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Radiative heat transfer between bodies at the nanoscale can surpass blackbody limits on thermal radiation
by orders of magnitude due to contributions from evanescent electromagnetic fields, which carry no energy
to the far field. Thus far, principles guiding explorations of larger heat transfer beyond planar structures have
assumed utility in surface nanostructuring, via enhancement of the density of states, and the possibility that
such design paradigms can approach Landauer limits, in analogy to conduction. Here we derive fundamental
shape-independent limits to radiative heat transfer, applicable in near- through far-field regimes, that incorporate
material and geometric constraints such as intrinsic dissipation and finite object sizes, and show that these
preclude reaching the Landauer limits in all but a few restrictive scenarios. Additionally, we show that the
interplay of material response and electromagnetic scattering among proximate bodies means that bodies which
maximize radiative heat transfer actually maximize scattering rather than absorption. Finally, we compare our
new bounds to Landauer limits as well as limits that ignore the interplay between material and geometric
constraints, and show that these prior limits lead to overly optimistic predictions. Our results have ramifications
for the ultimate performance of thermophotovoltaics and nanoscale cooling, as well as incandescent and
luminescent devices.
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The concept of a blackbody, derived from electromagnetic
reciprocity (or detailed balance), has provided a benchmark
of the largest emission rates that can be achieved by a heated
macroscopic object: through nanoscale texturing, gray objects
can be designed in myriad ways to mimic the response of a
blackbody at selective wavelengths [1–6], with implications
for a variety of technologies, including high-efficiency solar
cells, selective emitters, and thermal sensors [7]. Over the
past few decades, motivated by potential applications to ther-
mophotovoltaics [8–11], nanoscale cooling [12], and thermal
microscopy [13,14], much effort has gone toward understand-
ing analogous limits to enhancements of near-field radiative
heat transfer (RHT) [15–18], supported by a rich and growing
number of experimental [6,19–21] and theoretical [22–26]
investigations. A key principle underlying further near-field
RHT enhancements is the use of materials supporting bound
(plasmon and phonon) polaritons in the infrared, where the
Planck distribution peaks at typical temperatures probed in
experiments. This leads to strong subwavelength responses
tied to corresponding enhancements in the density of states
[4,27–29]; consequently, the amplified near-field RHT spec-
trum exhibits a narrow line shape, justifying focus on se-
lective wavelengths. However, while the properties of such
polaritons, particularly their resonance frequencies, associ-
ated densities of states, and scattering characteristics can
be modified through nanoscale texturing, only recently have
computational methods [23–25,30–32] arisen to model RHT
between bodies of arbitrary shapes beyond high-symmetry
cases [26,33–35]. Furthermore, the challenge of gaining si-
multaneous control over the scattering properties of large
numbers of contributing surface waves has generally pre-
cluded general upper bounds on RHT.

RHT between two bodies A and B in vacuum is given as

P =
∫ ∞

0
|�(ω,TB) − �(ω,TA)|�(ω) dω, (1)

in terms of the Planck function �(ω,T ) =
h̄ω/{exp[h̄ω/(kBT )] − 1} evaluated at the local temperatures
TA and TB, and the spectral function �(ω), which
can be enhanced by changing material and geometric
properties through the creation of resonances and changes
in the electromagnetic density of states. In particular,
nanostructuring metallic surfaces or polar dielectrics makes
it possible to tailor resonances in the infrared, such that
peaks of the spectrum � may coincide with the peak of the
Planck distribution near room temperature. It remains an open
question, however, to what extent the peak value of � itself at
any given frequency ω may be enhanced through appropriate
geometric and material choices, as well as what such optimal
structures should be.

