

Photochemical Transformations of Carbon Dots in Aqueous Environments

Benjamin P. Frank, Leslie Sigmon, Alyssa Deline, Ronald S. Lankone,
Miranda Gallagher, Bo Zhi, Christy L. Haynes, and D. Howard Fairbrother

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.9b07437 • Publication Date (Web): 12 Mar 2020

Downloaded from pubs.acs.org on March 13, 2020

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Photochemical Transformations of Carbon Dots in Aqueous Environments

Benjamin P. Frank¹, Leslie R. Sigmon¹, Alyssa R. Deline¹, Ronald S. Lankone¹, Miranda J. Gallagher¹, Bo Zhi², Christy Haynes², David Howard Fairbrother^{1*}

¹Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States

²Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States

*Corresponding Author: D. Howard Fairbrother, Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
Email: howardf@jhu.edu

1 **Abstract**

2 The unique physicochemical and luminescent properties of carbon dots (CDs) have
3 motivated research efforts towards their incorporation into commercial products. Increased use of
4 CDs will inevitably lead to their release into the environment where their fate and persistence will
5 be influenced by photochemical transformations, the nature of which is poorly understood. This
6 knowledge gap motivated the present investigation of the effects of direct and indirect photolysis
7 on citric and malic acid-based CDs. Our results indicate that natural sunlight will rapidly and non-
8 destructively photobleach CDs into optically inactive carbon nanoparticles. We demonstrate that
9 after photobleaching, $\cdot\text{OH}$ exposure degrades CDs in a two-step process that will span several
10 decades in natural waters. The first step, occurring over several years of $\cdot\text{OH}$ exposure, involves
11 depolymerization of the CD structure, characterized by volatilization of over 60% of nascent
12 carbon atoms and the oxidation of nitrogen atoms into nitro groups. This is followed by a slower
13 oxidation of residual carbon atoms first into carboxylic acids and then volatile carbon species,
14 while nitrogen atoms are oxidized into nitrate ions. Considered alongside related CD studies, our
15 findings suggest that the environmental behavior of CDs will be strongly influenced by the
16 molecular precursors used in their synthesis.

17

18

19

20

21

22 Introduction

23 Carbon dots (CDs) are an emerging class of colloidally stable carbon-based nanomaterials
24 with high fluorescence quantum yields and tunable emission properties.¹ As an environmentally
25 benign alternative to inorganic quantum dots that contain toxic metals, CDs have attracted great
26 interest for their potential in sensing,²⁻³ fuel cells,⁴⁻⁵ drug delivery,⁶⁻⁷ and bioimaging.⁸⁻⁹ As a result,
27 the quantity of CDs entering aquatic environments will inevitably increase during the production,
28 use, and disposal of CD-enabled products. While CDs are of similar size to other carbon-based
29 nanomaterials such as fullerenes, they are likely to exhibit different environmental behavior due
30 to the high surface charge imparted by the functional groups (e.g., carboxylic acid, amine, and
31 amide groups) embedded within their structure.¹⁰

32 To date, research on the environmental behavior of CDs has largely focused on their
33 colloidal stability,¹¹⁻¹⁴ transport,¹⁵ and toxicity¹⁶⁻¹⁷ in environmental media. Bayati et al.
34 investigated the effect of ionic strength, pH, and natural organic matter (NOM) on the aggregation
35 of glycerol-based CDs and aminated CDs, finding both species largely stable at the upper bound
36 of environmental ionic strength (i.e., 10 mmol/L NaCl and CaCl₂) and across a pH range of 3-11.¹²
37 Li et al. showed that graphene CDs were colloidally stable in solutions of NaCl, KCl, and MgCl₂
38 with an ionic strength of >1000 mM, but were prone to aggregation in solutions containing 1 mM
39 CaCl₂.¹³ Liu et al. determined that hydrothermally synthesized sodium citrate-based CDs were
40 stable to homoaggregation in environmentally relevant pH and ionic strength conditions, but this
41 stability could be perturbed by low pH (pH < 3) and high ionic strength conditions (> 30 mM
42 NaCl).¹¹ The high degree of colloidal stability exhibited by CDs translates into high transport
43 capacity, as exhibited by Kamrani et al., in which citric acid-based CDs readily eluted through
44 quartz media at environmentally relevant conditions and were only partially retained in the column

45 even at extremely high ionic strength and low pH.¹⁵ As a result of their colloidal stability and
46 transport properties, CDs are likely to be present in the water column for significant periods of
47 time. Consequently, their interactions with sunlight are likely to play an important role in
48 determining their fate and persistence in aquatic environments.

49 The primary photolytic processes acting on CDs in the environment will be direct
50 irradiation by natural sunlight and indirect photolysis via exposure to reactive oxygen species
51 (ROS) of which hydroxyl radicals (·OH) produced by the interaction of sunlight with naturally
52 occurring species (e.g., natural organic matter (NOM) or nitrate/nitrite)¹⁸⁻²⁰ are typically the most
53 reactive, and as such are often used experimentally to simulate the indirect photolysis of
54 environmental contaminants.²¹⁻²⁵ While the effects of direct and indirect photolysis on other carbon
55 nanomaterials (e.g., CNTs,²⁶⁻²⁷ GO,^{24, 28} fullerenes²⁹⁻³⁰) have been the subject of significant
56 research, the unique chemical and fluorescent properties of CDs are likely to impart different
57 photochemical behavior. A recent study by Chen et al. identified that CDs synthesized via a
58 hydrothermal route using citric acid and urea rapidly degraded into low molecular weight
59 compounds and could be mineralized to carbon dioxide under both UVB irradiation and natural
60 sunlight exposure.³¹ These transformations occurred over the course of 2 h UVB or 8 h natural
61 sunlight exposure and were attributed to processes involving ROS formed by the irradiation of the
62 CDs themselves, with ·OH being the dominant radical species. The rapid photodegradation and
63 mineralization of these CDs suggest they will not persist once they are released into the
64 environment. However, these results cannot necessarily be generalized to all CDs, as an enormous
65 array of precursors and methods (e.g. hydrothermal, isolation from organic waste, thermal
66 decomposition, microwave)²⁻³ are currently being used in their synthesis, the effect of which on
67 the chemical, physical, and photochemical properties of CDs remains unknown.

68 CDs produced from small organic acid molecules, via microwave irradiation, are some of
69 the most widely studied for consumer and research applications due to the low cost and ease of
70 “bottom-up” synthesis.³² Therefore it is important to develop a mechanistic understanding of their
71 behavior in aquatic environments. In this study, the effects of direct and indirect photolysis on
72 microwave synthesized citric acid-based CDs (CACDs) and malic acid-based CDs (MACDs) were
73 investigated. CDs were exposed to natural sunlight for up to 6 weeks, while the effects of indirect
74 photolysis were simulated by exposing CD solutions to •OH radicals generated by the photolysis
75 of H₂O₂ under UV light. Total carbon analysis (TC), total nitrogen analysis (TN), and ion
76 chromatography (IC) were used to identify the changes in carbon content, nitrogen content, and
77 nitrogen speciation over time. Changes to optical properties were examined using
78 photoluminescence (PL) spectroscopy. The physicochemical transformations of CDs were
79 characterized by a combination of attenuated total reflectance Fourier transform infrared
80 spectroscopy (ATR-FTIR), ¹H- and ¹³C-nuclear magnetic resonance spectroscopy (NMR), and X-
81 ray photoelectron spectroscopy (XPS). Using this suite of analytical techniques, we have identified
82 both the photochemical transformations and the kinetics of such transformations that these CDs
83 will undergo upon release into natural waters.

84

85 **Materials and Methods**

86 Additional details of synthetic procedures, characterization methods, photochemical
87 exposures, and •OH radical quantification are included in the SI. For all suspensions prepared, the
88 initial concentration of CDs was first determined via the recorded mass of dry CD powder added
89 to a known volume of water.

90 *Materials*

91 All chemicals were purchased from Sigma-Aldrich and used without further purification. Milli-
92 Q® water (18.2 Ω, Millipore, USA) was used to prepare all aqueous solutions.

93 *Synthesis of CDs*

94 CDs were prepared using a bottom-up microwave-assisted pyrolysis method as described by Zhi
95 et al.³³ Two types of CDs were synthesized, using ethylene diamine (EDA) and either citric or
96 malic acid as precursors to form CACDs and MACDs, respectively.

97 *Characterization of CDs*

98 CDs were characterized initially and after exposure to the effects of direct and indirect photolysis
99 using a combination of TC, TN, IC, ATR-FTIR, XPS, ¹H- and ¹³C-NMR, and PL. Transmission
100 electron microscopy (TEM) and UV-Vis spectroscopy were used to further characterize the as-
101 synthesized CDs.

102 *Exposure to Natural Sunlight*

103 Solar irradiation experiments were conducted by adding suspensions of CDs in Milli-Q water to
104 borosilicate glass test-tubes (16 mm outer diameter x 125 mm, Corning, USA). Sample test-tubes
105 were sealed with PTFE-lined caps, and placed outside on a rooftop in Baltimore, MD (39° 19' W,
106 76° 37' N). Equivalent dark controls were prepared by wrapping glass test-tubes in aluminum foil,
107 and CD-free controls were prepared identically without CDs. At time points ranging from 0 to 6
108 weeks, samples and controls were retrieved sacrificially for analysis. Unless otherwise specified,
109 natural sunlight exposures were performed under ambient conditions with no sparging of the
110 samples. Therefore, dissolved oxygen levels should be representative of those encountered in
111 natural waters.

