
Original Paper

Comparison of Social Media, Syndromic Surveillance, and
Microbiologic Acute Respiratory Infection Data: Observational
Study

Ashlynn R Daughton1, MPH, PhD; Rumi Chunara2,3, PhD; Michael J Paul4, PhD
1Analytics, Intelligence and Technology, Los Alamos National Laboratory, Los Alamos, NM, United States
2Biostatistics, School of Global Public Health, New York University, New York, NY, United States
3Computer Science and Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States
4Information Science Department, University of Colorado Boulder, Boulder, CO, United States

Corresponding Author:
Ashlynn R Daughton, MPH, PhD
Analytics, Intelligence and Technology
Los Alamos National Laboratory
Mail Stop F608
Los Alamos, NM, 87545
United States
Phone: 1 505 667 7000
Email: adaughton@lanl.gov

Abstract
Background: Internet data can be used to improve infectious disease models. However, the representativeness and individual-level
validity of internet-derived measures are largely unexplored as this requires ground truth data for study.
Objective: This study sought to identify relationships between Web-based behaviors and/or conversation topics and health
status using a ground truth, survey-based dataset.
Methods: This study leveraged a unique dataset of self-reported surveys, microbiological laboratory tests, and social media
data from the same individuals toward understanding the validity of individual-level constructs pertaining to influenza-like illness
in social media data. Logistic regression models were used to identify illness in Twitter posts using user posting behaviors and
topic model features extracted from users’ tweets.
Results: Of 396 original study participants, only 81 met the inclusion criteria for this study. Of these participants’ tweets, we
identified only two instances that were related to health and occurred within 2 weeks (before or after) of a survey indicating
symptoms. It was not possible to predict when participants reported symptoms using features derived from topic models (area
under the curve [AUC]=0.51; P=.38), though it was possible using behavior features, albeit with a very small effect size (AUC=0.53;
P≤.001). Individual symptoms were also generally not predictable either. The study sample and a random sample from Twitter
are predictably different on held-out data (AUC=0.67; P≤.001), meaning that the content posted by people who participated in
this study was predictably different from that posted by random Twitter users. Individuals in the random sample and the GoViral
sample used Twitter with similar frequencies (similar @ mentions, number of tweets, and number of retweets; AUC=0.50; P=.19).
Conclusions: To our knowledge, this is the first instance of an attempt to use a ground truth dataset to validate infectious disease
observations in social media data. The lack of signal, the lack of predictability among behaviors or topics, and the demonstrated
volunteer bias in the study population are important findings for the large and growing body of disease surveillance using
internet-sourced data.
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Introduction
Background
Internet data have been used in several contexts to improve
infectious disease surveillance and prediction for many diseases,
including influenza [1], cholera [2], dengue [3], and malaria
[4]. They have been shown, in some instances, to be predictive
of the incidence of infectious diseases (eg, seasonal influenza
[1,5-8]), but there are also cases where the data hold little
predictive value [8,9]. In general, disease prediction based on
internet-sourced data utilize explicit mentions of symptoms or
references to illness. Some have identified symptom reports
from social media data using machine learning classifiers [7,10].
Others use search queries related to a disease of interest
[1,11,12]. These counts are then used to infer population-level
statistics such as from the US Centers for Disease Control and
Prevention. A major advantage is that internet data can be
obtained in real time, whereas traditional public health data can
take weeks or even months to compile [13]. Research has also
found that the combination of internet data with traditional
sources can improve forecasts [6,14].

Only recently has data representativeness been explored. Some
works have explored the degree to which social media users are
representative of the broader population [15,16] or methods to
account for biases [17]. However, little is known about the
validity of health information such users share on the internet
and conversely how information is shared when users are
actually sick. In other words, although social media disease
detection systems have been validated against official reports
at the population level [10,18], the relationship between
population-level models and individual-level information is not
well understood—for example, how often do social media users
post that they are sick, and in what ways?

