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Abstract

The paper introduces a new algorithm for planning in partially observable Markov
decision processes (POMDP) based on the idea of aggregate simulation. The
algorithm uses product distributions to approximate the belief state and shows how
to build a representation graph of an approximate action-value function over belief
space. The graph captures the result of simulating the model in aggregate under
independence assumptions, giving a symbolic representation of the value function.
The algorithm supports large observation spaces using sampling networks, a rep-
resentation of the process of sampling values of observations, which is integrated
into the graph representation. Following previous work in MDPs this approach
enables action selection in POMDPs through gradient optimization over the graph
representation. This approach complements recent algorithms for POMDPs which
are based on particle representations of belief states and an explicit search for
action selection. Our approach enables scaling to large factored action spaces in
addition to large state spaces and observation spaces. An experimental evaluation
demonstrates that the algorithm provides excellent performance relative to state of
the art in large POMDP problems.

1 Introduction

Planning in partially observable Markov decision processes is a central problem in AI which is known
to be computationally hard. Work over the last two decades produced significant algorithmic progress
that affords some scalability for solving large problems. Off-line approaches, typically aiming for
exact solutions, rely on the structure of the optimal value function to construct and prune such
representations [22,10,2], and PBVI and related algorithms (see [20]) carefully control this process
yielding significant speedup over early algorithms. In contrast, online algorithms interleave planning
and execution and are not allowed sufficient time to produce an optimal global policy. Instead they
focus on search for the best action for the current step. Many approaches in online planning rely on
an explicit search tree over the belief space of the POMDP and use sampling to reduce the size of the
tree [11] and most effective recent algorithms further use a particle based representation of the belief
states to facilitate fast search [21, 25, 23, 7].

Our work is motivated by the idea of aggregate simulation in MDPs [5,4,3]. This approach builds an
explicit symbolic computation graph that approximates the evolution of the distribution of state and
reward variables over time, conditioned on the current action and future rollout policy. The algorithm
then optimizes the choice of actions by gradient based search, using automatic differentiation [8] over
the explicit function represented by the computation graph. As recently shown [6] this is equivalent
to solving a marginal MAP inference problem where the expectation step is evaluated by belief
propagation (BP) [17], and the maximization step is performed using gradients.
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We introduce a new algorithmSNAP(Sampling Networks and Aggregate simulation for POMDP) that
expands the scope of aggregate simulation. The algorithm must tackle two related technical challenges.
The solution in [5,4] requires a one-pass forward computation of marginal probabilities. Viewed
from the perspective of BP, this does not allow for downstream observations – observed descendents
of action variables – in the corresponding Bayesian network. But this conflicts with the standard
conditioning on observation variables in belief update. Our proposed solution explicitly enumerates
all possible observations, which are then numerical constants, and reorders the computation steps to
allow for aggregate simulation. The second challenge is that enumerating all possible observations is
computationally expensive. To resolve this, our algorithm must use explicit sampling for problems
with large observation spaces. Our second contribution is a construction of sampling networks,
showing how observationszcan be sampled symbolically and how bothzandp(z)can be integrated
into the computation graph so that potential observations are sampled correctly for any setting of the
current action. This allows full integration with gradient based search and yields theSNAPalgorithm.

We evaluateSNAPon problems from the international planning competition (IPC) 2011, the latest
IPC with publicly available challenge POMDP problems, comparing its performance to POMCP [21]
and DESPOT [25]. The results show that the algorithm is competitive on a large range of problems
and that it has a significant advantage on large problems.

2 Background

2.1 MDPs and POMDPs

A MDP [18] is specified by{S,A,T,R,}, whereSis a finite state space,Ais a finite action space,
T(s, a, s0)=p(s0|s, a)defines the transition probabilities,R(s, a)is the immediate reward and
is the discount factor. For MDPs (where the state is observed) a policy⇡:S! Ais a mapping
from states to actions, indicating which action to choose at each state. Given a policy⇡, the value
functionV⇡(s)is the expected discounted total rewardE[

P
i
iR(si,⇡(si))|⇡], wheresiis thei

th

state visited by following⇡ands0=s. The action-value functionQ
⇡:S⇥A!Ris the expected

discounted total reward when taking actionaat statesand following⇡thereafter.

In POMDPs the agent cannot observe the state. The MDP model is augmented with an observation
spaceOand the observation probability functionO(z, s0,a)=p(z|s0,a)wheres0is the state reached
andzis the observation in the transitionT(s, a, s0). That is, in the transition fromstos0, observation
probabilities depend on the next states0. Thebelief state, a distribution over states, provides a
sufficient statistic of the information from the initial state distribution and history of actions and
observations. The belief state can be calculated iteratively from the history. More specifically, given
the current belief statebt(s), actionatand no observations, we expect to be in

batt+1(s
0)=p(s0|bt,at)=Es⇠bt(s)[p(s

0|s, at)]. (1)

Givenbt(s),atand observationztthe new belief state isb
at,zt
t+1 (s

00)=p(s00|bt,at,zt):

bat,ztt+1 (s
00)=

p(s00,zt|bt,at)

p(zt|bt,at)
=
batt+1(s

00)p(zt|s
00,at)

p(zt|bt,at)
(2)

where the denominator in the last equation requires a double sum over states:P
s

P
s0bt(s)p(s

0|s, at)p(zt|s
0,at). Algorithms for POMDPs typically condition action se-

lection either directly on the history or on the belief state. The description above assumed an atomic
representation of states, actions and observations. In factored spaces each of these is specified by a set
of variables, where in this paper we assume the variables are binary. In this case, the number of states
(actions, observations) is exponential in the number of variables, implying that state enumeration
which is implicit above is not feasible. One way to address this challenge is by using a particle based
representation for the belief state as in [20,21]. In contrast, our approach approximates the belief
state as a product distribution which allows for further computational simplifications.

