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ABSTRACT 1 INTRODUCTION

While machine learning is rapidly being developed and deployed in
settings such as influenza prediction, there are critical challenges
in using data from one environment to predict in another due to
variability in features. Even within disease labels there can be dif-
ferences (e.g. “fever” may mean something different reported in
a doctor’s office versus in an online app). Moreover, models are
often built on passive, observational data which contain differ-
ent distributions of population subgroups (e.g. men or women).
Thus, there are two forms of instability between environments in
this observational transport problem. We first conceptualize the
underlying causal structure of this problem in a health outcome
prediction task. Based on sources of stability in the model, we posit
that we can combine environment and population information
in a novel population-aware hierarchical Bayesian domain adap-
tation framework that harnesses multiple invariant components
through population attributes when needed. We study the condi-
tions under which invariant learning fails, leading to reliance on
the environment-specific attributes. Experimental results for an
influenza prediction task on four datasets gathered from different
contexts show the model can improve prediction in the case of
largely unlabelled target data from a new environment and differ-
ent constituent population, by harnessing both environment and
population invariant information. The proposed approach will have
significant impact in many social settings wherein who the data
comes from and how it was generated, matters.
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Machine learning algorithms have the potential to significantly
improve prediction efforts across critically important healthcare
tasks. Yet, there are several issues that must be addressed before the
potential of machine learning in health is broadly realized. While
individual models are built on and may perform well on a select
dataset from a specific environment (also called “domain” in the
literature) and population (e.g. the population could be skewed to-
wards younger people or other demographics depending on where
it’s sampled from), improving prediction in new datasets gathered
in different contexts and simultaneously, from different constituent
populations, is a clear challenge articulated by many health practi-
tioners [29].

First, standardization in health-related features is a significant
problem. Variance in testing and billing practices [20, 24] as well as
differences in clinical case definitions [25] from one environment to
another present barriers for model transport. Accordingly, the same
symptoms (features) can mean different things in different environ-
ments; “fever” may mean something different reported to a doctor
at hospital A versus hospital B, or to a doctor compared to through
a smartphone app [25, 26]. This issue is becoming more pertinent
as the number and types of data collection environments (from
clinical data, to healthworker-facilitated data wherein healthwork-
ers visit individuals’ houses, record symptoms and take specimens,
to citizen-science studies in which participants report symptoms
and submit specimens directly [13, 14]) is rapidly increasing. In all
cases, obtaining labels can be impractical; e.g. for influenza they
would require costly and time-consuming laboratory tests. Another
critical challenge is that models are often built on data from a par-
ticular population in an environment, and transporting results to a
different population can be challenging if subgroups are differently
represented in source and target populations (representation bias
[31]). These differences in data collection and demographic distri-
butions make the problem of predicting infection in a dataset by
using data gathered from different environments and populations
challenging. We therefore address this unique problem of domain
adaptation in the presence of representation bias. We study the
problem via a simple, but important influenza prediction task.

The idea of transporting observational findings from source en-
vironment(s) to a target environment is essential in science and
the concept has been well-defined on the basis that target envi-
ronments can often differ from source environments. Furthermore,
it can be expensive to generate labels in a new environment [22].
Methods have been proposed to exploit the causal structure of the
data generating process in order to address certain domain adapta-
tion problems, each relying on different assumptions. While some
work has focused on identifying the invariant components to ensure
robust transfer [17, 30], work by Pearl and Bareinboim [22] showed
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that identifying the mechanisms by which two environments differ
can also be used to inform empirical learning and incorporation
of local variations in a system. With this background, in this pa-
per we address the problem of observational transport with both
environment differences and population representation bias. We
do this by proposing a new hierarchical domain adaptation model
that includes population attributes in the hierarchy in order to
capture invariant information through these multiple components.
The model then allows transfer of invariant information as well as
learning information specific to a local environment when necessary.
We are able to propose a solution to this problem by harnessing
research in health regarding population structure (invariance in
population attributes) along with algorithmic innovation to design
this novel approach.

To accomplish this goal in a principled way, we first represent the
data generating process (DGP) for our task via a selection diagram.
Besides explicitly illustrating variables (nodes) and the mechanisms
by which the nodes are assigned a value (edges) that are relevant to
the DGP and do not vary across environments, a selection diagram
includes S-variables which localize the mechanisms where sources
of unreliability in the DGP exist. We formalize this description
and discuss the selection diagram for the task in this study in
following sections. We highlight that modeling the DGP requires an
understanding of health concepts [22]. Thus for the task considered
here (influenza prediction from symptoms) in order to identify the
invariant and variant components of the causal graph, we leverage
health research which shows that 1) reports of symptoms in relation
to infection status vary by the data collection mode, and 2) while the
population represented in an observational sample can suffer from
selection bias, disease risk can be stratified by population groups
[5, 28]. In societally-prescient problems such as health, attributes of
whom the data is from (population demographics like age, gender)
are commonly available, and it is understood that there are shared
characteristics within these groups [28].