Answering these questions requires data about individuals.
Although infectious disease research with internet data has
largely not had access to ground truth datasets, there is
substantial prior work in related domains. Researchers have
used crowdsourcing methods to create ground truth datasets of
individuals with clinical depression [19], compared electronic
medical records with topics of Facebook posts [20], and used
self-disclosures of attention deficit hyperactivity disorder on
the internet as ground truth datasets [21].

This study sought to advance our understanding of the
relationship between people’s actual health statuses and their
social media activity. We used influenza-like illness and similar
syndromes, such as the common cold, as a case study. We
leveraged individual-level health data, including weekly
symptom self-reports and viral diagnostic data collected through
the GoViral platform, an internet-based influenza-like illness
surveillance system, in which participants returned a weekly
symptom survey when sick. Data from these reports were used
alongside Twitter messages posted by the individuals (each
individual considered here also shared their public Twitter
profile information). Our experiments examined how often and
in what ways individuals tweeted about their health in relation
to the health status described by their survey responses. We
measured whether survey-derived health statuses can be

predicted with social media–derived variables about individuals
and if the study participants differed predictably from Twitter
users.

Objectives
Specifically, we answered three research questions (RQs).

• RQ1: How often and in what ways do people share their
illnesses on Twitter when they are ill?

• RQ2: How predictable is someone’s illness status from their
tweets?

• RQ3: How are results from individuals in the GoViral study
potentially representative (or not representative) of Twitter
users more generally?

RQ1 and RQ2 sought to improve our understanding of the
relationship between an individual’s health status and social
media activity, whereas RQ3 seeks to understand how
representative were the data we used.

Methods
Data Collection
The GoViral platform was developed to generate self-reported
symptoms and biospecimens from a cohort of lay volunteers.
Although the GoViral platform had been in operation since
November 2013, the operationalizing of Twitter handle
collection commenced in August 2016. This study includes data
from participants recruited between August 2016 and November
29, 2017.

Recruitment, eligibility, and enrollment procedures remained
consistent with the existing platform. Enrollment was driven
largely by recruitment in person at relevant community outposts
and events. Paid online advertisements and social media were
also used as a means of recruiting volunteers to the study. The
study size was limited by the ability to recruit and engage
participants. To register, volunteers signed an electronic consent
form and reported their email address, name, mailing address,
gender, and age. Volunteers were sent a kit that included
collection materials and customized instructions to keep at home.
Users were instructed to perform a specimen collection (nasal
swab) if they became sick with symptoms of a cold or the flu.
Participants also reported symptoms through weekly surveys.
Symptoms included those common to acute respiratory
infections and seasonal cold and flu-like illnesses (fever, cough,
sore throat, shortness of breath, chills, fatigue, body aches,
headache, nausea, and diarrhea). If a participant reported any
symptoms on their weekly survey, they were immediately sent
an email reminder to submit specimens. Specimens were tested
for the presence of a panel of acute respiratory infections.
Demographic information (age, gender, ethnicity, and location)
and Twitter handle (optional) were also collected from each
participant. Additional details of the protocol can be found in
studies by Goff et al and Ray and Chunara [22,23].

We used the Tweepy application program interface (API) [24]
to collect available tweets from participants, limited by the
Twitter API, which only allows 3200 most recent tweets per
user. The Twitter API only allows for collection of profiles that
are shared publicly. These timelines were collected in March
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2018. In addition, we collected data from a random set of Twitter
users for comparison. These timelines were obtained in October
2018. We identified all users in a 2-week, 1% random Twitter
stream and randomly selected users from this sample. Users
were kept in the final random dataset if we were able to obtain
tweets back to the start of the GoViral study (n=118). This was
done to allow for matching between study participants and the
random sample. However, this decision does bias the dataset
away from very prolific users.

