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The distribution of chain lengths in elastomer networks occurs naturally during polymerization, and has 

a critical role in the mechanical behavior of these materials, including the damage and fracture response. 

A common underlying assumption for the majority of constitutive models for rubber elasticity is that 

all the chains admit the same length. Moreover, in the classical statistical mechanical model for elas- 

tomer networks, the changes in internal energy are generally assumed to be negligible in comparison 

to the changes in configurational entropy. In contrast, the fracture process in a elastomer network, as 

already demonstrated in the well-known Lake-Thomas model, is essentially internal energy dominated. 

In this paper, we formulate a phase-field model for brittle fracture in polydisperse elastomer networks 

extending and merging recent advances in the fields of (a) homogenization of elastomer networks and 

(b) the variational approach to brittle fracture, allowing for predictions of crack nucleation, initiation and 

propagation. The free energy of the continuum is obtained employing an eight chain network model, ac- 

counting for (a) internal energy contributions from the extension of molecular bonds and (b) arbitrary 

chain length distribution. The representative chain in the eight chain network model takes into account 

the distribution of chain lengths, following the recently developed equal force model. We employ a mixed 

displacement-pressure formulation for the discretization of the incompressible large deformation elastic 

problem that arises. The analytical solution for the crack nucleation problem of an incompressible hyper- 

elastic bar under uniaxial loading is compared with the three-dimensional simulation result. Finally, we 

demonstrate through a representative numerical simulation the capability of the gradient damage model 

to simulate crack propagation in an incompressible elastomer network. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

In addition to traditional engineering applications, elastomers

nd hydrogels where the polymer network provides a permanent

hree-dimensional structure, have been widely used in biomedi-

al applications such as hydrogel scaffolds for tissue engineering

 Drury and Mooney, 2003 ), artificial soft tissues (e.g. articular car-

ilage and ligaments) ( Lynch et al., 2017 ) and as implants for dam-

ged soft-tissue repair ( Nonoyama et al., 2016 ) where they serve

 load-bearing function. All these applications demand a better

nderstanding of the mechanical properties and development of

hysically motivated mathematical models for predicting damage

nd failure of these materials. Therefore, an accurate constitutive

odel is essential for studying the mechanical response of elas-

omer networks. A common underlying assumption for the major-
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ty of constitutive models for rubber elasticity ( James and Guth,

943; Wu and Van Der Giessen, 1993; Boyce and Arruda, 20 0 0 ) is

hat all the chains admit the same length, i.e. the same number of

uhn segments. However, all synthetic polymers are polydisperse

n that they contain polymer chains of unequal length, character-

zed by a chain-length distribution functions ( Flory, 1953; Watson,

953; Falender et al., 1979 ). The chain length distribution origi-

ates from the randomness of the polymerization process. 

Experiments and theoretical works have shown that the me-

hanical ( Falender et al., 1979; Mark, 2003; Higgs and Ball, 1988;

ehrani and Sarvestani, 2017 ), damage and fracture behaviors

 Mark, 2003; Itskov and Knyazeva, 2016; Tehrani and Sarvestani,

017 ), as well as mechanochemical properties ( Wang et al., 2015 )

f elastomer networks depend on the distribution of the chain

engths between crosslinks. For this reason, it is crucial for consti-

utive models to take into account the chain lengths distribution.

ome constitutive models based upon statistical mechanics consid-

rations ( James and Guth, 1943; Treloar, 1975 ) have been devel-

ped, in which the idealized networks are assembled following an
ld model for brittle fracture in polydisperse elastomer networks, 
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1 https://bitbucket.org/bin-mech/gradient _ damage _ polymer/ . 
equal strain assumption, which corresponds to a parallel arrange-

ment of chains of different lengths, where all chains assume the

same stretch ( Zhao, 2012; Wang et al., 2015; Itskov and Knyazeva,

2016; Tehrani and Sarvestani, 2017 ). However, such schemes re-

sult in large values of force and even diverged values of force for

chains that their prescribed end-to-end length is beyond their con-

tour length ( Verron and Gros, 2017 ). One can remedy this issue

by restricting the end-to-end length to be less than the contour

length of short chains ( Diani and Le Tallec, 2019 ), or by account-

ing for chain rupture at some finite stretch ( Zhao, 2012; Itskov

and Knyazeva, 2016; Tehrani and Sarvestani, 2017 ). Other works

propose the equal force assumption ( von Lockette et al., 2002 ),

corresponding to a series arrangement of “sub-chains” of varying

chain length into a “master” chain where the sub-chains carry

the same force. Adopting the equal force assumption, Verron and

Gros (2017) derived an affine full-network model of non-Gaussian

randomly jointed chains with arbitrary chain length distribution. 

Although elastomer networks are capable of sustaining large

deformations, they are often found to fracture in a brittle manner,

which greatly limits their application potential in the biomedical

field. In line with the Griffith theory of brittle fracture, Rivlin and

Thomas (1953) experimentally quantified the macroscopic fracture

toughness or tearing energy of rubber. The macroscopic fracture

toughness of crosslinked elastomers was calculated by Lake and

Thomas (1967) based on the assumption that the polymer chains

lying across the plane of crack propagation at the front of a crack

are stretched, and all the chemical bonds along the chains are

pulled to a certain critical extension prior to chains rupture. The

experimental measurements carried out under near equilibrium

conditions ( Mueller and Knauss, 1971; Ahagon and Gent, 1975 )

have found reasonably good agreement with the simple model of

Lake and Thomas (1967) . The success of the model of Lake and

Thomas (1967) suggests that the fracture process of elastomer net-

works is internal energy dominated. However, the classical statisti-

cal mechanical model for the elasticity of elastomer networks con-

sider only the change in the configurational entropy and gener-

ally assume that internal energy changes are negligible compared

to entropy changes; the two assumptions cannot be directly rec-

onciled without further considerations. To address this problem,

Mao et al. (2017) developed a rational yet simple model that de-

scribes the entropic elasticity of elastomer networks and recovers

the Lake and Thomas (1967) scaling law for the macroscopic frac-

ture toughness in the presence of a macroscopic crack. 

The prediction of crack initiation and propagation in elastomer

networks is of great importance for engineering applications. Com-

putational approaches to brittle fracture mechanics require crite-

ria to predict the onset of crack initiation, the direction of crack

propagation and possibly crack branching under dynamic loading

conditions. Moreover, specialized techniques are necessary to nu-

merically represent and track sharp cracks, such as sophisticated

adaptive remeshing schemes that introduce new boundaries when

the crack propagates ( Ingraffea and Saouma, 1985; Chen et al.,

2018; 2019 ) or local enrichment of the approximation space to ac-

count for discontinuities and asymptotic fields in the extended fi-

nite element method ( Moës et al., 1999 ). In recent years, gradi-

ent damage or phase-field models of fracture ( Bourdin et al., 20 0 0;

Marigo et al., 2016 ), founded on the variational approach to brittle

fracture proposed by Francfort and Marigo (1998) , have emerged

as a promising approach to computational fracture mechanics. In

these models, the complexity of tracking and evolving cracks is

addressed by introducing an additional field variable describing

cracks in a smeared way, which leads to an additional partial dif-

ferential equation coupled to the equilibrium equation of elasticity.