In sum, we specifically address a situation in which both en-
vironment and constituent population change from the source to
target datasets; often the case in health prediction tasks. We use a
simple but important task of influenza prediction from symptoms,
and four real-world datasets representing a diverse set of environ-
ments and populations. Specific contributions are: 1) Formalizing
the DGP between symptom reports and infection status, capturing
sources of stability and of variance across environments (which
we categorize into two: selection bias and feature instability); 2)
A new domain/environment adaptation model for observational
transport that accounts for instability in observed features as well
as improves prediction on population subgroups even when not
well represented in a particular dataset, through sharing invariant
population characteristics in multiple components as needed (when
a population subgroup is not well-represented in the target envi-
ronment or its characteristic is different from that in other data); 3)
Demonstrating the model on real-world data, showing significant
improvement in prediction of infection on largely unlabelled target
dataset overall and by population subgroups in comparison with
several relevant baselines.
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2 NOTATION AND PROBLEM SETTING

We consider source datasets from multiple environments
D, = {(xf,yf,af,gf}}?:"l where e € E (E comprises of all the
source environments) and a single target dataset

Dy = {(x}, v}, af gDV, | JGef af, gD
where k << n;;t € T. For the target dataset we have limited
number of labeled samples (k) whereas for the source datasets all
the samples are labeled. L denotes all the datasets: source as well
as the target (L = E U T). Sets of variables are denoted by italicized
capital letters whereas lowercase letters are used for their individual
assignments.

Y denotes the presence (y = 1) or absence (y = 0)) of the in-
fluenza virus. Age of the individual is represented using A, and
categorized by common epidemiological groups: age 0-4, age 5-
15, age 16-44, age 45-64, age 65+. Similarly, G represents gender
(male or female). The demographic attributes (A and G, but can
be expanded to other demographic attributes where possible) are
together represented as D; D = {A, G}. X is the feature vector rep-
resenting presence of the symptoms: fever, cough, muscle pain and
sorethroat. Here x is a 4-dimensional binary vector representing
the symptoms that an individual has (if an individual i has fever
and sorethroat but no cough and muscle pain; the feature vector
looks like x; = {1,0,0, 1}). We consider subgroups in the data to
be the specific demographic populations of interest belonging to
a specific gender and age group Dy 4 = {(X,Y) | A = a,G = g}.
The task is to predict the value of Y for each of the subgroups Dg,g
from the symptom information X. This can be formalized as:

min B (£ (x',0%)) + ) R (f (X°.6°)

We aim to learn classifier f (X?, 8%) for the target dataset D; pa-
rameterized by 8" for each of the demographic subgroups (Da,g)
that minimizes empirical risk Rf while minimizing total risk across
the source environments R® as well. It should be noted that the
probability distribution of the target environment across population
subgroups P; (X, Y | D) may not be uniform. Hence, the resulting
f (X?,8") cannot be assumed to be the same across all subgroups.

3 RELATED WORK

Influenza Prediction Influenza is a global threat, affecting coun-
tries worldwide with considerable morbidity and mortality [27].
Globally, annual epidemics are estimated to result in about 3 to 5
million cases of severe illness, and about 290,000 to 650,000 respira-
tory deaths [36]. With the possibility of global pandemics looming,
improving prediction of influenza is a continuing central priority
of global health preparedness efforts. Predicting from symptoms in
single datasets have used regression models [18], typically examin-
ing specific case definitions (sets of syndromic features). Machine
learning approaches have enabled wider feature space examina-
tion [23]. While it is understood that health-related features can
vary from hospital to hospital [35], influenza data sources incur
even more diversity as passive observations are collected via varied
sources including syndromic surveillance systems, Internet apps,
and health worker based studies. Also, generating labels is difficult
and costly (requires laboratory testing). Recent work has shown
that domain adaptation can be useful for prediction from symptom
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data sets obtained via these different environments [26]. While epi-
demiological study has indicated that there are disparities in risk by
age group and gender for disease in general, and influenza specifi-
cally [1], prediction approaches that harness population attribute
differences are an important gap in disease prediction models.

Observational transport. Observational transport refers to the
transport of causal relationships across environments in which only
passive observations can be collected [22]. The simple idea indicates
that causal knowledge shows which mechanisms remain invariant
under change. Accordingly, some work has used causal diagrams
or feature selection methods to determine invariant relations in the
source environment that can be transferred to the target environ-
ment, isolating the set of features which can be conditioned on to
eliminate instabilities in the data generating process [17, 19, 30].
Though it should be noted that early work goes on to state that
the causal relation to be transported can be learned from invariant
components and variant components from both the source and
target environments, depending on the DGP [22]. Here, we use this
idea to allow trade-off between invariant characteristics across envi-
ronments and empirical re-learning of relationships from each local
environment, depending on which populations are represented in a
dataset. In other words, we transmit invariant information through
multiple population components, and use variant information as
necessary, addressing the problem of different population subgroup
representation in observational data.