Previous attempts at deriving bounds on RHT have pri-
marily focused on extended media [15–17,36], showing that
at least for translationally invariant structures, � can be
expressed as the trace of a “transmission” matrix whose
singular values (corresponding to evanescent Fourier modes)
each contribute a finite flux, bounded above by a Landauer
limit in analogy with conduction [37,38]. Aside from being
restricted to planar geometries, these bounds turn out to
be either pessimistic [17], ignoring the large densities of
states that can arise in nanostructured and low-loss materials,
or too optimistic [15,16], ignoring any constraints imposed
by Maxwell’s equations and assuming instead that all such
Fourier modes, up to an unrealistic cutoff on the order of
the atomic scale, can saturate the flux [15]. From a design
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perspective, Landauer limits present a hurdle as they rely on
ad-hoc estimates of the number and relative contribution of
radiative modes/channels, which depend on specific material
and geometric features. More recent works have derived com-
plementary material limits on electromagnetic absorption in
subwavelength regimes [39], showing that absorbed power
in a medium of susceptibility χ increases in proportion to
an “inverse resistivity” material figure of merit, |χ |2/ Im χ , in
principle diverging with increasing indices of refraction and
decreasing dissipation. Saturation of these bounds for a sub-
wavelength absorber in the quasistatic regime can generally
be achieved through the strong polarization currents arising
in resonant media supporting surface plasmon or phonon
polaritons. These arguments have been extended to near-field
RHT [18] by exploiting energy conservation and reciprocity,
finding the upper bound of � at a polariton resonance to scale
quadratically with |χ |2/ Im χ . While near-field RHT between
dipolar objects can attain these bounds in a dilute limit,
such a universal scaling has yet to be observed in large-area
structures. This naively suggests room for improvement in �

through nanostructuring via enhancements in the density of
states or equivalently, via saturation of modal contributions,
yet trial-and-error explorations and optimization procedures
[40,41] have failed to produce nanostructured geometries that
bridge this gap, leading to the alternative possibility that
existing bounds are too loose.

In this paper we derive new algebraic bounds on RHT,
valid in the near-, mid-, and far-field regimes, through analysis
of the singular value decompositions of relevant response
quantities. In contrast to prior limits, our bounds incorporate
the interplay of constraints imposed by material losses and
geometric radiative effects between bodies, and are therefore
tighter. In particular, every channel of energy transmission is
shown to be generally prohibited from saturating its Landauer
limit, in contrast to predictions based on modal decomposi-
tions [15–17,36] that neglect material properties and are most
applicable in the ray optics regime. Furthermore, the growth
of RHT with decreasing material dissipation is shown to be
strongly limited by radiative losses, in contrast to predictions
based on energy-conservation limits to material response [18]
that neglect finite-size scattering effects between bodies and
are thus tightest in the quasistatic regime. In upcoming papers
closely related to this one, we apply these bounds to various
scenarios of interest, providing predictions of the maximum
RHT achievable in compact and extended geometries [42],
and deriving related bounds on far-field thermal emission
from single bodies in isolation [43].

I. HEAT TRANSFER DEFINITIONS

For two bodies A and B in vacuum (Fig. 1), the spectral
function � appearing in (1) represents the average power
absorbed in B due to fluctuating current sources in A, depicted
in Fig. 1, and is reciprocal (invariant under interchange of A
and B). Using operator notation, this average absorbed power
can be written in terms of the susceptibilities Vp, the vacuum
Maxwell Green’s function Gvac

pq , and scattering T-operators
Tp, for p, q ∈ {A,B}. For local homogeneous isotropic media,
each susceptibility is written as Vp = χpIp, where Ip is the
projection onto the space of body p. The vacuum Maxwell

FIG. 1. Two bodies labeled A and B exchange heat in vacuum.
Each body could be compact or of infinite extent in at least one
spatial dimension, and for given susceptibilities χp, the optimal
structures may be quite complicated, but the upper bounds, which
depend on ζp = |χp|2/ Im(χp), can be evaluated in simpler bounding
domains that enclose each object while respecting any other design
constraints present.

Green’s function Gvac solves [(c/ω)2∇ × (∇×)−I]Gvac=I
in all space, and its blocks are denoted as Gvac

pq for sources in
body q propagating fields to body p. Finally, the T-operators
Tp = (V−1

p − Gvac
pp )

−1 represent the total induced polarization
moment in body p due to a localized field of unit magnitude
incident upon it. All of these quantities are reciprocal, so they
are equal to their unconjugated transposes in position space:
Vp = V�

p , Tp = T�
p , and Gvac

pq = (Gvac
qp )

�. This means that
Hermitian conjugation is equivalent to complex conjugation:
V †

p = V �
p , T

†
p = T �

p , and (Gvac
pq )

† = Gvac�
qp . Additionally, we

may define these operators in the combined space of the two
bodies in 2 × 2 block matrix form as

Gvac =
[
Gvac

AA Gvac
AB

Gvac
BA Gvac

BB

]
, (2)

