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Abstract. Given a velocity field u(x, t), we consider the evolution of a passive tracer θ governed by ∂tθ + u · ∇θ = Δθ + g
with time-independent source g(x). When ‖u‖ is small in some sense, Batchelor, Howells and Townsend (J Fluid Mech
5:134, 1959) predicted that the tracer spectrum scales as |θk|2 ∝ |k|−4|uk|2. In this paper we prove that, for random
synthetic two-dimensional incompressible velocity fields u(x, t) with given energy spectra, this scaling does indeed hold
probabilistically, asymptotically almost surely for large |k| and small ‖u‖. We also propose an asymptotic correction factor
to the BHT scaling arising from the time-dependence of u.
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1. Introduction and Setup

We consider the evolution of a passive scalar θ(x, t) under a prescribed velocity field u(x, t) and source
g(x),

∂tθ + u · ∇θ = Δθ + g. (1.1)

For “realistic” u, arising from experiments or numerical simulations, the situation is quite complicated,
with various regimes depending on ‖u‖ (with ‖ · ‖ to be precised below) and for different ranges of scales
[9,15,18]. Confining ourselves in this paper to the zero Prandtl (or Schmidt) number limit, we assume
that the energy spectrum (which is ∝ |uk|2|k|d−1) scales as |k|β for some β < 0 for all sufficiently large
|k|. This leaves us with two asymptotic regimes, that of small ‖u‖ and large ‖u‖, relative to the unit
diffusion coefficient.

When ‖u‖ is large, the Batchelor–Corrsin–Obukhov theory [1,6,14] predicts that the tracer spectrum
should scale as |k|−(β+5)/2, for |k| small enough that inertial effects dominate diffusion, giving |k|−5/3 in
3d (with β = − 5

3 ) and |k|−1 in 2d (with β = −3). This regime is often called the inertial–convective range
[17, p. 367]. Using a random velocity field that is white noise in time, Kraichnan [11,12] derived these
tracer spectra using a closure scheme called Lagrangian history direct interaction approximation. In [10]
we assumed a tracer spectrum (based on the Batchelor–Corrsin–Obukhov theory) in order to estimate
the extent of the tracer cascade.

In the small ‖u‖ case, or for sufficiently large |k| for any u, also known as the inertial–diffusive range
[17, p. 369], Batchelor, Howells and Townsend [2] predicted in 1959 that the tracer spectrum should scale
as |k|β−4. In contrast to Kraichnan’s argument, their theory implicitly assumes that the velocity does
not vary much relative to some unspecified tracer relaxation time. The resulting tracer spectrum is thus
independent of the evolution of u, which some find unsatisfactory, particularly in two dimensions where
a static velocity field gives rise to an integrable dynamical system and thus no “turbulence”; for this and

This work was supported in part by NSF Grant No. DMS-1818754, and the Leverhulme Trust Grant VP1-2015-036. The
authors thank O. Hryniv and J. Vanneste for helpful discussions, and the reviewers for very constructive comments.

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-019-0478-6&domain=pdf
http://orcid.org/0000-0002-7158-0933
http://orcid.org/0000-0003-0938-1359


   18 Page 2 of 14 M. S. Jolly and D. Wirosoetisno JMFM

related issues, see, e.g., [13]. Recent discussion in light of current computing capabilities can found in
[8,16].

In this paper we revisit the latter (henceforth BHT) regime, where diffusion predominates over ad-
vection at all scales. For conceptual simplicity (and to avoid unsettled questions over the correct NSE
velocity spectra), we use a synthetic random velocity field whose power spectrum scales as |k|β , in both
the static and time varying cases, with the aim of proving rigorously under what conditions one may
expect to recover the BHT spectrum. We hope that a complete understanding of one regime of “tracer
turbulence” will bring us a step closer to the full picture, which likely lies at the intersection of multiple
regimes.

Mathematically, one can prove an upper bound for the tracer spectrum that obeys the BHT scaling
albeit with a worse “constant”, as done below in the proof of Lemma 3. The lower bound however, is a
different story: it is quite easy to contrive velocities and tracer sources that, despite having the “correct”
spectra, do not give rise to the BHT tracer spectrum. To wit, let g(x) be fixed and u(x, t) = ∇⊥ψ(x, t)
where ∇⊥ψ · ∇g = 0; e.g., one can take ψ(x, t) = F ((Δ−1g)(x), t) for any F (·, t) ∈ C1. Then one can
verify that θ(x) = −(Δ−1g)(x) is the solution of (1.1), which is independent of u(x, t) since the latter
preserves level sets of Δ−1g. There are thus (infinitely) many possible spectra of u compatible with a given
spectrum of θ. To avoid such pathologies without having to enumerate them, we adopt a probabilistic
approach, where one seeks to prove that the tracer spectrum satisfies the BHT scaling with probability
approaching one (in a well-defined space) as |k| → ∞.

Numerical simulations of (1.1) can be found, e.g., in [3,4,7,19,20], all done in three dimensions with
the aim of comparing with experimental data. Two-dimensional simulations have been done by [9], who
employed a synthetic Ornstein–Uhlenbeck velocity, and [5], who employed a synthetic pseudo-white-noise
velocity to model the theory of [12]; the mathematical result of this paper covers (and is consistent with)
the first of these studies, but does not formally cover the second study due to the time-dependence of the
velocity (although the spectra again agree). As is clear below, in this paper we calculate the mean but only
bound the variance of the tracer spectrum, so our result says nothing about, e.g., possible non-Gaussian
behaviour (to begin with, it is not clear if our synthetic velocity is Gaussian).

