
Journal of Computational Dynamics doi:10.3934/jcd.2019006
©American Institute of Mathematical Sciences
Volume 6, Number 1, June 2019 pp. 131–145

NUMERICAL EFFICACY STUDY OF DATA ASSIMILATION
FOR THE 2D MAGNETOHYDRODYNAMIC EQUATIONS

Joshua Hudson
University of Maryland, Baltimore County

1000 Hilltop Circle
Baltimore, MD 21055, USA

now at
Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Road
Laurel, MD 20723-6099, USA

Michael Jolly∗

Department of Mathematics
Indiana University

Bloomington, IN 47405, USA

(Communicated by Robert McLachlan)

Abstract. We study the computational efficiency of several nudging data as-
similation algorithms for the 2D magnetohydrodynamic equations, using vary-
ing amounts and types of data. We find that the algorithms work with much
less resolution in the data than required by the rigorous estimates in [7]. We
also test other abridged nudging algorithms to which the analytic techniques
in [7] do not seem to apply. These latter tests indicate, in particular, that
velocity data alone is sufficient for synchronization with a chaotic reference so-
lution, while magnetic data alone is not. We demonstrate that a new nonlinear
nudging algorithm, which is adaptive in both time and space, synchronizes at
a super exponential rate.

1. Introduction. Various approaches to data assimilation, whereby observations
are incorporated into mathematical models, date back at least fifty years. Satellite-
borne weather observations became available in the 1960s, inspiring Charney, Halem
and Jastrow [10] to inject data directly into the nonlinear term of a model for the
atmosphere (see also [21, 30]). A remarkable treasure of geomagnetic data from over
four centuries of ships’ logs has been gathered [26], which prompts the question of
how such information could be incorporated into models of the magnetic field at the
core-mantle boundary [23]. We present in this paper numerical test results on data
assimilation by nudging applied to the magnetohydrodynamic (MHD) equations.

The nudging approach to data assimilation dates back to the 1970s [28, 32]. It
is easily described in terms of an evolution equation

d

dt
y = F (y) (1)
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for which initial data is unknown. Measurements are collected at sparse locations in
space at all times t ∈ [0, t0], represented by Ih(y(t)), where Ih is some interpolating
linear operator approximating the identity with resolution h. This data is then fed
into the initial value problem

d

dt
Y = F (Y )− µIh(Y − y), (2a)

Y (0) = 0 . (2b)

It was shown for a reaction diffusion equation [4] and the 2D Navier–Stokes equa-
tions (NSE) [3] that if µ is sufficiently large, and h sufficiently small, then Y (t)
converges to the reference solution y(t) at an exponential rate as t increases. Thus,
after only a small amount of time t0, one can effectively use Y (t0) as initial data in
(1), and solve for t > t0. The initial data in (2) can be arbitrarily chosen; it need not
be zero. Convergence of this nudging type algorithm has also been established for
the 3D Brinkman–Forchheimer Extended Darcy model [29], the 3D Navier–Stokes–
α model [1], the subcritical surface quasi-geostrophic (SQG) equation [24] and the
damped driven Korteweg–de Vries equation [25].

Unlike probabilistic approaches to data assimilation such as extended Kalman
filters, and 3D/4D Var (see the books [13, 31]), nudging does not include uncertainty
quantification. The analysis in [3] has, however, been extended in [5] to the case
where the observational data is corrupted by stochastic noise. More recently, in [6],
a downscaling nudging scheme has been developed in which coarse mesh statistics
are obtained from discrete spatial measurements.

Abridged nudging algorithms in which data are collected on only a subset of the
variables have been analyzed for several systems. It was shown in [16] that data
from just one component of velocity is sufficient to recover a reference solution of the
2D NSE. Similarly, for 2D Rayleigh–Bénard (RB) convection with no-slip bound-
ary conditions, it was shown in [15] that velocity data alone suffices; temperature
observations are not needed. Then for the RB problem with stress-free boundary
conditions it was proved in [19] that one can synchronize using data only in the hor-
izontal component of velocity. Charney’s conjecture, that temperature data alone
would suffice for RB convection, remains unproved, though it is shown to be so
for both a 3D porous media convection model [17], and 3D planetary geostrophic
model [18].