V−1 =
[
V−1
A 0

0 V−1
B

]
(3)

from which the overall T operator is defined as

T−1 =
[

T−1
A −Gvac

AB

−Gvac
BA T−1

B

]
(4)

in terms of the individual T operators. Finally, we note that all
of these quantities depend on frequency ω, though this will be
suppressed for the sake of notational brevity.
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Given these definitions and relations (see Appendix C for
details), the RHT spectrum can be written as [26]

� = 2

π
Tr

[
T �
B

(
IB − Gvac�

BA T �
AG

vac�
AB T �

B

)−1
Im

(
V−1�
B

)
×TB

(
IB − Gvac

BATAG
vac
ABTB

)−1

×Gvac
BATA Im

(
V−1�
A

)
T �
AG

vac�
AB

]
, (5)

where Im(A) = (A − A�)/(2i) and Asym(A) = (A −
A†)/(2i) for any operator A; if A is reciprocal, then
Asym(A) = Im(A). This expression is manifestly reciprocal
in A and B, and treats the T operators of A and B on an equal
footing, linked only by the Green’s functionGvac

BA propagating
fields in vacuum from one body to the other. However, it is
possible to write this spectrum more suggestively in terms of
operator combinations that hide this reciprocity in order to
more strongly link this expression to absorbed and emitted
powers. In particular, � may be rewritten as

� = 2

π
Tr

[
Y �
B Im

(
V−1�
B

)
YBG

vac
BATA Im

(
V−1�
A

)
T �
AG

vac�
AB

]
,

(6)
in terms of the reciprocal operator YB = TBSA

B , which is in
turn written in terms of the scattering operator SA

B = (IB −
Gvac

BATAGvac
ABTB)−1. Essentially, YB is a new “dressed T oper-

ator” describing absorption and scattering in B in the presence
of A, just as the bare T-operators Tp describe absorption and
scattering from each body p ∈ {A,B} in isolation.

The assumption that the susceptibility in each body p ∈
{A,B} is homogeneous, uniform, and isotropic, yields the
identity Im(V−1�

p ) = Im(χp)
|χp|2 Ip. For convenience, we denote

ζp = |χp|2
Im(χp)

as the “material response factor.” Using this, we
write the RHT spectrum as

� = 2

πζAζB

∥∥YBG
vac
BATA

∥∥2
F, (7)

where ‖A‖2F = Tr(A†A) denotes the Frobenius norm for any
operator A.

As we show in Appendix C, the RHT spectrum may
alternatively be written as

� = 2

π
‖Q‖2F (8)

in terms of the transmission operator Q =
Im(VB)1/2GBA Im(VA)1/2, which in turn depends on the total
Green’s function GBA = V−1

B TBSA
BG

vac
BATAV

−1
A connecting

dipole sources in body A to total fields in body B and
accounting for multiple scattering to all orders within and
between both bodies. This obeys a Landauer limit, as the
singular values of Q†Q do not exceed 1/4, so including the
prefactor 2/π , the contribution of each mode/channel in
the trace expression to � does not exceed 1

2π . Our goal is to
explain the conditions under which the Landauer bounds for
each of these contributions may be saturated.

II. SINGULAR VALUE BOUNDS

We derive upper bounds on � starting from (6) by making
liberal use of the singular value decomposition for the relevant
operators and associated bounds on the trace of products of

operators. To start, in Appendix B we prove the lemma that
the largest real positive value for the trace of a product of
operators occurs when those operators share singular vectors
and when their fixed singular values are each arranged in a
consistent order. This will be useful to bound (6), though the
connection is more subtle as we wish to vary the singular
values of some of the operators involved, and the extent to
which those singular values can vary is restricted by physical
constraints requiring nonnegative far-field scattered power.
Once it is established that the proof in Appendix B is ap-
plicable, we vary the singular values of relevant operators to
maximize the upper bound on �, which we call �opt.

A. Constraints on nonnegative far-field scattering

As we have cast (6) as an absorption quantity that is
guaranteed to be nonnegative, the most relevant physical con-
straints are that far-field scattering from each individual body,
and for the system as a whole in turn, must be nonnegative. In
general, given a susceptibility V and an associated T-operator
T , the far-field scattered power from a given incident field
|Einc〉 is ω

2 〈Einc, [Im(T ) − T � Im(V−1�)T ]Einc〉, and for this
to be nonnegative, the operator Im(T ) − T � Im(V−1�)T must
be positive semidefinite. This must hold true for each body
in isolation, meaning Im(Tp) − T �

p Im(V−1�
p )Tp is likewise

positive semidefinite for each p ∈ {A,B}, and reciprocity
means that Im(Tp) − Tp Im(V−1�

p )T �
p must also be positive

semidefinite. As the following derivations make clear, this
condition is most relevant for body A, meaning that〈

Einc,

[
Im(TA) − 1

ζA
T �
AT

�
A

]
Einc

〉
� 0 (9)

for every incident field |Einc〉, after using Im(V−1�
A ) = 1

ζA
IA.