Multi-source domain adaptation and hierarchical modeling.
Domain adaptation is focused on improving performance for a tar-
get data set, in situations where the environment of the target data
is different from the that of the source(s) from which information is
transferred. Another approach to learning from multiple sources by
pooling and analyzing multi-site datasets includes transforming the
source and target feature spaces to correct any distributional shift
in the data [37]. Prior work have also leveraged multiple source
datasets to increase the amount of information learned [15]. This
task has also been formulated from a causal view [19], where the
posterior of the target is a weighted average of the source datasets.
The “Frustratingly Easy Domain Adaptation” method is notable for
simplicity and good performance on text data [8] and is equiva-
lent to hierarchical domain adaptation [11] (except it explicitly ties
parameters across environments). Hierarchical approaches, which
have primarily been developed in natural language processing, in
contrast allow hyperparameters to be separated across environ-
ments; each environment has its own environment-specific pa-
rameter for each feature which the model links via a hierarchical
Bayesian global prior instead of a constant prior. This prior encour-
ages features to have similar weights across environments unless
there is good contrary evidence. This supports the goal of this work,
to combine environment information as needed (unless the popula-
tion represented in the local environment is much different than in
other environments). Hierarchical Bayesian frameworks are a more
principled approach for transfer learning, compared to approaches
which learn parameters of each task/distribution independently
and smooth parameters of tasks with more information towards
coarser-grained ones [2]. In this work we advance this idea by cre-
ating a novel multi-level, multi-component hierarchy, as well as by
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the idea of incorporating population-attribute invariance as part of
the hierarchy.

4 PROPOSED APPROACH

4.1 Assumptions

Here we describe the assumptions that ensure our problem is well-
posed. The main assumption is that the data generating process is
known and can be represented via a graphical causal diagram (helps
to identify the information that can be transported [22]). We adapt
the definition of a selection diagram which is previously defined
[21, 22] to clearly delineate different types of change mechanisms.

Definition 1 (Selection diagram). A selection diagram is a proba-
bilistic causal model (as defined in [21]) augmented with auxiliary
selection variables S (denoted by square nodes, which denote places
of instability in the DGP) comprising of two types; S = {S*,S}. An
S* variable can point to any observed variable. 5* — X denotes that
the mechanism of assigning value to X changes across environments.
The other type of selection variable S represents a selection bias. Thus

an edge from X to S (X — S| denotes a non-random selection of

individuals, groups or data for variable X.

We can now formalize the causal and selection diagrams (Figure 1)
for our setting (prediction of influenza infection from symptoms)
based on prior knowledge and research in health. Along with the
system variables: virus (Y), symptoms (X) and demographic at-
tributes (D) of age and gender, we also have the selection variables
(S ={s*,§ }] which denote differences in the data-generating pro-

cess across environments through instability in observed variables
and selection bias. The symptoms that result are generally shaped by
infection status [3], thus we have Y — X. Population demographic
attributes also can affect symptoms reported, X, and susceptibility
to infection by the virus, Y (for example, symptoms common in
young versus older people can vary; X « D,D — Y — X) [5].
Now, we consider the parts of the data-generating process that
vary across environments. The data collection environment (here,
for example citizen science or health-worker facilitated) affects
P(X | Y) (specifically, it is known that symptoms reported via citi-
zen science are less specific than in a hospital, for example) [25].
Thus the collection source introduces differences in the manner
in which P (X | Y) is observed across environments and there is a

S* D §

(a) (b)

Figure 1: (a) Causal diagram, (b) Selection diagram represent-
ing the differences in the data-generating process.
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selection variable pointing towards X; (S* — X). The absence of a
selection variable pointing at D and Y indicates that the mechanism
of assigning values to these variables is the same across environ-
ments (which makes sense intuitively, as demographic variables,
e.g. man or woman, do not change or have different meanings in the
different environments, nor does the process for obtaining flu in-
fection status which is performed by laboratory confirmation in all
cases). Finally, there is a selection bias associated with population
demographic attributes. The proportion of individuals in each of the
subgroups commonly varies across environments based on observa-
tional sampling (it is rare to have a representative distribution in a
population sample unless an experiment is designed in advance and
specific groups are recruited); P, (X,Y | D) # P¢(X,Y | D). Thus
there is an edge from D to S. We now state the assumptions that
help to formulate observational transport for this causal structure.

Assumption 1. Let G be a causal graph with variables V consisting
of the system variables I = {X,Y,D} and the selection variables

J=1{5"}.

(1) No system variable directly causes any selection variable
VieJ.Viel :i— j¢G).

(2) No system variable is confounded by any selection variable

(s*,5).

Assumption 2. Let G be a causal graph with variables V consisting
of the system variables I = {X,Y,D} and the selection variables
S = {8*,5} and P(V) be the corresponding distribution on V.

(1) The distribution P (V) is Markov and faithful with respect to

G.
(2) S has no directeffectonY (S - Y ¢ G))

4.2 Observational transport across
environments

Motivated by the approach stated in [22] we aim to leverage a
statistical relation, R (P) to be learned from source environment(s)
(characterized by probability distribution P) and transfer it to an-
other (target) environment, R (P*), (characterized by probability
distribution P*) particularly when gaining complete information
about that relationship in the target environment is costly. The
definition of observational transportability in [22] (Definition 5),
asserts that the relation to be transported has to be constructed
from the source data as well as observations from the target data. As
there is no control on the data-generating process (no intervention
on any of the system variables, in contrast to experimental data)
we cannot use do-calculus for formalizing the causal relation, and
instead must use conditional independencies to understand the re-
lationship between the outcome, Y and features X, by obtaining the
joint probability distribution P* (X, Y, D). In the following section
we identify invariant parts of this relation (which can be learned in
combination with the source environment), and transferred as well
as the target environment-specific relations (variant components)
to be learned directly from the target dataset.
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4.3 Multi-component invariant transfer

Having knowledge of the data-generating process via the graphical
casual model G, we identify the invariant conditional distributions
that can be transferred from the source environment (D, ) to the
target environment (D).