All of the above works on abridged algorithms provide rigorous estimates for
lower bounds on µ and upper bounds on the spatial resolution h. It is likely that
the algorithms perform better, i.e., convergence is achieved with data that is much
more coarse than the estimates require. This is in fact demonstrated in numerical
tests carried out for the 2D NSE [20, 22], and 2D RB convection model [2, 14].

The numerical results for the MHD equations presented in this paper are com-
pared with rigorous estimates in [7]. Since there are two fields, there are several
natural abridged algorithms to consider: velocity data alone, magnetic field data
alone, and one component of both. In addition, we test an algorithm that uses
just one of the two Elsässer variables, which are the sum and difference of the two
fields. As in numerical tests on other systems, we generally demonstrate that the
algorithms work much better than the rigorous estimate guarantee. Considering
the vast historical geomagnetic data, however, it should be noted that the abridged
algorithm using only magnetic field data does not appear to converge.
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In Section 2 we present three nudging algorithms and state the rigorous estimates
for their convergence proved in [7]. Then in Section 3 we determine a near optimal
value of µ through numerical experiments over a short time interval. That is followed
by longer time simulations which demonstrate convergence. Other algorithms which
have not (yet) been analyzed are tested numerically in Section 4. Some are abridged
algorithms in which data is collected in a certain subset of the state variables. Others
are inspired by [27] in which the nudging term is amplified when small. Finally in
Section 5 we demonstrate the robustness of the main algorithm to noise in the
observed data.

2. Rigorous results. The MHD equations are a set of equations that model fluid
dynamics when the fluid is conductive and coupled with an evolving magnetic field.
This situation arises when an electrically conductive fluid is in the presence of a
magnetic field; as the fluid moves, the magnetic field responds, and in turn induces
motion in the fluid. These nonlinear interactions are quadratic, and couple the
evolution equations of the velocity and magnetic fields.

Let u and b represent the velocity and magnetic fields respectively, and p the
fluid pressure. We consider the MHD system as follows:

System 2.1 (MHD).

∂tu− ν∆u+ (u · ∇)u+ 1
ρ∇

(
p+ 1

2µ0
|b|2

)
= 1

ρµ0
(b · ∇) b+ f, (3a)

∂tb− λ∆b+ (u · ∇) b+∇q = (b · ∇)u+ g, (3b)
∇ · u = ∇ · b = 0, (3c)

on the domain Ω = [0, 2π]2, equipped with periodic boundary conditions. We
denote the fluid viscosity by ν and the fluid density by ρ (which we assume to be
constant and homogeneous). The role of viscosity for the magnetic field is played
by λ := (µ0σ)

−1, where µ0 is the permeability of free space and σ the electrical
conductivity of the fluid. The extra pressure term q is included for computational
purposes; the divergence free condition on b will force q to be exactly 0, but we
choose to include q so that the divergence free condition can be explicitly enforced
in our simulations. We assume for simplicity that the forcing functions, f and g,
are time independent.

In this context, we define the nondimensional Grashof number to be:

G := max{ 1
ν2 ,

1
λ2 }max

{
∥f∥L2(Ω),

1√
ρµ0

∥g∥L2(Ω)

}
. (4)

The Grashof number is a comparison between the amount of energy being put into
the system and the amount of energy being dissipated, and serves as a complexity
parameter; at higher values for G we expect more information is needed to capture
the dynamics.

We apply the general idea of (2) to the MHD equations. We assume that for
a given reference solution, (u, b), of (2.1), we have data being collected on some
subset of the fields {u1, u2, b1, b2}. A nudging term could be introduced into the
evolution equation for any variable on which we are collecting data, and so we can
consider a different algorithm for each combination of the variables we assume to
be measuring.