2.2 MDP planning by aggregate simulation

Aggregate simulation follows the general scheme of the rollout algorithm [24] with some modifica-
tions. The core idea in aggregate simulation is to represent a distribution over states at every step of
planning. Recall that the rollout algorithm [24] estimates the state-action value functionQ⇡(s, a)by
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applyingainsand then simulating forward using action selection with⇡, where the policy⇡maps
states to actions. This yields a trajectory,s, a, s1,a1,...and the average of the cumulative reward
over multiple trajectories is used to estimateQ⇡(s, a). The lifted-conformantSOGBOFAalgorithm of
[3] works in factored spaces. For the rollout process, it uses an open-loop policy (a.k.a. a straight
line plan, or a sequential plan) where the sequence of actions is pre-determined and the actions used
do not depend on the states visited in the trajectory. We refer to this below as a sequential rollout
planp. In addition, instead of performing explicit simulations it calculates a product distribution over
state and reward variables at every step, conditioned onaandp. Finally, while rollout uses a fixed⇡,
lifted-conformantSOGBOFAoptimizespat the same time it optimizesaand therefore it can improve
over the initial rollout scheme. In order to perform this the algorithm approximates the corresponding
distributions as product distributions over the variables.

SOGBOFAaccepts a high level description of the MDP, where our implementation works with the
RDDL language [19], and compiles it into a computation graph. Consider a Dynamic Bayesian
Network (DBN) which captures the finite horizon planning objective conditioned onpanda. The
conditional distribution of each state variablexat any time step is first translated into a disjoint
sum form “if(c1)thenp1,if(c2)...if(cn)thenpn" wherepiisp(x=T),Tstands fortrue, and the
conditionsciare conjunctions of parent values which are aremutually exclusive and exhaustive.
The last condition implies that the probability that the variable is true is equal to:

P
p(ci)pi. This

representation is always possible because we work with discrete random variables and the expression
can be obtained from the conditional probability ofxgive its parents. In practice the expressions can
be obtained directly from the RDDL description. Similarly the expected value of reward variables is
translated into a disjoint sum form

P
p(ci)viwithvi2R. The probabilities for the conditionsci

are approximated by assuming that their parents are independent, that isp(ci)is approximated by
p̂(ci)=

Q
wk2ci

p̂(wk)
Q
w̄k2ci

(1 p̂(wk)), wherewkandw̄kare positive and negative literals in
the conjunction respectively. To avoid size explosion when translating expressions with many parents,
SOGBOFAskips the translation to disjoint sum form and directly translates from the logical form of
expressions into a numerical form using standard translation from logical to numerical constructs
(â bisa⇤b,a_bis 1-(1-a)*(1-b),¬ais 1-a). These expressions are combined to build an explicit
computation graph that approximates of the marginal probability for every variable in the DBN.

To illustrate this process consider the following example from [4] with three state variables s(1),
s(2) and s(3), three action variables a(1), a(2), a(3) and two intermediate variablescond1andcond2.
The MDP model is given by the following RDDL [19] program where primed variants of variables
represent the value of the variable after performing the action.

cond1 = Bernoulli(0.7)
cond2 = Bernoulli(0.5)
s’(1) = if (cond1) then ~a(3) else false
s’(2) = if (s(1)) then a(2) else false
s’(3) = if (cond2) then s(2) else false
reward = s(1) + s(2) + s(3)

The model is translated into disjoint sum expressions ass’(1) = (1-a(3))*0.7,s’(2) =
s(1)*a(2),s’(3) = s(2) * 0.5,r=s(1)+s(2)+s(3). The corresponding computa-
tion graph, for horizon 3, is shown in the right portion of Figure 1. The bottom layer represents
the current state and action variables. In the second layer action variables represent the conformant
policy, and state variables are computed from values in the first layer where each node represents the
corresponding expression. The reward variables are computed at each layer and summed to get the
cumulativeQvalue. The graph enables computation ofQp(s, a)by plugging in values forp, sand
a. For the purpose of our POMDP algorithm it is important to notice that the computation graph in
SOGBOFAreplaces each random variable in the graph with its approximate marginal probability.

Now given that we have an explicit computation graph we can use it for optimizingaandpusing
gradient based search. This is done by using automatic differentiation [8] to compute gradients w.r.t.
all variables inaandpand using gradient ascent. To achieve this, for each action variable, e.g.,at,̀,
we optimizep(at,̀=T), and optimize the joint setting of

Q
`p(at,̀=T)using gradient ascent.

SOGBOFAincludes several additional heuristics including dynamic control of simulation depth (trying
to make sure we have enough time forngradient steps, we make the simulation shallower if graph
size gets too large), dynamic selection of gradient step size, maintaining domain constraints, and a
balance between gradient search and random restarts. In addition, the graph construction simplifies
obvious numerical operations (e.g.,1⇤x=xand0⇤x=0) and uses dynamic programming to
avoid regenerating identical node computations, achieving an effect similar to lifting in probabilistic
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inference. All these heuristics are inherited by our POMDP solver, but they are not important for
understanding the ideas in this paper. We therefore omit the details and refer to reader to [4, 3].

