Pentafluorophenyl Esters: Highly Chemoselective Ketyl Precursors for the Synthesis of α , α -Dideuterio Alcohols using Sml₂ and D₂O as Deuterium Source

Hengzhao Li,*,† Yuxia Hou, *,† Chengwei Liu,‡ Zemin Lai,† Lei Ning,† Roman Szostak,§ Michal Szostak*,‡ and Jie An*,†

ABSTRACT: We report the first highly chemoselective synthesis of α , α -dideuterio alcohols with exquisite incorporation of deuterium (>98% [D₂]) using pentafluorophenyl esters as ketyl radical precursors, SmI₂ as a mild reducing agent and D₂O as the deuterium source. This system tolerates a variety of functional groups, offering rapid entry to valuable α , α -dideuterated alcohol building blocks. More generally, this report introduces pentafluorophenyl esters as the most reactive *O*-ketyl precursors reported to date.

Deuterium-labelled compounds find wide applications in diverse fields of science,¹ including pharmaceutical development,¹a-d materials science,¹e-f analytical standardization techniques¹b and toxicology studies¹b. In principle, two general methods for deuterium incorporation have been developed: (1) small molecule synthesis;² (2) direct hydrogen-isotope-exchange.³ The recent surge of interest in the synthesis of deuterated molecules has been bolstered by the FDA approval of the first [D]-containing drug, deutetrabenzine, a novel VMAT2 inhibitor for the treatment of cholera associated with Huntington's disease.¹d

In this vein, we have described the synthesis of deuterated alcohols and amines using single-electron-transfer (SET) reagents. These methods offer the unique advantage of introducing deuterium by exploiting open-shell pathways via well-defined ketyl-metal complexes with high affinity for protic additives, which in turn enables the convenient use of D_2O or deuterated alcohols as the source of deuterium.

From the industrial standpoint, it is critical that high degrees of deuterium incorporation (>95% [D]) are achieved under mild, functional-group-tolerant and user-friendly

reaction conditions.² Typically, direct hydrogen-isotope-exchange methods do not allow for the exquisite degree of deuterium incorporation.^{3a-b} Traditional reductive deuteration of esters mediated by expensive and pyrophoric LiAlD₄ affords a, a-dideuterio alcohols in high deuterium incorporations (Figure 1A).^{2j} But this strategy suffers from low functional group tolerance and limited scope. Single-electron-transfer methods are more practical and routinely give high degree of deuterium incorporation;^{2a-g} however, these methods still fall short of the industrial standards.

In continuation of our studies, we recently questioned whether the use of activated esters might provide a mild route to deuterated molecules by the chemoselective generation of ketyl radicals.⁴ Herein, we report the first highly chemoselective synthesis of α,α -dideuterio alcohols with exquisite incorporation of deuterium (>98% [D₂]) using pentafluorophenyl esters as ketyl radical precursors and SmI₂ as a mild source of single-electrons. There are two notable features of our findings: (1) the method represents the most efficient and functional-group tolerant synthesis of valuable α,α -dideuterated alcohol building blocks by a SET

[†] College of Science, China Agricultural University, Beijing 100193, China

Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States

[§]Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland Supporting Information Placeholder

mechanism; (2) more broadly, this report introduces pentafluorophenyl esters as the most reactive O-ketyl progenitors reported to date (Figure 1). We anticipate that the synthesis of α , α -dideuterio alcohols and the capacity to selectively form ketyl radicals from readily available and bench-stable pentafluorophenyl esters will be of broad interest in various areas of single electron transfer reactions.^{5,6}

A. Traditional reductive deuteration mediated by metal deuteride

B. Previous work: reductive deuteration of unactivated derivatives

C. This work: reductive deuteration of pfp esters using $\rm Sml_2-D_2O$

Tolerating sensitive functional groups including: R-Br R-I R-COOMe $R-CF_3$ R-CN $R-SO_2R$ R-

Figure 1. Reductive deuteration of esters: (a) traditional method; (b) previous studies; (b) this work: pentafluorophenyl (pfp) esters as the most reactive precursors to *O*-ketyl radicals.