Our setup is described in the rest of this section. The simpler case of (pathwise) static velocity field is
treated in Sect. 2, followed by the more general case of time-dependent velocity in Sect. 3. While strictly
speaking the former follows from the latter, we hope that presenting them separately will help clarify
the argument. In both cases, our main result is that the BHT spectrum holds probabilistically, with
probability approaching 1 as |k| → ∞, after enough time for time-dependent velocity.

For simplicity, we take x ∈ D := [0, 2π]2 and assume periodic boundary conditions in both directions.
The advecting velocity u is taken to be incompressible, ∇ · u = 0, with further regularity assumptions to
be stated below as needed. With no loss of generality, we assume that for all t

∫
D

u(x, t) dx = 0 and
∫

D

θ(x, t) dx = 0. (1.2)

We construct the velocity by putting

u = −∂yψex + ∂xψey =: ∇⊥ψ where ψ(x, t) = U
∑′

k
|k|βei(φk(t)+k·x) (1.3)

and U is a positive constant parameter. Here and elsewhere,
∑′

k :=
∑

k∈Z2\{0} excluding k = 0. Since
ψ(x, t) ∈ R, its Fourier coefficients ψk(t) = U |k|βeiφk(t) must satisfy ψ−k(t) = ψ̄k(t), which implies

φ−k(t) = 2π − φk(t). (1.4)

Except for this constraint, the phases φk(t) are assumed to be independent (w.r.t. k) random variables
uniformly distributed in [0, 2π), i.e. φk(t) ∈ U(0, 2π). Defining the Fourier upper half-plane

Z
2
+ := {(m,n) : m ∈ Z, n ∈ N} ∪ {(m, 0) : m ∈ N}, (1.5)
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we can say that the phases φk(t) are independent random variables for all k ∈ Z
2
+. Analogously, by a

(spectral) half-plane we mean this upper half-plane rigidly rotated by some angle: Z2 ∩ {k ∈ R
2 : k · a >

0 or k ∧ a = |k| |a|} for some fixed a ∈ R
2 − {0}.

It is clear that (1.3) gives rise to an energy spectrum |uk|2|k| = |∇⊥ψk|2|k| that scales (up to integer
lattice effects) as |k|2β+3. Denoting spectral projection by

(Pκ,κ′θ)(x, t) :=
∑

κ≤|k|<κ′
θk(t)eik·x (1.6)

(and its vector equivalent for u), this energy spectrum implies

‖Pκ,2κu‖2
L2 � 22β+4 − 1

2β + 4
|D|U2κ2β+4 (1.7)

where by f(κ) � g(κ) we mean that limκ→∞ f(κ)/g(κ) = 1. In this paper “�” arises either from lattice
effect, when we approximate sums over subsets of Z2 by the corresponding integrals over subsets of R2,
or from dropping terms of (relative) order κg/κ. The same convention will be used for “�”. An estimate
of the error in �, � can be found in the Appendix. Unlike for the solution of, say, the 2d Navier–Stokes
equations, we take this spectrum as extending all the way to infinity, and (for β = −3) may be thought
of as the zero-viscosity limit of the spectrum of the 2d NSE.

For the tracer source g, we take for conceptual and technical simplicity

g(x) = −
∑

k
γ(|k|)|k|2ei(ξk+k·x), (1.8)

with γ(|k|) ≥ 0 and γ(κ) = 0 for κ ≥ κg, i.e. g is bandwidth-limited; for g(x) to have zero mean, we
also impose γ(0) = 0. For notational conciseness, henceforth we write γk := γ(|k|). Like φk, we take the
phases ξk to be random in U(0, 2π) and independent modulo the constraint ξ−k = −ξk [cf. (1.4)].

2. Static Velocity

We first consider the conceptually and technically simpler case where the velocity u is independent of
time. Here θ is the solution of the elliptic equation

− Δθ + u · ∇θ = g (2.1)

whose existence, uniqueness and smoothness are well established provided that u is sufficiently controlled.
However, these standard results do not give us the spectral shape, for which we need to estimate each
spectral dyad |Pκ,2κθ| from above and below.

To this end, we write the solution θ of (2.1) as the limit of the iteration

θ(0) = −Δ−1g (2.2)

θ(n+1) = −Δ−1
[
g − u · ∇θ(n)

]
, (2.3)

which is convergent in L∞
t H1

x if ‖u‖L∞(D), or equivalently the parameter U , is sufficiently small. Here
and elsewhere in this paper, Δ−1 is taken in the space of functions with zero average, so it is defined
uniquely. The precise criterion follows from the time-dependent case [(3.9)–(3.15) below], so we will not
treat it explicitly here. It will be convenient to define

ϕ(n) = −Δθ(n) − g (2.4)

with ϕ(1) = u · ∇(Δ−1g).
Notwithstanding the pathological example in the introduction, this setup does give the BHT spectrum

with probability approaching 1 in the limit κ → ∞. More precisely, denoting expected value by E and
variance by var, both over i.i.d. random phases φk and ξk, we have the following:
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Theorem 1. Let the source g be given by (1.8), the velocity u be given by (1.3) with time-independent φk,
β < −2 and U sufficiently small for convergence of the iteration (2.3), and θ be the solution of (2.1).
Then we can write θ = −Δ−1g + ϑ + δθ, where ϑ has the following properties when averaged over the
random phases φ of the velocity u and ξ of the source g,

E(‖Pκ,2κϑ‖2
L2) � π ‖∇−1g‖2

L2
4β − 1

2β
U2κ2β and (2.5)

var(‖Pκ,2κϑ‖2
L2) � 6π‖g‖4

L2
42β−1 − 1

4β − 2
U4κ4β−2 . (2.6)

The remainder δθ is bounded as

‖Pκ,2κδθ‖2
L2 ≤ c0(β, κg) [|g|]2 U3κ2β (2.7)

where [|g|] =
∑

k |k|−1|gk|.

