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Direct C-H Amidation/N-H to C(0)-N Cyclization: Indolo[1,2-c]quinazolines
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ABSTRACT: Rhodium(III)-catalyzed C-H amidation of 2-arylindoles with dioxazolones for the synthesis of indolo[1,2-
c]quinazolines is reported. The reaction is compatible with a wide range of electronically-diverse 2-arylindoles and dioxa-
zolones, providing indolo[1,2-c]quinazolines in high to excellent yields. Most notably, the combination of this Rh-catalyzed
C-H amidation and intramolecular N-H/N-C(0) cyclization enables the most straightforward direct route to indolo[1,2-
c]quinazolines to date. Mechanistic studies and evaluation of antitumor activity of these high value heterocycles are dis-

closed.

Indolo[1,2-c]quinazolines are an important class of in-
dole-fused heterocycles that are widely represented in
natural products, bioactive compounds and organic photo-
luminescent devices (Figure 1).12 A classic method for the
synthesis of indolo[1,2-c]quinazolines involves intramo-
lecular condensation of 2-ortho-aminoarylindoles with
carbonyl equivalents; however, this approach is inefficient,
requires indole prefunctionalization and is limited in terms
of atom- and step-economy (Scheme 1A).3# Given our in-
terest in amide bonds,>¢ we postulated that a direct route
to this high value scaffold should be feasible utilizing C-H
amidation of broadly available 2-arylindoles” (Scheme 1B).
We hypothesized that the capacity of N-H indoles to form
amidorhodium?® species followed by C-H amidation®1? to-
gether with a proximity driven electrophilic cyclization of
the aromatic amide!! might enable an expedient route to
indolo[1,2-c]quinazolines. If successful, this would provide
the most straightforward catalytic route to this high value
heterocyclic scaffold to date.12-15

Considering the synthetic importance of indolo[1,2-
c]quinazolines, methods for the improved synthesis of this

heterocycle have attracted a great deal of attention. For
example, the stud-

ies by Zhang demonstrated that indolo[1,2-c]quinazolines
can be accessed by Cu-catalyzed sequential amination (X =
Br, I)/aerobic oxidative cyclization of 2-(2-haloaryl)-1H-
indoles (Scheme 1C).12 Fan reported Cu-catalyzed cascade
amination/condensation/oxidative cyclization of 2-(2-
bromoaryl)-1H-indoles (Scheme 1C).'3 More recently, a Cu-
catalyzed electrophilic amidation of 2-(2-amidoaryl)-1H-
indoles was reported, wherein the Cu-catalyst acts as an O-
coordinating Lewis acid to facilitate the cyclization.'* How-
ever, these methods start from ortho-substituted 2-
arylindoles?> and are limited by atom-economy.3 In sharp
contrast, a direct synthesis of indolo[1,2-c]quinazolines by
C-H amidation/N-H to N-C(O) condensation of 2-
arylindoles would provide an attractive platform for gen-
erating diversity of this important heterocycle.

In the past decade, group-directed C-H functionalization
has been broadly developed for building valuable C-C and
C-heteroatom bonds.'® Chang!” and Li'® have reported
dioxazolones as electrophilic -NC(O)R sources for direct



C-H amidation reactions.’® These highly reactive amidat-
ing reagents have numerous advantages that permit intro-
ducing valuable amide bonds
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Figure 1. Examples of indolo[1,2-c]quinazolines.
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by leveraging high affinity of the Lewis basic nitrogen atom
with facile nitrenoid formation.2? The amidation step could
be combined with the subsequent cyclization for the syn-
thesis of heterocycles, such as quinazolines,?! benzimidaz-
oles,?2 quinazolinone,?? or quinazoline N-oxides.?*25 Here-
in, we report Rh(III)-catalyzed synthesis of indolo[1,2-
c]quinazolines by a direct C-H amidation of 2-arylindoles
with dioxazolones (Scheme 1B). The method enables the
most straightforward diversity generating direct route to
indolo[1,2-c]quinazolines and is characterized by high at-
om- and step-economy with H20 and CO: formed as by-
products.

