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Due to topological protection, magnetic spin textures such as skyrmions can be stabilized and manipulated
even at nanometer scale [1]. Observing such small skyrmions, and especially their internal spin structures,
requires high resolution magnetic imaging techniques. Using differential phase contrast (DPC), Lorentz
STEM can directly measure the magnetic induction field via the deflection of electron beam from Lorentz
force [2]. However, the field-free condition required for preserving the intrinsic magnetic structures limits
the spatial resolution to a few nanometers. The measurement precision of the beam deflection is inversely
proportional to the square root of the total number of electrons in the incident beam [2], and therefore,
until the recent development of high-dynamic range detectors, the performance of traditional DPC has
been poor compared to Lorentz TEM or holography.

Here, by using a new electron microscope pixel array detector (EMPAD) with a dynamic range up to
1,000,000 electrons / pixel and better than single electron sensitivity [3], we achieved a measurement
precision better than 0.1 prad of beam deflection in Lorentz STEM mode. This allows high-quality plan-
view imaging of magnetic domain structures in cobalt films with only 3-5 atomic layers, even when buried
between thick Pt and Ta layers needed to stabilize the interfacial spin couplings. Figure 1 (a) shows the
4D Lorentz STEM setup. As the main probe-forming lens in Lorentz STEM is replaced by a condenser
lens with a much larger spherical aberration, the probe size is limited to 3~4 nm. To further increase the
resolution and reduce the image distortions due to the residual aberrations and partial coherence in the
probe, we adapted mixed-state ptychography which was initially proposed for compensating for the
decoherence of X-ray imaging systems [4]. Using mixed-state ptychography in Lorentz mode, i.e., Lorentz
electron ptychography, we reconstructed the phase change of the electron wave function induced by the
magnetic field of a skyrmion lattice structure in a single crystal FeGe, as shown in figure 1 (b). The
magnetic induction field calculated by differentiating the phase is shown in figure 1 (c¢) with the grayscale
showing the magnitude and the color showing the direction. Figure 1 (d) shows the vector plot of the
magnetic induction field. Magnetization discontinuities around the skyrmions are illustrated by the sharp
hexagonal edges in the direction map shown in figure 1 (d). Furthermore, an anti-vortex at the skyrmion
unit-cell boundary is experimentally observed, as shown in figure 1 (e). These internal spin structures and
their singular points are crucial for accurate description of the topological properties and complete
understanding of the dynamics of magnetic skyrmions.
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Figure 2 shows a quantitative comparison of the magnetic induction field maps determined from Lorentz
electron ptychography and direct deflection of the beam (center-of-mass, CoM). Electron ptychography
utilizes the entire diffraction pattern and accounts for the probe distortions due to residual aberrations and
partial coherence (figure 2 (g)). Therefore, it further improves the signal-to-noise and precision of the
induction field map compared with direct CoM. As shown in figure 2 (e) & (f), electron ptychography
reduces the uncertainty of the field vectors especially near the magnetic singularity points such as at the
corner of skyrmion lattice. Moreover, electron ptychography corrects for the damping from the electron
probe shape and asymmetries, leading to more accurate measurements of the magnetic field, which is
illustrated as the enhancement of the field magnitude in figure 2 (h).
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Figure 1. Magnetic induction field measured via Lorentz electron ptychography. (a) Lorentz STEM setup.
(b) Phase shift reconstructed via Lorentz electron ptychography for skyrmion lattice in single crystal FeGe
at 94 K. (c¢) Magnetic induction field vector calculated from the phase shift. (d) Magnetic induction field
direction with arrows representing the field vectors. (¢) An anti-vortex from the region marked on (d).
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Figure 2. Comparison of magnetic induction field determined from ptychography and direct center of
mass (CoM). (a) & (c) Field direction and magnitude from ptychography; (b) & (d) Field direction and
magnitude from CoM; (e) & (f) Field vectors (selected regions marked on (a)) determined from
ptychography (e) and CoM (f); (g) Electron probe retrieved via ptychography; (h) Line profiles of field
magnitude from ptychography (black) and CoM (red) (profile of white line in (d)).
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