Indeed, according to the causal diagram in Figure 1b, we do not
find a set of features (X) that d-separates Sand Y, S L Y | X. How-
ever,we do notice that S Il Y | D; the invariant information P (Y|D)
can be transferred across the environments. This follows from the
fact the different demographic subgroups of the population share
characteristics; for example, babies are known to be susceptible to
certain infections as opposed to older people; strengthening the fact
that the conditional distribution P (Y|D) can be transferred across
environments. However, we do need to learn P* (Y | X, D) for the
target dataset since S . Y | X, D. We therefore present an approach
to learn the environment specific component (P* (Y | X))! as well
as the population invariance P(Y | D) from shared characteristics.

4.4 Formal framework of the undirected
hierarchical multi-source Bayesian
approach

Having identified the sources of variability and stability, we now can
describe details of the model specific domain adaptation approach
which enables learning P* (Y | X) and P(Y | D), as described in the
previous section. In the framework, the lowest level of the hierarchy
represents the datasets (within each environment, in our case, citi-
zen science or health-worker facilitated), | € L, for each of which we
have the labeled data D; of the dataset [ as shown in Figure 2. As in
all Bayesian settings, the dataset parameters 6! should represent the
data D; well. Here, 6! are influenced by the environment-specific

parameters (6°); 6! are generated according to P (BI | 9':), where

¢ € Cis the collection mode and 8¢ = {8, #1%} where 6 repre-
sents the parameters for the citizen-science collection mode and
ghw represents the parameters for the health-worker supported
collection mode. In the undirected hierarchical model we allow the
environment specific parameters to have multiple parents and learn
all parameters simultaneously. Accordingly, the environment pa-
rameters are generated according to the distribution P (€ | 89, 89).
Here, we explicitly represent the population parameters; 8¢ for
a € A, the different age group categories, and 69 for genders g € G,
69 = {69,609} and d € D. The model thus learns the invariant com-
ponent parameters (Bd) for the different demographic subgroups
(ages 0-4, 5-15, 16-44, 45-64, 65+, males, females). Population

parameters 8% and 69 have the root parameter 87° as the parent,
which represents invariant information across all of the datasets, en-

vironments and population attributes, P (9PDP | BP“"LPOP)) = P(6PP),
Then, the joint distribution is:

P(Y|D)

PHY | X)=Zp P (X |Y,D) mximy
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Figure 2: Population-aware hierarchical model; § parame-
ters at different nodes, D different data sets, « the priors. (A):
Root level that represents invariant information across all
data, (B): population parameters and information invariant
to population-attributes (age) and (gender), (C): data set and
environment-specific parameters and information (cs for cit-
izen science and hw for healthworker facilitated datasets).

pecy,0)=[[p(Dr16")x[]r(o" 16°)x [ ] P (6167 69)
leL ceC

leL
x [1P(0°167%)x [ ] P (67 | 67) x P (67)
acA geG

We also study the conditions under which the invariant compo-
nent parameters (Qd ) do not completely represent the information
for a subgroup in which case the environment specific parameters
(91) help; thus explicating the conditions under which the invariant

information is useful, and when environment-specific information

should be utilized.

4.5

For all parameters we use independent priors, computed based on
symptom predictivity for each age group and gender. The inclusion
of data dependent priors in Bayesian learning has been explored
to incorporate domain knowledge into the posterior distribution
of parameters [7]. For population-aware modeling, data-informed
prior distributions are important because the distributions from
each dataset are particular to the study, and thus capturing this
information adds more information to the analysis than improper
or vague priors (e.g. for a sample wherein one demographic group
is under-represented), also motivates the multiple parents in the
hierarchy. In contrast, using just the root prior for estimating the
posterior ignores the demographic information available. Therefore,
we use an empirical Bayes approach to specify weakly informative
priors, centered around the estimates of the model parameters [34].
Root parameters are centered on the cumulative data since the root
parameter captures environment invariant information.

Hierarchy priors
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4.6 Model steps

First, we use a probabilistic framework to jointly learn each pa-
rameter based on all levels of the hierarchy. We use a maximum
a-posteriori parameter estimate instead of the full posterior for the
joint distribution, which would be computationally intractable. We
use a formulation, proposed in [9] that is amenable to standard
optimization techniques, resulting in the objective:

Fobjective == ) | [Zoif +2)-6)—log )" exp(e,i)]
leL & j k 1

+B Z Div(6", 674
neNodes

For dataset I, 9; denotes the parameter for symptom j. From a spe-
cific dataset’s parameter space, k represents individual symptoms.
fj is a statistical measure of the symptom j in the dataset, in this
case the proportion of the particular symptom resulting in a posi-
tive influenza virus (i.e. the positive predictive value). Nodes is the
set of all nodes in the hierarchy (here, L UC U A U G). Regularizing
parameter A was chosen as 1 to allow Laplacian smoothing. The
function Div(8", Bp“r(“)) is a divergence (L2 norm used) over the
child and parent parameters that encourages child parameters (6™)
to be influenced by parent parameters (874 (1)), and allows a child
parameter to be closely linked to more than one parent. The weight
B represents the influence between node parameters and node par-
ent parameters. Based on hyperparameter tuning, a value of 0.2 for
B was used in all experiments. For objective function optimization
we use Powell’s method [12].