Further conditions become relevant when the two bodies are
proximate to each other.

As a first step, we show that the operator YB = (T−1
B −

Gvac
BATAGvac

AB)
−1 = TBSA

B is an effective T operator for body
B dressed by the proximity of body A. In particular, referring
to Appendix C, the definitions (3) and (4) can be plugged into
(C5) and rearranged in order to write

|PB〉 = YB
(
Gvac

BATAV
−1
A

∣∣P(0)
A

〉 + V−1
B

∣∣P(0)
B

〉)
.

If only sources in A are relevant, then we may set
|P(0)

B 〉 → 0 and define an effective incident field |Einc(A)〉 =
Gvac

BATAV
−1
A |P(0)

A 〉 which depends on multiple scattering
within A but not on any properties of B apart from pro-
jection onto its volumetric degrees of freedom. This means
that |PB〉 = YB|Einc(A)〉, which is interpreted to mean that the
total induced polarization in B arises from the response of
B dressed in the presence of A, namely YB, acting on the
effective incident field |Einc(A)〉 accounting only for body A;
this is analogous to TB which relates the total polarization
induced in B to incident fields in vacuum.

Given this and the fact that |EB〉 = V−1
B |PB〉 after setting

|P(0)
B 〉 → 0, the scattered power only from body B (in the

presence of body A) may be written as the difference between
extinction and absorption powers only from body B (in the
presence of body A), namely ω

2 [Im(〈Einc,PB〉) − 〈EB,PB〉] =
ω
2 〈Einc, [Im(YB) − Y �

B Im(V−1�
B )YB]Einc〉. Nonnegativity of
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this quantity for any |P(0)
A 〉, or more generally any |Einc〉,

means that Im(YB) − Y �
B Im(V−1�

B )YB must be positive
semidefinite.

Moreover, nonnegativity of far-field scattering from
the system in general means that upon evaluating the
inverse of (4), the operator Im(T ) − T Im(V−1�)T � must be
positive semidefinite, which means in turn that each of its
diagonal blocks must be positive semidefinite. Manipulating
operators allows for showing that the bottom-right block is
Im(YB) − YB[Im(V−1�

B ) + Gvac
BATA Im(V−1�

A )T �
AG

vac�
AB ]Y �

B,
which involves another positive-semidefinite operator
[as Im(V−1�

A ) is positive semidefinite and is multiplied
on its left and right by operators which are Hermitian
adjoints of each other] subtracted from the operator
Im(YB) − Y �

B Im(V−1�
B )YB. Therefore, Im(YB) −

YB[Im(V−1�
B ) + Gvac

BATA Im(V−1�
A )T �

AG
vac�
AB ]Y �

B is positive
semidefinite, which can be written more explicitly as the
condition

〈Einc, Im(YB)Einc〉

−
〈
Einc,YB

(
1

ζB
IB + 1

ζA
Gvac

BATAT
�
AG

vac�
AB

)
Y �
BE

inc

〉
� 0

(10)

for every incident field |Einc〉, where we have used
Im(V−1�

p ) = 1
ζp
Ip. Equation (10) yields stronger bounds on

the singular values of YB than the positive semidefiniteness
of Im(YB) − 1

ζB
Y �
BYB alone, because the former also subtracts

the absorption in body A in the presence of body B, whereas
the latter does not.

B. Optimization of singular values

With the constraints in (9) and (10) in mind, we define
the operator A ≡ Gvac

BATAT �
AG

vac�
AB so that (6) may be rewrit-

ten as � = 2
πζAζB

Tr[YBAY �
B] and (10) may be rewritten as

the condition that the operator Im(YB) − YB( 1
ζB
IB + 1

ζA
A)Y �

B

be positive semidefinite. The reason for this is as follows.
The proof in Appendix B depends on the singular val-
ues being fixed and independent of the singular vectors,
whereas an arbitrary grouping of operators might have vari-
able singular values whose constraints depend on the singular
vectors. However, we take the singular values of Gvac