112 *Exposure to 'OH Radicals*

113 Suspensions of MACDs and CACDs were prepared and added to quartz test tubes, sealed with an
114 aluminum foil cap, and vented via a syringe tip. Samples were exposed to 'OH radicals generated
115 by the photolysis of H₂O₂ in a photochemical reactor equipped with 16 low pressure mercury lamps
116 emitting 300 nm light (RPR 100, Southern New England Ultraviolet Company, Branford, CT,
117 approx. 1.5×10¹⁷ photons/s). 'OH exposure studies performed for TC, TN, ATR-FTIR, and XPS
118 were all carried out at concentrations at or below 350 mg/L CD. ¹³C-NMR experiments required a
119 higher CD concentration (1.7×10⁴ mg/L) to achieve reasonable signal-to-noise ratio.

120 *Determination of 'OH Radical Dose*

121 The total dose of 'OH generated by the photodegradation of H₂O₂ as well as the equivalent
122 environmental exposure time in natural surface waters (Table S1) were determined using methods
123 described by Lankone et al.³⁴ Briefly, the steady-state 'OH concentration in solution generated
124 during the photolysis of H₂O₂ was determined via monitoring the rate of salicylic acid (i.e., a probe
125 molecule) decomposition from an initial concentration of 0.07 mM. With this methodology, the
126 steady-state concentration of 'OH with CDs present in solution could be determined with a
127 standard error of less than 10%. Duration of 'OH exposure was also recorded, enabling a
128 molar*time 'OH dose to be determined. This dose (M*min) was then related to an equivalent
129 duration of exposure to 'OH in the natural environment, wherein the steady-state concentration
130 ranges between 10⁻¹⁵-10⁻¹⁷ M.^{19, 24, 35} For example, a 'OH concentration of 10⁻¹⁵ M, results in a
131 monthly 'OH dose of 10⁻¹⁵ M * 2.2 × 10⁴ min/month = 2.2 × 10⁻¹¹ $\frac{M*min}{month}$. Importantly, control
132 studies found that CD concentrations used in this study (\leq 319 mg/L) had no effect on the steady-
133 state 'OH concentration (Figure S1).

134 *CD Settling Tests*

135 Suspensions of CACDs (15 mg/L) were allowed to settle for 1 week in either MilliQ water or a
136 mixture of NaCl, KCl, and CaCl₂ (4 mM Ca⁺², 13 mM Cl⁻, 0.3 mM Na⁺, 5 mM K⁺) at pH 7 or 8.
137 Supernatant was analyzed for suspended CDs using PL.

138

139 **Results and Discussion**

140 *Initial CD Characterization*

141 The as-synthesized CACDs were characterized by an emission peak at 480 nm and an
142 absorbance below 400 nm, with a peak centered at 350 nm (Figure S2a). As-synthesized MACDs
143 emitted most strongly at 470 nm with a broad absorbance below 400 nm and a weak peak around
144 350 nm (Figure S2b). TEM images (Figure S2c and S2d) of the as-synthesized CACDs and
145 MACDs reveal spherical nanoparticles with sub-10 nm diameters. ATR-FTIR of CACDs and
146 MACDs (Figure S3a and S3b) both exhibited broad IR features at 3280 cm⁻¹, 3085 cm⁻¹, and 2927
147 cm⁻¹ corresponding to N-H, O-H, and C-H stretching modes, respectively.³⁶⁻³⁷ For CACDs,
148 features at 1700 cm⁻¹ (carboxyl) and 1646 cm⁻¹ (amide) are attributed to carbonyl (C=O)
149 stretches,³⁸⁻³⁹ while the feature at 1547 cm⁻¹ is indicative of an N-H bend in an amide group (O=C-
150 NH);^{37, 40} MACDs share the same carbonyl bands, however the N-H bend occurs at 1527 cm⁻¹.^{37,}
151⁴⁰⁻⁴¹ The C (1s) envelope of the native CDs, as measured by XPS, contained contributions from
152 C-C and C-H species centered at 285 eV, with a higher binding energy shoulder at ~ 288 eV due
153 to the presence of more oxidized carbon atoms (e.g. amide and carboxyl groups; Figure S4 and
154 S5). It should be noted that due to their small size (i.e., diameters < 10 nm), XPS spectra reflect
155 the entire CD nanoparticle with respect to composition and chemical bonding environment.

156

157 *Effects of Direct Photolysis*

158 Upon entering aquatic environments, CDs will immediately experience the effects of direct
159 photolysis due to their absorbance within the solar power distribution reaching the earth's surface
160 (Figure S6a). Photoluminescence (PL) spectroscopy was used to monitor the fluorescent properties
161 of CDs after exposure to sunlight and artificial indoor light, while changes in composition and
162 chemical bonding were evaluated using a combination of TC/TN, XPS, ATR-FTIR, and ¹H-NMR.

163 CACDs exposed to natural sunlight experienced rapid photobleaching, as their
164 fluorescence disappeared after 12 h of irradiation, observed both spectroscopically (Figure 1a, S7)
165 and visually (Figure S8). This low photostability is in stark contrast to the persistence of
166 fluorescence (Figure S9a) observed under artificial laboratory lighting. This difference in
167 photostability is attributed to the differences in overlap between the absorbance spectrum of the
168 CDs and the respective emission spectra from natural sunlight (solar irradiance, Figure S6a) and
169 fluorescent bulbs (Figure S9b). Thus, it is likely that the < 400 nm component of natural sunlight
170 drives photobleaching of CDs in the environment. The loss of fluorescence induced by exposure
171 to sunlight was also found to be more rapid in solutions initially saturated with O₂, but unaffected
172 in solutions sparged with N₂ (Figure 1b). This behavior indicates that photobleaching in natural
173 sunlight likely involves reactions with ROS formed via the presence of dissolved oxygen in
174 solution.

175 Despite the rapid loss of fluorescence in CD solutions (i.e., < 12 h), exposure of up to 6
176 weeks of sunlight had no observable effect on the carbon or nitrogen content as exhibited by TC
177 and TN (Figure 1c). Similarly, XPS data revealed that the composition within the CACDs (Figure
178 2a) and MACDs (Figure S10) as well as the chemical bonding environment within both CACDs
179 (Figures 2b, S4) and MACDs (Figures S5) also remained constant over the course of the 6-week

180 exposure. ATR-FTIR spectra of CACDs and MACDs (Figure 2c) were largely unchanged after 6
181 weeks of exposure to sunlight, though for CACDs, loss of intensity at 1547 cm⁻¹ was observed
182 during the first two weeks of outdoor exposure, suggesting photobleaching could be driven through
183 proton abstraction from the amide groups initially present in the CD structure, though not
184 extensively enough to meaningfully change the CD composition.

185 ¹H-NMR spectra of CACDs acquired before and after photobleaching also indicated only
186 minor chemical changes to proton bonding environments (Figure 2d). As-synthesized CACDs
187 featured clusters of ¹H-NMR peaks in several diagnostic regions: 1.8 ppm to 2.5 ppm, 2.5 ppm to
188 4.5 ppm, and at 8.4 ppm, indicative of protons in the α - or β -position to carbonyl or amide
189 groups,⁴²⁻⁴⁴ protons bound to or in the α -position to oxidized carbon species (i.e., alcohol, ether,
190 ester, carbonyl),^{42, 45} and non-exchangeable amide protons⁴⁶⁻⁴⁸ respectively. In contrast, no
191 carboxylic acid protons were observed due to exchange of these acidic protons in the (D₂O)
192 solvent. The photobleached CACDs exhibited a largely similar ¹H-NMR spectrum to the parent
193 CACDs. The only changes observed were the loss of peak intensity at 4.2 ppm and the increase in
194 intensity of the peak at 8.4 ppm, likely indicating some degradation of the amide groups initially
195 present in the CDs.

196 Collectively, these findings indicate that the principle effect of natural sunlight on organic
197 acid-based CDs immediately after entering an aquatic environment is rapid (i.e., < 12 h)
198 photobleaching (Figure 1a) in a process modulated by the relative level of dissolved oxygen therein
199 (Figure 1b). While the initial rate of photobleaching may vary to some degree dependent on the
200 concentration of dissolved oxygen available to generate ROS, the complete photobleaching of CDs
201 is expected to occur in all aqueous environments, irrespective of dissolved oxygen content (Figure
202 1b). Findings also indicate that the CD structure and composition will remain largely unchanged

203 during photobleaching, supported by mass-recovery studies which demonstrated that 101.4 % +/-
204 2.1 % of CD mass is recovered after 21 d of natural sunlight exposure (see SI for details).

205 Interestingly, these findings contrast with a study published by Chen et al., in which it was
206 reported that citric acid/urea CDs were rapidly volatilized in totality after 8 h of natural sunlight
207 exposure due to extensive structural decomposition driven by CD-produced $\cdot\text{OH}$.³¹ We posit one
208 possibility for the contrasting photochemical behavior observed between these studies is that the
209 different structural features present in the two different types of CDs, arising by virtue of the
210 different precursors used (e.g., urea features a carbonyl group which EDA lacks), strongly regulate
211 the persistence of CD photoactivity, the overall phototransformation pathway, and resultant
212 kinetics of sunlight driven degradation. While we did not observe degradation or volatilization for
213 CDs exposed to sunlight in the present study, the photobleaching and comparatively small changes
214 that did occur to the CDs indeed could arise from similar reactions between CD-generated ROS
215 and the CDs themselves³¹ (e.g., $\cdot\text{OH}$ -driven proton abstraction)⁴⁹ as suggested by the increase in
216 photobleaching rate with increased dissolved oxygen content.

