemical structure and composition.

Although the phototransformations of the microwave-synthesized CACDs and MACDs
using ethylene diamine outlined in this study parallel one another and were structurally stable for
6 weeks in natural sunlight, it has been reported that CACDs synthesized via a hydrothermal route
using urea are completely mineralized in sunlight after less than one day at concentrations similar
to the ones used in the present study (50 mg/L).>! Thus, the intrinsic chemical and physical
characteristics of CDs imparted via their precursors appear to dictate their photostability. As such,
it will be important to identify the different phototransformations of CDs synthesized with a wide

variety of precursors and synthetic pathways. Additionally, a detailed understanding of the
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mechanisms and influential factors which dictate CD photobleaching will be needed to improve

photostability if CDs are to be used as environmental sensors and tracers in outdoor settings.
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illustrating change in XPS composition of CDs after ‘"OH exposure (Figure S12) are included and

ATR-FTIR comparing degraded MACDs to glutaric acid (Figure S13).
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Figure 1. Effect of natural sunlight on CDs. a) Emission profiles of CACDs after exposure to

0 min (black), 30 min. (blue), 1 hr. (green), 2 hr. (red), and 12 hr. (pink) of natural sunlight. b)

Emission of CACDs at 350 nm (black) compared to emission of CACDs after sparging with

N2 (blue) or O (red) gas as a function of exposure to natural sunlight. c) Total carbon (top) and

total nitrogen (bottom) concentration of CACDs (red triangles) and MACDs (black circles)

after exposure to 0-6 weeks of natural sunlight in non-sparged water.
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Figure 2. Effect of natural sunlight on CD structure. a) Atomic composition of lyophilized
CACDs after natural sunlight exposure for 0-6 wk as determined with XPS. b) XPS C (1s)
regions of lyophilized parent CACDs after 0 (black), 2 (red), 4 (blue), and 6 (green) weeks of
natural sunlight exposure. (c) ATR-FTIR spectra of CACDs (top) and MACDs (bottom)
exposed to natural sunlight for 0, 2, and 6 weeks, with (*) indicating the N-H bend at 1547 cm™
!, (d) "H-NMR spectra of CACDs (black) and CACDs exposed to 5 days of natural sunlight
(red).
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CACD (red) as a function of "OH dose. (b) Total nitrogen (red) and nitrate concentration (black)

of CACD solution in terms of mg/L nitrogen as a function of "OH dose.
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Figure 4. ATR-FTIR of lyophilized MACDs after exposure to different ‘OH doses. (a) MACDs
(black) after exposure to 3.5x107!® M*min (red), 6.9x107!® M*min (light green), 1.0x10”
M*min (blue), 1.4x10”° M*min (grey), 5.5x10"° M*min (dark red), and 1.1x10"® M*min (dark
blue) "OH. Insufficient masses of photoproducts were recovered for CDs reacted with "OH
doses > 1.1x10®* M*min, precluding ATR-FTIR analysis. Dotted lines mark carboxyl C=0O
(stretch, 1700 cm™ ), N-H (bend, 1527 cm™ ), and nitro (stretch, 1590 cm™ ) modes. (b)
Degradation products of CACDs (red) and MACDs (black) after exposure to 5.5x10 M*min

‘OH shown in comparison to malic acid (MA, pink) and sodium nitrate (blue). Dotted lines

mark carboxyl C=0 (stretch, 1680 cm™) and nitrate v3 (stretch, 1313 cm™) modes.
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precluding XPS analysis. b) '*C-NMR of photobleached CACDs in D,O before (black) and
after (red) exposure to 5.7x10® M*min "OH. At the significantly higher CD concentration
required for NMR (1.7x10* mg/L), this "OH dose leads to the loss of 60% of carbon from
solution as determined with TC.
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