Remark 1. As the pressure field, p, does not have an evolution equation, we cannot
directly make use of any data collected on p with an equation like (2).
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In this paper, we consider Ih to be the projection onto the low modes, PN , defined
as follows: if u has the Fourier expansion u(t, x) =

∑
k∈Z2 û(t, k)eik·x, then

PNu(t, x) =
N∑

k1,k2=−N

û(t, k)eik·x.

So in this case, h = 1
N , and it is easy to show that for u ∈ H1,

∥PNu− u∥L2 . h∥∇u∥L2 . (5)

Although we only consider the case Ih = PN , the theoretical results are the same
for any Ih satisfying (5), such as volume interpolants. Rigorous results have also
been obtained for nodal interpolants, which satisfy a less restrictive version of (5),
at the cost of requiring higher resolution in the measurement data [7] (see [16] for
examples of different interpolants satisfying (5), as well as interpolants which satisfy
other regularity conditions). Indeed, an advantage of nudging is the flexibility of
the interpolant. Practically speaking, Fourier modes are not expected to be directly
measured in observed data, but could be obtained via a fast Fourier transform from
data at nodes on a grid, albeit with an aliasing error (see [9] for more on spectral
filtering of observables).

The first algorithm we consider utilizes data collected on all the variables (except
the pressure). As it uses more information about the reference solution than the
other algorithms we consider, we expect it to have the best performance.

Algorithm 2.2. Solve

∂tu − ν∆u + (u · ∇)u − 1
ρµ0

(b · ∇)b = − 1
ρ∇p̃+ f + µPN (u− u),

∂tb − λ∆b + (u · ∇)b − (b · ∇)u = −∇q + g + µPN (b− b),
∇ · u = 0,∇ · b = 0,

for (u,b) on [t0, t0 + T ], with the initial condition u(t0),b(t0) ≡ 0.

Note that we fold the affect of |B| into the definition of p̃, for notational simplicity.
In the next algorithm, we require data to be collected on only the horizontal

components of each field.

Algorithm 2.3. Solve

∂tu1 − ν∆u1 + (u · ∇)u1 − 1
ρµ0

(b · ∇)b1 = − 1
ρ∂xp̃+ f1 + µPN (u1 − u1),

∂tu2 − ν∆u2 + (u · ∇)u2 − 1
ρµ0

(b · ∇)b2 = − 1
ρ∂yp̃+ f2,

∂tb1 − λ∆b1 + (u · ∇)b1 − (b · ∇)u1 = −∂xq + g1 + µPN (b1 − b1),

∂tb2 − λ∆b2 + (u · ∇)b2 − (b · ∇)u2 = −∂yq + g2,

∇ · u = 0,∇ · b = 0,

for (u,b) on [t0, t0 + T ], with the initial condition u(t0),b(t0) ≡ 0.

In addition to measuring the components of u and b directly, it is possible to
directly measure one of the Elsässer variables 1

2 (u±
1

ρµ0
b) [12]. With this in mind, we

consider the following algorithm which requires collecting data on only one Elsässer
variable, and hence, as with Algorithm 2.3, only half of the observables.
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Algorithm 2.4. Solve

∂tu − ν∆u + (u · ∇)u − 1
ρµ0

(b · ∇)b = − 1
ρ∇p̃+ f

+ 1
2µPN

(
u+ 1√

ρµ0
b− u − 1√

ρµ0
b
)
,

∂tb − λ∆b + (u · ∇)b − (b · ∇)u = −∇q + g

+ 1
2µPN (u+ 1√

ρµ0
b− u − 1√

ρµ0
b),

∇ · u = 0,∇ · b = 0,

for (u,b) on [t0, t0 + T ], with the initial condition u(t0),b(t0) ≡ 0.

Sufficient conditions for the above algorithms to produce solutions which converge
in L2 (and H1) to (u, b) were obtained in [7], which we summarize in the following
theorem:

Theorem 2.5. Let (u, b) be a strong solution of (2.1) with initial condition (u0, b0)
on the global attractor. For each of the above algorithms, there exists constants
c, C <∞ (which depend on ν, λ and G) such that if µ > c and

N &
√

µ

min{ν, λ}
, (6)

then the system of equations defined in the algorithm will have a unique strong
solution, (u,b), on [t0,∞), which converges to the reference solution (u, b) in L2.