We commenced our studies by investigating the reaction
between 2-phenyl-1H-indole (1a) and 3-phenyl-1,4,2-
dioxazol-5-one (2a) to optimize the reaction conditions
(Table 1). The reaction using [Cp*RhClz]z (5 mol%) and
AgSbFs (25 mol%) as the catalytic system and CsOAc (25
mol%) as a basic additive in DCE at 140 °C afforded the
desired C-H amidation/N-H to N-C(O) cyclization product
in 62% (entry 1). Among other catalytic systems, including
[Cp*RhClz]2, [Ru(p-cym)Clz]2/AgSbFs, [Cp*CoCOI2]/AgSbFe
and Pd(OAc)2 (entries 2-5) only Co(IIl) afforded a trace of
the desired product (<5%). A solvent screen revealed that

DCE is optimal (entries 6-8). We could further improve the
yield of (3aa) to 85% by using LiOAc as an additive (25
mol%) (entry 9), whereas other additives (NaOAc, KOAc,
Cu(OAc)2) were ineffective (entries 10-12). [Cp*Ir(III)Clz]2
is not a competent catalyst for the reaction, (recovery of
the starting material). The C-H amidation does not proceed
at 80 °C (recovery of the starting material).

Table 1. Optimization of Reaction Conditions®
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R
1a 2a 3aa
entry catalyst additive solvent y(l(;]l ;j

[Cp*RhClz]2/AgSbFs  CsOAc DCE 62

2 [Cp*RhCl:]2 CsOAc DCE <5

3 [Ru(p-cym)Clz]z/ CsOAc DCE <5
AgSbFe

4 [Cp*CoCOl2]/AgSbFs  CsOAc DCE <5
5  Pd(OAc): CsOAc DCE <5
6 [Cp*RhCl2]2/AgSbFs  CsOAc dioxane <5
7
8
9

[Cp*RhCl2]2/AgSbFs  CsOAc toluene 12

[Cp*RhCl2]2/AgSbFs  CsOAc DMF <5
[Cp*RhCl2]2/AgSbFs  LiOAc DCE 85
10  [Cp*RhClz]2/AgSbFs  NaOAc DCE 44
11 [Cp*RhCl]2/AgSbFs  KOAc DCE <5
12 [Cp*RhClz]2/AgSbFs  Cu(OAc)2 DCE <5

2Conditions: 1a (1.0 equiv), 2a (1.2 equiv), catalyst (5 mol%), additive
(25 mol%), solvent (0.10 M), 140 °C, 24 h.

With the optimized conditions in hand, the scope of the
reaction was next investigated (Scheme 2). As shown, the
scope of 2-aryl-1H-indole substrates is quite broad and
accommodates a broad range of electron-donating (3ba-
3da), electron-withdrawing (3ea-3ga) and halide groups
(3ea) at the para position of the 2-aryl ring; however, 2-
aryl-1H-indoles bearing electron-withdrawing groups gave
lower yields (vide infra). It is noteworthy that a single re-
gioisomer was formed using a meta-substituted substrate
(3h). Furthermore, the reaction was equally efficient when
sterically-hindered ortho-substituted 2-aryl-1H-indoles
were used (3ia-3ja). The scope could be further extended
to a napththyl-substituted indole, furnishing a conjugated
pentacyclic benzo[g]indolo[1,2-c]quinazoline (3ka). Im-
portantly, 2-phenyl-1H-indoles bearing electron-donating
(3ma-3na) as well as halide groups (3la, 30a-3pa) at the
5- or 6-position of the indole ring could also be used to
rapidly generate the indolo[1,2-c]quinazoline scaffold.

To further investigate the substrate scope, we subjected
a range of dioxazolones to the reaction with 2-phenyl-1H-
indole (Scheme 3). Pleasingly, we found that both 3-alkyl
and 3-aryl substituted 1,4,2-dioxazol-5-one reagents could
be used for the synthesis of indolo[1,2-c]quinazolines. The
reactions with alkyl dioxazolones afforded the products in
excellent yields (3ab-3ac). 3-Aryl-1,4,2-dioxazol-5-ones
containing electron-donating (3ad-3ae), polyaromatic
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(3af), electron-withdrawing (3ag) and halide groups (3ah-
3aj) worked well to afford functionalized indolo[1,2-
c]quinazolines. The functional group tolerance for an aryl
bromide is noteworthy (3aj). Finally, we delighted to find
that the reaction of 3,5-dimethoxyphenyl-1,4,2-dioxazol-5-
one afforded 3ak in 68% yield. This product shows excel-
lent antibacterial activity, highlighting the practical utility
of the current protocol. Typically, we have not observed
side reactions in this method. At the present stage of reac-
tion development 4-nitrophenyl dioxazolone has not been
tested. Future work will focus on expanding the scope of C-
H amidation processes.