In this paper we develop a micromechanically motivated phase-

field model for fracture in polydisperse elastomers. We start from

an extensible randomly jointed chain model recently proposed by
Please cite this article as: B. Li and N. Bouklas, A variational phase-fie
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mith et al. (1996) and extended to polymers to allow for stretch

f Kuhn segments by Mao et al. (2017) and modify it by formu-

ating a hybrid extensible randomly jointed chain model taking

nto account the distribution of chain lengths. This hybrid sin-

le chain model corresponds to a series arrangement of chains

uch that the chains of different length carry the same force be-

ween crosslinks ( Verron and Gros, 2017 ). Following, we extend

t to a continuum model through the use of eight chain net-

ork averaging ( Arruda and Boyce, 1993 ) and discuss the effects

f chain length distribution on the mechanical properties and frac-

ure toughness in Section 2 . We couple the derived free energy to a

hase-field model formulated on the undeformed or reference con-

guration in Section 3 . Section 4 succinctly describes the numerical

mplementation of the model. We provide 1 an open-source numer-

cal implementation of the proposed phase-field model based on

EniCS platform ( Alnæs et al., 2015 ), where the numerical diffi-

ulties associated to the volumetric locking in incompressible ma-

erials are solved by using a mixed displacement-pressure formula-

ion. Section 5 presents representative simulations, demonstrating

he capability of the developed phase-field model for fracture in

olydisperse elastomer networks in problems including crack nu-

leation, initiation and propagation. 

. Elastic deformation and fracture toughness 

The statistical mechanics approach to derive a constitutive

odel for elastomer networks starts from the study of the sta-

istical properties of a randomly jointed long-chain molecule

 Treloar, 1975 ). The non-Gaussian treatment of a single long-chain

 James and Guth, 1943; Treloar, 1975 ), which circumvents the in-

erent limitations of the Gaussian chain model, accounts for the

nite extensibility of the chain at deformations where the end to

nd length ‖ r ‖ begins to approach the fully extended length Nb .
he Helmholtz free energy ( James and Guth, 1943; Flory, 1953;

reloar, 1975 ) of a single chain having randomly jointed N num-

er of Kuhn segments of equal length b is determined by 

( r ) = kT N 

(‖ r ‖ 

Nb 
β + ln 

β

sinh β

)
, β = L 

−1 

(‖ r ‖ 

Nb 

)
, (1)

here T is the absolute temperature, k is the Boltzmann constant,

n arbitrary constant is omitted as being unimportant, and L de-

otes the Langevin function defined as L (x ) = coth (x ) − 1 /x . Thus

he non-Gaussian tensile force acting along the direction of vector

 follows as 

f = 

kT 

b 
L 

−1 

(‖ r ‖ 

Nb 

)
. (2)

he physically motivated polymer network models built on the mi-

roscopic response of individual long-chain molecules ( Treloar and

iding, 1979; Arruda and Boyce, 1993; Wu and Van Der Giessen,

993; Boyce and Arruda, 20 0 0 ) showed a pronounced ability to

apture the response of experimental data in three distinct de-

ormation modes, namely uniaxial, equibiaxial and pure shear, at

arge strains. Note that in the aforementioned models as the chain

ength approaches the contour length, or in other words tends to

ompletely straight configuration, ‖ r ‖ → Nb , the free energy (1) as

ell as the chain force (2) diverge. Therefore, the application of the

on-Gaussian chain model is restricted by the condition, ‖ r ‖ < Nb .

he free energy functional (1) , without doubt, does not allow for

he breaking of chemical bonds in the chain backbone, which in

eneral occurs at larger chain stretch such that the chain is ex-

ended beyond its contour length ( Crist et al., 1984; Mao et al.,

017 ), restricting the direct application of such models towards

amage and fracture modeling. 
ld model for brittle fracture in polydisperse elastomer networks, 
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Fig. 1. The normalized chain force fb / kT , scaled logarithmically, versus normalized chain stretch λc / 
√ 

N (left). The Kuhn segments stretch λb versus normalized chain stretch 

λc / 
√ 

N (right). 
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.1. Free energy of an extensible randomly jointed chain 

To model the rupture of elastomer networks by scission of

onds in the chain backbone, Mao et al. (2017) adapted the idea

f Smith et al. (1996) which was applied to the modeling of “over-

tretching” of DNA molecules to relax the rigidity assumption of

he individual Kuhn segment. They modified the randomly jointed

hain model by taking into account the deformation of the Kuhn

egments as well as the effect of alignment under tensile loading.

pecifically, the free energy of a single chain accounting for the

longation of Kuhn segments takes the form ( Mao et al., 2017 ) 

 ( r , λb ) = U(λb ) + kT N 

( ‖ r ‖ 

Nλb b 
β + ln 

β

sinh β

)
, 

β = L 
−1 

( ‖ r ‖ 

Nλb b 

)
, (3) 

here λb is a dimensionless stretch ratio of the Kuhn seg-

ents. Introducing the notation of the overall chain stretch λc =
 r ‖ / ‖ r 0 ‖ and the unstretched chain length ‖ r 0 ‖ = 

√ 

N b given by

he square root of the mean-square value of end-to-end distance

 Treloar, 1975 ). The free energy functional (3) can be rewritten in

erms of the overall chain stretch λc as 

 ( λc , λb ) = U(λb ) + kT N 

(
λc λ

−1 
b √ 

N 

β + ln 
β

sinh β

)
, 

β = L 
−1 

(
λc λ

−1 
b √ 

N 

)
. (4) 

n comparison of the extensible free energy functional (4) and the

lassical energy functional (1) , the modified stretch λc λ
−1 
b 

can be

nterpreted as the chain stretch due solely to the rearrangement of

uhn segments ( Mao et al., 2017; Talamini et al., 2018 ), neglecting

he internal energy of bond stretching. In the following, we will

ssume that the internal energy of the chain is modeled employing

 simple functional form as in Talamini et al. (2018) and Mao and

nand (2018) 

(λb ) = 

1 

2 
NE b ( λb − 1 ) 

2 
, (5) 

lthough different choices are possible, see e.g.

ao et al. (2017) and Dal and Kaliske (2009) . The constant

 b denotes the stiffness of the chemical bonds in the chain

ackbone and has units of energy. 
Please cite this article as: B. Li and N. Bouklas, A variational phase-fie
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Under given overall chain stretch λc = λ̄c , the stretch λb of the

uhn segments is dictated by the competition between the in-

ernal energy contribution and the entropic contribution to the

ree energy (4) . Accordingly, given the overall chain stretch λc ,

he segment stretch λb is sought as the minimizer of the en-

rgy functional (4) , i.e. λb = arg min λb ≥1 
˜ ψ (λb ) , being ˜ ψ (λb ) :=

 ψ ( λc , λb ) , λc = λ̄c } . The expression for the chain force in terms

f the chain stretch λc is given by 

f = 

kT 

λb b 
L 

−1 

(
λc λ

−1 
b √ 

N 

)
. (6) 

Fig. 1 shows the comparison of the force response of the ex-

ensible randomly jointed chain model with the classical non-

aussian chain model (with E b /kT = 1200 ). As is shown from

ig. 1 (left), the extensible chain model distinguishes from the

lassical model at stretches λc ≥ 0 . 9 
√ 

N , nevertheless, the Kuhn

egment stretch λb becomes significant as λc → 

√ 

N , see the

ig. 1 (right), which regularizes the divergent behavior of the clas-

ic model. For a detailed discussion on the extensible chain model,

e refer the interested reader to Mao et al. (2017) . 