BA as
fixed, and while we choose to vary the singular values of
TA, the constraints on those singular values from (9) are
independent of the various singular vectors or values of
other operators. In particular, reciprocity of TA allows for
writing the singular value decomposition TA = ∑

i τi|ai〉〈a�
i |

where 〈ai, a j〉 = δi j . Thus, if the singular values τ j are
appropriately set, the assumptions in Appendix B remain
valid. We choose to write the singular decomposition A =∑

j α j |b j〉〈b j |, so (10) implies that � = 2
πζAζB

Tr[YBAY �
B] �

2
πζB

Tr [Im(YB) − 1
ζB
YBY �

B]. From this we can immediately
see that the right-hand side is maximized if YB = i Im(YB)
is purely anti-Hermitian, as any nontrivial Hermitian part
increases the magnitude of the negative contribution relative
to the positive contribution. Moreover, while the right-hand
side is basis independent, it can be evaluated in the sin-
gular value basis {|bi〉} of A, so the overall sum (trace) is

guaranteed to be maximized when each individual contribu-
tion is maximized: The constraint in (9) is evaluated for a
particular |bi〉 as 1

ζA

∑
j α j |〈b j,YBbi〉|2 � 〈bi, Im(YB)bi〉 −

1
ζB

∑
j |〈b j,YBbi〉|2, and so the right-hand side is maximized

for each channel i if YB has {|b j〉} as its right singular
vectors. Thus, the proof in Appendix B is indeed applicable,
and reciprocity then allows us to write the singular value
decomposition YB = ∑

j y j |b�
j〉〈b j |, where 〈bi,b j〉 = δi j and

〈b j,b�
j〉 = i for each channel j. In this basis of singular

vectors, we may write � � 2
πζAζB

∑
j α jy2j , and the constraint

in (9) can be written as y j − y2j (ζ
−1
B + ζ−1

A α j ) � 0, so y j �
1

ζ−1
B +ζ−1

A α j
. Saturating the inequality on y j means we may write

the bound � � 2
πζAζB

∑
j

α j

(ζ−1
B +ζ−1

A α j )2
, and then optimize each

α j to maximize the bound itself.
Returning to the definition of A, the bound on � can

potentially be largest when the singular values α j of A have
the largest possible range from which optimal values may
be chosen, and this occurs when TA shares its left singular
vectors {|a j〉} with Gvac

BA. This in turn combines with the
structure of A to ensure that its singular vectors {〈b j |} are
in fact the left singular vectors of Gvac

BA. Thus, we rewrite
αi = (giτi )2, where gi are the singular values of Gvac

BA, so that

� � 2
πζAζB

∑
j

(g jτ j )2

[ζ−1
B +ζ−1

A (g jτ j )2]2
. As the singular values gj are

fixed, we then optimize the singular values τ j to maximize
this upper bound for each channel j. The constraints on the
singular values τ j from (9) are loosest when TA = i Im(TA)
(purely anti-Hermitian), implying that its singular vectors
satisfy 〈a�

j, a j〉 = i for each channel j. Hence, Eq. (9) yields
the constraint τ j � ζA for each channel j.

The contribution of each channel j to the upper bound on
� is maximized at the Landauer limit of 1

2π if τ j = 1√
ζ−1
A ζBgi

is chosen, which requires
√

ζAζBgi � 1 in order for τi � ζA
to hold; this also corresponds to y j = ζB

2 . We interpret this
to mean that to obtain optimal heat transfer, the T operator
of body A in isolation must be engineered in a way that
depends on the presence of body B, due to both the presence
of the material response factor ζB and the dependence on the
singular values g j ofGvac

BA (propagating electromagnetic fields
in vacuum fromA to B). In turn, the expression y j = ζB

2 means
that the effective T operator of body B dressed by scattering
from body A must actually exhibit maximal scattering, and
not absorption, in the presence of body A [39], though it is
more difficult to extract information about the implications for
the T operator of body B in isolation. Importantly, maximal
scattering includes both far-field scattering from body B in
the presence of body A, as well as absorption from body A
in the presence of body B. If these two conditions can be met
simultaneously for the given channel j, which is effectively a
rate-matching condition relating the absorption and scattering
rates of each body in the presence of the other, then the per
channel Landauer transmission upper bound 1

2π is achieved.
Otherwise, if

√
ζAζBgi < 1, then τi = ζA must be used to

maximize the contribution, which yields 2ζAζBg2i
π (1+ζAζBg2i )

2 < 1
2π ,

and corresponds to yi = ζB
1+ζAζBg2i

� ζB
2 . We interpret this to

mean that if the singular value gi of Gvac
BA falls below a

threshold involving the two material response factors, then
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the optimal T operator of body A in isolation corresponds
to maximal absorption, and the optimal effective T operator
of body B dressed by body A evinces the effects of multiple
scattering with A. The contribution to � similarly shows the
effects of multiple scattering between the two bodies and is
unable to saturate the Landauer bound for that channel.