Our studies commenced with the examination of various activated esters in the reduction using mild SmI₂-D₂O and SmI₂-MeOD-d₄ reagents (Table 1). We were delighted to find that the model pentafluorophenyl ester (pfp = C_6F_5) showed far superior reactivity to the analogous OPh, SEt and OEt derivatives, while the SmI₂-D₂O system was more reactive than SmI₂-MeOD-d₄. Further optimization studies demonstrated that the yield of 2a is influenced by the amount of both SmI₂ and D₂O, whereas, noteworthy, high deuterium incorporation was uniformly obtained under different reaction conditions (Table 2). When 6 equiv of SmI₂ was used, the amount of D₂O could be decreased from 200 equiv to 75 equiv without changes in yield (entries 1-4, Table 2). However, when the amount of D₂O decreased below 75 equiv, a steady decrease in the reaction yield was observed (entries 5-6, Table 2). The reductive deuteration of 1a is a four-electron transfer process. The amount of SmI₂ could be decreased from 6 equiv to 5 equiv without detrimental effect on the yield (entries 4 and 7, Table 2). Shortening the reaction time from 15 min to 5 min or 30 s resulted in 90% or 70% yields, respectively, which indicated that $t_{1/2}$ of this reaction is less than 30 s and the reaction took about 5 min to complete.

Next, the scope of this transformation was investigated using the optimal conditions (entry 7, Table 2). As shown in Scheme 1, a remarkably broad range of aliphatic and aromatic pentafluorophenyl esters could be converted into the corresponding α , α -dideuterio alcohols in high yields and with excellent deuterium incorporation (Scheme 1). It was for the first time >98% D_2 incorportation was obtained with each tested examples by any SET process. Perhaps most

notably, this method accommodates an array of functional groups that are sensitive to other electron transfer conditions, including chlorides (2y and 20), bromides (2j), iodides (2k), nitrile groups (2l), multiple fluorine substitutions (2f and 2i), sulfonyl groups (2m) and alkynes (2q). Other functional groups such as methoxy (2b), thiomethyl

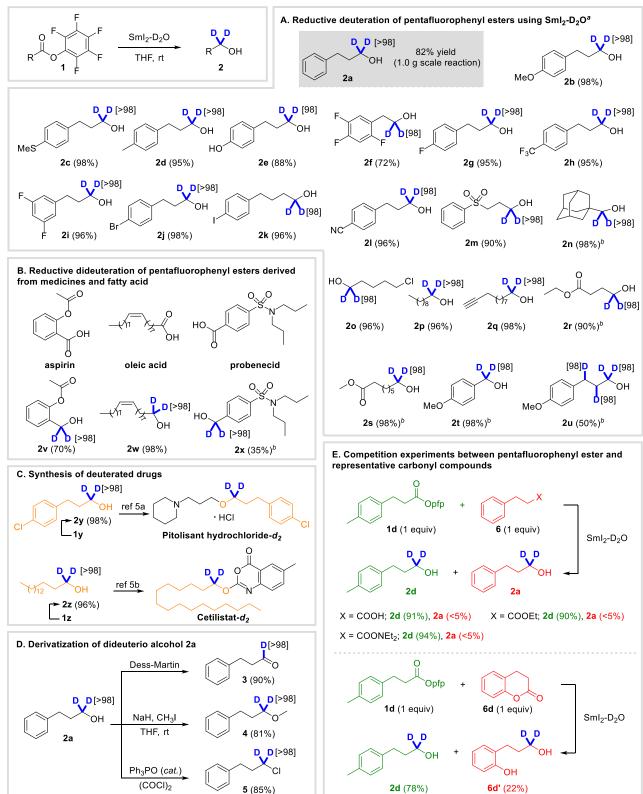
Table 1. Optimization Studies of the Leaving Group^a

entry R R'OD R'OD
$$(equiv)$$
 $(equiv)$ $(equiv$

^aConditions: 1a in THF was added to a solution of SmI₂ in THF, followed by ROD at rt, and the resulting mixtures were stirred under Ar. ^bDetermined by ¹H NMR.