That ϑ has the correct BHT spectrum for large κ follows from the fact that E‖Pκ,2κϑ‖2
L2/‖Pκ,2κu‖2

L2 ∝
κ−4. That this happens with probability approaching 1 as κ→∞ follows from the fact that var(‖Pκ,2κϑ‖2

L2)
/E(‖Pκ,2κϑ‖2

L2)2 ∝ κ−2. We note that the bound (2.6) is qualitatively sharp: it can be seen after (2.24)
below that the variance is bounded below by half of the rhs of (2.6). The relative error ‖Pκ,2κδθ‖2

L2

/E|Pκ,2κϑ|2L2 can be made vanishingly small uniformly in κ by taking U [|g|]2 /‖∇−1g‖2
L2 → 0. We note

that there are no uncomputed constants in either (2.5) or (2.6).

Proof. Lemma 2 with ϑ = −Δ−1ϕ(1) gives (2.5)–(2.6). The bound (2.7) follows from Lemma 3. �

Lemma 2. Let u be given by (1.3) and g by (1.8), with θ the solution of (1.1) and ϕ(1) as in (2.4). Then
taking expected value and variance over i.i.d. random phases φk and ξk we have

E(‖Pκ,2κϕ(1)‖2
L2) � π ‖∇−1g‖2

L2
22β+4 − 1

2β + 4
U2κ2β+4 and (2.8)

var(‖Pκ,2κϕ(1)‖2
L2) � 6π ‖g‖4

L2
24β+6 − 1

4β + 6
U4κ4β+6 . (2.9)

Proof. In Fourier space, with j ∧ k := jxky − jykx, (2.4) reads

ϕ
(1)
k =

∑
j
(j ∧ k)ψk−jgj/|j|2

= U
∑

j
(k ∧ j)|k − j|βγjei(φk−j+ξj).

(2.10)

For brevity, we write ϕ := ϕ(1), and noting that ϕ is linear in U , we put U ≡ 1 throughout the proof.
Here and henceforth, unadorned norm ‖ · ‖ means ‖ · ‖L2(D). With this we compute

E‖Pκ,2κϕ‖2 = E(
∑

k
|ϕk|2)

=
∑

k
E|ϕk|2

(2.11)

where all k sums are understood to be over κ ≤ |k| < 2κ. We first rewrite

ϕk =
∑

j∈Z
2
+

(k ∧ j)γj

(|k − j|βei(φk−j+ξj) − |k + j|βei(φk+j−ξj)
)
. (2.12)



JMFM Batchelor–Howells–Townsend Spectrum Page 5 of 14    18 

Writing cis φ := eiφ for readability, we compute (there is no need to take E over ξk for this part of the
computation)

E(ϕkϕ̄k) =
∑

i,j∈Z2

(k ∧ i)(k ∧ j)γiγj |k − i|β |k − j|β

ei(ξi−ξj)E cis (φk−i − φk−j)

=
∑

i,j∈Z
2
+

(k ∧ i)(k ∧ j)γiγj

{|k − i|β |k − j|βei(ξi−ξj)E cis (φk−i − φk−j)

− |k + i|β |k − j|βe−i(ξi+ξj)E cis (φk+i − φk−j)

− |k − i|β |k + j|βei(ξi+ξj)E cis (φk−i − φk+j)

+ |k + i|β |k + j|βei(ξj−ξi)E cis (φk+i − φk+j)
}
.

(2.13)

Assuming that |k| > 2κg and recalling that γj = 0 when |j| > κg, all (relevant) wavevectors of the
form k + j will lie in the same half-plane in Z

2, implying that, e.g., φk−j and φk−i are independent and
thus E cis (φk−i − φk−j) = 0 unless i = j. This reasoning implies that the two middle terms vanish: for
E cis (φk+i − φk−j) to be non-zero, we must have j = −i, which is impossible since both i and j ∈ Z

2
+;

and similarly for E cis (φk−i − φk+j). Thus only the first and last terms contribute to the sum, and then
only for i = j when E cis (· · · ) = 1, giving us

E|ϕk|2 = 2
∑

j∈Z
2
+

γ2
j (k ∧ j)2|k − j|2β .

Considering

E|ϕ−k|2 = 2
∑

j∈Z
2
+

γ2
j (k ∧ j)2|k + j|2β ,

noting that E|ϕ−k|2 = E|ϕk|2, and rewriting the sums over −j ∈ Z
2 − Z

2
+ give us

E|ϕk|2 =
∑

j∈Z2
γ2

j (k ∧ j)2|k − j|2β . (2.14)

We now make two approximations, both of which have vanishing errors as κ → ∞. First, since κ � κg

by hypothesis, we approximate |k − j|2β � |k|2β , bounding the error as follows. We write

|k − j|2 = |k|2∣∣k̂ − j/|k|∣∣2 = |k|2(∣∣k̂ − j‖/|k|∣∣2 + |j⊥|2/|k|2) (2.15)

where k̂ := k/|k|, j‖ := (j · k̂) k̂ and j⊥ := j − j‖. Bounding from above, assuming that |k| ≥ 2κg ≥ 2|j|,
we have

|k − j|2/|k|2 ≤ (
1 + |j|/|k|)2 + |j|2/|k|2 ≤ 1 + 3|j|/|k|. (2.16)