217 Importantly, because as-synthesized CDs remained colloidally stable in the presence of
218 divalent cations known to destabilize other nanomaterials (Figure S11), the lack of significant
219 changes to the physicochemical properties of CDs after photobleaching suggests that they will
220 remain colloidally stable in natural environments after irradiation by natural sunlight. Specifically,
221 spectroscopic measurements (i.e., XPS, ATR-FTIR) of the photobleached CDs indicate the
222 retention of negatively charged oxygen-containing functional groups (i.e., carboxyl, hydroxyl)
223 which are responsible for the electrostatic repulsion between CDs, an effect which is responsible
224 for the colloidal stability of carbon dots⁵⁰⁻⁵⁴ as well as other carbon nanomaterials (CNTs,⁵⁵⁻⁵⁷
225 graphene⁵⁸⁻⁶⁰) in aqueous environments. Consequently, photobleached CDs can be expected to

226 remain stable for long periods in the water column where they will be subject to reactions with
227 ROS (primarily $\cdot\text{OH}$) generated by the irradiation of common constituents of natural water (NOM,
228 NO_3^-).¹⁸⁻²⁰

229

230 *Effects of Indirect Photolysis.*

231 To assess the effects of indirect photolysis on CDs, CACD and MACD suspensions were
232 exposed to $\cdot\text{OH}$ produced via 300 nm irradiation of H_2O_2 . 300 nm irradiation of CDs in the absence
233 of H_2O_2 photobleached CDs without any measurable structural changes. A previous analytical
234 study enabled us to determine the Molar \times time dose of $\cdot\text{OH}$ generated during H_2O_2 photolysis
235 (Table S1), permitting comparison to the equivalent dose of $\cdot\text{OH}$ CDs would experience in the
236 natural environment. The kinetics of CD photodegradation by $\cdot\text{OH}$ was assessed using TC and TN,
237 while reaction products were identified through a combination of IC, ATR-FTIR, ^{13}C -NMR, and
238 XPS.

239 TC data indicated that during $\cdot\text{OH}$ exposure, both CACDs and MACDs reacted in two well
240 defined temporal stages. First, $\sim 60\%$ of carbon atoms initially present in both CD types were lost
241 after a $1.4 \times 10^{-9} \text{ M}^*\text{min}$ exposure to $\cdot\text{OH}$ (Figure 3a). Following this rapid and extensive loss of
242 carbon atoms, the residual carbon-containing species were significantly less susceptible to further
243 $\cdot\text{OH}$ -mediated degradation during the second stage of the reaction as the $\cdot\text{OH}$ dose increased
244 beyond $1.4 \times 10^{-9} \text{ M}^*\text{min}$ $\cdot\text{OH}$. At an $\cdot\text{OH}$ dose of $2.8 \times 10^{-8} \text{ M}^*\text{min}$, the carbon content only
245 decreased by an additional 10% for MACDs, while a dose of $4.0 \times 10^{-8} \text{ M}^*\text{min}$ $\cdot\text{OH}$ only decreased
246 the carbon content by 15% for CACDs.

247 Complementary TN analysis (Figure 3b) revealed that the total nitrogen content was
248 relatively insensitive to $\cdot\text{OH}$ exposure ($\cdot\text{OH}$ doses of $4.0 \times 10^{-8} \text{ M}^*\text{min}$), in marked contrast to the

249 considerable loss of carbon (compare Figures 3a and 3b). Although the total nitrogen content
250 remained essentially constant during \cdot OH exposure, nitrogen speciation evolved. Specifically, the
251 production of nitrate was observed for \cdot OH doses in excess of 5.5×10^{-9} M*min (Figure 3b) and
252 increased steadily until all CD nitrogen atoms were converted into nitrate ions. The constant TN
253 content coupled with the steady increase in nitrate concentration in solution indicates that over
254 time the \cdot OH-driven degradation of CDs will produce nitrate ions.

255 ATR-FTIR spectra shown in Figure 4a provide spectroscopic evidence of two distinct
256 phases in the reaction of MACDs with \cdot OH. The first phase of degradation was initiated upon
257 exposure to an \cdot OH dose of 6.9×10^{-10} M*min, which resulted in a decrease in intensity of the amide
258 N-H bending mode at 1527 cm^{-1} , and a red-shift of the (carboxylic) C=O stretch to 1680 cm^{-1}
259 indicative of a change in the chemical bonding environment in the MACDs. The simultaneous
260 diminishment and transformation of these features indicates that \cdot OH-mediated decomposition of
261 CDs involves a cleavage of the amide moieties initially present in the CD backbone. After \cdot OH
262 exposure increased from 6.9×10^{-10} M*min to 1.4×10^{-9} M*min, the amide groups initially present
263 in the CDs had been oxidized into nitro groups (i.e., NO_2), as evidenced by the simultaneous loss
264 of the O=C-NH bend at 1527 cm^{-1} and the appearance of the ν_4/ν_1 stretches of nitro groups at 1590 cm^{-1}
265 and 1414 cm^{-1} , respectively.⁶¹ Additionally, the appearance of peaks at $\sim 3400\text{ cm}^{-1}$ and 1100 cm^{-1}
266 indicate the formation of hydroxyl groups in the photoproducts^{38, 62} whose sharpness and
267 peak positions are very similar to the hydroxyl features present in malic acid (Figure 4b). By a \cdot OH
268 dose of 1.4×10^{-9} M*min, the previous carbonyl feature at 1700 cm^{-1} had shifted and is now
269 centered on 1680 cm^{-1} , indicating that the carbonyl species are now in a more highly hydrogen-
270 bound chemical environment (i.e., small carboxylic acids, such as malic acid). As the \cdot OH dose
271 increases, new bands at $1313\text{ cm}^{-1}/831\text{ cm}^{-1}$ also emerge which can be assigned to and the ν_3 stretch

272 (E')/v₂ bend (A₂') of nitrate ions.⁶³ Collectively, the formation of these oxidized nitrogen groups
273 and the similarity of degraded CD spectra to malic acid strongly suggests that CDs were
274 depolymerized in the presence of ·OH through the cleavage of their initial amide bonds to form
275 nitro groups and malic acid photofragments.

276 The second phase of degradation shown by ATR-FTIR was observed for ·OH doses beyond
277 1.4×10⁻⁹ M*min, and is defined as being the period of exposure during which the spectra remained
278 relatively unchanged with increasing ·OH dose, aside from an increase in nitrate and nitro peak
279 intensities. ATR-FTIR spectra observed for the solid phase (i.e., lyophilized) species produced by
280 MACDs exposed to ·OH doses in excess of 5.5×10⁻⁹ M*min continued to exhibit peaks similar to
281 those of sodium nitrate and the solid malic acid precursor (Figure 4b, common peaks: free O-H at
282 3400 cm⁻¹, carboxy C=O at 1680 cm⁻¹, and O-H deformation at 1100 cm⁻¹). Furthermore, Figure
283 4b demonstrates sustained exposure of both MACDs and CACDs to ·OH in excess of 5.5×10⁻¹⁰
284 M*min resulted in the formation of near identical photoproducts as suggested by the similarity of
285 their spectra. It should be noted that XPS and ATR-FTIR analysis was not possible for ·OH doses
286 above 1.1×10⁻⁸ M*min, as the mass loss due to volatilization of carbon (as shown by TC) precluded
287 sufficient sample recovery.

288 XPS spectra of CACDs exposed to ·OH also indicate a two-phase degradation process.
289 During the first period of degradation, ·OH exposure up to 1.4×10⁻⁹ M*min ·OH resulted in a loss
290 of higher binding energy features (i.e., carbonyl carbon), and the C (1s) region was dominated by
291 the C-C/C-H species at 285 eV with only a small shoulder at 288 eV (Figure 5a). The CDs then
292 entered the second phase of ·OH exposure from doses of 5.5×10⁻⁹ M*min to 1.1×10⁻⁸ M*min, at
293 which point the carbonyl feature reemerged in the C (1s) region at 288 eV. XPS analysis also
294 revealed that exposure to ·OH produced an overall decrease in the carbon content and a small

295 increase in the nitrogen content of the non-volatile photoproducts (Figure S12). Specifically,
296 CACDs were initially composed of 55% carbon and 15% nitrogen, but exposure to 1.1×10^{-8}
297 M*min \cdot OH led to products that contained 35% carbon and 20% nitrogen. This enrichment of
298 nitrogen with increasing \cdot OH exposure as measured by XPS is qualitatively consistent with the
299 trends observed by TC/TN in that it further indicates that carbon was lost and volatilized from the
300 CDs, while nitrogen atoms remain associated with the CD photoproduct.

301 The ^{13}C -NMR of CACDs exposed to \cdot OH also indicated extensive degradation to the CDs.
302 Photobleached CACDs (Figure 5b) prior to \cdot OH exposure contained various carbon functional
303 groups including carboxylic acids/amides (160-180 ppm)⁶⁴, alcohols/ethers (70-90 ppm),⁶⁵⁻⁶⁶ and
304 both substituted (i.e., branched) and primary alkane carbons centered around 30-50 ppm and 10-
305 30 ppm, respectively.⁶⁷⁻⁶⁸ After a \cdot OH dose sufficient to cause a loss of 60% TC, ^{13}C -NMR was
306 performed again to assess the CDs nearing the end of the first phase of degradation (see Figure 3).
307 The resultant ^{13}C -NMR indicates that the CDs degraded through the loss of substituted/branched
308 alkane groups (30 ppm to 50 ppm). This suggests that the crosslinked network initially present in
309 the CDs was degraded during \cdot OH exposure. Interestingly, the growth of one peak around 165
310 ppm, likely a carboxyl species, agrees with the increase in such species as shown with ATR-FTIR
311 and XPS spectra.