Table 2. Optimization of the Reductive Deuteration of Pentafluorophenyl Esters using SmI₂-D₂O^a

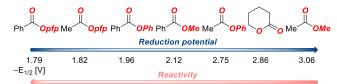
entry	SmI₂ (equiv)	D₂O (equiv)	time (min)	yield (%) ^b	[D ₂] (%) ^b
1	6.0	200	15	>98	>98
2	6.0	150	15	>98	>98
3	6.0	100	15	>98	>98
4	6.0	75	15	>98	>98
5	6.0	50	15	85	>98
6	6.0	25	15	45	>98
7	5.0	75	15	>98	>98
8	4.0	75	15	75	>98
9	5.0	75	5.0	90	>98
10	5.0	75	0.50	70	>98


^aConditions: 1a in THF was added to the solution of SmI_a in THF, followed by D_aO at rt, and the resulting mixtures were stirred under Ar. ^bDetermined by aH NMR.

(2c), phenolic hydroxyl (2e), sulfonamide (2x) and alkenes (2w) are also stable under the reaction conditions. Interestingly, conjugated alkenes, such as in perfluorophenyl (E)-3-(4-methoxyphenyl)acrylate (1u) can be fully reduced to give alcohols 2u with exquisite deuterium incorporation in the sequential SET processes. Finally, it is important to note that a gram scale reaction (2a, Scheme 1) also resulted in >98% D_2 incorporation. Of note, many of the products in Scheme 1 would not be accessible using metal deuterides or Na/EtOD- d_i .

To further demonstrate the synthetic utility of this reaction, we examined deuterations of pentafluorophenyl esters derived from pharmaceuticals (aspirin and probenecid) and fatty acids (oleic acid) (Scheme 1B). Pleasingly, >98% deuterium incorporation was obtained in each case

(2v, 2w and 2x), highlighting the potential of this protocol to introduce deuterium in medicinal chemistry and dietary supplements. We further demonstrated the synthesis of important deuterium-labeled building blocks (2y and 2z) for the synthesis of deuterated drugs (Scheme 1C).⁷


Scheme 1. Reductive Deuteration of Pentafluorophenyl Esters using SmI₂-D₂O, Applications, Derivatization and and Competition Studies^a

^aConditions: **1a** (0.20 mmol, 1.0 equiv) in THF was added to the solution of SmI₂ in THF (5.0 equiv), followed by D_2O (75 equiv) at rt, and the resulting mixtures were stirred for 15 min under Ar. Isolated yields. ^bSmI₂ (7.0 equiv) and D_2O (105 equiv) were used.

Furthermore, as extremely useful building blocks, α, α -dideuterio alcohols can be converted into numerous deuterium labelled derivatives via well-established methods.⁸ We have demonstrated that high deuterium incorporation content was well-preserved after oxidative (Dess-Martin oxidation),⁸ basic (NaH deprotonation)⁹ and acidic (Denton-Appel reaction)¹⁰ reaction conditions (Scheme 1D), leading to useful deuterium-labelled aldehyde (3), ether (4) and halide (5) products with >98% D-incorporations.

Most remarkably, pentafluorophenyl esters can be selectively reduced in the presence of phenolic esters (**2v**) or alkyl esters (**2r** and **2s**), attesting to the outstanding chemoselectivity profile of the pfp group (Scheme 1A-B). To further investigate the chemoselectivity of this reaction, we conducted competition experiments between pentafluorophenyl ester (**1a**) and representative carbonyl compounds (Scheme 1E). Remarkable selectivity vs. carboxylic acid, ethyl ester, amide and lactone substrates were observed, further highlighting the utility of pentafluorophenyl esters as the most reactive *O*-ketyl precursors discovered to date.

Figure 2. Redox potentials of *O*-ketyl precursors.^{*a*} See SI for details. ^{*a*}Note that MeCO₂pfp derived from *unactivated* alkyl precursor is characterized by a lower redox potential ($E_{1/2} = -1.82$ V) than PhCO₂Me derived from *activated* benzoic acid ($E_{1/2} = -2.12$ V).