While bounding from below, we find

|k − j|2/|k|2 ≥ (
1 − |j|/|k|)2 ≥ 1 − 3|j|/|k|. (2.17)

These give us, for |k| ≥ 3κg ≥ 3|j| and α > 0,

(1 − 3κg/|k|)α ≤ |k − j|2α/|k|2α ≤ (1 + 3κg/|k|)α (2.18)

and for α < 0

(1 + 3κg/|k|)α ≤ |k − j|2α/|k|2α ≤ (1 − 3κg/|k|)α. (2.19)
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For the second approximation, since κ � 1, we can replace the sum over {k ∈ Z
2 : κ ≤ |k| < 2κ} by

an integral over the annulus {(r,�) : κ ≤ r < 2κ, 0 ≤ � < 2π}. With these, we have

E(‖Pκ,2κϕ‖2) =
∑

κ≤|k|<2κ

E(|ϕk|2) =
∑

k

∑
j
γ2

j (k ∧ j)2|k − j|2β

�
∑

k

∑
j
γ2

j (k ∧ j)2|k|2β

�
∫ 2κ

κ

∫ 2π

0

∑
j
r2(jx sin � − jy cos �)2 r2βγ2

j r d� dr

=
∫ 2κ

κ

π
∑

j
(j2

x + j2
y) r2β+3γ2

j dr,

(2.20)

which gives (2.8).
For the variance, we compute

var
(‖Pκ,2κϕ‖2

)
= var

(∑
k
|ϕk|2) = E

(∑
k
|ϕk|2)2 −

(
E

∑
k
|ϕk|2

)2

. (2.21)

Having obtained the last term above, we write the first term as

E
(∑

k
|ϕk|2

∑
l
|ϕl|2

)
= E

∑
k
|ϕk|4 + E

∑
k 	=l

|ϕk|2|ϕl|2. (2.22)

Similarly to what we did above, we compute E
∑

k|ϕk|4 =
∑

kE |ϕk|4 and, with k fixed for now,

E |ϕk|4 = E(ϕkϕ̄kϕkϕ̄k)

=
∑

±; i, j, m, n∈Z
2
+

(±i ∧ k)(±j ∧ k)(±m ∧ k)(±n ∧ k)γiγjγmγn

|k ± i|β |k ± j|β |k ± m|β |k ± n|β E ei(ξ±i−ξ±j+ξ±m−ξ±n)

E cis (φk±i − φk±j + φk±m − φk±n)

where the ± sum is taken over the 16 combinations of ±i, · · · ,±n. Arguing as we did after (2.13), since
|k| > 2κg, for (−i,−j,−m,−n) we have E cis (φk−i −φk−j +φk−m −φk−n) �= 0 only when i = j, m = n or
i = n, j = m (2 possible cases), and similarly for E cis (φk+i −φk+j +φk+m −φk+n). For (−i,−j,+m,+n),
we must have i = j, m = n (only possible case); and similarly for (+i,+j,−m,−n), (−i,+j,+m,−n) and
(+i,−j,−m,+n). In the remaining 10 combinations, the 8 with odd parities as well as (+i,−j,+m,−n)
and (−i,+j,−m,+n), we have E cis (· · · ) = 0. Relabelling indices as necessary, we thus find

E |ϕk|4 = 2
∑

i, j∈Z
2
+

(k ∧ i)2(k ∧ j)2γ2
i γ2

j

(|k − i|2β |k − j|2β + |k + i|2β |k + j|2β + 2|k − i|2β |k + j|2β)

= 2
(∑

j∈Z2

γ2
j (k ∧ j)2|k − j|2β

)2

= 2 (E |ϕk|2)2.

Next we consider, for k �= l,

E |ϕk|2|ϕl|2 = E(ϕkϕ̄kϕlϕ̄l)

=
∑

±; i, j, m, n∈Z
2
+

(±i ∧ k)(±j ∧ k)(±m ∧ l)(±n ∧ l)γiγjγmγn

|k ± i|β |k ± j|β |l ± m|β |l ± n|β E ei(ξ±i−ξ±j+ξ±m−ξ±n)

E cis (φk±i − φk±j + φl±m − φl±n).

For (+i,+j,+m,+n), (−i,−j,−m,−n), (−i,−j,+m,+n) and (+i,+j,−m,−n), only, we have contri-
butions in the “straight” case i = j, m = n, in which case ei(ξ±i−ξ±j+ξ±m−ξ±n) = 1 (valid regardless of
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whether ξ is random). These combinations contribute

S1 =
∑

j,n∈Z2

(k ∧ j)2(l ∧ n)2γ2
j γ2

n|k − j|2β |l − n|2β . (2.23)

Writing d := k − l, we also have contributions in 9 “cross” cases: e.g., for (+i,+j,+m,+n) we have
i = n−d, m = j +d, which (unlike the straight cases) has a phase E ei(ξn−d−ξj+ξj+d−ξn) which is non-zero
if and only if n = j − d. These combinations contribute

S2 =
∑
j∈Z2

(k ∧ j)2(l ∧ n)2γ2
j γ2

n|k − j|2β |l − n|2β with n = j − d. (2.24)

Since the summands in both S1 and S2 are non-negative, we have S2 ≤ S1.
Putting things together, we have

E |ϕk|2|ϕl|2 ≤ 2
∑

j,n∈Z2

(k ∧ j)2(l ∧ n)2γ2
j γ2

n|k + j|2β |l + n|2β

= 2
∑
j∈Z2

γ2
j (k ∧ j)2|k − j|2β

∑
n∈Z2

γ2
n(l ∧ n)2|l − n|2β .