.2. Free energy of polydisperse elastomer networks 

Most polymers are polydisperse in that they consist of polymer

hains of unequal length (different number of Kuhn segments),

sually characterized by a chain length distribution ( Flory, 1953;

atson, 1953; Falender et al., 1979 ). A common underlying as-

umption for a great majority of constitutive models for elastomer

etworks is that all the chains admit the unique same length.

hese idealized models are unable to accurately capture the me-

hanical response of polydisperse elastomer networks ( von Lock-

tte et al., 2002; Verron and Gros, 2017 ). Some constitutive mod-

ls have been developed, in which the idealized networks of dif-

erent chain lengths are assembled following an equal length as-

umption corresponding to a parallel arrangement of chains with

ifferent lengths (see e.g. Zhao, 2012; Wang et al., 2015; Itskov

nd Knyazeva, 2016; Tehrani and Sarvestani, 2017 ). This assump-

ion practically is well-adapted to the derivation of constitutive

quations, the free energy and the stress are merely the sum-

ation of the contributions of the different networks. However,

uch schemes result in diverging chain force values for short

hains, as their prescribed end-to-end length grow beyond their

ontour length for large macroscopic stretch values ( Verron and

ros, 2017 ). 
ld model for brittle fracture in polydisperse elastomer networks, 
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Fig. 2. Schematic diagram of three successive states of a representative chain. (left) The chains are at equilibrium prior to assembly. (center) the chains are assembled 

and respect the equal force assumption in the unstrained/reference conformation. (right) the representative chain is stretched allowing for the possibly of a non-zero Kuhn 

segment stretch. Source: Adapted from Verron and Gros (2017) . 
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Given the aforementioned limitations of the equal length as-

sumption, here we adopt the equal force assumption ( Verron and

Gros, 2017 ), corresponding to a series arrangement of polymer

chains. We consider a polymer network comprised of idealized

sub-networks; where each sub-network only contains chains with

exactly N Kuhn segments. For convenience we introduce P ( N ), the

chain length distribution which is given as the number fraction

of chains with N monomers with respect to the total number of

polymer chains so that 
∑ ∞ 

N= N 0 P (N) = 1 , n ( N ), the number den-

sity of the sub-network of chains with N Kuhn segments, V ( N ), the

volume fraction of the sub-network of chains with N Kuhn seg-

ments such that 
∑ ∞ 

N= N 0 V (N) = 1 , as well as the total chain density

n = 

∑ ∞ 

N= N 0 n (N) V (N) . 

The representative hybrid chain used to realize the equal force

assumption is defined as the connection of chains as illustrated in

Fig. 2 , where the chain length distribution of the constituent chains

follows that of the whole network. Moreover, the equal fore as-

sumption necessitates that the deformed/current end-to-end vec-

tor of any sub-chain is collinear with the deformed end-to-end

vector of the representative chain, illustrated in Fig. 2 (right). 

In order to derive the chain force versus stretch equation for the

representative chain, as in Verron and Gros (2017) , three successive

states are considered as shown in Fig. 2 and described as follows. 

(1) The sub-chains (referring to individual chains that will

be combined to form the representative hybrid chain) are all in

their unstrained configuration and they are not assembled, see

Fig. 2 (left). Thus we have the individual chain length at this

stage given by ˜ l 0 
N 

= 

√ 

N b, and plugging into (2) gives the en-

tropic force on each of the sub-chains as ˜ f 0 
N 

= kT /b L 
−1 

(
1 / 

√ 

N 

)
.

The stretch of the sub-chains at this state is ˜ λ0 
N 

= 1 . Because of

the entropic nature of the randomly jointed chain model, a non-

vanishing force is required to keep the end-to-end distance un-

changed, consequently, chain force ˜ f 0 
N 

varies with respect to N .

Assuming that the sub-chains have aligned end-to-end vectors,

the total length of the representative hybrid chain at this state

can be calculated as ˜ l 0 tot = 

∑ ∞ 

N= N 0 P (N) ̃ l 0 
N 

= 

∑ ∞ 

N= N 0 P (N) ̃ λ0 
N 

√ 

N b =∑ ∞ 

N= N 0 P (N) 
√ 

N b; this is a necessary assumption for the following

steps. 

(2) The sub-chains are assembled into a representative hybrid

chain and respect the equal force assumption, see Fig. 2 (center)

and the hybrid chain is considered to be in its reference state.

At this state we postulate that the bond stretch λN 
b 

= 1 in sub-

chains with N Kuhn segments as none of the sub-chains are ap-

proaching their locking stretch, as deviation from λN 
b 

= 1 is only

expected when chains are approaching their locking stretch. The

attentive reader will have suspected that even in the reference

state the Kuhn segments are also possibly stretched; we will ra-

tionalize the postulation in Remark 1 . Assuming that a non-zero

force f 0 is exerted on the assembly we have f 0 
N 

= f 0 for each sub-

chain of N Kuhn segments. The stretch ratio of each sub-chain

follows λ0 
N 

= 

√ 

N L 

(
f 0 b / kT 

)
. The total length of the assembled
Please cite this article as: B. Li and N. Bouklas, A variational phase-fie
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epresentative hybrid chain is calculated as l 0 tot = 

∑ ∞ 

N= N 0 P (N) l 0 
N 

=
 ∞ 

N= N 0 P (N) λ0 
N 

√ 

N b = 

∑ ∞ 

N= N 0 P (N ) N b L 

(
f 0 b / kT 

)
. 

To connect the reference state of a representative hybrid chain

o the reference state of the individual sub-chains we consider

hat ˜ l 0 tot = l 0 tot , and introducing the following notation 
√ 

N =
 ∞ 

N= N 0 P (N) N/ 
∑ ∞ 

N= N 0 P (N) 
√ 

N , we arrive to λ0 
N 

= 

√ 

N/ N . As al-

eady pointed out by Verron and Gros (2017) , the stretch λ0 
N 

emonstrates that in the reference state (corresponding to the sec-

nd stage described in this section), short chains ( N < N ) are un-

er compression, i.e. λ0 
N 

< 1 , while the long chains ( N > N ) are

nder tension, i.e. λ0 
N 

> 1 . This clearly emphasizes the hierarchi-

al/nonaffine nature of the representative chain. 

emark 1. In the reference state (2), only the long chains ( N > N )

re under stretched. Among the stretched long chains, the Kuhn

egments are stretched only in the vicinity of λ0 
N 

↗ 

√ 

N , i.e. in the

etting of 
√ 

N → 1 . As shown latter 
√ 

N ≥ ∑ ∞ 

N= N 0 P (N) 
√ 

N , and in

he real polydisperse elastomer networks 
√ 

N 	 1 , thus the Kuhn

egments are not stretched. 