312 To contextualize these results in terms of the equivalent environmental \cdot OH exposure, we
313 applied a methodology developed by Lankone et al. which allowed the integrated \cdot OH dose to be
314 benchmarked to the maximum \cdot OH dose a sample would experience during one month of exposure
315 in sunlit waters ($10^{-15} \text{ M} * 2.2 \times 10^4 \text{ min/month} = 2.2 \times 10^{-11} \frac{\text{M} \cdot \text{min}}{\text{month}}$). For example, exposure to a
316 solution of H_2O_2 at an initial concentration of 100 mM, as it is photolyzed for 4 hours results in
317 CD exposure of $1.4 \times 10^{-9} \text{ M} \cdot \text{min}$; this dose corresponds to an equivalent environmental exposure

318 of approximately 64 months ($\frac{1.4 \times 10^{-9} M \cdot min}{2.2 \times 10^{-11} M \cdot min / month}$). In this study, relations to environmental timescale
319 were done under the assumption that CDs consistently experience the maximum \cdot OH dose (i.e.,
320 10^{-15} M) in the environment, though calculations based on the full range of $[\cdot$ OH]_{ss} are reported in
321 the SI (Table S1). Using these calculations and assuming an environmental steady state \cdot OH
322 concentration of 10^{-15} M, we can discuss CD photodegradation by indirect photolysis in terms of
323 the equivalent environmental timescale.

324 The two-step degradation process first observed with TC and TN data (Figure 3a and 3b)
325 can now be interpreted to indicate that the period of initial CD degradation in the presence of \cdot OH
326 occurs over approximately 64 +/- 5 months of indirect photolysis in sunlit waters. During this time,
327 as indicated by ATR-FTIR and XPS, the CDs are depolymerized via the cleavage of amide groups,
328 resulting in the formation of nitro groups and carboxylic acid species. Additionally, TC indicates
329 that 60% of carbon atoms are lost from solution, most likely as volatile species, similar to the
330 reactions of \cdot OH with GO which evolve CO₂ as an end product.²⁴ We note the rate of loss of the
331 amide feature at 1527 cm⁻¹ closely corresponds to the rate at which the initial carbon volatilization
332 occurs (compare TC and ATR-FTIR data in Figures 3a and 4a, respectively), suggesting that the
333 first step in the degradation of CDs by \cdot OH is hydrogen abstraction from N-H and/or C-H groups,⁴⁹
334 ⁶⁹⁻⁷⁰ leading to the degradation of amide linkages. Additional evidence of this depolymerization is
335 seen in ¹³C-NMR data via the loss of C=C (120 ppm) and substituted/branched alkane character
336 (30-50 ppm), representing the degradation of crosslinked character within the CDs, resulting in the
337 primary alkane signature which persists in the resultant photoproducts (10-30 ppm) which are also
338 carboxylated as seen in both ATR-FTIR (1680 cm⁻¹; Figure 4a) and ¹³C-NMR (165 ppm; Figure
339 5b). The redshift of the carboxyl C=O stretch coupled with the persistence of primary alkanes seen
340 in ¹³C-NMR provides evidence for the evolution of low molecular weight carboxylic acids after

341 depolymerization which are less sterically hindered than in the parent CD, thus able to participate
342 in more extensive hydrogen bonding.³⁸

343 In contrast to the significant loss/volatilization of carbon atoms, the TN and ATR-FTIR
344 data reveal that during the first 64 +/- 5 months of environmental exposure, there is little to no
345 change in the total nitrogen content, although the nitrogen species initially present in the CDs have
346 been converted/oxidized into nitro groups by 'OH. This oxidation occurs over the same 'OH dose
347 as the loss in amide character in ATR-FTIR (1646 cm⁻¹), suggesting that nitrogen atoms involved
348 in amide linkages in the parent CDs are oxidized into nitro groups after cleavage during indirect
349 photolysis.

350 Following the initial 'OH-mediated depolymerization of the CD structure, the second phase
351 of indirect photolysis is observed for cumulative 'OH doses in excess of approximately 1.4*10⁻⁹
352 M*min, or beyond the first 64 +/- 5 months of environmental exposure, and is characterized by a
353 much slower decrease in carbon content. During this phase, residual carbon atoms are further
354 oxidized by 'OH, leading to a significant increase in the concentration of highly oxidized
355 photoproducts structurally similar to the dicarboxylic acids used in the original CD synthesis (e.g.
356 malic acid as shown with ATR-FTIR in Figure 4b), and related carboxylic acids (e.g. glutaric acid,
357 Figure S13). The formation of carboxylated carbon species is consistent with the increase in
358 concentration of the C(1s) shoulder above 286 eV in XPS. Because both CACDs and MACDs
359 generated photoproducts with similar spectroscopic signatures, this degradation pathway is likely
360 generalizable to CDs synthesized from EDA and carboxylic acid precursors.

361 When the changes in composition and structure are considered together, our results indicate
362 that during this second stage of indirect photolysis, residual carbon atoms are oxidized by 'OH to
363 carboxyl groups which then serve as precursors for the formation of volatile species⁷⁰ such as

364 CO_2^{24} or acetone.⁷¹ Continued $\cdot\text{OH}$ -mediated oxidation of previously formed nitro groups leads to
365 the evolution of nitrate ions⁷² as indicated by the IC and ATR-FTIR data (Figures 3b and 4a). Thus,
366 extrapolation of these trends to sustained (maximum) $\cdot\text{OH}$ exposure in the natural environment, in
367 excess of the 43 years of equivalent exposure simulated in laboratory studies, indicates CDs would
368 eventually degrade such that all carbon atoms will be volatilized while nitrogen atoms are
369 stoichiometrically converted into nitrate ions.

370 The reason for the two distinct temporal regimes of carbon loss, however, remains
371 somewhat unclear. One possible explanation is that the more recalcitrant carbon atoms seen in the
372 second phase of the process are associated with fragments containing carbon-nitrogen bonds
373 residual from reactions of $\cdot\text{OH}$ with the parent CDs. This interpretation is supported by IC data
374 which clearly shows that the formation of nitrate ions from the CDs requires a dose of $\cdot\text{OH}$ in
375 excess of $5.5 \times 10^{-9} \text{ M} \cdot \text{min}$. The evolution of nitrate ions from nitro groups requires C-N bond
376 cleavage, a limiting prerequisite step in the volatilization of these carbon atoms compared to those
377 in other bonding environments.

378

379 **Environmental Implications**

380 Due to their highly charged surface and small size, CDs are colloidally stable in the water
381 column.¹¹⁻¹⁴ Thus, the effects of both direct and indirect photolysis will play an important role in
382 determining the fate and persistence of CDs in aquatic environments. In contrast to their
383 photostability under illumination in laboratory settings (i.e., under fluorescent lighting), the citric
384 and malic acid-based CDs investigated in this study will rapidly photobleach after only a few hours
385 of direct photolysis by natural sunlight, likely precluding the use of these particular CDs as sensors
386 in outdoor settings. Once the CACDs and MACDs have photobleached, the resultant carbon

387 nanoparticles exhibit similar physicochemical properties to the parent CDs, suggesting a high
388 degree of colloidal stability. Consequently, these photobleached CDs will persist for extended
389 periods of time in the environment while being difficult to monitor or track due their poor light
390 scattering properties and lack of fluorescent signature.

391 Ultimately, photobleached CDs will be degraded by indirect photolysis via reactions with
392 ROS, primarily $\cdot\text{OH}$ produced by exposure of NOM and other constituents of water (e.g., metal
393 ions, nitrate, dissolved oxygen) to natural sunlight.²⁰ Based on the relation to environmental
394 timescale which was used (assuming exposure to the maximum environmental $[\cdot\text{OH}]_{\text{ss}}$),³⁴ the first
395 stage of this indirect photolysis will occur over the course of approximately 5-6 years of
396 environmental exposure in sunlit waters, resulting in depolymerization of the CD via cleavage of
397 its amide bonds and the oxidation of a majority of the carbon atoms in the CDs into volatile carbon
398 species (e.g., CO_2 and acetone). Over the same time span, nitrogen atoms will be oxidized into
399 nitro groups bound to fragments of the parent CDs. Environmental exposure of the residual
400 photoproducts will lead to the formation of carboxylic acid species similar to the organic acids
401 used in the CD synthesis (e.g. malic acid). These carboxylic acids will serve as precursors to the
402 production of volatile carbon species, a process which will continue until all carbon atoms in the
403 CDs are ultimately mineralized (timespan of several decades based on TC trend). In contrast,
404 nitrogen atoms in the CDs will be stoichiometrically oxidized from nitro groups into nitrate ions
405 as indicated by IC data (half-life roughly 75 years). Given the projected lifetime and colloidal
406 stability of photobleached CDs and their photoproducts throughout this prolonged
407 photodegradation process, future studies identifying the environmental impact of these various
408 intermediate species will be prudent.

409 A comparison of the results from this study with previous studies highlights the diversity
410 of photochemical transformations experienced by carbon-based nanomaterials in the environment.
411 For example, GO rapidly photofragments in natural sunlight as a result of the reactivity of the
412 highly strained epoxide groups that exist on its surface, leading to the formation of reduced
413 graphene oxide species (rGO) and the evolution of CO₂.²⁸ Conversely, oxidized carbon nanotubes
414 (CNTs) do not fragment upon exposure to sunlight or ROS, but rather undergo
415 photodecarboxylation, causing them to lose surface charge which leads to sedimentation.²⁶
416 Aggregates of fullerenes are prone to ROS-driven degradation by sunlight, leading to
417 disaggregation, the formation of dissolved organic species, and eventual mineralization.²⁹
418 However, under simulated sunlight³⁰ and UVA light conditions,⁷³ fullerenes showed a higher level
419 of resistance to mineralization, only exhibiting surface oxidation. These observations clearly
420 indicate that the structure and physicochemical properties of carbon nanomaterials play a
421 determinant role in regulating their photochemical reactions in the environment. With this in mind,
422 it is not unreasonable that the photochemical transformations of CDs will be sensitive to their
423 chemical structure and composition.