3 Aggregate simulation for POMDP

This section describes a basic version ofSNAPwhich assumes that the observation space is small and
can be enumerated. LikeSOGBOFA, our algorithm performs aggregate rollout with a rollout planp.
The estimation is based on an appropriate definition of theQ()function over belief states:

Qp(bt,at)=Ebt(s)[R(s, at)] +
X

zt

p(zt|bt,at)V
pzt(bat,ztt+1 ) (3)

whereVp(b)is the cumulative value obtained by usingpto choose actions starting from belief stateb.
Notice that we use a different rollout planpztfor each value of the observation variables which can
be crucial for calculating an informative value for eachbat,ztt+1 . The update for belief states was given
above in Eq (1) and (2). Our algorithm implements approximations of these equations by assuming
factoring through independence and by substituting variables with their marginal probabilities.

A simple approach to upgradeSOGBOFAto this case will attempt to add observation variables to the
computation graph and perform the calculations in the same manner. However, this approach does
not work. Note that observations are descendants of current state and action variables. However, as
pointed out by [6] the main computational advantage inSOGBOFAresults from the fact that there are
no downstream observed variables in the computation graph. As a result belief propagation does not
have backward messages and and the computation can be done in one pass. To address this difficulty
we reorder the computations by grounding all possible values for observations, conditioning the
computation of probabilities and values on the observations and combining the results.

We start by enforcing factoring over the representation of belief states:

b̂t(s)=
Y

i

b̂t(si); b̂att+1(s)=
Y

i

b̂att+1(si); b̂at,ztt+1 (s)=
Y

i

b̂at,ztt+1 (si)

We then approximate Eq (1) as

batt+1(s
0
i=T)=Es⇠bt(s)[p(s

0
i=T|s, at)]⇡b̂

at
t+1(s

0
i=T)=p̂(s

0
i=T|{̂bt(si)},at)

where the notationp̂indicates that conditioning on the factored set of beliefs{̂bt(si)}is performed by
replacing each occurrence ofsjin the expression forp(s

0
i=T|{sj},at)with its marginal probability

b̂t(sj=T). We use the same notation with intended meaning for substitution by marginal probabilities

when conditioning onb̂in other expressions below. Note that since variables are binary, for any
variablexit suffices to calculatêp(x=T)where1 p̂(x=T)is used when the complement is needed.
We use this implicitly in the following. Similarly, the reward portion of Eq (3) is approximated as

Ebt(s)[R(s, at)]⇡R̂({̂bt(si)},at). (4)

The termp(zt|bt,at)from Eq (2) and (3) is approximated by enforcing factoring asp(zt|bt,at)⇡Q
kp(zt,k|bt,at)where for each factor we have

p(zt,k=T|bt,at)=Ebatt+1(s0)[p(zt,k=T|s
0,at)]⇡p̂(zt,k=T|bt,at)=p̂(zt,k=T|{̂b

at
t+1(s

0
i)},at).

Next, to facilitate computations with factored representations, we replace Eq (2) with

bat,ztt+1 (s
00
i=T)=

p(s00i=T,zt|bt,at)

p(zt|bt,at)
=
batt+1(s

00
i=T)p(zt|s

00
i=T,bt,at)

p(zt|bt,at)
. (5)

Notice that because we condition on a single variables00ithe last term in the numerator must retain
the conditioning onbt. This term is approximated by enforcing factoringp(zt|s

00
i=T,bt,at)⇡Q

kp(zt,k|s
00
i=T,bt,at)where each component is

p(zt,k=T|s
00
i=T,bt,at)=Ebatt+1(s00|s00i=T)[p(zt,k=T|s

00,at)]⇡p̂(zt,k=T|s
00
i=T,{̂b

at
t+1(s

00)̀}̀6=i,at)

and Eq (5) is approximated as:

b̂at,ztt+1 (s
00
i=T)=

b̂att+1(s
00
i=T)

Q
kp̂(zt,k|s

00
i=T,{̂b

at
t+1(s

00)̀}̀6=i,at)
Q
kp̂(zt,k|{̂b

at
t+1(s

0
i)},at)

. (6)
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Figure 1: Left: demonstration of the structure of the computation graph in SNAP when there are two
possible values for observationszt=z1orzt=z2. Right: demonstration of a three-step simulation
in SOGBOFA including the representation of conformant actions.

The basic version of our algorithm enumerates all observations and constructs a computation graph
to capture an approximate version of Eq (3) as follows:

Q̂p(̂bt,at)=R̂({̂bt(si)},at)+
zt k

p̂(zt,k|{̂b
at
t+1(s

′
i)},at) V̂p

zt
(̂bat,ztt+1 ). (7)

The overall structure has a sum of the reward portion and the next state portion. The next state portion
has a sum over all concrete values for observations. For each concrete observation value we have
a product between two portions: the probability forztand the approximate future value obtained

from̂bat,ztt+1 . To construct this portion, we first build a graph that computeŝb
at,zt
t+1 and then applŷV

to the belief state which is the output of this graph. This valuêVp(b)is replaced by theSOGBOFA

graph which rolls outpon the belief state. This is done using the computation of{̂batt+1(s
′
i)}which is

correct because actions inpare not conditioned on states. As explained above, the computation in
SOGBOFAalready handles product distributions over state variables so no change is needed for this
part. Figure 1 shows the high level structure of the computation graph for POMDPs.

Example: Tiger Problem: To illustrate the details of this construction consider the well known
Tiger domain with horizon 2, i.e. where the rollout portion is just an estimate of the reward at the
second step. In Tiger we have one state variableL(true when tiger is on left), three actionslisten,
openLeftandopenRight, and one observation variableH(relevant onlisten; true when we hear
noise on left, false when we hear noise on right). If we open the door where the tiger is, the reward is
−100and the trajectory ends. If we open the other door where there is gold the reward is+10and
the game ends. The cost of taking alistenaction is -10. If we listen then we hear noise on the
correct side with probability0.85and on the other side with probability0.15. The initial belief state
isp(L=T)=0.5. Note that the state always remains the same in this problem:p(L′=v|L=v)=1.

