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ABSTRACT: Selective activation of neutral carbon-nitrogen bonds is of great synthetic importance because amines are
among the most prevalent motifs across organic and bioactive molecules. Herein, we report the Ru(o)-catalyzed selective
cleavage of neutral C(aryl)-N bonds in generic aniline derivatives enabled by a combination of Ru;(CO),, and an imino
auxiliary. These mild conditions provide a direct route to high-value biaryl ketones and biaryl aldehydes after facile in situ
hydrolysis. A broad range of organoboranes and anilines can be coupled with high C-N cleavage selectivity. Most crucial-
ly, the reaction achieves exquisite selectivity for activation of C(aryl)-N bonds in the presence of typically more kinetically
favorable C(aryl)-H bonds. The method provides a strategy for the construction of functionalized terphenyls by exploiting
orthogonal properties of the Ru(o)-catalyst system and traceless nucleophilic properties of anilines.
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The direct activation of neutral carbon-nitrogen bonds
may have a tremendous impact on organic synthesis be-
cause amines are among the most commonly encountered
motifs in synthetic and bioactive molecules.*> Because
neutral C-N bonds are typically inert, the catalytic and
stoichiometric cleavage of neutral C-N has been extreme-
ly rare. Typical activation of C-N bonds involves convert-
ing the nitrogen into highly reactive intermediates, such
as diazonium salts, ammonium salts,> pyridinium salts,°
or amides,” including conformationally-enforced C-N
scission in twisted amides.® To date, only two examples of
directed catalytic functionalization of neutral C(aryl)-N
bonds in anilines have been achieved. Kakiuchi reported
RuH,(CO)(PPh;), for scission of C-N bonds in sterically-
hindered ketones (Figure 1A).9 Zeng developed an effi-
cient platform for Kumada cross-coupling of C(aryl)-N
bonds using low-valent chromium catalysis (Figure 1A).*
Herein, we report the Ru(o)-catalyzed selective cleavage
of neutral C(aryl)-N bonds (Figure 1B-C) in generic ani-
line derivatives enabled by a combination of Ru;(CO),,

and an imino auxiliary as a highly effective regioselectivity
control principle for C(aryl)-N activation (Figure 1D).

Our laboratory has been interested in activation of C-N
bonds as a versatile platform for catalysis.” In contrast to
the continuing evolution of activation of C-H bonds,** the
direct activation of neutral C-N bonds remains an un-
solved synthetic task. The broad interest in activation of
neutral C(aryl)-N bonds is twofold: (1) unprecedented
potential to establish orthogonal strategies for functional-
ization of inherently and naturally-occurring amine mo-
tifs; (2) the use of electron-donating, nucleophilic NR,
group as a traceless functional handle to selectively install
functional groups impossible with inert C-H bonds.

The present method significantly advances nucleophilic
ruthenium-catalysis3° for activation of neutral C(aryl)-N
bonds. An important example reported by Shi*® describes
a non-directed, Ni-catalyzed, Mg mediated cross-coupling
of C-N bonds that is limited to conjugated arenes. Nota-
ble features of our findings include: (1) in contrast to the
previous state-of-the-art, the reaction does not require
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Figure 1. Context of the present work: A) Examples of N-C activa-
tion; B) Untapped potential of neutral N-C activation; C) Tactics in
catalysis; D) Present study: the first Ru(o)-catalyzed mono-selective
activation of neutral N-C bonds.

bulky pivaloyl groups to afford regioselective C-N (vs. C-
H) activation;* (2) the product acetophenones are essen-
tial compounds in organic synthesis and can be readily
functionalized through classical enolate activation;* (3)
the method can be applied for the synthesis of biaryl al-
dehydes by C(aryl)-N activation after mild in situ hydrol-
ysis first time in Ru(o)-catalysis;* (4) the method exploits
unprecedented functional group tolerance of Rus(CO),
(halides, esters, ketones) that is unattainable with
RuH,(CO)(PPh,);575 and thus establishes a unique strate-
gy for the construction of functionalized and broadly use-
ful terphenyls; (5) most remarkably, the method is highly
selective for C(aryl)-N activation in the presence of multi-
ple C-H bonds (8:1 C-N selectivity vs. 3 possible C-H acti-
vation sites).>