424 Although the phototransformations of the microwave-synthesized CACDs and MACDs
425 using ethylene diamine outlined in this study parallel one another and were structurally stable for
426 6 weeks in natural sunlight, it has been reported that CACDs synthesized via a hydrothermal route
427 using urea are completely mineralized in sunlight after less than one day at concentrations similar
428 to the ones used in the present study (50 mg/L).³¹ Thus, the intrinsic chemical and physical
429 characteristics of CDs imparted via their precursors appear to dictate their photostability. As such,
430 it will be important to identify the different phototransformations of CDs synthesized with a wide
431 variety of precursors and synthetic pathways. Additionally, a detailed understanding of the

432 mechanisms and influential factors which dictate CD photobleaching will be needed to improve
433 photostability if CDs are to be used as environmental sensors and tracers in outdoor settings.

434

435 **Acknowledgements**

436 This work was supported by National Science Foundation under the Center for Sustainable
437 Nanotechnology, CHE-1503408. The CSN is part of the Centers for Chemical Innovation
438 Program. LRS is supported by the National Science Foundation Graduate Research Fellowship
439 Program under Grant No. DGE-1746891. The authors would like to thank Steven Chow for
440 assistance with ion chromatography measurements, the Materials Characterization Facility at
441 Johns Hopkins University, and the U.S. Department of Energy (DOE)/NREL/ALLIANCE for the
442 solar irradiance data as well as Casey Smith for assistance with figures and Dylan Brach for CD
443 photographs. TEM characterization was carried out in the Characterization Facility, University of
444 Minnesota, which receives partial support from the MRSEC program (DMR-1420013).

445

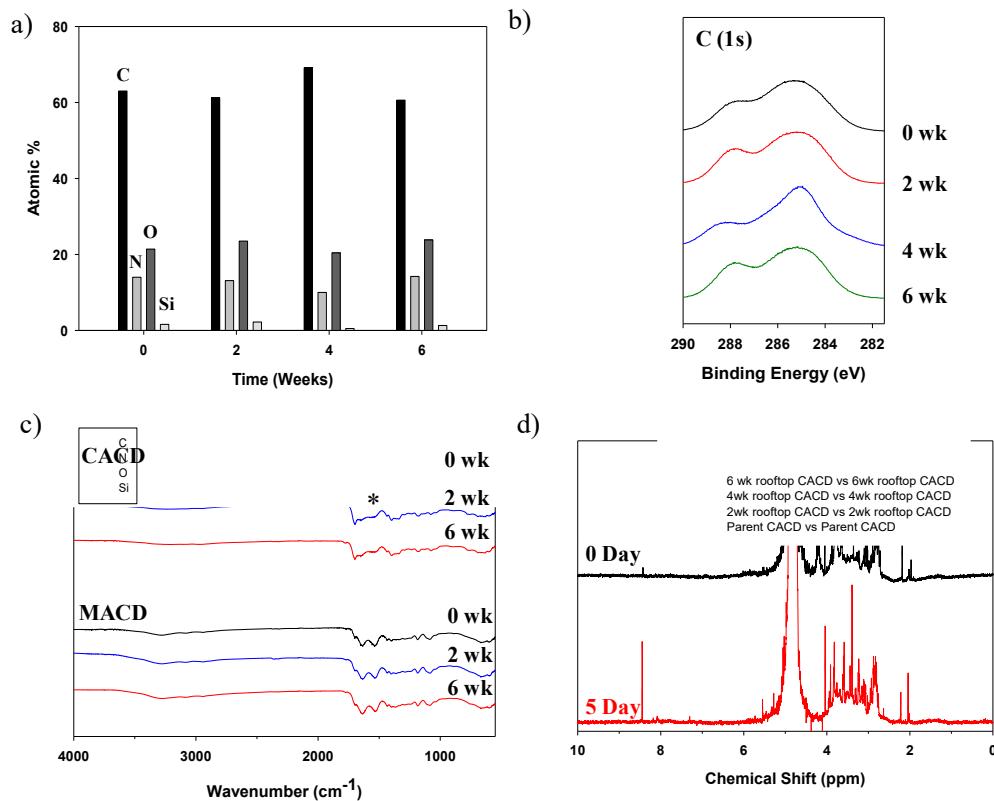
446 **Supporting Information**

447 Detailed calculation of $\cdot\text{OH}$ dose and relation to environmental timescale (Table S1, Figure S1)
448 and experimental procedures for CD synthesis and characterization (PL, UV-Vis, TEM, ATR-
449 FTIR, XPS, TC, TN, IC, ^1H - and ^{13}C -NMR; Figures S2, S3, S4, S5). CD absorption compared to
450 solar emission spectrum (Figure S6) and emission spectrum of fluorescent bulbs (Figure S9),
451 effects of photobleaching after exposure to natural sunlight (Figure S7, S8, S10) along with
452 stability studies of CDs in the presence of divalent cations (Figure S11). Additional figures
453 illustrating change in XPS composition of CDs after $\cdot\text{OH}$ exposure (Figure S12) are included and
454 ATR-FTIR comparing degraded MACDs to glutaric acid (Figure S13).

Figure 1. Effect of natural sunlight on CDs. a) Emission profiles of CACDs after exposure to 0 min (black), 30 min. (blue), 1 hr. (green), 2 hr. (red), and 12 hr. (pink) of natural sunlight. b) Emission of CACDs at 350 nm (black) compared to emission of CACDs after sparging with N₂ (blue) or O₂ (red) gas as a function of exposure to natural sunlight. c) Total carbon (top) and total nitrogen (bottom) concentration of CACDs (red triangles) and MACDs (black circles) after exposure to 0-6 weeks of natural sunlight in non-sparged water.

455

456


457

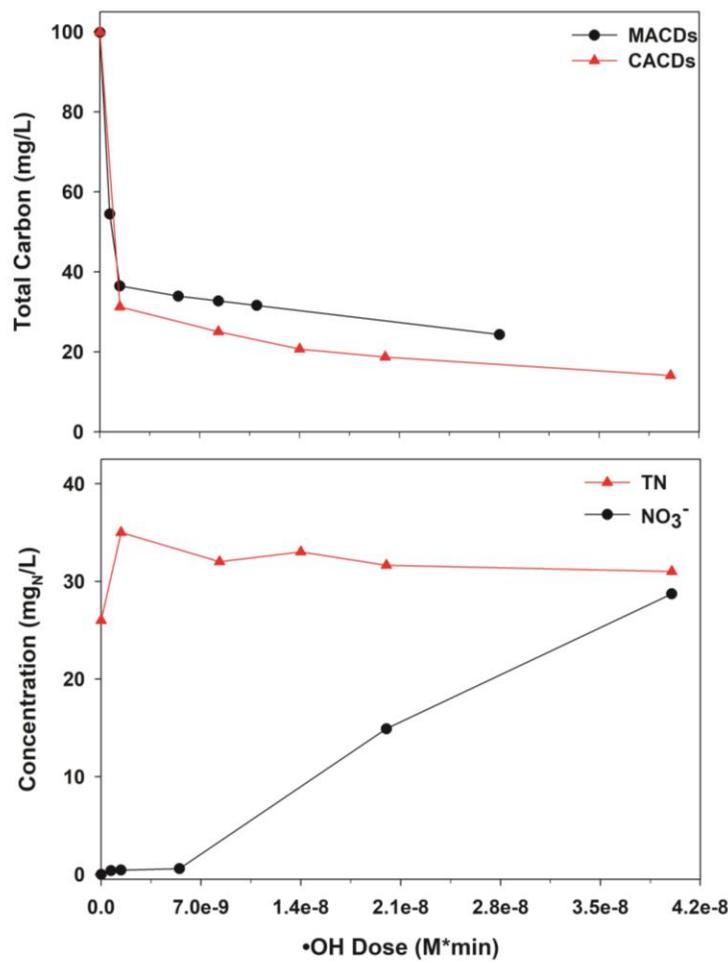
458

459

460

461

Figure 2. Effect of natural sunlight on CD structure. a) Atomic composition of lyophilized CACDs after natural sunlight exposure for 0-6 wk as determined with XPS. b) XPS C (1s) regions of lyophilized parent CACDs after 0 (black), 2 (red), 4 (blue), and 6 (green) weeks of natural sunlight exposure. (c) ATR-FTIR spectra of CACDs (top) and MACDs (bottom) exposed to natural sunlight for 0, 2, and 6 weeks, with (*) indicating the N-H bend at 1547 cm⁻¹. (d) ¹H-NMR spectra of CACDs (black) and CACDs exposed to 5 days of natural sunlight (red).