Keyword Analysis and Topic Modeling
To answer RQ1, we identified tweets that explicitly referenced
the individual’s current health status, focusing on colds or
flu-like illness. As the number of individual tweets precluded
manual coding, we used a keyword filtering approach. This is
a common approach to increase the fraction of relevant instances
[25-28]. We queried all timelines for tweets that included the
following keywords:

• General words: flu, sick, throat, hurt, sinus, influenza,
stomach, tummy, respiratory, nose, feeling, cold, feel, h1n1,
h3n2, h5n1, flua, flub, infection, ill

• Symptoms: fever, cough, congested, stuffy, headache, ache,
sore, head, phlegm, sneeze, asthma, pneumonia

• Medications: medicine, dayquil, nyquil, tamiflu, mucinex,
theraflu, tylenol, motrin, aleve, naproxen, ibproufen,
acetaminophen, advil, virus, oseltamivir, peramivir,
infection, zanamivir, antiviral, guaifenesin, robitussin,
phenylephrine, decongestant, pseudoephedrine,
antihistamines

For use in the analyses described in the following section, we
extracted topics from all tweets using latent Dirichlet allocation
(LDA) [29] and a Gibbs sampling implementation with
automatic hyperparameter optimization described in the study
by Paul and Dredze [30]. Before feature extraction, all tweets
were preprocessed in the same manner: usernames and URLs
were replaced with generic tokens and emojis, nonalphanumeric
characters, and extra letters were removed (eg, greaaaat is
truncated to great). The Gibbs sampler was run for an initial
1000 iterations, and 100 samples were collected at the end and
averaged to estimate the model parameters. The number of
topics was set to 100. Each of the 100 topics has a distribution
over words, characterizing the content of the topic, and each
tweet has a distribution over the 100 topics. The topic
probabilities in each tweet are used in the predictive models to
describe tweet content.

Predictive Modeling
To answer RQ2, we created several training and testing datasets
(n=100) because the overall GoViral dataset was small. For
each, 90% (73/81) of the eligible GoViral participants were
randomly selected to be in the training set. The remaining 10%
(8/81)were reserved for the test set. Using this method instead
of creating one training/testing dataset allowed us to measure
the robustness of the models on a number of datasets and
generate summary statistics (area under the curve [AUC] and
P values reported below). We then constructed 3 datasets.

The first dataset was used to discern if we could identify when
participants were sick. For each participant, we randomly

sampled one survey to include in the dataset. If that survey had
no symptoms, we then randomly sampled another survey from
the selected participant that had at least one symptom.
Conversely, if the survey did report a symptom(s), we randomly
sampled a survey with no symptoms. In this fashion, we
balanced the number of asymptomatic and symptomatic data
points and balanced the number of surveys per participant (to
avoid bias from individuals who were particularly prolific survey
respondents).

The second and third datasets were used to measure differences
between the GoViral dataset and the Twitter random sample
(RQ3). Here, each survey selected initially was matched with
two additional data points. For each survey, we selected a
random date during which the user tweeted but did not return
a survey within a week on either side. We also selected a random
date from the Twitter users collected at random. These datasets
allowed us to measure if a GoViral user would return a survey
in a particular week and if an individual was in the GoViral
dataset. The purpose of this dataset was to measure if there was
evidence of external factors that impacted study participants;
for example, it could be that individuals were more likely to
return surveys with symptoms because they stayed home when
ill and had more time to fill out the survey.

For all predictive models, two types of features were used: topic
features and behavior features. To construct topic features, we
obtained all tweets for 1 week before the date of interest (eg,
the date a survey was returned). We then obtained the topic
distribution for those tweets and used the average of the topic
distributions as a 100-dimensional feature vector. We selected
a week (as opposed to other time frames) because the incubation
of common flu and cold illnesses is approximately 1 to 4 days
[31]. As such, 1 week is an appropriate buffer around the date
of interest. We used the average topic distribution instead of
individual tweet distributions because this allowed us to have
the same dimensional feature vector for each user.

Behavior features included the (1) number of @ mentions, (2)
number of retweets, and (3) daily tweet frequency. All features
were averaged over the previous week. These metrics have been
used in prior research to describe information dispersal [32],
information communication between friends [33], and user
behaviors such as response rate for question-answering
behaviors on social media [34]. When using features to
distinguish between the GoViral sample and the random Twitter
sample, we used the raw values. When using the features to
identify user differences within the GoViral sample, values were
Z-score normalized by the user (µ=0, ρ=1).