Unlike pivaloyl groups, simple ketones and aldehydes
are readily amenable for synthetic manipulations. Syn-
thetically-useful mono-arylation requires the catalyst to
de-coordinate from the directing group.'®* This has been
the major issue with ketone-directed RuH,(CO)(PPh;),
neutral C(aryl)-N activation, requiring the presence of a
bulky pivaloyl group. We hypothesized that a strategy
using imine auxiliary?> and much more selective Ru;(CO)..
would provide a milder and more attractive approach to
neutral C(aryl)-N activation. In this scenario the compet-
ing C-H activation is kinetically inaccessible, making the
C-N bond the preferred activation site. Reaction of aceto-
phenone ketimine (1) was investigated as a model system
(Table 1). After extensive optimization, best results were
obtained using N-Ph imine (1) as C-N functionalization
substrate and neopentyl aryl boronate® (2) as nucleophile
in toluene at 100 °C providing the desired product in 83%
yield (Table 1, entry). It is noteworthy that the reaction

Table 1. Optimization of Reaction Conditions®
NPh Bnep NPh

‘)LMe . ‘I Ru;(CO);5 (5 mol%) ! Ve
E r‘; ‘NMe,
1 2

toluene, 100 °C

3 @
variation from the stand- conversion®  yield?

entry ard conditions (%) (%)
1 no change >98 83
2 RuH,(CO)(PPhs), 10 <5
3 RuH.(PPh,), 5 <5
4 RhCI(PPhs); 14 <5
5 [Rh(COD)Cl], >98 <5
6¢ [RuCL(p-cym)], >98 <5
7! [RuCL(p-cym)], >98 <5
Ph-Bpin instead of Ph-
8
Bnep >98 &
Ph-BF;K instead of Ph-
9 B 1 <5
nep
0 Ph-B(OH), instead of Ph-
Bnep 4 <>
. Ph-Si(OMe), instead of
" Ph-Bnep 16 <>
12 125 °C instead of 100 °C >98 80
13 Ph-Bnep 1.5 equiv instead 98 -6

of 1.1 equiv

?Conditions: imine (1.0 equiv), PhBnep (1.1 equiv), catalyst (5 mol%),
toluene (1.0 M), 100 °C."Determined by 'H NMR and GC. ‘Ph-B(OH).
(3 equiv), AgSbFs (12 mol%), Cu(OAc).H.O (1.0 equiv). Ph-B(OH).
(2 equiv), Ag.O (1.0 equiv), Cu(OTf), (1.0 equiv). °KF (1.0 equiv). Bnep
= 5,5-dimethyl-1,3,2-dioxaborolane. See SI for details.

proceeded with unprecedented mono-arylation selectivity
(C-N vs. combined C-N and C-H selectivity >10:1), and it
did not require the presence of hydride acceptor or inor-
ganic base additives. Selected optimization results are
outlined in Table 1. Various catalysts were tested, and
Ru;(CO),, proved the most effective, in agreement with
our design (entries 1-7). Neopentyl aryl boronate is the
preferred nucleophile (entries 8-11). Specifically, the use of
pinacol aryl boronate is feasible but less efficient due to
material decomposition (entry 8). At the present stage,
other nucleophiles are ineffective (entries g-11). The effect
of temperature and stoichiometry is critical for the effi-
cient C-N activation, with higher temperatures or higher
loading of nucleophile leading to competing di-arylation
(entries 12-13). Finally, N-Ph imine is the preferred imine
auxiliary for ketone arylation, with N-alkyl imines leading
to low conversions due to imine decomposition (not
shown), while bulky N-Ar imines are vastly preferred for
aldehyde arylation to control mono-selective activation of
C(aryl)-N bond (see SI).