We havep(H=T|L′,listen)=ifL′then0.85else0.15which is translated toL′∗0.85 + (1-L′)∗
0.15. The reward isR=((1-L)∗openRight+L∗openLeft)∗−100 + ((1-L)∗openLeft+L∗

openRight)∗10 +listen∗−10. We first calculate the approximated̂Qp(̂bt,at=listen).The
reward expectation of taking the action listen is -10. According to Eq (6), the belief state after hearing

noise iŝbat=listen,H=Tt+1 (L=T)=0.85. With the approximation in Eq (4), the reward expectation

at stept+1is then calculated asÊ
b
at=listen,H=T
t+1

[R(s, at+1)]≈(0.15∗openRight
1
t+1+0.85∗
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openLeft1t+1)⇤ 100 + (0.15⇤openLeft
1
t+1+0.85⇤openRight

1
t+1)⇤10 +listen

1
t+1⇤ 10,

where the suprescriptoof action is to denote that it works with the belief stateoafter seeing the

othobservation. Similarly we havêb
at=listen,H=F
t+1 (L=T)=0.15, and the reward expectation on

the belief state is calculated asÊ
b
at=listen,H=F
t+1

[R(s, at+1)]⇡(0.85⇤openRight
2
t+1+0.15⇤

openLeft2t+1)⇤ 100+(0.85⇤openLeft
2
t+1+0.15⇤openRight

2
t+1)⇤10+listen

2
t+1⇤ 10. Note

that we havêp(H=T)=p̂(H=F)=0.5. Now with horizon 2, we havêQp(̂bt,at=listen)=
10 + 0.5⇤Ê

b
at=Tlisten,H=T
t+1

[R(s, a1t+1)] + 0.5⇤Ê
b
atceqlisten,H=F
t+1

[R(s, a2t+1)]. Note that

the conformant actions for stept+1on different belief states are different. WithopenLeft1t+1=T

andopenRight2t+1=T, the totalQestimate is 26.5. Similar computations foropenLeftand

openRightyieldQ̂ = 90. Maximizing overatandpwe have an optimal conformant path
listent,openLeftt+1|H=T,openRightt+1|H=F.

4 Sampling networks for large observation spaces

The algorithm of the previous section is too slow when there are many observations because we
generate a sub-graph of the simulation for every possible value. Like other algorithms, when the
observation space is large we can resort to sampling observations and aggregating values only for
the observations sampled. Our construction already computes a node in the graph representing an
approximation ofp(zt,k|bt,at). Therefore we can sample from the product space of observations
conditioned onat. Once a set of observations are sampled we can produce the same type of graph as
before, replacing the explicit calculation of expectation with an average over the sample as in the
following equation, whereNis total number of samples andzntis thenthsampled observation

Q̂p(̂bt,at)=R̂({̂bt(si)},at)+
1

N

NX

n=1

V̂p
znt
(̂b
at,z

n
t

t+1 ). (8)
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Figure 2: Sampling network structure.

However, to implement this idea we must deal
with two difficulties. The first is that during
gradient searchatis not a binary action but in-
stead it represents a product of Bernoulli dis-
tributions

Q
`p(at,̀)where eachp(at,̀)deter-

mines our choice for setting action variableat,̀
to true. This is easily dealt with by replacing
variables with their expectations as in previous
calculations. The second is more complex be-
cause of the gradient search. We can correctly
sample as above, calculate derivatives and up-
date

Q
`p(at,̀). But once this is done,athas

changed and the sampled observations no longer
reflectp(zt,k|bt,at). The computation graph is
still correct, but the observations may not be a
representative sample for the updated action. To address this we introduce the idea of sampling net-
works. This provides a static construction that samples observations with correct probabilities for any
setting ofat. Since we deal with product distributions we can deal with each variable separately. Con-

sider a specific variablezt,kand letx1be the node in the graph representinĝp(zt,k=T|{̂b
at
t+1(s

0
i)},at).

Our algorithm drawsC2[0,1]from the uniform distributionat graph construction time. Note that
p(Cx1)=x1. Therefore we can sample a value forzt,kat construction time by settingzt,k=T
iffx1 C 0. To avoid the use of a non-differential condition( 0)in our graph we replace this
withẑt,k= (A(x1 C))where (x)=1/(1 +ex)is the sigmoid function andAis a constant
(A= 10in our experiments). This yields a node in the graph representinĝzt,kwhose value is⇡0or
⇡1. The only problem is that at graph construction time we do not know whether this value is 0 or 1.
We therefore need to modify the portion of the graph that usesp̂(zt,k|...)where the construction has
two variants of this with different conditioning events, and we use the same solution in both cases.

For concreteness letx2be the node in the graph representinĝp(zt,k|s
00
i=T,{̂b

at
t+1(s

00)̀}̀6=i,at). The
value computed by nodex2is used as input to other nodes. We replace these inputs with

ẑt,k⇤x2+(1 ẑt,k)⇤(1 x2).
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Now, whenẑt,k⇡1we getx2and when it is⇡0we get1 x2as desired. We use the same
construction withx1to calculate the probability with the second type of conditioning. Therefore,
the sampling networks are produced at graph construction time but they produce symbolic nodes
representing concrete samples forztwhich are correctly sampled from the distribution conditioned
onat. Figure 2 shows the sampling network for onêzt,kand the calculation of the probability.