Intrigued by the superb chemoselectivity of the reaction, we performed DFT calculations to probe the facility of ester reduction $(B_3LYP/6-311++G(d,p))$ (Figure 2). The computational method reported by Nicewicz was employed to determine electrochemical potentials.11 To our delight, we found that the reduction potential of a model pfp acetate, MeCO₂-pfp, ($E_{1/2} = -1.82 \text{ V vs. SCE in CH}_3\text{CN}$) is dramatically lower than that of methyl acetate, MeCO₂-Me ($E_{1/2}$ = -3.06 V vs. SCE in CH₃CN) and phenyl acetate, MeCO₂-Ph $(E_{1/2} = -2.75 \text{ V vs. SCE in CH}_3\text{CN})$, in agreement with the strong activating effect of the pfp group and the selectivity studies. Furthermore, the calculations suggest that the attachment of the pfp group to simple unactivated alkyl carboxylic acids has a comparable effect to using activated benzoic acids (PhCO₂-pfp, $E_{1/2} = -1.79$ V vs. SCE in CH₃CN; PhCO₂-Me, $E_{1/2} = -2.12 \text{ V vs. SCE in CH}_3\text{CN}$; PhCO₂-Ph, $E_{1/2}$ = -1.96 V vs. SCE in CH₃CN). This is much lower than that of a model six-membered lactone (tetrahydro-2*H*-pyran-2one, $E_{1/2}$ = -2.86 V vs. SCE in CH₃CN) – the most reactive Oketyl precursor to date^{2,4} - and in the range of simple ketones (PhCOMe, $E_{1/2} = -1.93$ V vs. SCE in CH₃CN).

In summary, the first highly chemoselective synthesis of α , α -dideuterio alcohols resulting in exquisite levels of deuterium incorporation (typically >98% [D₂]) has been developed under SET conditions using pentafluorophenyl esters

as the most reactive O-ketyl precursors reported to date. A mild electron donor SmI2 and a benign deuterium source D₂O were employed as reagents. This method is distinguished by its remarkable functional group tolerance, including even iodides, alkyl and phenolic esters and lactones being tolerated. Furthermore, this protocol has been applied to the synthesis of key deuterated intermediates for the preparation of deuterated drugs. Derivatization studies demonstrated full preservation of the deuterium content under various conditions. The high reactivity of pentafluorophenyl ester as the O-ketyl precursor has been demonstrated experimentally and further established by determination of redox potentials. We anticipate that the high capacity of pentafluoorphenyl esters to serve as Oketyl precursors will be of interest in various areas of electron transfer. Further applications in SET reactions will be the subject of our future work.

ASSOCIATED CONTENT

Supporting Information

Experimental details, characterization data and computational details. The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author

*jie_an@cau.edu.cn

*michal.szostak@rutgers.edu

Author Contributions

*These authors contributed equally.

ACKNOWLEDGMENT

We thank National Key R&D Plan (2017YFD0201900), NSFC (21602248), Natural Science Foundation of Beijing Municipality (2192026) and Tianjin Haiyi Tech. Ltd. for financial support. M.S. gratefully acknowledges Rutgers University and the NSF (CAREER CHE-1650766). We thank the Wroclaw Center for Networking and Supercomputing (grant no. WCSS159).

REFERENCES

(1) For recent reviews, see: (a) Pirali, T.; Sera, M.; Cargnin, S.; Genazzani, A. A. Applications of Deuterium in Medicinal Chemistry. J. Med. Chem. 2019, 62, 5276-5297. (b) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Deuterium-and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew. Chem., Int. Ed. 2018, 57, 1758-1784. (c) Gant, T. G. Using Deuterium in Drug Discovery: Leaving the Label in the Drug. J. Med. Chem. 2014, 57, 3595-3611. For selected recent examples, see: (d) Mullard, A. Deuterated Drugs Draw Heavier Backing. Nat. Rev. Drug Discovery 2016, 15, 219-221. (e) Tong, C. C.; Hwang, K. C. Enhancement of OLED Efficiencies and High-Voltage Stabilities of Light-Emitting Materials by Deuteration. J. Phys. Chem. C 2007, 111, 3490-3494. (f) Shao, M.; Keum, J.; Chen, J.; He, Y.; Chen, W.; Browning, J. F.; Jakowski, J.; Sumpter, B. G.; Ivanov, I. N.; Ma, Y.-Z.; et al. The Isotopic Effects of Deuteration on Optoelectronic Properties of Conducting Polymers. Nat. Commun. 2014, 5, 3180.