(2.25)

Using this in (2.21)–(2.22), we have

var(‖Pκ,2κϕ‖2) =
∑

k

(
E |ϕk|2)2

≤
∑

k

(∑
j
(j ∧ k)2|k − j|2βγ2

j

)2

�
∫ 2κ

κ

r4β+5

∫ 2π

0

(∑
j
(jx sin � − jy cos �)2γ2

j

)2 d� dr

(2.26)

where at the last step we have again made the two approximations that led to (2.20). Computing the �
integral explicitly, and then applying Fubini’s theorem to the sum, we have∫ 2π

0

(∑
j
· · · )2 d� =

∑
ij

∫ 2π

0

(ix sin � − iy cos �)2(jx sin � − jy cos �)2γ2
i γ2

j d�

=
π

4

∑
ij

(3i2xj2
x + i2xj2

y + i2yj2
x + 3i2yj2

y + 4ixiyjxjy)γ2
i γ2

j

≤ 3π‖g‖4
L2

which gives (2.9). �

Next, we show that, for sufficiently small U , θ is dominated at all large scales by its leading-order
approximation θ(1), i.e. the iteration (2.3) does not make θ(n) much “worse”.

Lemma 3. Let β < −2 and U satisfy (2.44) below. Then we have for all n ≥ 1

|θ(n)
k − θ

(1)
k | � U3/2 [|g|] |k|−2Kβ(k), (2.27)

where [|g|] :=
∑

k |k|−1|gk| and Kβ(k) is defined in (2.31) below.

Proof. We first derive a bound for δθ
(1)
k = ϑk. From (2.10), we have

|ϑk| ≤ U |k|−2
∑

j
|k| |j|γj |k − j|β (2.28)

For |k| > 2κg, we have |k − j| > 1
2 |k| and thus |k − j|β < 2−β |k|β ; this gives

|ϑk| ≤ 2−β |k|β−1U
∑

j
|j|γj = 2−β |k|β−1U [|g|] . (2.29)

For small |k| ≤ 2κg, we simply bound |j − k|β ≤ 1 since |j − k| ≥ 1 and obtain

|ϑk| ≤ U |k|−1
∑

j
|j|γj ≤ 2U |k|−1 [|g|] . (2.30)
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For what follows, we adopt the slightly worse bound

|ϑk| ≤ 2U [|g|] |k|−1 min{1, (2κg)−β |k|β} =: 2U [|g|] Kβ(k) (2.31)

where Kβ(k) is monotone decreasing in |k| ≥ 1 and satisfies

Kβ(sk) ≤ sβ−1Kβ(k) for all s ∈ (0, 1). (2.32)

We point out that, using this to bound |Pκ,2κϑ|2L2 , the result will scale as κ2β , i.e. it has the same scaling
as the expected value (2.8) though obviously with a larger multiplier (among other things, depending on
[|g|]2 instead of |∇−1g|2L2).

Now let δθ(n) := θ(n) − θ(n−1) and rewrite (2.31) as

|δθ(1)
k | ≤ 2U [|g|] Kβ(k). (2.33)

We have from (2.3)

δθ(n+1) = Δ−1(u · ∇δθ(n)). (2.34)

We thus have, for each k,

δθ
(n+1)
k = U |k|−2

∑
j 	=k

(k ∧ j)|k − j|βeiφk−jδθ
(n)
j . (2.35)

To complete the proof, we will need to bound sums of the form

Sk = |k|−2
∑

j 	=k
(k ∧ j)|k − j|βKβ(j). (2.36)

We consider two cases: When |k| ≤ 2κg, we use |j − k|β ≤ 1 to estimate

|Sk| ≤ |k|−1
∑

j
|j|Kβ(j)|k − j|β ≤ |k|−1

∑
j
|j|Kβ(j)

≤ |k|−1
{∑

|j|≤2κg

|j|Kβ(j) +
∑

|j|>2κg

|j|Kβ(j)
}

≤ |k|−1
{∑

|j|≤2κg

|j| + (2κg)−β
∑

|j|>2κg

|j|β}

� |k|−12π
{∫ 2κg

1

r2 dr +
∫ ∞

2κg

rβ+1 dr
}

= 2π(2κg)3|k|−1 β + 1
β + 2

(2.37)

provided that β < −2.
Next we consider the case |k| > 2κg. Fixing η = 1

10 , we write Sk = S<
k + S>

k where

S>
k := |k|−2

∑
|j−k|>η|k|(k ∧ j)|k − j|βKβ(j)

≤ |k|β−1ηβ
∑

|j−k|>η|k| |j|Kβ(j)
(2.38)

using the fact that |k − j|β ≤ ηβ |k|β . To bound the rhs, we compute
∑

|j|≥1
|j|Kβ(j) � 2π

∫ 2κg

1

r dr + 2π

∫ ∞

2κg

(2κg)−βrβ+1 dr ≤ (2κg)2
πβ

β + 2
(2.39)

using our previous assumption that β < −2. Next, we write m := j − k and compute

S<
k := |k|−2

∑
|m|≤η|k| (k ∧ m)|m|βKβ(j) ≤ |k|−1

∑
j
|m|β+1Kβ(j)

≤ |k|−1
∑

j
|m|β+1Kβ((1 − η)k) ≤ |k|−1(1 − η)β−1Kβ(k)

∑
j
|m|β+1.