SNAPtests if the observation space is smaller than some fixed constant (S= 10in the experiments). If
so it enumerates all observations. Otherwise, it integrates sampling networks for up toSobservations
into the previous construction to yield a sampled graph. The process for the dynamic setting of
simulation depth fromSOGBOFAis used for the rollout from all samples. If the algorithm finds that
there is insufficient time it generates less thanSsamples with the goal of achieving at leastn= 200
gradient updates. Optimization proceeds in the same manner as before with the new graph.

5 Discussion

SNAPhas two main assumptions or sources of potential limitations. The first is the fact that the rollout
plans do not depend on observations beyond the first step. Our approximation is distinct from the
QMDP approximation [13] which ignores observations altogether. It is also different from the FIB
approximation of [9] which uses observations from the first step but uses a state based approximation
thereafter, in contrast with our use of a conformant plan over the factored belief state. The second
limitation is the factoring into products of independent variables. Factoring is not new and has been
used before for POMDP planning (e.g. [14,15,16]) where authors have shown practical success
across different problems and some theoretical guarantees. However, the manner in which factoring
is used in our algorithm, through symbolic propagation with gradient based optimization, is new and
is the main reason for efficiency and improved search.

POMCP [21] and DESPOT [25] perform search in belief space and develop a search tree which
optimizes the action at every branch in the tree. Very recently these algorithms were improved to
handle large, even continuous, observation spaces [23,7]. Comparing to these, the rollout portion in
SNAPis more limited because we use a single conformant sequential plan (i.e., not a policy) for rollout
and do not expand a tree. On the other hand the aggregate simulation inSNAPprovides a significant
speedup. The other main advantage ofSNAPis the fact that it samples and computes its values
symbolically because this allows for effective gradient based search in contrast with unstructured
sampling of actions in these algorithms. Finally, [21,25] use a particle based representation of the
belief space, whereasSNAPuses a product distribution. These represent different approximations
which may work well in different problems.

In terms of limitations, note that deterministic transitions are not necessarily bad for factored
representations because a belief focused on one state is both deterministic and factored and this can
be preserved by the transition function. For example, the work of [15] has already shown this for the
well knownrocksampledomain. The same is true for the T-maze domain of [1]. Simple experiments
(details omitted) show thatSNAPsolves this problem correctly and that it scales better than other
systems to large mazes.SNAPcan be successful in these problems because one step of observation is
sufficient and the reward does not depend in a sensitive manner on correlation among variables.

On the other hand, we can illustrate the limitations ofSNAPwith two simple domains. The first
has 2 states variablesx1,x2, 3 action variablesa1,a2,a3and one observation variableo1. The
initial belief state is uniform over all 4 assignments which when factored isb0=(0.5,0.5), i.e.,
p(x1= 1) = 0.5andp(x2= 1) = 0.5. The reward isif(x1==x2)then1else 1. The
actionsa1,a2are deterministic wherea1deterministically flips the value ofx1, that is:x

0
1=

if(a1^x1)then0elseif(a1^x̄1)then1elsex1. Similarly,a2deterministically flips the value
ofx2. The actiona3gives a noisy observation testing ifx1==x2as follows:p(o= 1) =
if(a3^x

0
1^x

0
2)_(a3^x̄

0
1^x̄

0
2)then0.9elseifa3then0.1else0. In this case, starting with

b0=(0.5,0.5)it is obvious that the belief is not changed witha1,a2and calculating fora3we
see thatp(x01=1|o= 1) =

0.5·0.9+0.5·0.1
(0.5·0.9+0.5·0.1)+(0.5·0.9+0.5·0.1)=0.5so the belief does not change.

In other words we always have the same belief and same expected reward (which is zero) and the
search will fail. On the other hand, a particle based representation of the belief state will be able to
concentrate on the correct two particles (00,11 or 01,10) using the observations.

The second problem has the same state and action variables, same reward, anda1,a2have the same
dynamics. We have two sensing actionsa3anda4and two observation variables. Actiona3gives
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Figure 5: Left: performance analysis ofSNAPgiven different amount of running time. Right:
performance analysis ofSNAPgiven different number of sampled observations.

For the main experiment we use 2 seconds planning time per step for all planners. We first show the
normalized cumulative reward that each planner gets from 100 runs on each problem. The raw scores
for individual problems vary making visualization of results for many problems difficult. For visual
clarity of comparison across problems we normalize the total reward of each planner by linear scaling
such thatSNAPis always 1 and the random policy is always 0. We do not include standard deviations
in the plots because it is not clear how to calculate these for normalized ratios. Raw scores and
standard deviations of the mean estimate for each problem are given in the supplementary materials.
Given these scores, visible differences in the plots are statistically significant so the trends in the plots
are indicative of performance. The results are shown in Fig 4. First, we can observe thatSNAPhas
competitive performance on all domains and it is significantly better on most problems. Note that
the observation space insysadminis large and the basic algorithm would not be able to handle it,
showing the importance of sampling networks. Second, we can observe that the larger the problem is,
the easier it is to distinguish our planner from the others. This illustrates thatSNAPhas an advantage
in dealing with large combinatorial state, action and observation spaces.