Having identified optimal conditions, the scope of this
novel neutral C(aryl)-N activation was next investigated
(Scheme 1). We were delighted to find that a wide range
of organoboranes readily participates in this cross-
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Scheme 4. Ru(o)-Catalyzed C(Aryl)-N Activation: Al-
dimines“’b
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M), 140 °C, 15 h. bIsolated after hydrolysis. See SI for details.

Scheme 5. Ru(o)-Catalyzed in situ C-N Activation
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coupling. As shown, electronically-diverse nucleophiles,
including electron-neutral (3a), electron-deficient (3b-c),
and electron-rich (3d-e) organoboranes coupled with
high levels of efficiency. Note that the reaction is fully
selective for the cleavage of the electrophilic -NMe, adja-
cent to the imine auxiliary (3e). It is notable that the reac-
tion is compatible with electrophilic carbonyl handles,



Scheme 6. Synthetic Transformations and Sequential Catalysis Enabled by C(Aryl)-N Activation
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including ketones (3f) and esters (3g), providing excellent
substrates for electrophilic functionalization strategies.
Note the facile installation of sterically-differentiated ke-
tones in 3f, another benefit of using mild imine auxiliary
approach. Furthermore, unprotected terminal olefins
(3h), polyaromatics (3j) and heterocycles, such as furan
(3k), thiophene (3l), are well-tolerated, furnishing the
C(aryl)-N cleavage products with high C-N scission selec-
tivity. We were pleased to find that functionalized pyri-
dines (3m) and styrenyl boronates (3n) are also readily
tolerated in this protocol, allowing incorporation of vari-
ous groups. Note that in all cases examined, we observed
exquisite C(aryl)-N vs. C-H activation selectivity (>20:1),
with mono- vs. di-arylation selectivity typically >15:1 favor-
ing the thus far unattainable mono-arylation products. An
important feature of the Ru(o)-methodology is the capaci-
ty to tolerate sensitive functional groups on both reaction
components.3'5'8f All starting materials are readily acces-
sible from the corresponding anilines or by established
methods.>®> At the present stage of reaction development
alkylboronates are not compatible. Preliminary results
suggest that it is possible to prepare arylboronates in situ
to improve atom economy. Efforts are currently underway
to expand the scope of the C-N cleavage methodology
and these studies will be reported in due course.

Importantly, we determined that various neutral ani-
lines, including dimethyl -NMe, (1a), unprotected -NH,
(1ab), mono-alkyl -NHMe (1ac), more sterically-hindered
-NEt, (1ad) and cyclic -pyrrolidine (1ac) (Scheme 2) un-
dergo the Ru(o)-catalyzed activation/cross-coupling un-
der the developed conditions with high C(aryl)-N activa-
tion selectivity, attesting to the generality of our protocol.

We were further delighted to find that C(aryl)-N acti-
vation in aldehyde derivatives is also possible by using
imine directing auxiliary (Scheme 3). The ortho-CF;-
aniline was used as a model substrate, and thus provided

access to trifluoromethyl-biaryl aldehyde building blocks
which prominently feature in pharmaceutical, agrochemi-
cal and functional materials applications due to unique
properties of fluorine. In general, the yields observed
(Scheme 3) matched the C(aryl)-N activation of ketone
substrates (Scheme 4). To our knowledge, this reaction
represents the first example of generating a versatile biar-
yl aldehyde linchpin in ruthenium-catalyzed neutral C-N
activation.™

Remarkably, the direct C(aryl)-N activation of unbiased
aldehydes is also feasible (Scheme 4). In these cases, we
found that the use of a sterically-bulky N-aryl imine is
preferred to prevent di-arylation. It is well-established
that in benzylideneanilines the aromatic ring is twisted
from the imine plane, while the presence of ortho-
substituents increases the twist.?” Thus, representative
examples using neutral (3w), electron-rich (3x) and elec-
tron-deficient (3y) proceeded with unprecedented >7:1
selectivity for neutral C(aryl)-N arylation.

The synthetic advantage of the mild imine auxiliary ap-
proach and Ru(o)-catalysis is that the C(aryl)-N activa-
tion can be readily performed directly from a carbonyl by
an in situ imine synthesis/hydrolysis (Scheme 5).