(2.40)

Now
∑

|m|≤η|k|
|m|β+1 � 2π

∫ η|k|

1

rβ+2 dr ≤
{

2π(η|k|)β+3/|β + 3| if β �= −3,

2π log(η|k|) if β = −3.
(2.41)
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Putting together (2.38)–(2.41), we find

|Sk| ≤ |S<
k | + |S>

k | ≤ M(β, κg, η)Kβ(k). (2.42)

Using (2.37) and (2.42), we have if |δθ(n)
k | ≤ dnKβ(k),

|δθ(n+1)
k | ≤ U c4(β, κg)dnKβ(k) (2.43)

where c4 is independent of n. Therefore, taking U small enough so that

U1/2c4(β, κg) ≤ 1
2

(2.44)

the differences are bounded as

|δθ(n)
k | ≤ 2−n+1U1/2 [|g|] UKβ(k). (2.45)

We thus have

|θ(n)
k − θ

(1)
k | ≤ |δθ(n)

k | + |δθ(n−1)
k | + · · · + |δθ(2)

k |
≤ U3/2 [|g|] Kβ(k) (2.46)

uniformly in n.

3. Time-Dependent Velocity

We now turn to the more interesting case where u depends on time. Analogously to (1.3), here we take

u = −∂yψex + ∂xψey =: ∇⊥ψ where ψ(x, t) = U
∑′

k
|k|βei(φk(t)+k·x) (3.1)

for a positive real constant U . The phases φk(t) are independent stationary random processes, with the
proviso that φ−k(t) = −φk(t), satisfying

cov(eiφj(s), eiφk(r)) = E eiφj(s)−iφk(r) = δjkΦk(s − r), (3.2)

where δjk is the Kronecker δ. We assume that the time correlation function is of the form Φk(t) = Φ(χk|t|)
with Φ ∈ Cn(R+; [−1, 1]) for some n ≥ 2 and Φ(0) = 1. The correlation timescale χ−1

k is assumed not to
grow too rapidly with |k|,

lim
|k|→∞

χk|k|−2 = 0. (3.3)

We also assume that φk(t) has sufficient smoothness in t for the usual Riemann integral to be defined. As
noted in the introduction, the regime considered here is the opposite of Kraichnan’s white noise velocity
[12].

Confirming the original intuition of BHT, at least for our particular model, the correlation shape
function Φ and the correlation timescale only affect the tracer spectrum for smaller |k|, and we recover
the static case of the last section as |k| → ∞ independently of Φ and χk:

Theorem 4. Let the source g(x) be given by (1.8) and θ(x, t) be the solution of (1.1). Let the velocity
u(x, t) be given by (3.1)–(3.3) with β < −2; assume also that U is small enough that the convergence
condition (3.15) below holds. Then we can write θ = −Δ−1g +ϑ+ δθ, where ϑ(x, t) satisfies the following
probabilistic estimate over the random phases φ of the velocity u,

lim
t→∞E|ϑk(t)|2 = U2

∑
j

γ2
j

(k ∧ j)2|k − j|2β

|k|4

×
[
1 +

χk−j

|k|2 Φ′(0) + · · · +
χn

k−j

|k|2n

∫ ∞

0

e−s|k|2/χk−jΦ(n)(s) ds
]
.

(3.4)
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When κ2/χk � 1, we recover the static spectrum

lim
t→∞E(‖Pκ,2κϑ(t)‖2

L2) � π ‖∇−1g‖2
L2

4β − 1
2β

U2κ2β and (3.5)

lim
t→∞ var(‖Pκ,2κϑ(t)‖2

L2) � 6π ‖g‖4
L2

42β−1 − 1
4β − 2

U4κ4β−2 . (3.6)

The remainder δθ(x, t) is bounded for all t ≥ 0 as

‖Pκ,2κδθ(t)‖2
L2 ≤ c0(β, κg) [|g|]2 U3κ2β . (3.7)

In (3.5)–(3.6), the � is to be regarded as up to remainders of order χk/κ2 as well as κg/κ and lattice
effects.

We note that the “static” behaviour in (3.5)–(3.6) can be regarded as arising from the first term (the
1) in the bracket in (3.4). For some forms of χk−j and sufficiently smooth Φ, the asymptotic expression
in (3.4) can be summed to give expressions analogous to (3.5) that may be regarded as higher-order
corrections to the BHT spectrum. For example, with χk−j = χ |k − j|η for η ≥ 0, we have

lim
t→∞E‖Pκ,2κϑ(t)‖2 � π ‖∇−1g‖2

L2U2κ2β
[4β − 1

2β
+

22β+η−2 − 1
2β + η − 2

Φ′(0)χκη−2

+ · · · +
22β+n(η−2) − 1
2β + n(η − 2)

Φ(n)(0)χnκ(η−2)n + · · ·
]
.

(3.8)

As is usually the case with asymptotic series, this expansion is not convergent and must be truncated at
some (κ-dependent) order for optimal accuracy. We note that the later terms of this asymptotic expansion
may be dominated by our bound for the lattice effects; the latter may be sub-optimal (even though (2.18)–
(2.19) are qualitatively sharp, their uses are not), however, in which case some terms of the asymptotic
correction (3.8) may manifest themselves.