C. Generality of singular value bounds

To summarize, the bound on RHT may be written as

� � �opt =
∑
i

[
1

2π
�(ζAζBg

2
i − 1)

+ 2

π

ζAζBg2i
(1 + ζAζBg2i )

2
�(1 − ζAζBg

2
i )

]
, (11)

where � is the Heaviside step function. This bound depends
intimately on the interplay between material response factors
ζp for p ∈ {A,B} and the singular values gi ofGvac

BA, which we
term “radiative efficacies”. Similar characteristic values of the
vacuum Green function have been previously used by Miller
[44,45] in the ray-optics limit to derive material independent
bounds on optical communication based solely on the volume
occupied by the source and a receiver. However, here we in-
corporate material constraints that are shown to greatly reduce
the number and capacity of available transmission channels.
As in these works, the appearance of the radiative efficacies
in (11) (as a generalization including wave effects) represent
the magnitudes of coupling between natural bases of currents
in bodies A and B via propagation of EM fields. As the
material response (encoded in ζAζB) increases, progressively
more channels may saturate the Landauer limit per channel, so
that the Landauer limit (summed over all channels) is reached
asymptotically as ζAζB → ∞. However, the rate at which
this divergence occurs depends on the general geometry of
the problem, as that determines how the radiative efficacies
gi depend on the index i. We use the term “material-limited

contributions” to refer to the terms 2
π

ζAζBg2i
(1+ζAζBg2i )

2 , for ζAζBg2i <

1, which do not saturate the Landauer limit for those channels.
We emphasize that while the singular values gi of Gvac

BA are
technically restricted to the domains of the objects to give
the tightest bound on heat transfer, such a restriction is less
than ideal given the explicit dependence on the shapes of the
objects. However, as we prove in Appendix D, the singular
values gi of Gvac

BA are domain monotonic, meaning that they
increase monotonically as the volumes of regions A and B
increase; consequently, �opt is domain monotonic, as it is
monotonically nondecreasing with respect to gi for each i.
Separately from this, the regions containing only the material
degrees of freedom of each body can be replaced by larger
regions that fully enclose each body, as the T operators of
each body will commute with projections into the smaller
subspaces corresponding to the actual material degrees of
freedom. Thus, these bounds can be slightly loosened to
be independent of body shapes, and can then be evaluated
subject to constraints on topology and domain volumes as
determined by the desired application (Fig. 1), e.g., ellipsoids
with prescribed aspect ratios or films of prescribed thick-
nesses representative of compact or extended object shapes,

respectively. Essentially, the effective rank of Gvac
BA, which

determines the number of modes that could participate in
RHT, is largely determined by the size and topology of the
choice of bounding surface, which represents a general and
fundamental geometric constraint on the bounds of RHT
analogous to the general material constraints imposed by ζp
for each body p ∈ {A,B}; our bounds in turn capture the
coupling between both constraints.

III. COMPARISON TO ALTERNATIVE BOUNDS

The bound for the RHT spectrum � in (11) may be
compared to a number of other bounds. Strictly speaking,�opt

is not necessarily the tightest general bound that could be for-
mulated. In particular, using the relation T−1

A = V−1
A − Gvac

AA
allows for writing (6) in terms of TA and Im(Gvac

AA) without
reference to VA. Such a procedure, in analogy with bounds on
thermal emission which we detail in an upcoming paper [43],
would more explicitly capture far-field radiative losses from
bodies of finite size, which becomes more relevant at large
separations where such losses may compete with RHT itself.
However, as we show in Appendix E, we find the resulting
bound to be intractable, requiring self-consistent solution of
systems of nonlinear equations to find the optimal singular
values of TA. Therefore, we do not further consider such a
bound, and henceforth refer only to (11).