We built regression models to predict the symptoms of an
individual using the topic and behavior features derived from
Twitter. We used a binary logistic regression classifier built in
Python 3.6.3 (Python Software Foundation) to predict whether
or not a report contains at least one symptom using the
implementation from Scikit-learn (version 0.19.1) [35]. Tenfold
cross-validation on the training data was used to select the
regularization parameter (using a grid search of values between
0.000001 and 100,000 in orders of magnitude). We also built
individual classifiers for each symptom reported. Here, we
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included a survey in the positive class if it included the symptom
of interest, regardless of if it also included other symptoms.

In addition to binary prediction, we used linear regression to
predict the number of symptoms reported (a proxy for the
severity of illness). Ridge regression using the Scikit-learn
implementation [35] was used to force coefficients to be small
while keeping all features. The regularization parameter for
ridge regression was selected using 10-fold cross-validation on
the training data. This study was approved by the University of
Colorado Boulder institutional review board (protocol number
17-0470).

Results
Cohort Description
Overall, 396 individuals participated in the GoViral project and
shared their Twitter handles, of which 186 returned at least one
survey. Study participants returned 6.4 surveys on average,
resulting in a total of 1283 surveys. Of these 1283 surveys, 417
included a report of at least one symptom. Participants were
geographically widespread, representing 43 different states in
the United States. Most participants were from New York,
California, Texas, Washington, Massachusetts, Florida, New
Jersey, and Virginia.

Of the original sample of 396 individuals, Twitter data were
unavailable for 84 because they had private accounts (n=25),
had never tweeted (n=4), or because the Twitter handle provided
did not exist on Twitter at the time we collected data (n=55).
Moreover, of the remaining sample, only 81 could be included
in the final dataset as we required that any included individual
returned both a survey with no symptoms and a survey with at
least one symptom.

Demographic information (gender and ethnicity frequencies
and mean age) for the overall GoViral dataset (original data)
and the final set of individuals included in this study (study
cohort) are shown in Table 1. Two individuals in the study
cohort did not respond to demographic questions. Individuals
in the original study were allowed to select multiple ethnicities;
therefore, total across all ethnicity categories is greater than the
number of individuals. Demographic distributions between the
original data and study cohort are similar, with notable
differences. The study cohort had more women compared with
the full GoViral sample; it had a higher proportion of individuals
who identified as white and had a smaller proportion of
individuals identifying as black. Among the study cohort,
individuals tweeted an average of 613 times during the study
for a total of 51,141 tweets. These individuals also returned a
total of 343 surveys (4.2 surveys per person on average).

Table 1. Study demographics.

Original data (N=396)Study cohort (n=81)Variable

Gender, n (%)

235 (38)54 (30)Male

149 (59)24 (67)Female

6 (2)1 (1)Other

Ethnicity, n (%)

18 (5)1 (1)Black

311 (79)69 (85)White

9 (2)2 (3)Native

32 (8)2 (3)Latino

58 (15)11 (14)Islander

37.47 (14.24)40.91 (14.01)Age (years), mean (SD)

Health Disclosure in Tweets
To answer RQ1, we examined the 436 tweets that included
health-related keywords and were tweeted during the GoViral
study period. Each tweet was hand-coded as relevant or not
relevant; relevant means that the tweet appeared to be an
authentic description of the individual feeling poorly, with no
other explanation. Mentions of events outside of infectious
disease that could account for feeling ill were excluded (eg,
recent surgery, consumption of alcohol, and the temperature
was cold). Each tweet was annotated by two of the authors, and
disagreements were resolved by the remaining author. Cohen
kappa values were 0.66, 0.60, and 1.0 between the three pairs
of annotators.

This process resulted in only 26 health-related tweets that could
potentially be attributed to seasonal cold or flu viruses. Of these,
only 2 were tweeted within 2 weeks (1 week before or 1 week
after) of a positive symptom survey.

Overall, we found that health tweets were a small percentage
of the tweets written near a positive symptom survey (only 2
tweets, 0.0039% of all tweets in the dataset). In the overall
dataset, users tweeted 35 times a week on average (95% CI
34.6-35.3). We found that even among people who were active
on Twitter and reported feeling sick, it was rare for them to
actually tweet about sickness.