Specifically, for the case of Algorithm 2.2,

c = O(G2), (7)

and

∥u(t)− u(t)∥2L2 + ∥b(t)− b(t)∥2L2 ≤ e−(µ−c)t(∥u0∥2L2 + ∥b0∥2L2)Cν,λ,G. (8)

For Algorithm 2.3 and Algorithm 2.4,

c = O(G6), (9)

and

∥u(t)− u(t)∥2L2 + ∥b(t)− b(t)∥2L2 ≤ e−min{ν,λ,µ−c}t(∥u0∥2L2 + ∥b0∥2L2)Cν,λ,G. (10)

We now test these algorithms to see how well they perform in practice. The
rigorous results above ensure that Algorithms 2.2 – 2.4 will work provided that the
appropriate conditions on µ and h are satisfied, and that the data and solutions to
the systems in the algorithms are exact. Those estimates, if sharp, would require a
prohibitive amount of data: N ∼ G ((6) and (7)) or worse N ∼ G3 ((6) and (9)).
We want to demonstrate that the algorithms are effective using data that is much
more coarse than the estimates require.

3. Computational results. All of our computations were performed on the super-
computers at Indiana University, using dedalus [8], an open source pseudo-spectral
package (see http://dedalus-project.org/). An implicit/explicit Runga Kutta
222 time stepping scheme was used (except in Section 5); the linear terms were
solved implicitly and the nonlinear terms explicitly.

http://dedalus-project.org/
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3.1. Reference solution. To test the data assimilation algorithms, we first com-
pute a reference solution which is to be recovered using only coarse projections. The
desired reference solution should exhibit some nontrivial time-dependent behavior
to adequately test the performance of the algorithm. In addition, for practical
matters, we would like to have a relatively simple force, which can be accurately
represented in low resolution simulations.

We choose a two-mode force for each equation, which generates some interesting
dynamics. Specifically, we define the forces, f, g : Ω → R2, by

f(x, y) = 2ℜ
([

2 + 2i
(2 + 2i)/2

]
ei(x−2y) +

[
−6
0

]
ei(3y)

)
/Mf , (11)

g(x, y) = 2ℜ
([

4− 3i
−2(4− 3i)/3

]
ei(2x+3y) +

[
−3 + 7i

(−3 + 7i)/5

]
ei(x−5y)

)
/Mg, (12)

where Mf and Mg are constants chosen so that ∥f∥L2 = ∥g∥L2 = 10. The modes
were chosen essentially arbitrarily, as were the first components of the coefficients
(the second components were then chosen to make the forces divergence free).

We next adjust ν and λ to produce an interesting reference solution. We expect
the flow to become more turbulent the smaller we take ν and λ. However, decreasing
min{ν, λ} may necessitate increasing the resolution of the computational grid, and
in turn taking a smaller time step. As a compromise we take

ν = λ = .01.

With the forces in (11) and (12), this yields the Grashof number

G = 105.

For simplicity, we set
ρ = µ0 = 1.

We define ∥(u, b)∥ for any semi-norm ∥ · ∥ as

∥(u, b)∥ :=
√

∥u∥2 + ∥b∥2. (13)

We consider sufficient resolution to be achieved using 2562 dealiased Fourier modes,
because when computed with 5122 modes, the qualitative features of the chaotic
solution are essentially unchanged. All computations were performed using the time
step dt = 0.0001.

Figure 1 shows some properties of the computed reference solution, (u, b). The
time series plotted in (a) and (b) shows the solution settling quickly upon a chaotic
solution. In (c),(d) the projection in the L2,H1-plane of the solutions after the
transient period indicates a qualitatively similar attractor for the two resolutions
2562 and 5122. This projection is chosen to get a visual sense of the Taylor wave
number κ2τ = ⟨∥∇·∥2L2⟩/⟨∥ · ∥2L2⟩, and because there are explicit curves in this plane
that bound the global attractor of the Navier-Stokes and related fluid systems (see
[11]).