Second, we learn the influence (y) of each parent on a particu-
lar dataset (child node). This is necessary since we need to learn
P*(Y | X, D) for the target dataset as observed from the causal
structure. We provide a mechanism to learn that as follows:
y(i:,a,g) o+ (91 . x?,a,g)) +y2 (90 . x?,a,g)) +ys (99 ] ng,a,g])
The weights yp, y1.y2, y3 are estimated from a non-linear least
square regression; the information from the different parents and
the dataset can only be positive and hence we restrict the weights
to be positive. This enables the model to give more weight to
one level of the hierarchy when needed. In other words, how
much demographic-invariant or environment-specific information
is needed depends upon how much information is in a given dataset.
For each of the subgroups a different classifier is learned based on
the preferences of the subgroup. The reason for learning the weights
for the different levels for each dataset independently is that each
dataset would require different amounts of information from the
demographic-specific and the environment-specific parameters, de-
pending upon the demographic distribution of the sample in that
dataset as well as the environment.

4.7 Licensing conditions for the use of
invariant representations

To understand the cases under which the invariant representations
captured by 8%, 89 fail to capture information for a specific sub-
group, and local data must be used, we analyze information at the
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demographic subgroup level. The model structure consists of dif-
ferent hierarchies wherein each hierarchical level learns invariant
information. This implies that invariant information learned by the
higher levels is invariant across environments as compared to the
leaf nodes in which data-specific information is learned. We begin
by describing the conditions on which information is evaluated.

Definition 3. Let
Pug(X|Y=y)=|[P(X=1|Y=y)-P(X=0]|Y =y)|

be the difference of conditional probabilities of X (symptoms) given Y
equal to y.

Definition 4. Let

8p =Byep yep [Paig X | Y =1,A=a,G = g)]

be the expectation of Py over the symptoms for the subgroup Da g
of the dataset D). Similarly we define Spop to be the expectation of Py
over the symptoms for the population subgroup UDE;, g comprising
of the subgroups from all the environments (1 € L).

Theorem 1. The parameters 6 for a subgroup (Da,g) of a dataset
(D) depends on the 84y and the conditional probability Ppop,, , (Y)=
P(Y=1|1= pop,A = a,G = g) for the entire population comprising
of the subgroups from the individual environments and the condi-
tional probability P:D.,,g'[Y) =P(Y=1|l=D,A=aG=g) for
the subgroup of the specific dataset.

0!, if8p < Spop
9 = 91, ‘ifPDa,g (Y) - Ppopa’g (Y) =3 1
Bd, otherwise

ProoF SKETCH. (full proof in Appendix)

a) We make use of the information function I = — [log (Pp)] which
represents the information present about event h. If 5y < 8pop
thenP(X =1|Y=1d=1)<P(X=1]|Y =1,d = pop) (this con-
dition is explained in the proof in the appendix). Since I is a mono-
tonically decreasing function, I; > Ipgp. Since the specific dataset
has more information, the dataset specific parameters are used in-
stead of using the invariant parameters learned over all the global
population.

b) Pp, , (¥Y) - PPOP.,,g{Y) ~ 1if Pp, (Y) ~ 1and PPDPa,g{Y} = 0.
This means that the specific subgroup (a, g) is over represented in
the specific dataset [ but we do not have much information about
the specific subgroup from the invariant global representation since
it is underrepresented in the global population. m}

The conditions determine the cases in which spurious relations
could be picked up by the invariant component representations
69 and hence the data-specific parameters 6! better represent the
relations persistent in the specific dataset. The theorem states the
conditions under which the invariant component representations
69 will be used and when we need to rely on the data-specific
parameters 6! to capture the relations for a specific subgroup of
the dataset.
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5 DATA

Each dataset includes symptoms from individuals (X), laboratory
confirmation of type of influenza virus they had (if any) (Y), and age
and gender (D) of each person as example population attributes. At-
tributes of the datasets are summarized in Table 1, while the break-
down of positive and negative observations across demographics
is shown in Figure 3. Through these differing study designs, one
can see how the features may differ based on the stage of illness
and included populations (e.g. those who have healthworkers come
visit, versus those stay at home and may be sick but well enough
to report on their own). As well, the difference in underlying pop-
ulations illustrates the need for combining data in a principled
way and accounting for these differences in the underlying sample
composition. It should be emphasized that each of the datasets
have a varied composition in terms of total number of observations
and population demographics (Appendix Figure 1). We choose to
use them all without any pre-processing, as these demonstrate
real data set differences and will indicate model performance in
such real-world situations. Indeed, population subgroups are not
equally represented across all datasets. Goviral and Hongkong have
the highest proportion of observations in the age group of 16-44,
Fluwatch has the highest proportion of observations across the age
group 45-64 while Hutterite has the highest proportion of obser-
vations in the age group of 5-15. The first two studies we classify
as “citizen science” as they involve individuals self-reporting symp-
toms themselves from home, and taking their own nasal specimens
for microbiological testing. The next two studies we classify as
“healthcare worker” as they involve a trained worker visiting the
individual, recording their symptoms according to a set criteria, and
taking a nasal specimen from the participant. These studies also
generally involved people more likely to be infectious [6]. Below
we summarize the study design and context behind each dataset,
including how the data was collected, while references are provided

for the full papers describing all details.