(3) The representative hybrid chain is stretched beyond the ref-

rence configuration. The chain force is designated by f and the

ength of sub-chains with N Kuhn segments by l N . The stretch ratio

f the representative chain is written as λc = l tot /l 
0 
tot and is com-

uted with respect to the unstrained chain length defined in (2).

ote that in the current state, the Kuhn segments are also possi-

ly deformed, therefore, the chain force is determined by (6) and

espects the equal force assumption 

f N = 

kT 

λN 
b 
b 

L 
−1 

(
λN 

λN 
b 

√ 

N 

)
= f . (7)

ecalling that segment stretch is determined by λN 
b 

=
rg min λN 

b 
≥1 

˜ ψ (λN 
b 
) , the first-order optimal condition leading

o 

 b 

(
λN 
b − 1 

)
λN 
b = 

kT 

λN 
b 

λN √ 

N 

L 
−1 

(
λN 

λN 
b 

√ 

N 

)
, (8)

hus the force stretch relation (7) may be reformulated as 

f N = 

E b 
b 

√ 

N 

λN 

(
λN 
b − 1 

)
λN 
b = f . (9)

hich immediately implies that λN / 
√ 

N = ξ
(
λN 
b 

− 1 
)
λN 
b 
, with a

roportionality constant ξ . Using this back in (8) , we obtain 

N 
b = 

kT ξ

E b 
L 

−1 
(
ξ
(
λN 
b − 1 

))
. (10)

he fact that the solution to (10) does not depend on N , neces-

itates that the ratio λN / 
√ 

N and the segment stretch λN 
b 

are in-

ariant with respect to the number N of Kuhn segments in each

ub-chain. Thus in the following we omit the superscript N and
ld model for brittle fracture in polydisperse elastomer networks, 
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f N = 

kT 

λb b 
L 

−1 

(
λN λ

−1 
b √ 

N 

)
= f . (11) 

ote that the above arguments do not depend on the specific func-

ional form of the internal energy. 

By inverting the chain force equation, the stretched chain

ength reads 

 tot = 

∞ ∑ 

N= N 0 
P (N) l N = 

∞ ∑ 

N= N 0 
P (N) λN 

√ 

N b = 

∞ ∑ 

N= N 0 
P (N ) N λb b L 

(
fλb b 

kT 

)
.

(12) 

nvoking that l 0 tot = ̃
 l 0 tot = 

∑ ∞ 

N= N 0 P (N) 
√ 

N b, the chain force versus

tretch of the representative chain is 

f = 

kT 

λb b 
L 

−1 

(
λc λ

−1 
b √ 

N 

)
. (13) 

y comparing (11) and (13) of the chain force, we find that 

λN √ 

N 

= 

λc √ 

N 

, (14) 

hich is a kinematic constraint for the deformation of the sub-

hains and crucial for explicitly writing out the free energy of a

epresentative chain. 

The Helmholtz free energy of a representative hybrid chain

( λc , λb ) is given by summation of the free energy contribu-

ions of the sub-chains ( von Lockette et al., 2002 ), i.e. ψ(λc , λb ) =
 ∞ 

N= N 0 P (N) ψ(λN , λb ) . Recalling that the free energy of an exten-

ible chain is given by relations (4) and (14) , we have 

(λc , λb ) = 

1 

2 
C N E b ( λb − 1 ) 

2 + C k N T 

(
λc λ

−1 
b √ 

N 

β + ln 
β

sinh β

)
,

β = L 
−1 

(
λc λ

−1 
b √ 

N 

)
, (15)

here we introduced the following notation C =∑ ∞ 

N= N 0 P (N) 
√ 

N 

)2 
/ 
∑ ∞ 

N= N 0 P (N) N . We note that, by comparing

ree energy (4) of an standard extensible chain and (15) of an

xtensible hybrid chain, the hybrid chain admits a different stiff-

ess than the standard extensible chain of N Kuhn segments

f bond length C b ( Verron and Gros, 2017 ). Furthermore, note

hat Var 
(√ 

N 

)
= 

∑ ∞ 

N= N 0 P (N) N −
(∑ ∞ 

N= N 0 P (N) 
√ 

N 

)2 ≥ 0 , thus the

arameter C ≤ 1 (that was not explicitly stated in Verron and

ros (2017) ), has softening effect; the equality holds when the

ariance of 
√ 

N vanishes. 

To incorporate the representative chain statistics into a consti-

utive framework, we proceed to employ the eight-chain network

odel developed by Arruda and Boyce (1993) that represents a

olymer network as a collection of identical unit cells. In the un-

eformed state, the unit cell has eight polymer chains radiating

utward from the center to the vertices of the unit cube. Assume

hat the edges of the cube are parallel to the principal axes of

tretch. The assumption of affine deformations leads to the follow-

ng relation λc = 

√ (
λ2 
1 

+ λ2 
2 

+ λ2 
3 

)
/ 3 = 

√ 

tr ( F F T ) / 3 , wher e λ1 , λ2 ,

3 are the principal stretches of the macroscopic deformation gra-

ient tensor F . The Helmholtz free energy of the polydisperse elas-

omer networks per unit reference volume is 

 ( u , λb ) = 

1 

2 
C N E ( λb − 1 ) 

2 + C N μ

(
λc λ

−1 
b √ 

N 

β + ln 
β

sinh β

)
, 

β = L 
−1 

(
λc λ

−1 
b √ 

N 

)
, (16) 

here μ = nkT denotes the shear modulus and E = nE b is the bond

tretch stiffness of the polymer network. The segment stretch λ is
b 
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etermined by setting ∂ W (λb , u ) /∂ λb = 0 , resulting in an implicit

onlinear algebraic equation for λb , which reads 

 ( λb − 1 ) λb = μ
λc λ

−1 
b √ 

N 

L 
−1 

(
λc λ

−1 
b √ 

N 

)
. (17) 

or monodisperse elastomer networks, namely with only one

hain length equal to N corresponding to Dirac delta distribution

 (N) = δ( N − N ) , the free energy reduces to the one employed in

alamini et al. (2018) . 

.3. Fracture toughness of polydisperse elastomer networks 

Rivlin and Thomas (1953) , applying the Griffith energy balance

riterion to rubber materials, experimentally quantified the macro-

copic fracture toughness / tearing energy of rubber. In a pioneer-

ng contribution, Lake and Thomas (1967) shown that this macro-

copic fracture toughness could be calculated approximately by

onsidering the energy required to rupture the polymer chains ly-

ng across the path of the crack. They posited that in order to break

 particular bond within a polymer chain it is necessary to sub-

ect all other bonds lying in the same chain to the rupture force.

f the energy required to break a segment is �, then to rupture a

hain containing N segments will be approximately N � ( Lake and

homas, 1967 ), even though only one of these segments will break

ventually, as discussed in the analysis of Crist et al. (1984) . If the

umber of chains crossing the unit area in the unstrained state

s N 	, and assuming that all chains have the same number of

uhn segments N then the required fracture energy is written as

 Lake and Thomas, 1967 ) 

 c := N 	N�. (18) 

t is noteworthy that G c gives the lower bound of the energy re-

uired to cause unit new surface area in the unstrained state, ne-

lecting plastic and viscous effects in the vicinity of the crack tip.

s a first approximation the energy released in the chains which

re in the neighborhood of the ruptured chains, are also neglected.

he experimental measurements carried out under near equilib-

ium conditions ( Mueller and Knauss, 1971; Ahagon and Gent,

975 ) have found reasonably good agreement with the approxima-

ion (18) . 