Symptom Prediction
Results of the binary models are presented in Table 2.
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Table 2. Logistic regression model results.

P valueArea under the curveOutcome of interest and feature set

Was an individual ill?

Any symptom

.380.51Topic model

<.0010.30Behavior features

Body aches

<.0010.57Topic model

—a0.50Behavior features

Runny nose

.020.47Topic model

—0.50Behavior features

Leg pain

<.0010.47Topic model

—0.50Behavior features

Nausea

.110.52Topic model

—0.50Behavior features

Vomiting

—0.50Topic model

—0.50Behavior features

Sore throat

<.0010.46Topic model

—0.50Behavior features

Shortness of breath

—0.50Topic model

—0.50Behavior features

Fever

.280.51Topic model

—0.50Behavior features

Fatigue

—0.50Topic model

—0.50Behavior features

Diarrhea

.270.48Topic model

—0.50Behavior features

Cough

<.0010.47Topic model

—0.50Behavior features

Chills

.0020.48Topic model

—0.50Behavior features

Was an individual a GoViral participant?

GoViral participant
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P valueArea under the curveOutcome of interest and feature set

<.0010.67Topic model

—0.50Behavior features

Did the participant return a survey in the week of interest?

Returned a survey

—0.50Topic model

—0.50Behavior features

aInstances where P value cannot be calculated.

Table 2 shows the average AUC for all 100 models built, along
with the P value for each (calculated using a t test, with a null
hypothesis of H0=0.5). The AUC is a measurement of how well
the model is able to correctly classify the outcome. An AUC of
1 would be a perfect classifier, whereas an AUC of 0.5 is a
classifier operating at chance. An AUC less than 0.5 is a
classifier operating worse than chance. It was not possible to
predict if a user would return a survey with at least one symptom
with logistic regression using the topic features (AUC=0.51;
P=.38); however, it was significantly predictable using user
behavior features, with a small effect size (AUC=0.53; P≤.001).
There were only a few instances where individual symptoms
were predictable using our models, and none when using the
behavior features. When using topic modeling features, body
aches were significant (AUC=0.57; P≤.001), and nausea and
fever were nonsignificant but had AUC values over 0.5
(AUC=0.52; P=.11 and AUC=0.51; P=.28, respectively).

No relationship existed between either feature set and the
number of symptoms using a ridge regression analysis (tweet
topics: r=−9.03; Twitter behaviors: r=−0.05). Typically, negative
r values indicate the model was overfit. However, in this
instance, the models always selected the most aggressive
regularization parameter, meaning all coefficients were

extremely close to 0. Thus, we interpreted this finding to show
that the number of symptoms reported (a proxy for illness
severity) was not predictable using either feature set.

Cohort Bias
To answer RQ3, we considered how this study cohort might
differ from a sample selected at random from Twitter (see Table
2). When using topic model features, the random sample and
the GoViral sample were predictably different on held-out data
(AUC=0.67; P≤.001). Table 3 shows the most common topics
associated with those in the GoViral sample compared with the
random Twitter sample. Topics appear in the table if they were
associated with at least one-third of the models built. The last
column denotes which cohort the topic was associated with. In
terms of themes, all the topics associated with science, research,
or health were associated with the GoViral sample.

Importantly, the two samples were indistinguishable using
behavior features (AUC=0.50; P=.19). In addition, it was not
possible to predict if a GoViral participant returned a survey in
a given week (AUC=0.5 with both feature sets). Thus, we found
that there were no observable differences in tweet content or
Twitter use patterns in weeks that participants returned a survey
compared with the weeks they did not.

Table 3. Most important topics for the in-sample classifier and direction of association.