Figure 2 shows the curl of the velocity and magnetic fields of the computed
reference solution at time t = 729.92, when the data assimilation starts. We see that
there are several small eddies and complicated structures for the data assimilation
algorithms to attempt to capture.
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Figure 1. Properties of the reference solution. In (a) and (b) the
evolution of the L2 norm of the reference solution computed with
2562 resolution is shown for t ∈ [0, 100] and t ∈ [10, 792.92]. A
comparison with 5122 resolution is in (a). Plots of the H1 semi-
norm vs the L2 norm of the solutions for t ∈ [10, 90] with 2562 and
5122 resolutions are in (c) and (d) respectively.

3.2. Convergence. All of the data assimilation simulations were performed start-
ing from t0 = 729.92, with initial data for the algorithm equal to 0, computing
(u(t),b(t)) simultaneously with (u(t), b(t)) for t > t0. We compare the resulting
evolutions to see how the algorithm being tested performed in terms of the relative
error, where we define the relative error as(

∥u(t)− u(t)∥2L2/∥u(t)∥2L2 + ∥b(t)− b(t)∥2L2/∥b(t)∥2L2

) 1
2 . (14)

For each simulation, we choose an algorithm to generate (u,b), and set N (so the
number of modes of the reference solution for which we have data will be (2N+1)2),
as well as µ, which amplifies the feedback.

We would like to take µ large, because the error in (8) and (10) decreases like
e−cµt, hence a larger µ increases the convergence rate and therefore reduces the
amount of simulation time required. However, if µ becomes too large, it destabi-
lizes the solution over small scales (small scales meaning finer resolutions than the
larger, coarser scales captured by PN ) by mixing in the feedback. This feedback is
compensated by the dissipation, provided condition (6) holds.
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Figure 2. Contour lines of the curl of the computed reference
solution at time t = 729.92.

Hence, given a value for N , we have an upper bound for µ in the sense that, with
ν = λ = .01, (6) gives µ . N2/100. However, it is unclear what the optimal value
for µ is because of the constants involved and because (6) is a sufficient condition
for convergence rather than a necessary condition. Figure 3 shows the resulting
error after simulating Algorithms 2.2 – 2.4 for 5 simulation seconds, using different
values of µ and N .

We see that the benefit of increasing µ (which is considerable initially) quickly
diminishes in all cases. Furthermore, it appears that each algorithm performs as
well with N = 32 as with N = 128 (note that N = 128 constitutes using data on
all the computational modes, as our 2562 resolution is supported on a [−128, 128]×
[−128, 128] grid in Fourier space). Based on these results, we decide that µ = 20 is
a reasonable value to use in longer simulations.

Figure 4 shows the convergence results we obtain with µ = 20 for Algorithms 2.2,
2.3, and 2.4, when N = 32, as well as the convergence of Algorithm 2.2 when
N = 3. As expected, Algorithm 2.2 performs much better than Algorithm 2.3
and Algorithm 2.4. Perhaps surprisingly, Algorithm 2.4 performs noticeably better
than Algorithm 2.3. Algorithm 2.3, though it does not perform as well, still shows
near monotonic convergence, and it is reasonable to speculate that if the simulation
time were extended, the error would reach 10−9, as do the other algorithms.

4. Other algorithms. We now test additional algorithms, which, unlike those in
Section 3.2, have no rigorous estimates to support them. In each case we solve the
nudged system for (u,b) on [t0, t0 + T ], with the initial condition u(t0),b(t0) ≡ 0.

4.1. Different abridged algorithms. In the following algorithm, we collect data
on only the velocity field.

Algorithm 4.1. Nudge (u1, u2)

∂tu − ν∆u + (u · ∇)u − 1
ρµ0

(b · ∇)b = − 1
ρ∇p̃+ f + µPN (u− u),

∂tb − λ∆b + (u · ∇)b − (b · ∇)u = −∇q + g,

∇ · u = 0,∇ · b = 0,
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Figure 3. Dependence of the error (14) on µ and N . The solutions
were computed over the time interval [729.9, 734.9], and the error
is at time t = 734.9.