The number N 	 of chains crossing per unit area is estimated

s follows. In the reference state, the chains are randomly ori-

nted, and the probability of a chain having the end-to-end vector

 is characterized by a Gaussian distribution ( Treloar, 1975 ). The

ean end-to-end distance of a chain ( Lake and Thomas, 1967 ) is

 ̄r ‖ = 

√ 

8 N / 3 πb. For a fixed angle θ , the chain will intersect with

he plane of crack propagation if the distance d from the center

 to the crack propagation plane belongs to [ 0 , ‖ ̄r ‖ / 2 sin θ ) , see

ig. 3 . Assume a perfectly uniform network such that all chains

ave the same mean end-to-end distance ‖ ̄r ‖ and contain the
ame number of segments N . Thus the probability of a chain cross-

ng the crack plane is calculated by 
∫ π/ 2 
0 ‖ ̄r ‖ / 2 sin θ dθ = ‖ ̄r ‖ / 2 .

onsequently, the number of chains crossing the unit crack sur-

ace area is N 	 = n 
√ 

2 N/ 3 πb and thus the fracture energy (18) be-

omes 

 c := n 

√ 

2 N 

3 π
bN�. (19) 

his scaling law has been reproduced by Mao et al. (2017) , where

he authors also resorted to the extensible randomly jointed chain

odel, and is consistent with the microscopic bond rupture cri-

erion. For polydisperse elastomer networks, all the bonds are

tretched up to the rupture force in order for a macroscopic crack

o form, which implies that all the chains are stretched to the same
ld model for brittle fracture in polydisperse elastomer networks, 
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Fig. 3. Schematic diagram of a polymer chain intersecting the plane of crack prop- 

agation, where O is the center of the end-to-end distance of the chain. 
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force. Accordingly the fracture energy takes the form 

G c := 

∞ ∑ 

N= N 0 
n (N) V (N) N 	N� = 

∞ ∑ 

N= N 0 
nP (N) 

√ 

2 N 

3 π
bN�. (20)

Remark 2. As stated in Lake and Thomas (1967) , in order to break

a particular bond within the chain, it is necessary to subject all

other bonds lying in the same chain to the rupture force. This as-

sumption is in-line with the equal force condition for the chains

in polydisperse elastomer networks, and the fact that the bond

stretch of sub-chains is invariant to sub-chain length. Thus the

proposed equal force model is intrinsically compatible with the

argument that was proposed in the seminal work of Lake and

Thomas (1967) to arrive at the surface energy (19) of monodisperse

elastomer networks. 

From (16) and (17) it is evident that the stress-strain response

depends on the chain length distribution P ( N ) in terms of parame-

ters C and N , and the total chain density n . The effective shear

modulus of the polydisperse elastomer networks is defined as

μ∗ = C μ = C nkT , and fracture toughness G c 
∗ is given by (20) . In

Table 1 a set of corresponding chain length distributions, i.e. expo-

nential, uniform, Weibull, normal and log-normal, shown in Fig. 4

as motivated from Itskov and Knyazeva (2016) and Verron and

Gros (2017) are compared to the Dirac distribution with N = N =
7 . 84 and μ = nkT , and fracture toughness G c given by (19) . For

each type of chain length distribution, where the value of parame-

ter N is invariant, it is possible to obtain several sets of distribu-
Table 1 

Different chain length distributions and sets of parameters resu

Distribution P ( N ) Paramet

Dirac delta δ( N − N ∗) N ∗ = N

Exponential 

{ 

1 

δ
exp 

(
−N − N 0 

δ

)
N ≥ N 0 

0 N ≤ N 0 

N 0 = 2 . 0

N 0 = 7 . 4

Uniform 

{ 

1 

b − a 
a ≤ N ≤ b 

0 N < a or N > b 

a = 1 . 0 ;
a = 5 . 92

Weibull 
a 

b 

(
N 

b 

)( a −1 ) 

exp 

(
−
(
N 

b 

)a 
)

a = 1 . 25

a = 8 . 71

Normal 
1 √ 

2 πδ2 
exp 

(
− ( N − N 0 ) 

2 

2 δ2 

)
N 0 = 3 . 0

N 0 = 7 . 8

Log-normal 
1 

N 
√ 

2 πδ2 
exp 

(
− ( ln N − ln N 0 ) 

2 

2 δ2 

)
N 0 = 3 . 0

N 0 = 7 . 7

Please cite this article as: B. Li and N. Bouklas, A variational phase-fie

International Journal of Solids and Structures, https://doi.org/10.1016/j.i
ion parameters such that they satisfy the relation between N and

 ( N ). It is shown that both the effective shear modulus and fracture

oughness of the polydisperse elastomer networks can vary signif-

cantly from its monodisperse counterparts, depending on the dis-

ribution. 

. Phase-field model for polydisperse elastomer networks 

In the variational approach to brittle fracture proposed by

rancfort and Marigo (1998) , the crack initiation and quasi-static

volution are the natural results of the minimization of a Griffith-

ike energy functional defined as the sum of the elastic energy

nd the surface energy of the cracked body. The minimization has

o be taken among all the kinematically admissible displacements

nd admissible crack sets, and subject to Dirichlet boundary con-

itions and an irreversibility condition to avoid unphysical healing

f cracks. The quasi-static evolution of brittle fracture under the

ime-dependent loading parametrized by a pseudo-time, is recast

s three principles of irreversibility, global stability and energy bal-

nce ( Bourdin et al., 20 0 0; Marigo et al., 2016 ). 

The direct numerical implementation of Griffith’s energy func-

ional is challenging due to the jump discontinuities of displace-

ents whose locations are a priori unknown. To overcome this

hallenge, Bourdin et al. (20 0 0) resorted to a regularization strat-

gy initially developed by Ambrosio and Tortorelli (1990) for solv-

ng similar free-discontinuity problems encountered in image seg-

entation ( Mumford and Shah, 1989 ). In the regularized model,

racks are represented by a scalar phase-field, which is 1 inside

 cracked zone, 0 away from the crack, and varies from 0 to 1

moothly. The energy functional of a possibly fractured elastic body

ith isotropic surface energy is modeled by 

 � ( u , λb , α) = 

∫ 
�
a (α) W ( u , λb ) d� + 

G c 

c w 

∫ 
�

(
w (α) 

� 
+ � ‖∇α‖ 2 

)
d�, 

(21)

here a ( α) is a (decreasing) stiffness modulation function and

 ( α) is an (increasing) function representing the specific energy

issipation per unit of volume, the c w = 4 
∫ 1 
0 

√ 

w (α) dα is normal-

zation constant. In the following we will assume 

 (α) = (1 − α) 2 , w (α) = α, (22)

lthough different choices are possible, see e.g.

ham et al. (2011) and Marigo et al. (2016) . This family of

unctionals is parametrized by a regularization parameter � > 0

ith units of length dictating the width of the smeared crack that

s physically interpretated as an internal length. When � goes to

ero, the regularized model converges to the sharp variational

heory of brittle fracture in the sense of Gamma-convergence

 Bourdin et al., 2008 ). However the numerical simulations require
lting in the identical parameter N . 

ers 
∑ ∞ 

N= N 0 
P(N ) N μ∗/ μ G c 

∗
/G c 

 = 7 . 84 7.84 1.0 1.0 

 ; δ = 5 . 058 

 ; δ = 0 . 434 

7 . 058 

7 . 834 

0 . 900 

0 . 999 

0 . 900 

0 . 999 

b = 13 . 531 

1 ; b = 9 . 682 

7 . 265 

7 . 802 

0 . 927 

0 . 995 

0 . 906 

0 . 995 

 ; b = 6 . 846 

3 ; b = 8 . 25 

6 . 927 

7 . 801 

0 . 884 

0 . 995 

0 . 868 

0 . 995 

9 ; δ = 6 . 596 

 ; δ = 1 . 104 

7 . 099 

7 . 800 

0 . 905 

0 . 995 

0 . 887 

0 . 995 

 ; δ = 1 . 079 

1 ; δ = 0 . 149 

6 . 238 

7 . 796 

0 . 796 

0 . 994 

0 . 787 

0 . 994 
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Fig. 4. Different chain length distribution functions corresponding to Table 1 . 
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p  
 finite value of � , which needs to be resolved by the numerical

iscretization grid, and are based on local minimization , instead of

lobal minimality as in Gamma-convergence theory. As discussed

n Pham et al. (2011) and Tanné et al. (2018) , the phase-field model

ith a fixed internal length and an evolution principle based on

eta-stability (local energy minimization) can be regarded as a

radient damage model, where � become a constitutive parameters

elated to the maximum allowable stress in the material. 