Goviral Female
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Figure 3: Demographic distributions in datasets. Darker
shade of color denotes the number of females in the partic-
ular age group, lighter shade denotes number of males.



Population-aware Hierarchical Bayesian Domain Adaptation via Multi-component Invariant Learning

ACM CHIL "20, April 2-4, 2020, Toronto, ON, Canada

Table 1: Summary of dataset details.

Study Location Observations (positive) Collection Type

Goviral Northeast United States 520 (291) Citizen Science
Fluwatch  England, United Kingdom 915 (567) Citizen Science
Hongkong Hong Kong 4954 (1471) Healthworker Facilitated
Hutterite Alberta, Canada 1281 (787) Healthworker Facilitated

Table 2: AUC for flu prediction task (with 20% labeled data
from target), bold values correspond to best performing
model.

Goviral Fluwatch Hongkong Huttterite

TR 0.594 0.584 0.865 0.712
LR 0.585 0.490 0.914 0.706
FEDA 0.588 0.521 0.806 0.651
FEDA+pop  0.500 0.442 0.727 0.582
Hier 0.645 0.546 0.881 0.680
Hier+pop 0.744 0.754 0.919 0.814

The GoViral data comes from volunteers who self-reported symp-
toms online and also mailed in bio-specimens for laboratory con-
firmation of illness. These participants thus were never visited at
home or in person at all. Volunteers were recruited, given a kit (col-
lection materials and customized instructions), instructed to report
their symptoms weekly, and when sick with cold or flu-like symp-
toms, requested to collect a nasal swab [14]. Periodic reminders
were sent over email. Data from 2013-2017 is included.

FluWatch was a study in the United Kingdom, consisting of house-
holds which were recruited from registers of 146 volunteer general
practices across England in seasonal and pandemic influenza over
five successive cohorts from 2006—2011 [13]. Individuals partici-
pated from their home. In addition to a baseline visit by a nurse,
households received participant packs containing paper illness di-
aries, thermometers and nasal swab kits including instructions on
their use and the viral transport medium to be stored in the refrig-
erator. While participants would generate specimens and illness
reports on their own, they were reminded every week via auto-
mated phone calls.

The Hong Kong study was focused on measuring infection in peo-
ple who had household members who were already confirmed as
sick. Household contacts of index patients (people who had come
to the hospital and were confirmed to be sick) were followed in July
and August 2009. These contacts live in close proximity with people
who’s illness was severe enough to take them to hospital, indicating
a high risk for infection. Household members of 99 patients who
tested positive for influenza A virus on rapid diagnostic testing
were visited at their homes and swabs collected from household
members by health workers over multiple weeks [6].

Data is also included from a study wherein nurses sampled people
in Hutterite colonies in Alberta, Canada. The Hutterites are an
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ethno-religious group that tend to live together in colonies that
are relatively isolated from towns and cities, and therefore are in-
teresting places to examine respiratory infection prevalence given
their self-contained nature. Data is from Dec. 2008 to June 2009 [16].

6 EXPERIMENTS

As motivated, we consider the case of transferring information
from multiple source data sets from different domains to a largely
unlabelled target dataset. We conduct multiple experiments to com-
pare the proposed framework with relevant baselines to specifically
examine the value of i) the hierarchical structure and ii) incor-
poration of population attributes, and iii) the amount of labelled
data available from the target. Area under the ROC curve (AUC)
metric is used to assess the performance based on both sensitivity
and specificity. AUC is a measure of goodness of the ability of a
binary classifier, equal to the probability that the classifier will
rank a randomly chosen positive instance higher than a randomly
chosen negative one. We evaluate AUC across all the population
subgroups of the dataset (Dg,4). We compare results to three meth-
ods: Target only (TR), Logistic Regression (LR), Frustratingly Easy
Domain Adaptation, which is noted for extreme simplicity and
was used previously on symptom data [8, 26], without (FEDA) and
with demographic attributes (FEDA+pop), Undirected Hierarchical
Bayesian Domain adaptation without (Hier) and with demographic
attributes (Hier+pop)?. Based on how the methods are designed,
we describe how training and testing must work for each. The Target
only method is trained only on a subset of the target environment
dataset without incorporation of any information from source en-
vironments. Logistic Regression is trained on all the source datasets
and a subset of the target dataset. Frustratingly Easy Domain Adap-
tation incorporates features specific to the source, specific to the
target as well as a union of the source and target dataset, and is
trained on both the source and subset of the target datasets. The
proposed method, Hier+pop, is trained on both the source datasets
and a subset of the target. All methods are tested on the target
dataset (excluding the subset of the target data used for training).