To further analyze the performance ofSNAPwe explore its sensitivity to the setting of the experiments.
First, we compare the planners with different planning time. We arbitrarily picked one of the largest
problems,sysadmin 10, for this experiment. We vary the running time from 1 second per step to 30
seconds per step. The results are in Fig 5, left. We first notice thatSNAPdominates other planners
regardless of the running time. It keeps improving as given more time, and the difference between
SNAPand other planners gets larger with longer running time. This shows that on difficult problems,
SNAPis able to improve performance given longer running time, and that it improves faster than the
others. Finally we evaluate the sensitivity ofSNAPto the number of observation samples. To observe
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Figure 3: Top Left: The size of state, action, and observation spaces for the three IPC domains. Other
Panels: Average reward of algorithms normalized relative to SNAP (score=1) and Random (score=0).

a noisy observation of the value ofx1as follows:p(o1= 1) = if(a3^x
0
1)then0.9elseif(a3^

x̄01)then0.1else0. Actiona4does the same w.r.t.x2. In this case the observation froma3does
change the belief, for example:p(x01=1|o1= 1) =

0.5·0.9
0.5·0.9+0.5·0.1=0.9. That is, if we observe

o1=1then the belief is(0.9,0.5). But the expected reward is still:0.9·0.5+0.1·0.5 0.9·0.5
0.1·0.5=0so the new belief state is not distinguishable from the original one,unless one uses
additional sensing actiona4to identify the value ofx2. In other words for this problem we must
develop a search tree because one level of observations does not suffice. If we were to develop such a
tree we can reach belief states like(0.9,0.9)that identifies the correct action and we can succeed
despite factoring, butSNAPwill fail because the search is limited to one level of observations. Here
too a particle based representation will succeed because it retains the correlation betweenx1,x2.

6 Experimental evaluation

We compare the performance ofSNAPto the state-of-the-art online planners for POMDP. Specifically,
we compare to POMCP [21] and DESPOT [25]. For DESPOT, we use the original implementation
from https://github.com/AdaCompNUS/despot/. For POMCP we use the implementation from the
winner of IPC2011 Boolean POMDP track, POMDPX NUS. POMDPX NUS is a combination of an
offline algorithm SARSOP [12] and POMCP. It triggers different algorithms depending on the size of
the problem. Here, we only use their POMCP implementation. DESPOT and POMCP are domain
independent planners, but previous work has used manually specified domain knowledge to improve
their performance in specific domains. Here we test all algorithms without domain knowledge.

We compare the planners on 3 IPC domains. InCrossingTraffic, the robot tries to move from
one side of a river to the other side, with a penalty at every step when staying in the river. Floating
obstacles randomly appear upstream in the river and float downstream. If running into an obstacle,
the robot will be trapped and cannot move anymore. The robot has partial observation of whether and
where the obstacles appear. Thesysadmindomain models a network of computers. A computer has
a probability of failure which depends on the proportion of all other computers connected to it that
are running. The agent can reboot one or more computers, which has a cost but makes sure that the
computer is running in the next step. The goal is to keep as many computers as possible running for
the entire horizon. The agent has a stochastic observation of whether each computer is still running.
In thetrafficdomain, there are multiple traffic lights that work at different intersections of roads.
Cars flow from the roads to the intersections and the goal is to minimize the number of cars waiting
at intersections. The agent can only observe if there are cars running into each intersection and in
which direction but not their number. For each domain, we use the original 10 problems from the
competition, but add two larger problems, where, roughly speaking, the problems get harder as their
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Figure 4: Left: performance analysis ofSNAPgiven different amount of running time. Right:
performance analysis ofSNAPgiven different number of sampled observations.

index increases. The size of the largest problem for each domain is shown in Figure 3. Note that
the action spaces are relatively small. Similar toSOGBOFA[3],SNAPcan handle much larger action
spaces whereas we expect POMCP and DESPOT to do less well if the action space increases.

For the main experiment we use 2 seconds planning time per step for all planners. We first show the
normalized cumulative reward that each planner gets from 100 runs on each problem. The raw scores
for individual problems vary making visualization of results for many problems difficult. For visual
clarity of comparison across problems we normalize the total reward of each planner by linear scaling
such thatSNAPis always 1 and the random policy is always 0. We do not include standard deviations
in the plots because it is not clear how to calculate these for normalized ratios. Raw scores and
standard deviations of the mean estimate for each problem are given in the supplementary materials.
Given these scores, visible differences in the plots are statistically significant so the trends in the plots
are indicative of performance. The results are shown in Fig 3. First, we can observe thatSNAPhas
competitive performance on all domains and it is significantly better on most problems. Note that
the observation space insysadminis large and the basic algorithm would not be able to handle it,
showing the importance of sampling networks. Second, we can observe that the larger the problem is,
the easier it is to distinguish our planner from the others. This illustrates thatSNAPhas an advantage
in dealing with large combinatorial state, action and observation spaces.

To further analyze the performance ofSNAPwe explore its sensitivity to the setting of the experiments.
First, we compare the planners with different planning time. We arbitrarily picked one of the largest
problems,sysadmin 10, for this experiment. We vary the running time from 1 to 30 seconds per
step. The results are in Fig 4, left. We observe thatSNAPdominates other planners regardless of the
running time and that the difference betweenSNAPand other planners is maintained across the range.
Next, we evaluate the sensitivity ofSNAPto the number of observation samples. In this experiment, in
order to isolate the effect of the number of samples, we fix the values of dynamically set parameters
and do not limit the run time ofSNAP. In particular we fix the search depth (to 5) and the number of
updates (to 200) and repeat the experiment 100 times. The number of observations is varied from 1 to
20. We run the experiments on a relatively small problem,sysadmin 3, to control the run time for
the experiment. The results are in right plot of Fig 4. We first observe that on this problem allowing
more samples improves the performance of the algorithm. For this problem the improvement is
dramatic until 5 samples and from 5 to 20 the improvement is more moderate. This illustrates that
more samples are better but also shows the potential of small sample sizes to yield good performance.

7 Conclusion

The paper introducesSNAP, a new algorithm for solving POMDPs by using sampling networks
and aggregate simulation. The algorithm is not guaranteed to find the optimal solution even if is
given unlimited time, because it uses independence assumptions together with inference using belief
propagation (through the graph construction) for portions of its computation. On the other hand,
as illustrated in the experiments, when time is limited the algorithm provides a good tradeoff as
compared to state of the art anytime exact solvers. This allows scaling POMDP solvers to factored
domains where state, observation and actions spaces are all large.SNAPperforms well across a range
of problem domains without the need for domain specific heuristics.