We next turned our attention to demonstrate the syn-
thetic potential of the neutral C(aryl)-N arylation. As the
key advantage the presence of a neutral aniline furnishes
a unique strategy for the construction of functionalized
molecules by exploiting orthogonal properties of the
Ru(o)-catalyst system and traceless nucleophilic proper-
ties of anilines. This is demonstrated by facile assembly of
functionalized terphenyls via electrophilic bromination/
Suzuki cross-coupling/Ru(o)-catalyzed neutral C(aryl)-N
activation (Scheme 6A). Furthermore, C-H activation
could be implemented in the sequence by exploiting the
Pd-catalyzed CMD (concerted-metallation-
deprotonation) pathway (Scheme 6B).?® Ultimately, this
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suggests a great potential of a C(Ar)-Br synthetic handle
for post-activation transformations. Indeed, the mild
Ru;(CO),, catalyst permits direct C(aryl)-N activation in
the presence of a very sensitive aryl bromide (Scheme
6C). To our knowledge this represents the first example of
functional group tolerance for an aryl bromide in the
C(aryl)-N bond activation manifold.

Importantly, to have a broad impact, a catalyst system
must be selective over other potential activation sites.> To
determine the inert bond activation selectivity of the pre-
sent system, we studied the intramolecular competition
for C(aryl)-N vs. C(aryl)-N, C(aryl)-N vs. C(aryl)-O and
C(aryl)-N vs. C(aryl)-H activation (Scheme 7). To our
delight we found that this mild Ru(o)-imine method gives
full selectivity for the C(aryl)-N activation at the ortho-
position (2-C-N vs. 4-C-N, >20:1) (Scheme 7A), consistent
with a directing effect of the imine auxiliary. Further-
more, we observed full selectivity for C(aryl)-N vs.
C(aryl)-O activation (>20:1) (Scheme 7B), despite the
well-established potential for metal insertion into -OMe
bonds.?® Most remarkably, we found an excellent selectivity
for C-N activation in the presence of multiple C-H bonds
(8:1 C-N selectivity vs. 3 possible C-H activation sites)

(Scheme 7C). These results are unprecedented for neutral
C(aryl)-N activation and bode well for the development
of general strategies in this inert bond activation pathway.

While conclusions on the mechanism are premature at
this stage, Kakiuchi showed that Ru(o)-direct insertion
into a C-N bond is feasible.>* Intermolecular competition
studies in the present reaction between differently substi-
tuted electrophiles showed that electron-deficient sub-
strates are inherently more reactive (Scheme 8A), con-
sistent with this scenario. Furthermore, competition ex-
periments with electronically-diverse  nucleophiles
demonstrated that the reaction is not significantly affect-
ed by electronic properties of the nucleophile (Scheme
8B), consistent with chelation of the nitrogen to boron in
the transmetallation step between Ru-NR, and Ar-Bnep.
The Bnep moiety is converted into R,N-Bnep species. The
formation of X-B(OR), products in Ru(o) catalysis is well-
documented.3'>29 Studies to elucidate the mechanism are
underway.

In summary, we developed a new method for Ru(o)-
catalyzed selective cleavage of neutral C(aryl)-N bonds in
generic aniline derivatives. We showed that catalyst con-
trol in combination with imino auxiliary furnishes an ex-
cellent selectivity in neutral C(aryl)-N activation. Despite
the significant challenges that are posed by scission of
neutral C-N bonds, the present system shows exquisite
selectivity for C-N activation, allowing the construction
of high-value biaryl ketones and aldehydes via mono-
arylation. The method shows excellent functional group
tolerance, and provides a unique strategy for the synthesis
of biaryls by utilizing orthogonal features of the Ru(o)-
catalyst and nucleophilic properties of anilines. The dis-
covery that the reaction achieves full selectivity for activa-
tion of C(aryl)-N bonds in the presence of typically more
kinetically favorable C(aryl)-H bonds is likely to facilitate
the design of future catalyst systems and may also be ap-
plicable to the activation of other C(aryl)-X bonds.
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