Various numerical simulations have demonstrated that phase-

eld models can reproduce the onset of crack propagation at Grif-

th’s threshold ( Pham et al., 2017; Tanné et al., 2018 ) and com-

lex crack patterns in brittle materials with anisotropic surface en-

rgy ( Li et al., 2015; Li and Maurini, 2019 ), as well as to predict

lmost quantitatively crack paths in tearing thin sheets ( Li et al.,

018 ). In a quasi-static setting, the theoretical work of Hakim and

arma (2009) pointed out that the principle of local symmetry and

aximum energy release rate criteria are embedded in phase-field

racture models. Moreover, analytical predictions of crack paths

ased on generalized energy release rate criterion have been vali-

ated by experiments and numerical simulations for isotropic ma-

erials ( Pham et al., 2017 ) and for brittle materials with anisotropic

racture toughness ( Li and Maurini, 2019 ). The success of gradi-

nt damage or phase-field model has prompted a large body of

iterature in mathematics and computational mechanics including

everal contributions devoted to the nucleation and propagation of

rack in elastomeric materials ( Miehe and Schänzel, 2014; Talamini

t al., 2018; Mao and Anand, 2018; Kumar et al., 2018 ). 

. Numerical implementation 

The numerical implementation of the gradient damage model

estricted to compressible materials ( Miehe and Schänzel, 2014;

alamini et al., 2018 ) does not present any specific difficulties.

he techniques developed for the linear elastic case, which are

ot detailed here, are immediately applicable. In the nearly or

lightly incompressible setting when the bulk modulus becomes

arge in comparison to shear modulus, displacement based fi-

ite element discretization suffers from the locking phenomenon

 Wriggers, 2008; Auricchio et al., 2013 ). In order to tackle this chal-
Please cite this article as: B. Li and N. Bouklas, A variational phase-fie

International Journal of Solids and Structures, https://doi.org/10.1016/j.i
enge, Kumar et al. (2018) proposed a scheme based on a non-

onforming low order Crouzeix-Raviart finite element discretiza-

ion with a stabilization term which penalizes the jump of the de-

ormation field across element faces. From a computational point

f view, the non-conforming finite element discretization leads to

ignificantly fewer degrees of freedom than competing conforming

icretizations. However, the selection of the value for the penalty

arameter is not trivial ( Kumar et al., 2018 ). In this paper we

odel the polydisperse elastomer networks as an incompressible

aterial and use Lagrange multipliers to enforce the incompress-

bility constraint. 

To impose the incompressibility constraint, we consider the fol-

owing functional 

 � ( u , λb , p, α) = E � ( u , λb , α) + 

∫ 
�
p ( J − 1 ) d�, (23) 

here the Lagrange multiplier p is equivalent to the hydrostatic

ressure field and J = det F is the determinant of the deforma-

ion gradient. However, note that the damage materials are no

onger incompressible because of the microcrack growth or crack

pening, accordingly the incompressibility constraint should be re-

axed in the damaged regions in an appropriate way. To this end,

e instead consider a damage dependent relaxation of the incom-

ressibility constraint and the following energy functional is intro-

uced 

 � ( u , λb , α) = E � ( u , λb , α) + 

1 

2 

∫ 
�
a 3 (α) K ( J − 1 ) 

2 d�, (24) 

here we choose to damage the bulk modulus K faster than the

hear modulus μ ensuring that the incompressibility constraint

oes not impose a barrier to the physical opening of crack. Effec-

ively, it allows the damaged phase to bypass the incompressibility

onstraint. In the intact material incompressibility is ensured by

etting the bulk modulus K 	μ sufficiently large. However, when

pplied to the finite element discretization, this formulation near

he incompressible limit exhibits severe volumetric locking issue

 Wriggers, 2008; Auricchio et al., 2013 ). To circumvent this numer-

cal difficulties, we resort to the classical mixed formulation and

ntroduce the pressure-like field p = −
√ 

a 3 (α) K ( J − 1 ) as an inde-

endent variable along with the displacement field. The constraint
ld model for brittle fracture in polydisperse elastomer networks, 
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Fig. 5. Comparison of approximated solution and solution with exact inverse 

Langevin function. 
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for p + 

√ 

a 3 (α) K ( J − 1 ) = 0 is imposed through a Lagrange multi-

plier �, thus the energy functional is written as 

E � ( u , λb , p, �, α) = E � ( u , λb , α) + 

∫ 
�

p 2 

2 K 
d�

+ 

∫ 
�

�
(
p + 

√ 

a 3 (α) K ( J − 1 ) 

)
d�. (25)

The stationary point of the energy functional (25) with respect to

� immediately identifies that � = −p/K, then we arrive at the fi-

nal form 

E � ( u , λb , p, α) = E � ( u , λb , α) −
∫ 
�

√ 

a 3 (α) p ( J − 1 ) d� −
∫ 
�

p 2 

2 K 
d�, 

(26)

which is a u − p mixed formulation very much similar with the

perturbed Lagrangian multiplier method ( Wriggers, 2008 ), where

the last term serves the purpose of regularization of the La-

grange multiplier. We could expect that as the value of K → ∞
the solution obtained from the functional (26) will converge in

the sense of weak convergence to the solution given by the clas-

sic Lagrange multiplier formulation (23) . It is worth noting that

a similar formula had been directly introduced in a recent work

of Ma et al. (2016) . The displacement field u is discretized us-

ing standard Lagrange elements of order 2, whilst the pressure-

like field p and damage fields α are discretized by linear La-

grange elements. The resulting finite element space for elastic

problem falls in the family of the Taylor-Hood elements ( Taylor and

Hood, 1973 ) frequently used in solving problems for incompress-

ible flow ( Taylor and Hood, 1973 ), incompressible elasticity and

poroelasticity ( Bouklas et al., 2015; Cajuhi et al., 2018 ). This mixed

formulation with the specific discretization spaces assures the sta-

bility of the discretization scheme and prevents the volumetric

locking for large values of the bulk modulus or perturbation pa-

rameter K , by satisfying the inf-sup condition ( Boffi et al., 2013 ). 