7 RESULTS, DISCUSSION AND IMPACT

This work is relevant to the increasing scenarios in which algo-
rithms are being used to co-analyse and use multiple real-world
datasets, gathered from different contexts and composed of dif-
ferent population distributions. We present a novel approach in
the framework of observational transport, applicable in scenarios

2Code is available at https://github.com/ChunaraLab/Pop-aware-domain-adaptation
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Figure 4: Performance of Hier+pop method in comparison with baseline methods across increasing proportion of labelled

target averaged across all population subgroups.

with instability in observed variables and selection bias; a signif-
icant challenge in many health transport problems. The model is
motivated by knowledge of the underlying causal model. By test-
ing on four real-world datasets for an influenza prediction from
symptoms task, we show the multi-component model significantly
improves performance by using principles of domain adaptation
as well as by capturing information shared among population sub-
groups through a hierarchical and joint optimization approach. We
perform a rigorous evaluation showing that with low amounts of
labelled target data the model performs consistently better than
baselines on entire datasets and on individual subgroups even when
underrepresented in a specific dataset.

7.1 Performance analysis

Of the methods compared, TR and LR have the poorest performance
(Table 2) across entire datasets. This makes sense, as a target-only
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model doesn’t incorporate any information from other environ-
ments or populations. And, LR doesn’t account for any population
attributes. In all cases the Hier+pop method which accounts for the
demographic attributes without including the demographic parame-
ters explicitly in the same feature space as the symptoms (as is done
by FEDA+pop), gives best performance across entire datasets. This
also confirms the need to have different symptom parameters for
specific demographic subgroups. We studied performance further
based on amount of labelled training data available. We observe
that Hier+pop performs consistently better than the baselines at
low amounts of labelled target data (Figure 4). It should be noted
that we examined results above 25% labels, and trends continue. As
more labelled data becomes available, TR improves substantially
as expected. Comparing datasets, Goviral has limited sample size
(Figure 3), leading to low performance of baseline methods, and
Hier+pop captures the invariant information across the source en-
vironments to improve performance over baselines drastically. As
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Table 3: AUC scores across population subgroups (1 denotes use of 6! otherwise 64 is used) with 20% data used for training,
bold values correspond to best performing model across population subgroup. Missing values (-) indicates the subgroup lacks
data in either of the positive or negative classes, therefore models could not be trained for these subgroups.

Dataset  Method Age 0-5 Age 5-15 Age 16-44 Apge 45-64 Age 65+
Males Females | Males Females | Males Females | Males Females | Males  Females
TR - - - - 0.655 0.796 0.661 0.524 0.238 0.692
LR - - - - 0.541 0.845 0.774  0.607 0.188 0.542
Goviral FEDA - - - - 0.638 0.845 0.728 0.464 0.112 0.742
FEDA+pop | - - - - 0.524 0.602 0.807 0.214 0.112 0.700
Hier - - - - 0.681 0.767 0.766  0.645 0.312 0.700
Hier+pop - - - - 0.842 0.910 0.807 0.666 0.5001 0.742
TR - 0.158 0.762 0.726 0.808 0.708 0.293 0.678 0.239 0.789
LR - 0.440 0.286 0.583 0.295 0.467 0384 0.486 0.647 0.588
Fluwatch  FEDA - 0.711 0.465 0.577 0.105 0.232 0530 0.118 0.719 0.284
FEDA+pop | - 0.440 0.298 0.565 0.311 0.412 0389 0.260 0.803 0.505
Hier - 0.710 0.547 0.63 0.676 0.691 0388 0.767 0.323 0.833
Hier+pop - 0.868 0.747F 0.9287 0.787F 0.757F 0.757 0.7677% 0.847 0.8337
TR - 0.156 0.961 0.963 0.954 0.959 0.997 0.878 0.929 0.922
LR - 0.156 0.957 0.960 0.948 0.960 0.997  0.880 1.000 0.922
Hongkong FEDA - 0.156 0.936 0.943 0.921 0.873 0.957 0.810 0.864 0.797
FEDA+pop | - 0.156 0.957 0.710 0.948 0.752 0.997 0.674 0.773 0.583
Hier - 0.211 0.975 0.990 0.991 0.993 0.980 0.930 1.000 0.922
Hier+pop - 0.5007 0.995 1.000 0.995 0.996 0.997 0.939 1.000 0.922
TR 0.714  0.750 0.780 0.995 0.358 0.860 0.741 0971 0.286 0.320
LR 0.532  0.902 0.904 0.793 0.431 0.780 076 9 0.783 0.405 0.180
Hutterite FEDA 0.532  0.902 0.904 0.793 0.431 0.780 0.769 0.783 0.405 0.180
FEDA+pop | 0.500 0.500 0.671 0.604 0.380 0.847 0.834  0.906 0.405 0.180
Hier 0.831 0.902 0.957 0.792 0.380 0.760 0.834 0.760 0.404 0.180
Hier+pop 0.851 0.9027 0.957 1.000 0.5767 1.000 0.890 0.971 0.500 0.500

compared to Goviral, Hutterite has better representation of the pop-
ulation subgroups and hence the baselines do not perform poorly
but Hier+pop still performs substantially better. We highlight these
results for Goviral and Hutterite datasets due to the vastly dif-
ferent sample sizes and data collection environment; results for
other datasets follow the same trends (Figure 4). This demonstrates
that multi-component invariant learning helps capture information
shared among subgroups even when they are underrepresented.
We also examined the learned parameters for the subgroups (Dg_g),
finding that they comply to conditions discussed in the Licensing
conditions subsection. We also analyze performance of the methods
by subgroup and find that Hier+pop indeed has better prediction
across the subgroups, competing closely with TR in the case where
6! are used instead of the invariant parameters 69 (Table 3). In these
specific cases, as expected, local information is preferred, therefore
6! for the target dataset, which is influenced by the source environ-
ments, leads to a dip in the performance as compared to TR which
does not have any influence by the source datasets.