Proof. As in the static case, we write the solution θ(x, t) of (1.1) as the limit of iterates θ(n)(x, t) defined
by

θ(0) = −Δ−1g, (3.9)

θ(n+1)(·, t) = −Δ−1g −
∫ t

0

e(t−s)Δ[u(·, s) · ∇θ(n)(·, s)] ds. (3.10)

Here e−tΔ is the heat kernel, i.e. θ(n+1) is the solution of

(∂t − Δ)θ(n+1) = g − u · ∇θ(n) with θ(n+1)(·, 0) = −Δ−1g. (3.11)

Considering (3.10) as a mapping T : θ(n) �→ θ(n+1), convergence of the iterations (3.9)–(3.10) would
follow from the contractivity of T . To prove the latter, we write δθ(n) := θ(n) − θ(n−1) and observe that
it satisfies

(∂t − Δ)δθ(n) = −u · ∇δθ(n−1) with δθ(n)(·, 0) = 0. (3.12)

Multiplying this by δθ(n) in L2(D), we find
1
2

d
dt

‖δθ(n)‖2 + ‖∇δθ(n)‖2 = −(∇ · (u δθ(n−1)), δθ(n))

≤ 1
2

‖∇δθ(n)‖2 + c ‖u‖2
L∞‖δθ(n−1)‖2.

(3.13)

Integrating in time, we find

‖δθ(n)(t)‖2 +
∫ t

0

‖∇δθ(n)(s)‖2 ds ≤ c1 ‖u‖2
L∞([0,t],L∞(D))

∫ t

0

‖δθ(n−1)(s)‖2 ds

≤ c1 ‖u‖2
L∞([0,t],L∞(D))

∫ t

0

‖∇δθ(n−1)(s)‖2 ds,

(3.14)
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so convergence of θ(n) in L2([0, t],H1(D)) would follow from

α := c1 ‖u‖2
L∞(0,∞;L∞(D)) < 1. (3.15)

We now turn our attention to ϑ, given by

ϑ(t) = θ(1)(t) + Δ−1g =
∫ t

0

e(t−s)Δu(s) · ∇Δ−1g ds, (3.16)

and whose Fourier coefficients satisfy

ϑk(t) =
∑

j
γjeiξj (k ∧ j)|k − j|β

∫ t

0

e(s−t)|k|2+iφk−j(s) ds. (3.17)

To keep the presentation manageable, we shall ignore the fact that φ−k = −φk in what follows, treating
the velocity and source as complex-valued. The real-valued case can be done following the computation
in the previous section, giving identical result to that obtained below. We compute

Eϑk(t)ϑk(t) =
∑

ij
γjγieiξj−iξi(k ∧ j)(k ∧ i)|k − j|β |k − i|β

E
{∫ t

0

e(s−t)|k|2+iφk−j(s) ds

∫ t

0

e(r−t)|k|2−iφk−i(r) dr
}

=
∑

ij
(· · · )

∫ t

0

∫ t

0

e(s+r−2t)|k|2E eiφk−j(s)−iφk−i(r) ds dr

=
∑

j
γ2

j (k ∧ j)2|k − j|2β

∫ t

0

∫ t

0

e(s+r−2t)|k|2Φk−j(s − r) ds dr. (3.18)

As a check, putting Φk ≡ 1 gives us the static solution as t → ∞:
∫ t

0

∫ t

0

e(s+r−2t)|k|2 ds dr =

(
1 − e−t|k|2)2

|k|4 → |k|−4 as t → ∞. (3.19)

For convenience, we define

Φ̂k(t) := 2
∫ t

−t

Φk(2s) ds; (3.20)

with Φk(s) = Φ(χk|s|) this gives

Φ̂k(t) = 2χ−1
k

∫ χkt

0

Φ(2s) ds =: χ−1
k Φ̂(χkt). (3.21)

We now rewrite the integral in (3.18) in terms of τ = 1
2 (s + r) and σ = 1

2 (s − r),∫ t

0

∫ t

0

e(s+r−2t)|k|2Φk−j(s − r) ds dr

= 2
∫ t/2

0

e2|k|2(τ−t)

∫ τ

−τ

Φk−j(2σ) dσ dτ + 2
∫ t

t/2

e2|k|2(τ−t)

∫ t−τ

τ−t

Φk−j(2σ) dσ dτ

=
∫ t/2

0

e2|k|2(τ−t)Φ̂k−j(τ) dτ +
∫ t

t/2

e2|k|2(τ−t)Φ̂k−j(t − τ) dτ. (3.22)

As t → ∞, the first integral will be vanishingly small, viz.,
∣∣∣
∫ t/2

0

e2|k|2(τ−t)Φ̂k−j(τ) dτ
∣∣∣ ≤

∫ t/2

0

4τ e2|k|2(τ−t) dτ

= |k|−4e−|k|2t
(|k|2t − 1 + e−|k|2t

)
.

(3.23)

For any ε > 0, the bound on the rhs will be ≤ ε|k|−4 for all sufficiently large t. The contribution to the
integral in (3.22) comes almost entirely from the second integral, and then only when t − τ is small.
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We write the second integral in (3.22) as
∫ t

t/2

e2|k|2(τ−t)Φ̂k−j(t − τ) dτ =
∫ t/2

0

e−2|k|2τ Φ̂k−j(τ) dτ

=
1

χk−j

∫ t/2

0

e−2|k|2τ Φ̂(χk−jτ) dτ by (3.21)

→ 1
χk−j

∫ ∞

0

e−2|k|2τ Φ̂(χk−jτ) dτ as t → ∞

=
1

χ2
k−j

∫ ∞

0

e−2τ ′|k|2/χk−j Φ̂(τ ′) dτ ′

=
1

2χk−j |k|2
∫ ∞

0

e−τ |k|2/χk−jΦ(τ) dτ (3.24)

where for the last equality we have integrated by parts using the fact that Φ̂(0) = 0 and eτ ···Φ̂(τ) → 0
as τ → ∞, and changed variables again to remove a factor of 2. To obtain the large |k| behaviour, we
integrate by parts again using the fact that Φ(0) = 1,

1
χk−j |k|2

∫ ∞

0

e−τ |k|2/χk−jΦ(τ) dτ

=
1

|k|4 +
1

|k|4
∫ ∞

0

e−τ |k|2/χk−jΦ′(τ) dτ

=
1

|k|4 +
χk−j

|k|6 Φ′(0) +
χk−j

|k|6
∫ ∞

0

e−τ |k|2/χk−jΦ′′(τ) dτ.