Associated withTop wordsTopic

In samplescience new human scientists data microbiome learning research study using great lab dna brain gt machine biology
paper talk work wcsj2017 project interesting cool ai deep citizen check bacteria

13

In samplecancer study disease research new risk brain join heart treat-ment scientific patients contributed health pain blood hu-
manitar-ian drug help gut therapy depression diseases flu high dr women years vaccine

24

In samplespread help share awareness terrible disease time cpu wcg earned points donating results days word donated past wcgrid
week month years day hours son old semicolon badge 3026 1650935 raise

36

In sample5points genes gene human dna cancer notes new data cells genome tumor cell variants genomes vs bog15 genetic rare
finds expression nygc rna non agbt15 gt pg14 protein paper

97

Random samplegold olympics usa olympic ich medal die org und silver team der ist rio2016 old medals contact es ein hockey won win
das teamusa women nicht wins war einen

16

Random sampleque la el en se es lo por los mi para una te del las ya si como pero todo ser yo su tu da eu os est qu hoy29

Random samplehai a1 ho ke india ki modi a3 ka a2 se hi a5 nahi kya ko bhi toh a4 na timepass aur ab main contest mein tu ye kar38

Random samplenew photo facebook posted martin instagram king photos luther video page yorker album pic shoot jeff caption cover
credit selfie beijing york shkreli beatbaker burger ad repost fb likes selfies

52

Random samplefollow retweet gain trapadrive followers fast let thanks appreci-ate gainwithxtiandela retweets 1ddrive likes tweet active
time rts naijafollowtrain follows 500 bam gainwithpyewaw ifb gaining turn 100 quick mzanzifollotrain gainwithtrevor

53

Random samplelaunch shared rocket sd first spacex holbrook falcon test elon musk space satellite ship says fund 10 percent barrier
mission join landing location second stage project life new cruise

69
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Discussion
Principal Findings
This study found that there were instances of self-disclosure of
flu-like symptoms on social media that correspond to disclosed
survey symptoms, but they were exceedingly rare. Although it
has always been obvious that only a fraction of people disclosed
their health status on the internet, that fraction has not previously
been quantified for flu-like illness. Out of 426 self-reports of
illness, only 2 coincided with a user tweeting about their own
poor health.

The fact that self-disclosure of flu-like illness on Twitter
happens so rarely, even among active Twitter users, opens the
possibility that there is a selection bias in terms of who chooses
to disclose this information on the internet when they are feeling
ill. Whether such a bias exists, as well as its characteristics, has
not been measured to date. Unfortunately, this study was not
able to provide more insight into this potential effect because
of the very small number of disclosures in our dataset.
Importantly, prior work has not observed this bias, and future
work attempting to better characterize this will need to recruit
a large number of participants to effectively measure it.

In addition to identifying disease mentions, we attempted to
predict disease state from users’ tweet content (using topic
models) and social media behaviors. Our models were not able
to predict if an individual would return a symptomatic survey
from their tweet content alone. Our study found that behavior
features (the frequency of tweets, retweets, and @ mentions)
were significantly but only slightly predictive of illness, and
this effect was only present with classification, not regression.

This is in contrast to work that found that social media post
content might be related to illness status. Smith et al recruited
participants from an emergency department and correlated health
conditions with posting frequency on Facebook [20]. Topics
on Facebook, ascertained through LDA were also examined in
relation to posting frequency. Although the actual correlation
coefficients were small, they found that individuals who posted
more often tended to have more complaints such as headache
and sick in comparison with the infrequent posters who used
words such as birthday and enjoy [20].

Finally, efforts to individually validate infectious disease
mentions on the internet are further complicated by multiple
additional sources of bias. The 81 individuals included in this
study were biased from the original GoViral dataset (Table 1).
In addition, although the GoViral cohort certainly included
active Twitter users (tweeting an average of 35 times per week),
the respondents were not representative of all Twitter users, in
particular with respect to their tweets’ topics. We found that
the study participants discuss topics about science and health
more frequently, whereas more diverse topics (eg, those about
sports and social media) were more predictive of the random
sample. This could indicate that those in the GoViral population
were more interested in public health problems than the average
Twitter user. However, we found the 2 populations to be
indistinguishable based on their Twitter use behaviors. Those
in the random sample and the GoViral samples used Twitter

with similar overall frequencies and with similar hashtag and
@ mention frequencies.