462

463

464

465

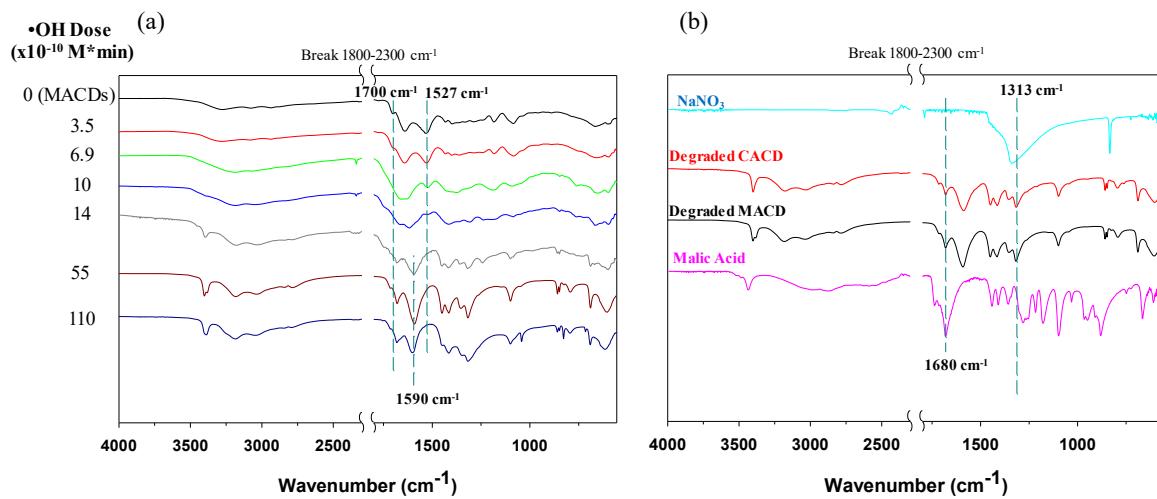
466

Figure 3. Degradation of CDs by $\cdot OH$. (a) Total carbon concentration of MACD (black) and CACD (red) as a function of $\cdot OH$ dose. (b) Total nitrogen (red) and nitrate concentration (black) of CACD solution in terms of mg/L nitrogen as a function of $\cdot OH$ dose.

467

468

469


470

471

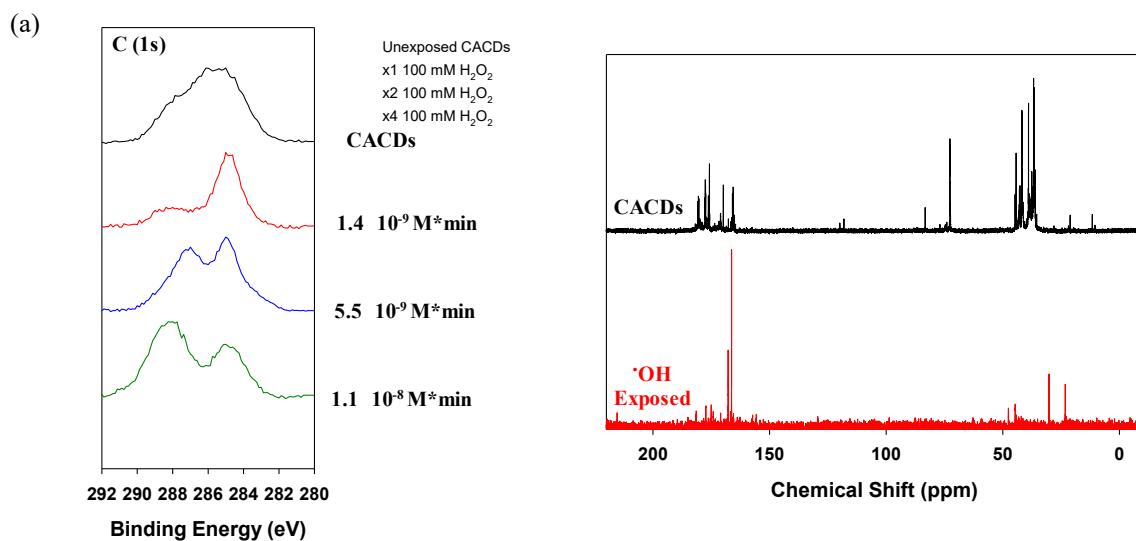
472

473

474

Figure 4. ATR-FTIR of lyophilized MACDs after exposure to different $\cdot\text{OH}$ doses. (a) MACDs (black) after exposure to $3.5 \times 10^{-10} \text{ M}^2 \text{min}$ (red), $6.9 \times 10^{-10} \text{ M}^2 \text{min}$ (light green), $1.0 \times 10^{-9} \text{ M}^2 \text{min}$ (blue), $1.4 \times 10^{-9} \text{ M}^2 \text{min}$ (grey), $5.5 \times 10^{-9} \text{ M}^2 \text{min}$ (dark red), and $1.1 \times 10^{-8} \text{ M}^2 \text{min}$ (dark blue) $\cdot\text{OH}$. Insufficient masses of photoproducts were recovered for CDs reacted with $\cdot\text{OH}$ doses $> 1.1 \times 10^{-8} \text{ M}^2 \text{min}$, precluding ATR-FTIR analysis. Dotted lines mark carboxyl C=O (stretch, 1700 cm^{-1}), N-H (bend, 1527 cm^{-1}), and nitro (stretch, 1590 cm^{-1}) modes. (b) Degradation products of CACDs (red) and MACDs (black) after exposure to $5.5 \times 10^{-9} \text{ M}^2 \text{min}$ $\cdot\text{OH}$ shown in comparison to malic acid (MA, pink) and sodium nitrate (blue). Dotted lines mark carboxyl C=O (stretch, 1680 cm^{-1}) and nitrate ν_3 (stretch, 1313 cm^{-1}) modes.

475


476

477

478

479

480

Figure 5. a) C (1s) region of lyophilized CACDs (black) after exposure to a dose of 1.4×10^{-9} M*min (red), 5.5×10^{-9} M*min (blue), and 1.1×10^{-8} M*min (green) $^{\bullet}\text{OH}$. Insufficient masses of photoproducts were recovered for CDs reacted with $^{\bullet}\text{OH}$ doses $> 1.1 \times 10^{-8}$ M*min, precluding XPS analysis. b) ^{13}C -NMR of photobleached CACDs in D_2O before (black) and after (red) exposure to 5.7×10^{-8} M*min $^{\bullet}\text{OH}$. At the significantly higher CD concentration required for NMR (1.7×10^4 mg/L), this $^{\bullet}\text{OH}$ dose leads to the loss of 60% of carbon from solution as determined with TC.

481

482

483

484

References

485

486

487 1. Yan, F.; Sun, Z.; Zhang, H.; Sun, X.; Jiang, Y.; Bai, Z., The fluorescence mechanism of carbon
488 dots, and methods for tuning their emission color: a review. *Microchimica Acta* **2019**, *186* (8), 583.

489 2. Liu, M. L.; Chen, B. B.; Li, C. M.; Huang, C. Z., Carbon dots: synthesis, formation mechanism,
490 fluorescence origin and sensing applications. *Green Chem.* **2019**, *21* (3), 449-471.

491 3. Huang, S.; Li, W.; Han, P.; Zhou, X.; Cheng, J.; Wen, H.; Xue, W., Carbon quantum dots:
492 synthesis, properties, and sensing applications as a potential clinical analytical method. *Anal. Methods*
493 **2019**, *11* (17), 2240-2258.

494 4. Zhang, Z.; Zhang, J.; Chen, N.; Qu, L., Graphene quantum dots: an emerging material for energy-
495 related applications and beyond. *Energ. Environ. Sci.* **2012**, *5* (10), 8869-8890.

496 5. Fei, H.; Ye, R.; Ye, G.; Gong, Y.; Peng, Z.; Fan, X.; Samuel, E. L. G.; Ajayan, P. M.; Tour, J. M.,
497 Boron- and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient
498 electrocatalysts for oxygen reduction. *ACS Nano* **2014**, *8* (10), 10837-10843.

499 6. Hettiarachchi, S. D.; Graham, R. M.; Mintz, K. J.; Zhou, Y.; Vanni, S.; Peng, Z.; Leblanc, R. M.,
500 Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. *Nanoscale*
501 **2019**, *11* (13), 6192-6205.

502 7. Zhang, Z.; Lei, Y.; Yang, X.; Shi, N.; Geng, L.; Wang, S.; Zhang, J.; Shi, S., High drug-loading
503 system of hollow carbon dots–doxorubicin: preparation, in vitro release and pH-targeted research. *J.*
504 *Mater. Chem. B* **2019**, *7* (13), 2130-2137.

505 8. Zhi, B.; Cui, Y.; Wang, S.; Frank, B. P.; Williams, D. N.; Brown, R. P.; Melby, E. S.; Hamers, R.
506 J.; Rosenzweig, Z.; Fairbrother, D. H.; Orr, G.; Haynes, C. L., Malic acid carbon dots: from super-
507 resolution live-cell imaging to highly efficient separation. *ACS Nano* **2018**, *12* (6), 5741-5752.

508 9. Boakye-Yiadom, K. O.; Kesse, S.; Opoku-Damoah, Y.; Filli, M. S.; Aquib, M.; Joelle, M. M. B.;
509 Farooq, M. A.; Mavlyanova, R.; Raza, F.; Bavi, R.; Wang, B., Carbon dots: Applications in bioimaging
510 and theranostics. *Int. J. Pharm.* **2019**, *564*, 308-317.

511 10. Sciortino, A.; Cannizzo, A.; Messina, F., Carbon nanodots: a review—from the current
512 understanding of the fundamental photophysics to the full control of the optical response. *C—Journal of*
513 *Carbon Research* **2018**, *4* (4), 67.

514 11. Liu, X.; Li, J.; Huang, Y.; Wang, X.; Zhang, X.; Wang, X., Adsorption, aggregation, and
515 deposition behaviors of carbon dots on minerals. *Environ. Sci. Technol.* **2017**, *51* (11), 6156-6164.

516 12. Bayati, M.; Dai, J.; Zambrana, A.; Rees, C.; Fidalgo de Cortalezzi, M., Effect of water chemistry
517 on the aggregation and photoluminescence behavior of carbon dots. *J. Environ. Sci.* **2018**, *65*, 223-235.