Scheme 2. Scope of 2-Aryl-1H-Indole Substrates®b

o O [CRRNCI, (5 mol%)
L AgsbFq (25 moi%)
+ ¢ 0
N Lioac (25 mol%)
DCE 140 °C, 24 h
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aConditions: 1a (1.0 equiv), 2a (1.2 equiv), [Cp*RhCl:]2 (5 mol%),
AgSbF¢ (25 mol%), LiOAc (25 mol%) DCE (0.10 M), 140 °C, 24 h. *I-
solated yields. See Supporting Information (SI) for details.

We conducted experiments to gain insight into the reac-
tion mechanism (Scheme 4). Intermolecular competition

studies between differently substituted 2-aryl-1H-indoles
revealed electron-rich arenes to be inherently more reac-
tive (Scheme 4A). Furthermore, electron-rich 2-phenyl-1H-
indoles are inherently more reactive than their electron-
deficient counterparts (Scheme 4B), while electron-
deficient arenes are transferred preferentially from the
dioxazolone amidating reagent (Scheme 4C). Moreover,
radical inhibition studies revealed decreased yields of the
amidation product (Scheme 4D). Overall, these studies are
consistent with an electrophilic C-H activation mechanism,
with the N-H to C(0)-N cyclization facilitated by electron-
rich indoles.

Scheme 3. Scope of 1,4,2-Dioxazol-5-one Substrates®?
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A plausible reaction mechanism is shown in Scheme 5.
The formation of an amidorhodium N-Rh(III) species and
subsequent C-H activation gives a five-membered
rhodacycle 4.° Coordination of dioxazolone and CO2 extru-
sion gives a highly reactive Rh-imido intermediate 5.18
Migratory insertion and cyclization gives the indolo[1,2-
c]quinazoline product 3 and regenerates the catalyst. The
electrophilic cyclization onto the amide is likely facilitated
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by a N-/O-Rh-migration to increase the amide bond elec-
trophilicity.1?

The potential of the present method in the synthesis of
complex indolo[1,2-c]quinazolines is highlighted in cyto-
toxic studies (Table 2). Intrigued by the unique capacity of
this valuable heterocyclic scaffold to act as a privileged
synthon in drug discovery, we tested the synthesized
products against human prostate cancer cells (PC3), hu-
man lung cancer cells (A549) and human Michigan cancer
foundation cells (MCF-7) (see SI for details).2¢ As shown,
the compounds 3pa, 3ad, 3ag and 3ak displayed promis-
ing growth inhibition of A549 cells (3ag: IC50 = 30.7 uM).
The results demonstrate that indolo[1,2-c]quinazolines
could represent a new class of cancer growth inhibitors.2”

Scheme 4. Mechanistic Studies
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Table 2. Cytotoxicity of 3aa-3ak in Human Cancer Cells®

entry compound [Cso (um)
PC3 A549 MCF-7
1 3aa 229.8 134.9 n/a
2 3pa 88.16 63.1 n/a
3 3ad 132.2 51.4 252
4 3ag 242.8 30.7 n/a
5 3ak 158.4 87.4 287.9
6 cisplatin 4.97 12.2 70.4

aSelected results are shown. See SI for full details.

In summary, we have reported Rh-catalyzed synthesis of
indolo[1,2-c]quinazolines through direct C-H amidation
and intramolecular N-H/N-C(O) cyclization of broadly
available 2-aryl-1H-indoles with dioxazolones. This mild
and highly efficient process permits the most straightfor-
ward platform for the synthesis of indolo[1,2-
c]quinazolines developed to date. The reaction showed
broad scope with respect to indole and dioxazolone. The
reaction proceeds with high atom economy with H20 and
CO: formed as by-products and avoids any substrate pre-
functionalization. The potential of this method has been
highlighted by the discovery of indolo[1,2-c]quinazolines
that exhibit promising antitumor activity. Further studies
on the formation of amides via C-H functionalization as
well as tandem annulation are underway in our laboratory.
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