7.2 Performance across population subgroups

Performance across subgroups for Goviral, Fluwatch, Hongkong
and Hutterite is reported in Table 3. Hier+pop performs consistently
better than the baselines across all the population subgroups for
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multiple datasets. We also report where the dataset specific param-
eters (91) are used instead of the invariant (Sd). This complies with
the conditions provided in Theorem 1.

7.3 Performance across increasing proportion
of labelled target data

Hier+pop performs consistently better than the baselines (TR, LR,
FEDA, FEDA+pop) for multiple datasets. The trend is similar across
the different datasets as shown in Figure 4. With increasing amounts
of target data available, methods like Target only and FEDA perform
well as more information about the dataset-specific feature space is
available and there is less reliance on population-invariant informa-
tion. In such scenarios the target dataset will have rich information
about the target environment specific population subgroups.

7.4 Relations to fairness and social sciences

This work is motivated by real challenges health. We derive the
proposed methodology in a principled manner from the causal
structure of the problem. At the same time, there are overlaps with
current research in fairness and the social sciences. First, formu-
lation of the model in a hierarchical structure (versus with fixed
effects) corroborates the latest thinking in social science theory, as
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it doesn’t treat characteristics across multiple types of parameters
as additive [10]. Partitioning the variance across different aspects
(symptoms and demographics), is meaningful as well, because the
causes of variation at different levels may differ (e.g. causes of symp-
toms versus manifestations in different population subgroups). We
derive this from the causal structure, but it also has been discussed
in the epidemiology literature [32]. Moreover, hierarchical structure
allows understanding of different datasets simultaneously rather
than making reference to one perfect or representative dataset (e.g.
by one reference group for each variable and parameter).

As well, while the aim of this study isn’t to ensure specific fair-
ness criteria are fulfilled mainly due to multiple sensitive attributes,
the work still addresses an important problem identified in the
fairness community: population subgroups can be represented dif-
ferently in different datasets. Since the subgroups are characterized
by multiple sensitive attributes (age and gender), some non-binary
(age), imposing fairness constraints like demographic parity is not
suitable especially when characteristics are shared across demo-
graphic subgroups. However, research in the fairness and machine
learning literature has discussed how a one-size fits all model for
all population subgroups suffers from aggregation bias when the
conditional distribution P (Y | X) is not consistent across the sub-
groups as shown by Suresh and Guttag [31]. We show here, for an
influenza prediction task, that models that do not incorporate any
subgroup-level information are not optimal across all the subgroups
and are fitted to the dominant population subgroup. Hier+pop on
the other hand mitigates the issue of aggregation bias by incorpo-
rating information across multiple specific subgroups.

One of the primary aims of formulating Hier+pop is thus to not
compromise on sub-population AUC owing to selection bias and
representation bias. We have drawn on principles such as benef-
icence (“do-the-best”) and non-maleficence (“do-no-harm”) and
provide an approach to learn the parameters for each subgroup
independently. As literature in fairness has discussed, model per-
formance is often compromised due to inadequate sample sizes
and appropriate data collection can aid in mitigating this issue [4].
Ustun et al. [33] have developed an approach to learn decoupled
classifiers for each subgroup of the population, thereby ensuring
fairness across the subgroups without performing any harm. Our
work, capturing information in a hierarchical manner also is to-
wards ensuring that performance on lesser sized subgroups is not
comprised. While in large healthcare systems representation in
multiple subgroups can be reached, often individual healthcare in-
stitutions or epidemiological studies, as demonstrated here, only
reach a certain population distribution, and sourcing new data
is simply not feasible. Accordingly, our approach by combining
subgroup information across multiple environments is pragmatic.
While methods like FEDA+pop and Hier performed at par with
Hier+pop for a few select subgroups with adequately representa-
tive samples, Hier+pop performs consistently well across all the
subgroups, and all four datasets.

7.5 Impact

As new datasets are constantly being generated in different envi-
ronments and from different constituent populations, the model
and findings from this work can be used in multiple ways by those
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designing surveillance systems. For example, to proactively assess
and inform which population subgroups need to be further sampled
to improve prediction in the target data (by comparing 6! and 64
across datasets). Knowledge of the criteria regarding local versus
invariant parameters can also be used to identify which datasets can
be combined to improve prediction. Practically, this work demon-
strates how practitioners can save effort and cost by only labeling
a proportion of data and combining data with other datasets to
improve prediction. Overall, we present a practical approach to
combine information from multiple instances especially when it
is difficult to obtain labels; which can often be the case in pub-
lic health, while retaining the global characteristics of population
subgroups shared across environments.
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