518 13. Li, Q.; Chen, B.; Xing, B., Aggregation kinetics and self-assembly mechanisms of graphene
519 quantum dots in aqueous solutions: cooperative effects of pH and electrolytes. *Environ. Sci. Technol.*
520 **2017**, *51* (3), 1364-1376.

521 14. Dager, A.; Uchida, T.; Maekawa, T.; Tachibana, M., Synthesis and characterization of mono-
522 disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. *Sci.*
523 *Rep.* **2019**, *9* (1), 14004.

524 15. Kamrani, S.; Rezaei, M.; Kord, M.; Baalousha, M., Transport and retention of carbon dots (CDs)
525 in saturated and unsaturated porous media: role of ionic strength, pH, and collector grain size. *Water Res.*
526 **2018**, *133*, 338-347.

527 16. Havrdova, M.; Hola, K.; Skopalik, J.; Tomankova, K.; Petr, M.; Cepe, K.; Polakova, K.; Tucek,
528 J.; Bourlinos, A. B.; Zboril, R., Toxicity of carbon dots – effect of surface functionalization on the cell
529 viability, reactive oxygen species generation and cell cycle. *Carbon* **2016**, *99*, 238-248.

530 17. Tabish, T. A.; Scotton, C. J.; Ferguson, D. C. J.; Lin, L.; Veen, A. v. d.; Lowry, S.; Ali, M.;
531 Jabeen, F.; Ali, M.; Winyard, P. G.; Zhang, S., Biocompatibility and toxicity of graphene quantum dots
532 for potential application in photodynamic therapy. *Nanomedicine* **2018**, *13* (15), 1923-1937.

533 18. Zepp, R. G.; Hoigne, J.; Bader, H., Nitrate-induced photooxidation of trace organic chemicals in
534 water. *Environ. Sci. Technol.* **1987**, *21* (5), 443-450.

535 19. Page, S. E.; Logan, J. R.; Cory, R. M.; McNeill, K., Evidence for dissolved organic matter as the
536 primary source and sink of photochemically produced hydroxyl radical in arctic surface waters. *Environ.*
537 *Sci. Proc. Imp.* **2014**, *16* (4), 807-822.

538 20. Gligorovski, S.; Strekowski, R.; Barbat, S.; Vione, D., Environmental implications of hydroxyl
539 radicals ($\cdot\text{OH}$). *Chem. Rev.* **2015**, *115* (24), 13051-13092.

540 21. Miller, P. L.; Chin, Y.-P., Indirect Photolysis Promoted by Natural and Engineered Wetland
541 Water Constituents: Processes Leading to Alachlor Degradation. *Environ. Sci. Technol.* **2005**, *39* (12),
542 4454-4462.

543 22. Lam, M. W.; Mabury, S. A., Photodegradation of the pharmaceuticals atorvastatin,
544 carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. *Aquatic Sciences* **2005**, *67* (2), 177-
545 188.

546 23. Vione, D.; Maddigapu, P. R.; De Laurentiis, E.; Minella, M.; Pazzi, M.; Maurino, V.; Minero, C.;
547 Kouras, S.; Richard, C., Modelling the photochemical fate of ibuprofen in surface waters. *Water Res.*
548 **2011**, *45* (20), 6725-6736.

549 24. Hou, W.-C.; Henderson, W. M.; Chowdhury, I.; Goodwin, D. G.; Chang, X.; Martin, S.;
550 Fairbrother, D. H.; Bouchard, D.; Zepp, R. G., The contribution of indirect photolysis to the degradation
551 of graphene oxide in sunlight. *Carbon* **2016**, *110*, 426-437.

552 25. Zepp, R. G.; Faust, B. C.; Hoigne, J., Hydroxyl radical formation in aqueous reactions (pH 3-8)
553 of iron(II) with hydrogen peroxide: the photo-Fenton reaction. *Environ. Sci. Technol.* **1992**, *26* (2), 313-
554 319.

555 26. Chen, C.-Y.; Jafvert, C. T., Photoreactivity of carboxylated single-walled carbon nanotubes in
556 sunlight: reactive oxygen species production in water. *Environ. Sci. Technol.* **2010**, *44* (17), 6674-6679.

557 27. Hou, W.-C.; BeigzadehMilani, S.; Jafvert, C. T.; Zepp, R. G., Photoreactivity of unfunctionalized
558 single-wall carbon nanotubes involving hydroxyl radical: chiral dependency and surface coating effect.
559 *Environ. Sci. Technol.* **2014**, *48* (7), 3875-3882.

560 28. Hou, W.-C.; Chowdhury, I.; Goodwin, D. G.; Henderson, W. M.; Fairbrother, D. H.; Bouchard,
561 D.; Zepp, R. G., Photochemical transformation of graphene oxide in sunlight. *Environ. Sci. Technol.*
562 **2015**, *49* (6), 3435-3443.

563 29. Hou, W.-C.; Jafvert, C. T., Photochemical transformation of aqueous C60 clusters in sunlight.
564 *Environ. Sci. Technol.* **2009**, *43* (2), 362-367.

565 30. Sanchís, J.; Aminot, Y.; Abad, E.; Jha, A. N.; Readman, J. W.; Farré, M., Transformation of C60
566 fullerene aggregates suspended and weathered under realistic environmental conditions. *Carbon* **2018**,
567 *128*, 54-62.

568 31. Chen, X.; Fang, G.; Liu, C.; Dionysiou, D. D.; Wang, X.; Zhu, C.; Wang, Y.; Gao, J.; Zhou, D.,
569 Cotransformation of carbon dots and contaminant under light in aqueous solutions: a mechanistic study.
570 *Environ. Sci. Technol.* **2019**, *53* (11), 6235-6244.

571 32. de Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J.-R.; Victoria, F.; Naccache, R.,
572 Microwave-assisted synthesis of carbon dots and their applications. *J. Mater. Chem. C* **2019**, *7* (24),
573 7175-7195.

574 33. Zhi, B.; Gallagher, M. J.; Frank, B. P.; Lyons, T. Y.; Qiu, T. A.; Da, J.; Mensch, A. C.; Hamers,
575 R. J.; Rosenzweig, Z.; Fairbrother, D. H.; Haynes, C. L., Investigation of phosphorous doping effects on
576 polymeric carbon dots: fluorescence, photostability, and environmental impact. *Carbon* **2018**, *129*, 438-
577 449.

578 34. Lankone, R. S.; Barclay, M.; Deline, A. R.; Fairbrother, D. H., Quantifying hydroxyl radical
579 concentrations and total dose via principle component analysis of UV-Vis Spectroscopy. *Anal. Methods*
580 **Submitted.**

581 35. Haag, W. R.; Hoigné, J., Photo-sensitized oxidation in natural water via .OH radicals.
582 *Chemosphere* **1985**, *14* (11), 1659-1671.

583 36. Schneider, J.; Reckmeier, C. J.; Xiong, Y.; von Seckendorff, M.; Susha, A. S.; Kasák, P.; Rogach,
584 A. L., Molecular fluorescence in citric acid-based carbon dots. *J. Phys. Chem. C* **2017**, *121* (3), 2014-
585 2022.

586 37. Yuan, H.; Yu, J.; Feng, S.; Gong, Y., Highly photoluminescent pH-independent nitrogen-doped
587 carbon dots for sensitive and selective sensing of p-nitrophenol. *RSC Adv.* **2016**, *6* (18), 15192-15200.

588 38. Max, J.-J.; Chapados, C., Infrared spectroscopy of aqueous carboxylic acids: malic acid. *J. Phys.*
589 *Chem. A* **2002**, *106* (27), 6452-6461.

590 39. Dousseau, F.; Pezolet, M., Determination of the secondary structure content of proteins in
591 aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and
592 partial least-squares methods. *Biochemistry* **1990**, *29* (37), 8771-8779.

593 40. Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W., Carbon dots: surface
594 engineering and applications. *J. Mater. Chem. B* **2016**, *4* (35), 5772-5788.

595 41. Colthup, N. B., Spectra-structure correlations in the infra-red region. *J. Opt. Soc. Am.* **1950**, *40*
596 (6), 397-400.

597 42. Wishart, D. S.; Case, D. A., [1] - Use of Chemical Shifts in Macromolecular Structure
598 Determination. In *Methods in Enzymology*, James, T. L.; Dötsch, V.; Schmitz, U., Eds. Academic Press:
599 2002; Vol. 338, pp 3-34.

600 43. Fouda, A. S.; Elmorsi, M. A.; Shaban, S. M.; Fayed, T.; Azazy, O., Evaluation of N-(3-(dimethyl
601 hexadecyl ammonio)propyl) palmitamide bromide as cationic surfactant corrosion inhibitor for API N80
602 steel in acidic environment. *Egypt. J. Pet.* **2018**, *27* (4), 683-694.

603 44. Shaban, S. M., N-(3-(Dimethyl benzyl ammonio)propyl)alkanamide chloride derivatives as
604 corrosion inhibitors for mild steel in 1 M HCl solution: experimental and theoretical investigation. *RSC*
605 *Adv.* **2016**, *6* (46), 39784-39800.

606 45. Szilágyi, L.; Jardetzky, O., α -Proton chemical shifts and secondary structure in proteins. *Journal*
607 *of Magnetic Resonance (1969)* **1989**, *83* (3), 441-449.

608 46. Blundell, C. D.; DeAngelis, P. L.; Day, A. J.; Almond, A., Use of ^{15}N -NMR to resolve
609 molecular details in isotopically-enriched carbohydrates: sequence-specific observations in hyaluronan
610 oligomers up to decasaccharides. *Glycobiology* **2004**, *14* (11), 999-1009.