We follow the classical alternate minimization algorithm devel-

oped by Bourdin (2007) to solve the whole nonlinear problem. In

the time-discrete evolution, given the finite element approxima-

tion of displacement and pressure fields ( u (i −1) 
h 

, p (i −1) 
h 

) and dam-

age field α(i −1) 
h 

at the time-step t i −1 , the solution at the time-step

t i is found by solving the stationery conditions for the functional

(26) under the unilateral constraint α ≥ α(i −1) 
h 

. The whole nonlin-

ear problem is split into a “deformation” sub-problem, consisting

in the solution for ( u , p ) freezing the damage fields, and a “dam-

age” sub-problem, consisting in the solution for the damage field α
freezing the “deformation” fields ( u , p ). The two sub-problems are

solved iteratively at each time-step, until a convergence criterion is

satisfied. 

In the solution of deformation sub-problem the Kuhn segment

stretch λb has to be calculated first on each Gauss point, namely,

solving the nonlinear algebraic equation (17) , which is computation

intensive ( Talamini et al., 2018 ). Here we provide an approximate

solution for λb speeding up the computations. Note that the λb > 1

occurs at large chain stretch, as shown in Fig. 1 (right), therefore

we approximate the inverse Langevin function in (17) as L 
−1 ( x ) ≈

1 / ( sign x − x ) if 0.84136 ≤ | x | < 1 provided by Bergström (1999) . In

consequence, (17) can be rewritten as 

A λ3 
b + B λ2 

b + C λb + D = 0 , (27)

where A = E 
√ 

N , B = −E 
(√ 

N + ̄λc 

)
, C = E ̄λc and D = −μλ̄c . This

cubic equation could be further reduced to the standard form

Zwillinger (2003) , that has three real roots expressed in terms of

trigonometric functions providing that 3 AC − B 2 < 0 which is ful-

filled for the current physical problem. Thus, the Kuhn segment
Please cite this article as: B. Li and N. Bouklas, A variational phase-fie
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tretch λb is approximated as ( Zwillinger, 2003 ) 

b = 2 

√ 

− r 

3 
cos 

( 

1 

3 
arccos 

( 

3 s 

2 r 

√ 

−3 

r 

) ) 

+ 

B 

3 A 
, (28)

ith 

r = 

3 AC − B 2 

3 A 2 
, s = 

2 B 3 − 9 ABC + 27 A 2 D 

27 A 3 
. (29)

lthough the approximate expression of inverse Langevin function

s only valid provided that λ̄c λ
−1 
b 

/ 
√ 

N ≥ 0 . 84136 , it is interest-

ng to see that the approximate solution of λb is indistinguish-

ble from the exact solution in the whole chain stretch range, see

ig. 5 (with E/μ = 1200 ) for the comparison of approximated so-

ution and solution using exact inverse Langevin function. The in-

erse Langevin function in functional (26) is approximated by the

est reported Padé approximant given by Jedynak (2017) . Insert-

ng (28) into (26) , we solve the deformation sub-problem with re-

pect to ( u , p ) by a Newton based nonlinear solver using a trust

egion SNESNEWTONTR combined with line search integrated in

he PETSc library ( Balay et al., 2016 ). In the damage sub-problem,

ven though the functional is quadratic in α, includes a unilat-

ral constraint due to the irreversibility condition α ≥ α(i −1) 
h 

. The

ssociated variational inequality, demanding a dedicated nonlinear

olver, is solved using the variational inequality solver distributed

n the PETSc/Tao library ( Dener et al., 2018 ). 

The classical approach to solving the deformation sub-problem

nvolves computing the first Gâteaux derivative of the energy func-

ional with respect to ( u , p ), which in turn need to be solved us-

ng Newton’s method by taking a second Gâteaux derivative to

ield the tangent “stiffness” matrix ( Talamini et al., 2018; Mao and

nand, 2018 ). Here, the computation of the first and second vari-

tional derivative is a complicated task due to the highly nonlin-

ar expression of the Kuhn segment stretch (28) and approxima-

ion of the inverse Langevin function ( Jedynak, 2017 ). To this end,

e leverage the automatic functional differentiation tool offered by

he Unified Form Language (UFL) ( Alnæs et al., 2014 ) integrated in

he finite element library FEniCS ( Alnæs et al., 2015 ), allowing

or a straightforward formulation of the complex custom nonlin-

ar hyperelstic model. Another advantage of this implementation

s that the syntax closely mirrors the mathematical abstractions of

he variational formulation. Our numerical implementation of the

roposed phase-field model is based on the FEniCS finite element

latform ( Alnæs et al., 2015 ) that allows us to have a concise and

fficient parallel open-source implementation of the finite element
ld model for brittle fracture in polydisperse elastomer networks, 
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Fig. 6. Three-dimensional uniaxial traction of a hyperelastic bar. (left-top) The imposed boundary conditions: u = 0 at left end and u x = tL at right end. (left-bottom) The 

snapshot of the damage field for t > t c . (right) the evolution of the energies as the end-displacement loading is increased. 
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Fig. 7. The evolution of the volume ratio as the end-displacement loading is in- 

creased. 
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odel in a few hundreds lines of python code distributed as sup-

lementary material of the present paper. 2 

. Numerical experiments 

.1. Uniaxial tension of a hyperelastic bar 

We consider a three-dimensional hyperelastic bar of length L =
 . 0 μm , hight H = 0 . 1 μm and thickness W = 0 . 02 μm in a state

f uniaxial stress σ1 = σ, σ2 = σ3 = 0 with the imposed displace-

ent boundary conditions u x = 0 on the left end and u x = tL on

he right end, as illustrated in the Fig. 6 (left-top). We also impose

he Dirichlet boundary conditions α = 0 on the both ends of the

ar as in Pham et al. (2011) to force the damage localization to

ppear inside the bar. Let the stretch along the axis of the load-

ng direction be λ1 = λ. The incompressibility results in that the

tretches in the directions transverse to the axial loading direction

re λ2 = λ3 = 1 / 
√ 

λ. The analytical study of uniaxial tension of a
ne-dimensional bar developed in Pham et al. (2011) showed that

f the length L of the bar is sufficiently larger than the internal

ength � , the local minimizer of (21) is corresponding to the purely

lastic or damage free solution α = 0 provided that t < t c . The crit-

cal value of t c is determined by 

 c = 

2 E ( λb − 1 ) λ2 
b 

√ 

N 

μ + E ( λb − 1 ) λb 

cos 

( 

1 

3 
arccos 

( 

−
(

μ + E ( λb − 1 ) λb 

E ( λb − 1 ) λ2 
b 

√ 

N 

)3 
) ) 

− 1 ,

(30) 

here the λb is the solution of the following nonlinear equation 

 
′ (0) 

(
C N 

(
1 

2 
E ( λb − 1 ) 

2 
)

− C N μ ln 

(
μ

μ + E(λb − 1) λb 

))
+ 

G c 

c w 

w 
′ (0) 

� 
= 0 . (31) 

o arrive to (31) , (17) and an approximation of inverse Langevin

unction ( Bergström, 1999 ) are used. For the numerical simulation,

e consider that the chain legnth follows the Dirac delta distri-

ution P (N) = δ( N − N ) with N = 4 . Other materials parameters

re E = 2 . 5 × 10 3 MPa , μ = 1 . 25 MPa , G c = 10 2 MJ / m 
2 . The pertur-

ation parameter is set to K = 1 . 25 × 10 6 MPa and mesh size h =
2 https://bitbucket.org/bin-mech/gradient _ damage _ polymer/ . 