It is well known that internet data are demographically biased
[36-38], for example, social media platforms are typically biased
toward young adults compared with the elderly [37]. Prior work
has also demonstrated that subsets of Twitter data are also
biased; for example, Sloan et al showed that geotagged tweets
are not representative of the Twitter base [38]. Taken together,
this illustrates the numerous levels of bias that those who work
with social media data face.

Recruitment bias is known to happen in most cohort-based
studies and has been shown in a variety of contexts, including
twin studies [39], physical activity studies [40], and paid vs
unpaid studies [41]. More recent research has shown that studies
recruiting using online data also experience this bias [42,43].
However, this is the first study, to our knowledge, to explore
recruitment bias on a social media platform for infectious disease
research.

Limitations of the Study
As noted above, the sample size of this study is a substantial
limitation. We found only 2 instances of tweeting about illness
while sick from a collection of 396 participants who shared
their Twitter handles. However, it should be noted that it would
be labor- and cost-intensive to amass ground truth data at a
much larger level, and it may be especially difficult to collect
enough data in this domain. To obtain a sizeable number of
instances where users tweet about illness they are sick, one may
have to scale up recruitment efforts [22] or define more specific
inclusion criteria. In addition, we noted that we observed some
trends in social media behavior and disease severity that would
be worth testing in a larger sample with greater statistical power.
We discuss the trends we observed in exploratory analyses in
Multimedia Appendices 1 and 2.

As it was not required that individuals return a survey each
week of the study, it is impossible to ascertain if there are
response biases associated with survey response. We attempted
to measure this by building the classifier to predict if a user
responded in a given week. This outcome was completely
unpredictable by our feature sets, but it is still possible that there
were unmeasured differences.

We also noted the substantial number of individuals in the
original GoViral dataset who could not be included because we
were unable to obtain their Twitter data. It is possible that
individuals with private accounts disclose illness at different
rates than those with public accounts, and it is impossible to
measure that with this dataset.

Finally, we acknowledge the possibility that our keyword-based
procedure for identifying health-related tweets may have missed
relevant tweets, which thus would have been excluded from our
analysis. We attempted to reduce this risk by using a large set
of terms, including very general words such as feel and feeling.

Conclusions
Overall, we did not find strong evidence that health status with
respect to cold and flu-like illness can be predicted from tweet
content or behavior. A larger and more representative study
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would help verify this on a broader scale. However, in general,
we posit that verifiable traces of illness on the internet might
be rarer than initially believed by the social media monitoring
community. It is possible that there may be an informative signal
from social media platform behaviors (eg, tweet frequency) for

individual health status that would be interesting to study in a
larger dataset. Finally, we demonstrate a clear recruitment bias
that should be considered when building large ground truth
datasets for the infectious disease domain.
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Multimedia Appendix 1
Normalized tweet frequency near a survey. Normalized tweet frequencies (y-axis) are shown with respect to the number of days
before or after a survey (x-axis), where day 0 is the day a survey is returned on. Data are stratified by the number of symptoms.
Lines show the average value and shaded regions represent the 95% confidence interval. This figure was generated by comparing
the normalized tweet frequency of users in the week prior to and the week after a survey response. We stratify by the number of
symptoms reported by a user in order to observe the effect of illness severity on tweet frequency. In some cases (e.g., Figure S1
at ≥ 5 symptoms), the differences are nearly statistically significant, though they are never actually significant on the day of a
returned survey.
[PNG File , 429 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Normalized tweet frequency near a survey. Normalize tweet frequencies (y-axis) are shown with respect to the number of days
before or after a survey (x-axis), where day 0 is the day a survey is returned on. Data are stratified by the symptoms reported.
Lines show the average value and shaded regions represent the 95% confidence interval. This figure was generated by comparing
the normalized tweet frequency of users in the week prior to and the week after a survey response. Data are stratified by the
symptom reported by a user (where the survey is included if the symptom of interest is reported, regardless of if there are additional
symptoms reported). There are some symptoms that show significant patterns, in particular leg pain, nausea, shortness of breath
and chills or night sweats have sections that are statistically significantly different from users with no symptoms reported.
[PNG File , 364 KB-Multimedia Appendix 2]
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