With respect to prior work, the most obvious point of
comparison is the Landauer bound [15], namely

�L =
∑
i

1

2π
, (12)

which simply depends on the number of modes participating
in RHT, without any reference to separation, geometric or ra-
diative constraints, or even material constraints, let alone their
interplay; consequently, in contrast to our bounds, there is no
metric to evaluate how many participating modes can actually
saturate the limit 1

2π . Even modal analyses that technically do
not necessarily assume saturation of the Landauer limits for
every mode [15–17,36] tend to neglect material effects, so the
purely geometric arguments are valid only in the ray-optical
regime where blackbody limits are reproduced. Thus, it is
clear that �opt � �L.

We also compare to the bound found by Miller et al. [18],
tight only in the quasistatic regime, written as

�qs =
∑
i

2

π
ζAζBg

2
i , (13)

which we term the “quasistatic bound.” This is derived by
limiting the singular values of YB such that only the total
scattering of body B in the presence of body A needs to
be nonnegative, meaning Im(YB) − Y �

B Im(V−1�
B )YB should

be positive semidefinite; this leads to the bound yi � ζB, so
maximization of� subject to that constraint as well as τi � ζA
simply requires saturation of both of these constraints. The
domain monotonicity of this bound trivially follows from that
of gi for each channel i, and the validity of the embedding
argument with respect to Tp still holds, meaning that �qs is
also a useful bound for the RHT spectrum when considering
bounding surfaces of arbitrary size and topology. However,
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we have shown that positive semidefiniteness of Im(YB) −
Y �
B Im(V−1�

B )YB, corresponding to nonnegative total scatter-
ing from body B in the presence of body A, is a looser
constraint on yi than nonnegativity of scattering from the
system as a whole, corresponding to positive semidefiniteness
of Im(YB) − YB[Im(V−1�

B ) + Gvac
BATA Im(V−1�

A )T �
AG

vac�
AB ]Y �

B:
the former constraint says that only the sum of far-field
scattering from B and absorption in A needs to be nonnegative
for B in the presence of A, whereas the latter constraint says
that far-field scattering from B in the presence of A needs to be
nonnegative by itself after discounting absorption in A. In this
way, �opt accounts not only for material constraints on each
body but also on the interplay with constraints on radiation
between the bodies given their geometries and separations,
whereas �qs accounts for each constraint separately without
considering the interplay; for this reason, the contribution
to �opt per channel is bounded from above, whereas the
contribution to �qs per channel may be unbounded. The
contribution from each channel to �opt is also bounded above
by the corresponding contribution to �qs for that channel,
which implies �opt � �qs overall.

We may write the overall inequalities as

�opt � �qs,�L. (14)

In general, it is not possible to write an inequality relation
between �qs and �L in all situations, because �qs may have
some contributions 2

π
ζAζBg2i which fall above or below 1

2π ,
and the geometry determining gi would have to be known in
order to know how many fall above or below. This is now a
moot point though as we now have a bound that is at least as
tight as each of those bounds.

IV. CONCLUDING REMARKS

We have determined bounds for the RHT spectrum �

based purely on algebraic arguments. In particular, we have
shown that there is a tension between optimizing transmission
channels and material/geometric constraints placed on each
object in isolation as well as in in the presence of the other.
As a result, a select number of channels can saturate previ-
ously derived Landauer bounds, while others are restricted by
the aforementioned constraints. By virtue of domain mono-
tonicity, these bounds can be applied in a shape-independent
manner, so while they can be evaluated analytically in highly
symmetric bounding surfaces, they can just as easily be evalu-
ated numerically in more complicated domains depending on
specific design constraints (Fig. 1). Similarly, the dependence
on the material response factor ζ = |χ |2/ Im χ does not make
explicit reference to a particular frequency or material model.
In comparison, the Landauer bounds yield overly optimistic
predictions, while choosing a scalar response for each object
corresponding to maximal absorption of every incident field in
isolation yields overly pessimistic predictions. Additionally,
we find that previous work by Miller et al. [18] also yields
overly optimistic predictions compared to our current bounds,
because those derivations neglect the interplay between ma-
terial and geometric radiative constraints between the two
bodies and consequently overestimate the optimal response
of one body in the presence of the other. We point out that
while our bounds are always at least as tight as Landauer

and quasistatic limits for any given bounding domain, they
say nothing about which domains may yield the tightest per
volume limits given material constraints, or whether they may
in fact be attained by physically realizable structures. In sum-
mary, while quasistatic and Landauer limits are technically
upper bounds on RHT, their neglect of the coupling between
radiative geometric constraints and material losses in both
cases (and of each constraint itself in the latter case) render
them loose compared to the bounds presented here. We further
emphasize that in contrast to quasistatic limits [18], which can
become unphysically loose and diverge beyond the near field
for extended geometries, our bounds are valid and could be
tighter from the near field all the way through the far field
for bodies of arbitrary size: No nonretarded or quasistatic
approximations are made, and the saturation of contributions
per channel at the Landauer limit constitutes a greater promise
of a finite bound.