 

t  

n  
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/ 5 = 10 −2 μm such that the critical end-displacement is calcu-

ated as t c = 3 . 311 . Fig. 6 (left-bottom) shows the snapshot of a

ransverse crack nucleated at an arbitrary location cutting the bar

nto two parts, and the size of the localized damage zone could

e analytically evaluated as 4 � ( Pham et al., 2011; Marigo et al.,

016 ). The evolution of the energies as the end-displacements in-

reased is depicted in Fig. 6 (right), which clearly demonstrates that

he critical end-displacement loading t c and fracture surface en-

rgy G c HW match closely with the theoretical results. We also re-

ort the evolution of the volume ratio as the end-displacement

oading is ramped up in Fig. 7 to keep track of our enforce-

ent of the incompressibility condition on undamaged material.

ig. 7 shows that prior to crack nucleation and rupture of the

ar into two sections the material is indeed incompressible, but

nce a crack is formed the damaged phase can volumetrically

xpand. 

.2. Pure-shear tear experiment 

To demonstrate the capability of the gradient damage model

o simulate the crack propagation in an incompressible polymer

etwork, we apply the model to simulate the center-cracked
ld model for brittle fracture in polydisperse elastomer networks, 
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Fig. 8. The specimen geometry (width of 1.0 μm and height of 0.4 μm with a center horizontal notch of 0.3 μm length) and the evolution of the energies of the pure-shear 

tear experiments. 

Fig. 9. The snapshots of the pure-shear tear simulation: deformed configuration colored by the damage field. 
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pure-shear tear experiment. The specimen geometry and applied

clamped boundary conditions are schematically depicted in

Fig. 8 (left). We consider that the chain length follows a geometric

distribution ( Watson, 1953; Flory, 1953 ) derived by a statistical

treatment of the polymerization process. The probability distribu-

tion that a linear polymer molecule is composed of exactly N ≥N 0 

segments ( Watson, 1953; Flory, 1953; Itskov and Knyazeva, 2016 )

is given by the function P (N) = q N−N 0 (1 − q ) , N = N 0 , N 0 + 1 , . . . ,

where 0 < q < 1 denotes the probability of addition of a monomer

unit to a radical while 1 − q represents the probability of termina-

tion of a radical ( Watson, 1953 ), and N 0 is the arbitrary minimal

number of chain segments. It satisfies a priori the normaliza-

tion condition 
∑ ∞ 

N= N 0 P (N) = 1 for any N . Following Itskov and

Knyazeva (2016) , we express P ( N ) in terms of the average number

of chain segments N̄ = C N , thus P (N) = 1 / ( � + 1 ) ( 1 + 1 / �) N 0 −N 
,

where � = N̄ − N 0 and p = �/ ( � + 1 ) . The distribution pa-

rameters are chosen as N 0 = 6 and N̄ = C N ≈ 11 . 38 such

that q ≈0.84 and N = 

(∑ ∞ 

N= N 0 P (N ) N 

)2 
/ 
(∑ ∞ 

N= N 0 P (N) 
√ 

N 

)2 =
N̄ / (1 − q ) �( q, −1 / 2 , N 0 ) ≈ 12 , where �( z, s, a ) is a Hurwitz-Lerch

transcendent ( Gradshteyn and Ryzhik, 20 0 0 ). The materials param-

eters are E = 2 . 5 × 10 3 MPa , μ = 1 . 25 MPa , K = 1 . 25 × 10 6 MPa ,

and the fracture toughness microscopically approximated by

(20) is set to G c = 12 . 5 MJ / m 
2 . In order to resolve the crack prop-

erly, the mesh is refined where the crack is expected to propagate

such that mesh size h = �/ 5 = 10 −2 μm . 
Please cite this article as: B. Li and N. Bouklas, A variational phase-fie
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Fig. 8 (right) reports the energy evolution until the ultimate

upture of the specimen, shows the energetic signature of the

rack initiation. The snapshot of the deformed configurations of

he specimen colored by the damage field are shown in Fig. 9 , cor-

esponding to the different loading steps marked in Fig. 8 (right),

.e. at prescribed boundary displacements of u y = 0 . 375 μm , u y =
 . 450 μm , u y = 0 . 500 μm and u y = 0 . 560 μm . At stage (I), the ini-

ial notches are blunted and the cracks have not initiated. The

racks initiate and propagate a finite length associated with a sud-

en jump of the elastic and surface energy towards stage (II). Fur-

her stretching is required to trigger crack propagation until ulti-

ate failure. It is noted that varying the chain length distribution

ill not affect the crack path evolution, but will influence the load-

ng corresponding to crack initiation and propagation as showcased

n Table 1 . Contrary to prior studies ( Talamini et al., 2018 ), our

odel damages energy contributions from both the internal en-

rgy and the entropic elasticity. It is also known that at the refer-

nce state when λc = 1 entropic elasticity requires that a residual

orce is acting and thus the energy is not zero at that state. In this

lot we take the reference state as a datum, and as the material

s fully damaged (over a finite thickness) and elastically unloads

ollowing rupture, the entropic energy contribution at the refer-

nce state over the damaged material is lost. Thus the total energy

t the fully unloaded damaged state falls below the datum. This

mplication does not have any physical consequence to the model.
ld model for brittle fracture in polydisperse elastomer networks, 
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lthough not shown here, the two cracks emanated from the ini-

ial notch tips did not always propagate simultaneously. 

. Conclusions 

All synthetic polymers have a distribution of chain length,

hich occurs naturally during polymerization. The polydispersity

as a significant effect on the mechanical behavior of these materi-

ls, including the damage and fracture response. A common under-

ying assumption for the majority of constitutive models for rubber

lasticity is that all the chains admit the same length. This is the

s the first time the equal force model for polydisperse polymers

s extended to include the stretching effect of Kuhn segments and

lso the first time the equal force model is adapted to the phase-

eld approach for brittle fracture allowing for the prediction of

rack nucleation, initiation and propagation. 

In this paper, we formulate a phase-field model for brittle frac-

ure in polydisperse elastomer networks accounting for (1) inter-

al energy contributions from the extension of molecular bonds

nd (2) arbitrary chain length distributions. An analytical expres-

ion for the free energy of the continuum is derived based on the

ight chain network model. To be consistent with the Lake-Thomas

odel for fracture in elastomers, the representative chain in the

ight chain network model, consisting of sub-chains with the same

istribution of chain lengths, obeys the equal force assumption. We

resent a mixed displacement-pressure formulation similar to the

erturbed Lagrangian multiplier method for the discretization of

he incompressible large deformation elastic problem that arises.

he numerical simulation agrees very well with the analytical so-

ution for the crack nucleation problem of an incompressible three-

imensional hyperelastic bar under uniaxial loading. On the com-

utational side, we present an approximate analytical expression

f Kuhn segment stretch that avoids solving the nonlinear alge-

raic equation on each Gaussian point during the solution of the

arge deformation elastic problem contrary to the implementation

n Talamini et al. (2018) . We employ the FEniCS platform to pro-

ide a concise and efficient parallel open-source implementation

f the finite element model. We demonstrate the capability of

he phase-field model to simulate the crack propagation in an in-

ompressible polymer network through a representative numerical

imulation. 

A set of interesting future endeavors could include extend-

ng the current model to describe both cavitation and fracture

 Henao et al., 2016 ), and considering the non-affine deformation

 Diani and Le Tallec, 2019 ) as well as the effect of entanglements

ith the neighboring chains ( Xiang et al., 2018; Khiêm and Itskov,

016 ). 
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