(3.25)

Since Φ ∈ C2, the first term dominates the others in the limit |k|2/χk−j → ∞, the latter being implied
(since |j| ≤ κg) by the hypothesis lim|k|→∞ χk/|k|α = 0 for every α ≥ 2. We thus have for large |k|

lim
t→∞Eϑk(t)ϑk(t) � |k|−4

∑
j
γ2

j (k ∧ j)2|k − j|2β , (3.26)

which is precisely its static value (2.14). Following the proof of Lemma 2 from (2.14) to (2.20), we obtain
(3.5). Repeated integration by parts of (3.25), assuming sufficiently smooth Φ, and putting the resulting
expression in (3.18) give (3.4).

The computation for the variance (3.6) goes along similar lines. We have

var
(∑

k
|ϑk|2) = E

(∑
k
|ϑk|2)2 − (

E
∑

k
|ϑk|2)2 (3.27)

with

E
(∑

k
|ϑk|2)2 =

∑
k
E |ϑk|4 +

∑
k 	=l

E (|ϑk|2|ϑl|2). (3.28)

Each term in the first sum is of the form (with no need to average over ξ)

E (ϑkϑ̄kϑkϑ̄k) =
∑
ijmn

(k ∧ i)(k ∧ j)(k ∧ m)(k ∧ n)γiγjγmγn

|k − i|β |k − j|β |k − m|β |k − n|βei(ξi−ξj+ξm−ξn)

∫ t

0

∫ t

0

∫ t

0

∫ t

0

e(si+sj+sm+sn−4t)|k|2

E cis (φk−i(si) − φk−j(sj) + φk−m(sm) − φk−n(sn)) dsi dsj dsm dsn
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Reasoning as we did in the proof of Lemma 2, the integral is non-zero only in the following two cases:
i = j and m = n, and i = n and j = m. Denoting the integral as Ivar, it factorises into an identical pair,

Ivar =
∫ t

0

∫ t

0

e(si+sj−2t)|k|2Φk−j(si − sj) dsi dsj

∫ t

0

∫ t

0

e(sm+sn−2t)|k|2Φk−m(sm − sn) dsm dsn

=
(∫ t

0

∫ t

0

e(si+sj−2t)|k|2Φk−j(si − sj) dsi dsj

)2

.

(3.29)

This is exactly (square of) the integral in (2.20), giving us

Ivar = |k|−8
(
1 + o(χk−j/|k|2)). (3.30)

As with the expected value, E |ϑk|4 reduces exactly to the static case in the large |k| limit. The same
holds with the computation for E |ϑk|2|ϑl|2 for k �= l, which is very similar (having to take E over ξ) and
not presented here. Summing over k as in the static case gives us (3.6).

Finally we turn to the remainder δθ. Since |Φk(s)| ≤ 1, time-dependent velocity can only “weaken”
the tracer θ compared to the static case (where Φk(s) ≡ 1), not strengthen it. The proof of Lemma 3
holds line-by-line for the present time-dependent case, giving us (3.7). �
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Appendix: Error Bound on Lattice Effects

We derive an error bound for the second approximation in (2.20) and later in the proofs of Lemma 2
where a sum over k is replaced by an integral. Writing k = |k|(cos αk, sin αk) and j = |j|(cos αj , sin αj),
we have ∑

κ≤|k|<2κ

(k ∧ j)2|k|2β =
∑

κ≤|k|<2κ

|j|2|k|2β+2 sin2(αk − αj) (3.31)

where j (and thus αj) are henceforth fixed. Now let

f(x, y) = (x2 + y2)β+1 sin2(tan−1(y/x) − αj). (3.32)

Taylor’s theorem gives

f(kx + x, ky + y) = f(kx, ky) + x ∂xf(kx + ξx, ky + ξy) + y ∂yf(kx + ξx, ky + ξy) (3.33)

with |ξx| ≤ |x| < 1 and |ξy| ≤ |y| < 1. We compute

∂xf(x, y) = (x2 + y2)β [2(β + 1)x sin2(tan−1(y/x) − αj) − y sin(2 tan−1(y/x) − 2αj)]

and an analogous expression for ∂yf . Bounding these gives us

|∇f(kx + ξx, ky + ξy)| ≤ (1 + |2β + 1|)(|k| + 2)2β+1 (3.34)

for all |ξx|, |ξy| ≤ 1. Integrating over a unit cell gives
∫ kx+1

kx

∫ ky+1

ky

|f(kx + x, ky + y) − f(kx, ky)| dx dy ≤ (2 + |4β + 2|)(|k| + 2)2β+1. (3.35)
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Summing this over ∼ 3πκ2 cells for which κ ≤ |k| < 2κ gives us the bound 6π(1 + |2β + 1|)(κ + 2)2β+3.
To this one must add the error arising from the fact that the annulus and the cells do not coincide, which
is also � cβκ2β+3. We thus have

∣∣∣ ∑
κ≤|k|<2κ

(k ∧ j)2|k|2β −
∫ 2κ

κ

∫ 2π

0

(jx sin � − jy cos �)2r2β+3 d� dr
∣∣∣ ≤ c(β)|j|2κ2β+1.
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