9



Acknowledgments

This work was partly supported by NSF under grant IIS-1616280 and by an Adobe Data Science
Research Award. Some of the experiments in this paper were performed on the Tufts Linux Research
Cluster supported by Tufts Technology Services.

References

[1]Bram Bakker. Reinforcement learning with long short-term memory. InProceedings of the 14th
International Conference on Neural Information Processing Systems, pages 1475–1482, 2001.

[2]A.R. Cassandra, M.L. Littman, and N.L. Zhang. Incremental pruning: A simple, fast, exact
method for partially observable Markov Decision Processes. InProceedings of the Conference
on Uncertainty in Artificial Intelligence, pages 54–61, 1997.

[3]Hao Cui, Thomas Keller, and Roni Khardon. Stochastic planning with lifted symbolic trajectory
optimization. InProceedings of the International Conference on Automated Planning and
Scheduling, 2019.

[4]Hao Cui and Roni Khardon. Online symbolic gradient-based optimization for factored action
MDPs. InProceedings of the International Joint Conference on Artificial Intelligence, pages
3075–3081, 2016.

[5]Hao Cui, Roni Khardon, Alan Fern, and Prasad Tadepalli. Factored MCTS for large scale
stochastic planning. InProceedings of the AAAI Conference on Artificial Intelligence, pages
3261–3267, 2015.

[6]Hao Cui, Radu Marinescu, and Roni Khardon. From stochastic planning to marginal MAP. In
Proceedings of Advances in Neural Information Processing Systems, pages 3085–3095, 2018.

[7]Neha Priyadarshini Garg, David Hsu, and Wee Sun Lee. Despot-alpha: Online POMDP
planning with large state and observation spaces. InRobotics: Science and Systems, 2019.

[8]Andreas Griewank and Andrea Walther.Evaluating derivatives - principles and techniques of
algorithmic differentiation (2. ed.). SIAM, 2008.

[9]M. Hauskrecht. Value-function approximations for partially observable Markov decision
processes.Journal of Artificial Intelligence Research, 13:33–94, 2000.

[10]L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains.Artificial Intelligence, 101:99–134, 1998.

[11]Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm for near-
optimal planning in large Markov decision processes.Machine Learning, 49(2-3):193–208,
2002.

[12]Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-based POMDP
planning by approximating optimally reachable belief spaces. InRobotics: Science and systems,
volume 2008, 2008.

[13]M.L. Littman, A.R. Cassandra, and L.P. Kaelbling. Learning policies for partially observable
environments: Scaling up. InProceedings of the International Conference on Machine Learning,
pages 362–370, 1995.

[14]David A. McAllester and Satinder P. Singh. Approximate planning for factored POMDPs
using belief state simplification. InProceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, pages 409–416, 1999.

[15]Joni Pajarinen, Jaakko Peltonen, Ari Hottinen, and Mikko A. Uusitalo. Efficient planning in
large POMDPs through policy graph based factorized approximations. InProceedings of the
European Conference on Machine Learning, pages 1–16, 2010.

10



[16]Sébastien Paquet, Ludovic Tobin, and Brahim Chaib-draa. An online POMDP algorithm for
complex multiagent environments. InInternational Joint Conference on Autonomous Agents
and Multiagent Systems, pages 970–977, 2005.

[17]Judea Pearl.Probabilistic reasoning in intelligent systems - networks of plausible inference.
Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann, 1989.

[18]M. L. Puterman.Markov decision processes: Discrete stochastic dynamic programming. Wiley,
1994.

[19]Scott Sanner. Relational dynamic influence diagram language (RDDL): Language description.
Unpublished Manuscript. Australian National University, 2010.

[20]Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP solvers.
Autonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013.

[21]David Silver and Joel Veness. Monte-carlo planning in large POMDPs. InProceedings of the
Conference on Neural Information Processing Systems, pages 2164–2172, 2010.

[22]R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov processes
over a finite horizon.Operations Research, 21:1071–1088, 1973.

[23]Zachary N. Sunberg and Mykel J. Kochenderfer. Online algorithms for POMDPs with continu-
ous state, action, and observation spaces. InInternational Conference on Automated Planning
and Scheduling, pages 259–263, 2018.

[24]G. Tesauro and G. Galperin. On-line policy improvement using Monte-Carlo search. In
Proceedings of Advances in Neural Information Processing Systems, 1996.

[25]Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. DESPOT: Online POMDP planning
with regularization.Journal Artificial Intelligence Research, 58(1), 2017.

11



Supplementary Matarial for: Sampling Networks and
Aggregate Simulation for Online POMDP Planning

Hao Cui
Department of Computer Science

Tufts University
Medford, MA 02155, USA
hao.cui@tufts.edu

Roni Khardon
Department of Computer Science

Indiana University
Bloomington, IN, USA
rkhardon@iu.edu

Abstract

The main paper normalizes the cumulative reward obtained by the algorithms in
experiments in order to facilitate the visualization across many problems where the
scale of reward across problems is different. The supplement gives the raw scores
in these experiments.