(2) For selected recent examples, see: (a) Ding, Y.; Luo, S.; Weng, C.; An, J. Reductive Deuteration of Nitriles Using D₂O as a

Deuterium Source. J. Org. Chem. 2019, 84, 15098-15105. (b) Ding, Y.; Luo, S.; Adijiang, A.; Zhao, H.; An, J. Reductive Deuteration of Nitriles: The Synthesis of α , α -Dideuterio Amines by Sodium-Mediated Electron Transfer Reactions. J. Org. Chem. 2018, 83, 12269-12274. (c) Han, M.; Ding, Y.; Yan, Y.; Li, H.; Luo, S.; Adijiang, A.; Ling, Y.; An, J. Transition-Metal-Free, Selective Reductive Deuteration of Terminal Alkynes with Sodium Dispersions and EtOD- d_i . Org. Lett. 2018, 20, 3010-3013. (d) Zhang, B.; Li, H.; Ding, Y.; Yan, Y.; An, J. Reduction and Reductive Deuteration of Tertiary Amides Mediated by Sodium Dispersions with Distinct Proton Donor-Dependent Chemoselectivity. J. Org. Chem. 2018, 83, 6006-6014. (e) Han, M.; Ma, X.; Yao, S.; Ding, Y.; Yan, Z.; Adijiang, A.; Wu, Y. Li, H.; Zhang, Y.; Lei, P.; Ling, Y.; An, J. Development of a Modified Bouveault-Blanc Reduction for the Selective Synthesis of α,α -Dideuterio Alcohols. J. Org. Chem. 2017, 82, 1285-1290. (f) Li, H.; Zhang, B.; Dong, Y.; Liu, T.; Zhang, Y.; Nie, H.; Yang, R.; Ma, X.; Ling, Y.; An, J. A Selective and Cost-Effective Method for the Reductive Deuteration of Activated Alkenes. Tetrahedron Lett. 2017, 58, 2757-2760. (g) Szostak, M.; Spain, M.; Procter, D. J. Selective Synthesis of α , α -Dideuterio Alcohols by the Reduction of Carboxylic Acids Using SmI2 and D2O as Deuterium Source under SET Conditions. Org. Lett. 2014, 16 (19), 5052-5055. (h) Wang, X.; Zhu, M.; Schuman, D. P.; Zhong, D.; Wang, W.; Wu, L.; Liu, W.; Stoltz, B. M.; Liu, W. General and Practical Potassium Methoxide/Disilane-Mediated Dehalogenative Deuteration of (Hetero)Arylhalides. J. Am. Chem. Soc. 2018, 140, 10970-10974. (i) Han, X.; Hu, J.; Chen, C.; Yuan, Y.; Shi, Z. Copper-Catalysed, Diboron-Mediated Cis-Dideuterated Semi-hydrogenation of Alkynes with Heavy Water. Chem. Commun. 2019, 55 (48), 6922–6925. (j) Mo, X.; Yakiwchuk, J.; Dansereau, J.; McCubbin, J. A.; Hall, D. G. Unsymmetrical Diarylmethanes by Ferroceniumboronic Acid Catalyzed Direct Friedel - Crafts Reactions with Deactivated Benzylic Alcohols: Enhanced Reactivity Due to Ion-Pairing Effects. J. Am. Chem. Soc. 2015, 137 (30), 9694 - 9703.

(3) For recent reviews, see: (a) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. C-H Functionalisation for Hydrogen Isotope Exchange. Angew. Chem., Int. Ed. 2018, 57, 3022-3047. (b) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. The Renaissance of H/D Exchange. Angew. Chem., Int. Ed. 2007, 46, 7744-7765. For selected recent examples, see: (c) Krishnakumar, V.; Gunanathan, C. Ruthenium-Catalyzed Selective α-Deuteration of Aliphatic Nitriles Using D₂O Chem. Commun. 2018, 54, 8705-8708. (d) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.; Rivera, N. R.; Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 2017, 358, 1182-1187. (e) Pony Yu, R.; Hesk, D.; Rivera, N.; Pelczer, I.; Chirik, P. J. Iron-Catalysed Tritiation of Pharmaceuticals. Nature 2016, 529, 195-199. (f) Chatterjee, B.; Krishnakumar, V.; Gunanathan, C. Selective α-Deuteration of Amines and Amino Acids Using D₂O. Org. Lett. 2016, 18, 5892-5895. (g) Chatterjee, B.; Gunanathan, C. Ruthenium Catalyzed Selective α -and α , β -Deuteration of Alcohols Using D₂O. Org. Lett. 2015, 17, 4794-4797. (h) Neubert, L.; Michalik, D.; Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. Ruthenium-Catalyzed Selective α,β -Deuteration of Bioactive Amines. J. Am. Chem. Soc. 2012, 134, 12239-12244.