The next algorithm requires collecting data on only the magnetic field. Since it
differs from Algorithm only in which variables are nudged, we specify simply by
Algorithm 4.2. Nudge (b1, b2)

Note that because the evolution equation for b depends on u only through prod-
ucts with b, we might suspect that this algorithm will fail to recover the reference
velocity u, as it would be impossible for the case that g ≡ b0 ≡ 0 (so b(t) ≡ 0 ∀t),
as was pointed out in [7]. However, we can still consider the possible success of
this algorithm when the reference magnetic field is nonzero, which is our present
situation.

We also consider how much of an improvement using data from 3 out of the 4
fields might yield compared to only using data from 2 fields. With this in mind, we
define the following two algorithms.
Algorithm 4.3. Nudge (u1, u2, b1)

Algorithm 4.4. Nudge (u1, b1, b2)

Figure 5 shows the convergence results we obtain for the above four algorithms,
using the same reference solution as before and µ = 20. We see that Algorithm 4.2
shows no sign of converging, even with data on all the computational modes, i.e.
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Figure 4. Convergence results for Algorithms 2.2, 2.3, and 2.4,
with damping µ = 20.
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Figure 5. Convergence results for Algorithms 4.1-4.4 with µ = 20.

N = 128. Also, while Algorithm 4.4 shows little improvement over Algorithm 2.3,
Algorithm 4.3 performs much better, although still worse than Algorithm 2.4. This
is somewhat surprising, as Algorithm 2.4 performs better while requiring fewer
measurements. We also note that Algorithm 4.1 seems to be converging. Although
it was not proved, it was conjectured in [7] that such an algorithm would converge.

4.2. Nonlinear nudging. We demonstrated in Figure 3 how to empirically find
the optimal value for µ for a given amount of data. Thanks to the exponential rate
of convergence, this can be done in relatively short computational time. Yet we can
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avoid this by using an adaptive method which automatically adjusts the amplifi-
cation of the nudging. In [27], Larios and Pei introduced the following nonlinear
variation on (2):

d

dt
Y = F (Y )− µN (Ih(Y − y)), (15a)

Y (0) = 0 , (15b)

where N took several different forms, one being

N (x) = N2(x) :=

{
∥x∥γx, if x ≥ 1

∥x∥γx, if 0 < x < 1
,

for some γ ∈ (0, 1) and some norm ∥ · ∥. In addition, they demonstrated for the
Kuramoto–Sivashinky equation that their approach achieved synchronization with
the reference solution at a super-exponential rate.

We will now adapt their approach for the MHD using a modification of Algo-
rithm 2.2 as an illustration. Each of the next four algorithms amount to solving

∂tu − ν∆u + (u · ∇)u − 1
ρµ0

(b · ∇)b = − 1
ρ∇p̃+ f + µ N (u,u),

∂tb − λ∆b + (u · ∇)b − (b · ∇)u = −∇q + g + µ N (b,b),
∇ · u = 0,∇ · b = 0,

(16)

for (u,b) on [t0, t0+T ], with the initial condition u(t0),b(t0) ≡ 0. The first nonlinear
function we test closely resembles N2.

Algorithm 4.5. Solve (16) with N defined by

N (u,u) =
[
ψ (∥PN (u1 − u1)∥L2/∥PN (u)∥L2)PN (u1 − u1)
ψ (∥PN (u2 − u2)∥L2/∥PN (u)∥L2)PN (u2 − u2)

]
(and N (b,b) defined similarly), where

ψ(x) :=

{
x0.1, if x ≥ 1

x−0.1, if 0 < x < 1
.

We note that the use of the L2-norm in the nonlinear factor interferes with
running the code in parallel. To address this we consider one which uses only
Fourier modes and has the advantage then of being adaptive in both time and
space. Again we specify in terms of velocity, since the expression for the magnetic
field should be clear.