Table 1: Raw scores in main experiment on the Sysadmin domain.

sysadmin SNAP Despot pomcp
1 343.03 2.643915846 337.121 30.0229 301.188 3.564384177
2 332.12 4.548654306 318.64 43.859 308.622 4.743675069
3 475.87 6.906310954 375.159 63.6787 360.37 4.999108621
4 420.37 7.574650553 334.295 56.9805 347.06 4.938493473
5 576.11 6.284359872 417.942 52.7475 484.651 5.332813047
6 442.7 5.567539852 323.932 41.3483 375.262 5.368180656
7 655.34 7.643012757 481.116 60.5598 585.11 6.295544377
8 544.42 7.038951342 400.552 50.8045 492.97 6.748378748
9 790.18 6.909694349 565.679 76.5311 688.33 6.901536568
10 873.42 8.765171761 496.466 65.2078 597.834 5.627034249
11 994.23 8.20409477 832.149 6.8086 870.13 7.567754819
12 1250.41 9.740011242 1126.59 8.12555 1141.69 7.437848374

Random Noop
1 209.453 3.2 113.81 3.3
2 177.333 3.1 90.99 2.7
3 327.916 5.0 224.65 4.4
4 283.756 4.2 191.36 3.6
5 423.961 5.6 314.48 5.6
6 350.461 5.1 255.35 4.3
7 512.747 5.5 405.26 6.6
8 430.727 5.0 345.12 5.1
9 611.755 7.0 497.4 6.4
10 531.395 6.4 436.89 5.8
11 857.296 7.4 786.99 7.2
12 1172.911 9.2 1131.16 8.9

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Table 2: Raw Scores in main experiment on the Crossing Traffic domain.

crossing SNAP Despot pomcp
1 -10 1.546867803 -10.74 1.59916 -8.84 1.459912326
2 -18.72 1.886270394 -15.69 18.2328 -17.2 1.861612205
3 -16.32 1.776 -19.28 1.83663 -15.97 1.763431598
4 -26.68 1.776 -27.42 17.5272 -28.91 1.647563246
5 -14.08 1.616395991 -19.66 1.77072 -11.47 1.385817809
6 -21.96 1.755899769 -23.8 17.9098 -35.24 1.110956345
7 -19.7 1.727454775 -40 0 -23.2 1.493050568
8 -34.77 1.245058633 -29.5 16.039 -32.87 1.874328478
9 -19.6 1.665653025 -40 0 -30.11 1.208378666
10 -25.46 1.572477027 -27.79 15.6405 -38.95 0.5058408841
11 -31.08 1.409374329 -40 0 -39.09 0.4552131369
12 -32.88 1.173139378 -40 0 -40 0
crossing Random Noop
1 -40 0 -40 0
2 -40 0 -40 0
3 -40 0 -40 0
4 -40 0 -40 0
5 -40 0 -40 0
6 -40 0 -40 0
7 -40 0 -40 0
8 -40 0 -40 0
9 -40 0 -40 0
10 -40 0 -40 0
11 -40 0 -40 0
12 -40 0 -40 0

Table 3: Raw Scores in main experiment on the Traffic domain.

traffic SNAP Despot pomcp
1 -14.71 0.425745229 -88.23 1.23027 -20.96 0.6871564596
2 -8.31 0.3897935351 -66.58 1.87628 -12.44 0.5553953547
3 -30.74 1.148270003 -146.31 2.43132 -41.02 1.34781156
4 -13.07 0.6122507656 -102.09 2.91091 -20.53 1.141968038
5 -11.45 0.8274509049 -99.0875 23.15 -24.5 1.678302714
6 -104.71 2.174410035 -195.54 3.44393 -157.07 3.717317716
7 -36.36 1.472923623 -149.85 4.82921 -61.12 2.490352585
8 -61.3 2.259623863 -100.868 34.3919 -105.82 3.578893125
9 -34.07 1.154231779 -141.012 29.5179 -64.26 2.914811143
10 -31.18 1.643008217 -124.558 39.5563 -71.09 3.483621535
11 -28.62 1.094839474 -132.345 38.9843 -79.854 3.374344783
12 -29.132 2.049343448 -134.938 34.4459 -84.434 3.343453555
traffic Random Noop
1 -36.2 1.371641353 -75.32 0.5425642819
2 -27.1 1.308930861 -52.44 1.530707026
3 -60.53 2.298192986 -166.74 1.542440923
4 -32.52 1.619226976 -92.34 2.23012197
5 -30.59 1.856830364 -113.98 3.752651862
6 -168.22 4.459968161 -224.6 2.123110925
7 -64.95 2.539896651 -241.27 3.625930363
8 -108.59 3.8802344 -282.66 3.042243251
9 -72.93 3.308179409 -263.44 4.036070366
10 -77.07 3.42082607 -246.88 3.50799886
11 -81.68 4.439554736
12 -84.32 4.780721092
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Table 4: Raw scores for the three algorithms when varying the time per step (in seconds) on Sysadmin
problem 10.

time SNAP POMCP Despot
1 754.5499 4.7794 578.3649 2.22577 468.655 2.0867
2 852.4999 4.7726 574.639 2.5382 518.94 2.8497
3 872.249 6.448 606.9195 2.9298 500.944 1.39138
5 870.6499 4.197 604.1599 2.617 512.673 1.2927
8 877.549 5.05086 599.4049 2.9788 552.82 3.7258
10 887.999 4.85948 608.9849 2.0722 599.54 3.9667
20 880.9999 4.7474 598.714 2.993 622.714 3.12378
30 920.099 4.85697 594.9766 2.2836 651.980 2.3241

Table 5: Raw scores forSNAPwhen varying the number of sampled observations on Sysadmin
problem 3. In order to isolate the effect of the number of samples in this experiment, the time per
step is not limited, the graph depth is fixed to 5, and the number of updates is fixed to 200.

#samples Average reward Standard deviation
1 455.5 1.832170844
3 491.7 2.263297273
5 519.4 2.344324343
15 528.2 2.203896549
20 530.5 2.048572674
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