611 47. Blundell, Charles D.; Deangelis, Paul L.; Almond, A., Hyaluronan: the absence of amide-
612 carboxylate hydrogen bonds and the chain conformation in aqueous solution are incompatible with stable
613 secondary and tertiary structure models. *Biochem J.* **2006**, *396* (3), 487-498.

614 48. Hill, S. A.; Benito-Alfonso, D.; Davis, S. A.; Morgan, D. J.; Berry, M.; Galan, M. C., Practical
615 three-minute synthesis of acid-coated fluorescent carbon dots with tuneable core structure. *Sci. Rep.* **2018**,
616 *8* (1), 12234.

617 49. Stadtman, E. R., Oxidation of free amino acid and amino acid residues in proteins by radiolysis
618 and by metal-catalyzed reactions. *Annu. Rev. Biochem.* **1993**, *62* (1), 797-821.

619 50. Zhao, P.; Zhu, L., Dispersibility of carbon dots in aqueous and/or organic solvents. *Chemical*
620 *Communications* **2018**, *54* (43), 5401-5406.

621 51. Zhang, B.; Liu, C.-y.; Liu, Y., A Novel One-Step Approach to Synthesize Fluorescent Carbon
622 Nanoparticles. *European Journal of Inorganic Chemistry* **2010**, *2010* (28), 4411-4414.

623 52. Xu, M.; Xu, S.; Yang, Z.; Shu, M.; He, G.; Huang, D.; Zhang, L.; Li, L.; Cui, D.; Zhang, Y.,
624 Hydrophilic and blue fluorescent N-doped carbon dots from tartaric acid and various alkylol amines under
625 microwave irradiation. *Nanoscale* **2015**, *7* (38), 15915-15923.

626 53. Wang, W.; Damm, C.; Walter, J.; Nacken, T. J.; Peukert, W., Photobleaching and stabilization of
627 carbon nanodots produced by solvothermal synthesis. *Physical Chemistry Chemical Physics* **2016**, *18* (1),
628 466-475.

629 54. Fiuza, T.; Gomide, G.; Campos, A. F. C.; Messina, F.; Depeyrot, J., On the Colloidal Stability of
630 Nitrogen-Rich Carbon Nanodots Aqueous Dispersions. *C — Journal of Carbon Research* **2019**, *5* (4), 74.

631 55. Smith, B.; Wepasnick, K.; Schrote, K. E.; Cho, H.-H.; Ball, W. P.; Fairbrother, D. H., Influence
632 of Surface Oxides on the Colloidal Stability of Multi-Walled Carbon Nanotubes: A Structure–Property
633 Relationship. *Langmuir* **2009**, *25* (17), 9767-9776.

634 56. Zhang, L.; Wang, M.; Fang, J.; Yang, K.; Lin, D., The effect of oxidation on physicochemical
635 properties and aqueous stabilization of multiwalled carbon nanotubes: comparison of multiple analysis
636 methods. *Science China Chemistry* **2016**, *59* (11), 1498-1507.

637 57. Bai, Y.; Wu, F.; Lin, D.; Xing, B., Aqueous stabilization of carbon nanotubes: effects of surface
638 oxidization and solution chemistry. *Environmental Science and Pollution Research* **2014**, *21* (6), 4358-
639 4365.

640 58. Hadadian, M.; Goharshadi, E. K.; Youssefi, A., Electrical conductivity, thermal conductivity, and
641 rheological properties of graphene oxide-based nanofluids. *Journal of Nanoparticle Research* **2014**, *16*
642 (12), 2788.

643 59. Nuncira, J.; Seara, L. M.; Sinisterra, R. D.; Caliman, V.; Silva, G. G., Long-term colloidal
644 stability of graphene oxide aqueous nanofluids. *Fullerenes, Nanotubes and Carbon Nanostructures* **2019**,
645 1-11.

646 60. Qi, Y.; Xia, T.; Li, Y.; Duan, L.; Chen, W., Colloidal stability of reduced graphene oxide
647 materials prepared using different reducing agents. *Environ. Sci.: Nano* **2016**, *3* (5), 1062-1071.

648 61. Logansen, A. V.; Litovchenko, G. D., The characteristic bands of the stretching vibrations of the
649 nitro group in infrared absorption. *J. Appl. Spectrosc.* **1965**, *3* (6), 404-411.

650 62. Barańska, H.; Kuduk-Jaworska, J.; Szostak, R.; Romaniewska, A., Vibrational spectra of racemic
651 and enantiomeric malic acids. *J. Raman Spectrosc.* **2003**, *34* (1), 68-76.

652 63. Brooker, M. H.; Irish, D. E., Vibrational frequency assignments of isotopically different forms of
653 nitrate ion in ionic nitrate crystals. *Can. J. Chem.* **1970**, *48* (8), 1198-1201.

654 64. Howarth, O. W.; Lilley, D. M. J., Carbon-13-NMR of peptides and proteins. *Prog. Nucl. Mag. Res. Sp.* **1978**, *12* (1), 1-40.

655 65. Katsuraya, K.; Hatanaka, K.; Matsuzaki, K.; Amiya, S., Assignment of finely resolved ^{13}C NMR
656 spectra of poly(vinyl alcohol). *Polymer* **2001**, *42* (24), 9855-9858.

657 66. Ding, S.; Hong, Y.-W.; Chen, C.-Y.; Chang, N.-C., One and two dimensional ^1H and ^{13}C high
658 resolution NMR investigation of lariat ethers and their alkali metal ionic complexes: A more tangible
659 evidence for the presence of less common C–H...O hydrogen bonds. *Biophys. Chem.* **2006**, *121* (2), 75-
660 83.

661 67. Gilbert, A.; Yamada, K.; Yoshida, N., Exploration of intramolecular ^{13}C isotope distribution in
662 long chain n-alkanes (C11–C31) using isotopic ^{13}C NMR. *Org. Geochem.* **2013**, *62*, 56-61.

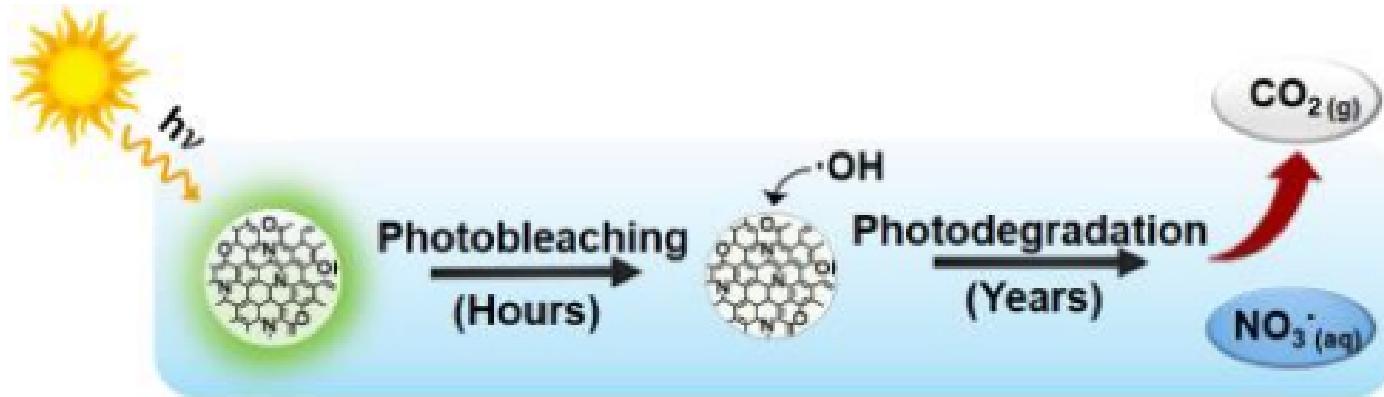
663 68. Ritter, W.; Hull, W.; Cantow, H. J., Determination of the most stable conformers of branched
664 alkanes by ^{13}C -NMR spectroscopy at very low temperatures. *Tetrahedron Lett.* **1978**, *19* (34), 3093-
665 3096.

666 69. Doan, H. Q.; Davis, A. C.; Francisco, J. S., Primary steps in the reaction of OH radicals with
667 peptide systems: perspective from a study of model amides. *J. Phys. Chem. A* **2010**, *114* (16), 5342-5357.

668 70. Vel Leitner, N. K.; Berger, P.; Legube, B., Oxidation of amino groups by hydroxyl radicals in
669 relation to the oxidation degree of the α -carbon. *Environ. Sci. Technol.* **2002**, *36* (14), 3083-3089.

670 71. Quici, N.; Morgada, M. E.; Gettar, R. T.; Bolte, M.; Litter, M. I., Photocatalytic degradation of
671 citric acid under different conditions: TiO₂ heterogeneous photocatalysis against homogeneous photolytic
672 processes promoted by Fe(III) and H₂O₂. *Appl. Catal. B-Environ.* **2007**, *71* (3), 117-124.

673 72. Pelizzetti, E.; Minero, C.; Piccinini, P.; Vincenti, M., Phototransformations of nitrogen containing
674 organic compounds over irradiated semiconductor metal oxides: Nitrobenzene and Atrazine over TiO₂
675 and ZnO. *Coordin. Chem. Rev.* **1993**, *125* (1), 183-193.


676 73. Hwang, Y. S.; Li, Q., Characterizing photochemical transformation of aqueous nC₆₀ under
677 environmentally relevant conditions. *Environ. Sci. Technol.* **2010**, *44* (8), 3008-3013.

678

679

680

Page 31 Environmental Science & Technology

ACS Paragon Plus Environment