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To further demonstrate the synthetic utility of this reac-
tion, we examined deuterations of pentafluorophenyl es-
ters derived from pharmaceuticals (aspirin and probene-
cid) and fatty acids (oleic acid) (Scheme 1B). Pleasingly, 
>98% deuterium incorporation was obtained in each case 

(2v, 2w and 2x), highlighting the potential of this protocol 
to introduce deuterium in medicinal chemistry and dietary 
supplements. We further demonstrated the synthesis of 
important deuterium-labeled building blocks (2y and 2z) 
for the synthesis of deuterated drugs (Scheme 1C).7

Scheme 1. Reductive Deuteration of Pentafluorophenyl Esters using SmI2–D2O, Applications, Derivatization and 
and Competition Studiesa 
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aConditions: 1a (0.20 mmol, 1.0 equiv) in THF was added to the solution of SmI2 in THF (5.0 equiv), followed by D2O (75 equiv) at 
rt, and the resulting mixtures were stirred for 15 min under Ar. Isolated yields. bSmI2 (7.0 equiv) and D2O (105 equiv) were used.

Furthermore, as extremely useful building blocks, ,-
dideuterio alcohols can be converted into numerous deu-
terium labelled derivatives via well-established methods.8 
We have demonstrated that high deuterium incorporation 
content was well-preserved after oxidative (Dess-Martin 
oxidation),8 basic (NaH deprotonation)9 and acidic (Den-
ton-Appel reaction)10 reaction conditions (Scheme 1D), 
leading to useful deuterium-labelled aldehyde (3), ether (4) 
and halide (5) products with >98% D-incorporations. 

Most remarkably, pentafluorophenyl esters can be selec-
tively reduced in the presence of phenolic esters (2v) or al-
kyl esters (2r and 2s), attesting to the outstanding 
chemoselectivity profile of the pfp group (Scheme 1A-B). 
To further investigate the chemoselectivity of this reaction, 
we conducted competition experiments between pen-
tafluorophenyl ester (1a) and representative carbonyl com-
pounds (Scheme 1E). Remarkable selectivity vs. carboxylic 
acid, ethyl ester, amide and lactone substrates were ob-
served, further highlighting the utility of pentafluoro-
phenyl esters as the most reactive O-ketyl precursors dis-
covered to date. 

 

Figure 2. Redox potentials of O-ketyl precursors.a See SI for 
details. aNote that MeCO2pfp derived from unactivated alkyl 
precursor is characterized by a lower redox potential (E1/2 = -
1.82 V) than PhCO2Me derived from activated benzoic acid 
(E1/2 = -2.12 V). 

Intrigued by the superb chemoselectivity of the reaction, 
we performed DFT calculations to probe the facility of es-
ter reduction (B3LYP/6-311++G(d,p)) (Figure 2). The com-
putational method reported by Nicewicz was employed to 
determine electrochemical potentials.11 To our delight, we 
found that the reduction potential of a model pfp acetate, 
MeCO2-pfp, (E1/2 = –1.82 V vs. SCE in CH3CN) is dramati-
cally lower than that of methyl acetate, MeCO2-Me (E1/2 = 
–3.06 V vs. SCE in CH3CN) and phenyl acetate, MeCO2-Ph 
(E1/2 = –2.75 V vs. SCE in CH3CN), in agreement with the 
strong activating effect of the pfp group and the selectivity 
studies. Furthermore, the calculations suggest that the at-
tachment of the pfp group to simple unactivated alkyl car-
boxylic acids has a comparable effect to using activated 
benzoic acids (PhCO2-pfp, E1/2 = –1.79 V vs. SCE in CH3CN; 
PhCO2-Me, E1/2 = –2.12 V vs. SCE in CH3CN; PhCO2-Ph, E1/2 
= –1.96 V vs. SCE in CH3CN). This is much lower than that 
of a model six-membered lactone (tetrahydro-2H-pyran-2-
one, E1/2 = -2.86 V vs. SCE in CH3CN) – the most reactive O-
ketyl precursor to date2,4 – and in the range of simple ke-
tones (PhCOMe, E1/2 = -1.93 V vs. SCE in CH3CN).  

In summary, the first highly chemoselective synthesis of 

,-dideuterio alcohols resulting in exquisite levels of deu-
terium incorporation (typically >98% [D2]) has been devel-
oped under SET conditions using pentafluorophenyl esters 

as the most reactive O-ketyl precursors reported to date. A 
mild electron donor SmI2 and a benign deuterium source 
D2O were employed as reagents. This method is distin-
guished by its remarkable functional group tolerance, in-
cluding even iodides, alkyl and phenolic esters and lac-
tones being tolerated. Furthermore, this protocol has been 
applied to the synthesis of key deuterated intermediates 
for the preparation of deuterated drugs. Derivatization 
studies demonstrated full preservation of the deuterium 
content under various conditions. The high reactivity of 
pentafluorophenyl ester as the O-ketyl precursor has been 
demonstrated experimentally and further established by 
determination of redox potentials. We anticipate that the 
high capacity of pentafluoorphenyl esters to serve as O-
ketyl precursors will be of interest in various areas of elec-
tron transfer. Further applications in SET reactions will be 
the subject of our future work.  
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