Algorithm 4.6. Solve (16) with N defined by

F (N (u,u)) (k) =
[
ψ
(
|û1(k)− û1(k)|/|û1(k)|

)
(û1(k)− û1(k))

ψ
(
|û2(k)− û2(k)|/|û2(k)|

)
(û2(k)− û2(k))

]
for |k| ≤ N,

and F (N (u,u)) (k) = 0 for |k| > N , where F denotes the Fourier transform and
ψ is defined as in Algorithm 4.5 .

Remark 2. We also considered variations on Algorithm 4.5 and Algorithm 4.6
which use a continuously adapted exponent determined by velocity, magnetic field,
and even pressure data. Preliminary efforts however, have produced only schemes
that seem unstable. This approach will be further studied in a future work, along
with other schemes which make use of pressure data.
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Figure 6. The evolution of the L2 error is shown for solutions
of nonlinear modifications of Algorithm 2.2. Each simulation was
performed with N = 32.

The results of using Algorithms 4.5 and 4.6 are shown in Figure 6, and compared
to the rates of convergence we obtained previously with a static nudging constant
µ; specifically, we compare to the cases where µ = 1 and µ = 20. We see that the
nonlinear schemes converge at a super-exponential rate, and are able to successfully
synchronize with the reference solution without prior knowledge of a near optimal
value for µ.
5. Measurement noise. In most practical situations, measurement noise is in-
evitable. In this section we simulate the impact of such noise in the case of Algo-
rithm 2.3. We do this by replacing each occurrence of PN (ui) and PN (bj) with the
interpolation of the measured values including noise, which, in our case, are Fourier
coefficients F(PN (ui))(k)+N(0, σui

) and F(PN (bj))(k)+N(0, σbj ) respectively (for
i, j ∈ {1, 2}), where the standard deviations σui and σbj gauge the precision of the
instrumentation taking the measurements.

To simulate the noise, at each time step and for each measurement, we generate
a random number from the normal distribution with mean zero and variance σ2,
divide it by the square root of the time step (

√
10−4 = 0.01), and add the quotient

to the exact value of the computed solution before using it in the data assimilation
equation. For each evaluation we sample an independent random number ϵ ∼
N(0, σ) for each k ∈ Z2, |k| ≤ N = 32, set ũ1(k) = û1(k) +

ϵ√
dt

, and then use

x 7→
∑

|k|≤N

ũ1(k)e
ik·x

in the data assimilation equations instead of PN (u1). The same is also done for
each of the other fields: u2, b1 and b2. To ensure the integrity of the integration, we
use a first order implicit/explicit scheme for the ODE solver at each time step.
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Figure 7. The evolution of the L2 error is shown for solutions of
Algorithm 2.2 when subject to simulated measurement noise.

The results of including measurement noise are shown in Figure 7. The approx-
imations successfully synchronize with the reference solution, down to a saturation
level of noise that appears to be linear in the standard deviation of the measurement
noise.

6. Summary. We have seen that data assimilation by nudging is highly effective
for the MHD equations. In fact, it works with extremely coarse data when mea-
surements are taken on all of the fields, even in the presence of measurement noise.
Our results indicate that the Elsässer variable formulation is the most efficient way
to use measurement data (without measuring every field), which leads us to suspect
it may have deeper meaning. All of the abridged algorithms seem to work in our
study, with the exception of the one which did not incorporate any measurements of
the velocity field, as was conjectured in [7]. Thus, the vast collection of geomagnetic
data alone seems insufficient for assimilation by nudging. On the other hand, an
algorithm which incorporates only velocity field measurements is quite effective.

We also tested new algorithms which adaptively adjust the relaxation factor on
the nudging term to amplify it as the error gets small. The straightforward adap-
tation of nonlinear nudging in [27] to the MHD system results in super exponential
convergence, but due to a norm calculation, does not run well in parallel. We then
demonstrated that a nonlinear nudging approach in terms of each Fourier mode
converges at nearly the same super exponential rate. This final algorithm is not
only adaptive in both time and space, but also well-suited to run in parallel.
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