- (4) Shi, S.; Szostak, R.; Szostak, M. Proton-Coupled Electron Transfer in the Reduction of Carbonyls Using SmI₂–H₂O: Implications for the Reductive Coupling of Acyl-Type Ketyl Radicals with SmI₂–H₂O. *Org. Biomol. Chem.* **2016**, *14* (38), 9151–9157.
- (5) For selected pertinent examples, see: (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322-5363. (b) Romero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075-10166. (c) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035-10074. (d) Staveness, D.; Bosque, I.; Stephenson, C. R. J. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer. Acc. Chem. Res. 2016, 49, 2295-2306. (e) Narayanam, J. M. R.; Stephenson, C. R. J. Visible Light Photoredox Catalysis: Applications in Organic Synthesis. Chem. Soc. Rev. 2011, 40, 102-113. (f) Lang, X.; Chen, X.; Zhao, J. Heterogeneous Visible Light Photocatalysis for Selective Organic Transformations. Chem. Soc. Rev. 2014, 43, 473-486. (g) Xuan, J.; Zhang, Z. G.; Xiao, W. J. Visible-Light-Induced Decarboxylative Functionalization of Carboxylic Acids and Their Derivatives. Angew, Chem. Int. Ed. 2015, 54, 15632-15641. (g) Wang, L.; Lear, J. M.; Rafferty, S. M.; Fosu, S. C.; Nagib, D. A. Ketyl Radical Rreactivity via Atom Transfer Catalysis. Science 2018, 362, 225-229. (h) Boyington, A. J.; Riu, M. L.; Jui, N. T. Anti-Markovnikov Hydroarylation of Unactivated Olefins via Pyridyl Radical Intermediates. J. Am. Chem. Soc. 2017, 139, 6582-
- (6) For an excellent review on acyl-radicals, see: Banerjee, A.; Lei, Z. Ngai, M. Y. Acyl Radical Chemistry via Visible-Light Photoredox Catalysis. *Synthesis* **2019**, *51*, 303-333.
- (7) (a) Flick, A. C.; Ding, H. X.; Leverett, C. A.; Fink, S. J.; O'Donnell, C. J. Synthetic Approaches to New Drugs Approved During 2016. *J. Med. Chem.* 2018, 61, 7004–7031. (b) Ding, H. X.; Leverett, C. A.; Kyne, R. E.; Liu, K. K. C.; Fink, S. J.; Flick, A. C.; O'Donnell, C. J. Synthetic Approaches to the 2013 New Drugs. *Bioorg. Med. Chem.* 2015, 23, 1895–1922.
- (8) Dess, D. B.; Martin, J. C. Readily Accessible 12-I-5 Oxidant for the Conversion of Primary and Secondary Alcohols to Aldehydes and Ketones. *J. Org. Chem.* 1983, 48, 4155–4156.
- (9) Stoochnoff, B. A.; Benoiton, N. L. The Methylation of Some Phenols and Alcohols with Sodium Hydride / Methyl Iodide in Tetrahydrofuran at Room Temperature. *Tetrahedron Lett.* 1973, 14, 21–24.
- (10) (a) Denton, R. M.; An, J. Adeniran, B. Phosphine Oxide-Catalysed Chlorination Reactions of Alcohols under Appel Conditions. *Chem. Commun.* **2010**, *46*, 3025. (b) Denton, R. M.; An, J.; Adeniran, B.; Blake, A. J.; Lewis, W.; Poulton, A. M. Catalytic Phosphorus(V)-Mediated Nucleophilic Substitution Reactions: Development of a Catalytic Appel Reaction. *J. Org. Chem.* **2011**, *76*, 6749–6767. (c) Beddoe, R. H.; Andrews, K. G.; Magne, V.; Cuthbertson, J. D.; Saska, J.; Shannon-Little, A. L.; Shanahan, S. E.; Sneddon, H. F.; Denton, R. M. Redox-neutral organocatalytic Mitsunobu reactions. *Science* **2019**, *365*, 910-914.
- (11) Roth, H. G.; Romero, N. A.; Nicewicz, D. A. Experimental and Calculated Electrochemical Potentials of Common Organic Molecules for Applications to Single-Electron Redox Chemistry. *Synlett* 2016, 27, 714-723.