In a complementary paper [42] we analyze these bounds
in the near field in specific geometries of interest, particularly
high-symmetry domains enclosing dipolar as well as extended
(infinite area) bodies. There we find that �opt either saturates
or increases very slowly compared to the rapid increase in
�qs as a function of ζAζB, and that the material-limited
contributions to �opt, representing the feasible energy transfer
spectrum for high-symmetry homogeneous isotropic media at
a polariton condition, comes very close to �opt for practically
achievable material response factors. These findings suggest
that the role of nanostructuring in enhancing the near-field
RHT spectrum above results achievable in high-symmetry
objects made of appropriately chosen polar dielectric ma-
terials will be limited, and this has important implications
for the theoretical and experimental design of devices for
cooling, heat dissipation, and energy generation. Additionally,
we apply similar ideas to upper bounds on thermal emission
(see Appendix C) in a separate work [43], and to determinis-
tic scattering processes in forthcoming works, extending the
ideas of optical communication bounds by Miller [44,45] to
include the effects of material constraints.
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APPENDIX A: NOTATION

We briefly discuss the notation used through the main text
and the Appendices. A vector field v(x) will be denoted as
|v〉. The conjugated inner product is 〈u, v〉 = ∫

d3xu�(x) ·
v(x). An operator A(x, x′) will be denoted as A, with
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∫
d3x′A(x, x′) · v(x′) denoted as A|v〉. The Hermitian con-

jugate A† is defined such that 〈u,A†v〉 = 〈Au, v〉. The anti-
Hermitian part of a square operator (whose domain and range
are the same size) is defined as the operator Asym(A) =
(A − A†)/(2i). Finally, the trace of an operator is Tr(A) =∫
d3x Tr[A(x, x)]. Through this paper, unless stated explicitly

otherwise, all quantities implicitly depend on ω, and such
dependence will be notationally suppressed for brevity.

APPENDIX B: PROOF OF VON NEUMANN
TRACE INEQUALITY

In this Appendix we reproduce the proof of a trace in-
equality by von Neumann [46] for clarity. The lemma is
as follows: If operators An for n ∈ {1, 2, . . . ,N} have fixed
singular values labeled σ

(n)
i , then the singular vectors that

maximize Tr[A1A2 · · ·AN ] are common between operators
multiplied together. That is, the singular value decompo-
sition of An should follow An = ∑

i σ
(n)
i |a(n)i 〉〈a(n+1)

i | for
n ∈ {1, 2, . . . ,N − 1}, with AN = ∑

i σ
(N )
i |a(N )

i 〉〈a(1)i |, where
the vectors |a(n)i 〉 are orthonormal for each n such that
〈a(n)i , a(n)j 〉 = δi j . This lemma will hold even if each An is not
square, as long as AnAn+1 forms a valid nontrivial operator
product, as these can be embedded in larger spaces padded
with more vanishing singular values. Thus, we restrict our
consideration to square operators. Moreover, associativity
means AnAn+1An+2 = (AnAn+1)An+2, and the trace of a
product of operators is invariant under cyclic permutations, so
we ultimately only consider maximizing the trace of a product
of two operators, as maximization of the trace of products of
more than two operators follows inductively from this.

To maximize Tr[AB], assuming it to be real and nonnega-
tive, we start by writing

A =
N∑
i=1

σi|ui〉〈vi|, (B1)

B =
N∑
j=1

τ j |w j〉〈y j |, (B2)

where N is the size of the space; this may be larger than
the rank of either A or B, but the point is moot because the
singular values are fixed, whether they vanish or not, and
it has already been assumed that A and B are square. We
also assume that the singular values are ordered such that
σi � σi+1 for all i ∈ {1, 2, . . . ,N − 1} and τ j � τ j+1 for all
j ∈ {1, 2, . . . ,N − 1}. This allows for writing

Tr[AB] =
N∑
i=1

N∑
j=1

σi pi jτ jq ji (B3)

in terms of pi j = 〈vi,w j〉 and q ji = 〈y j,ui〉. As the singular
vectors are orthonormal, then pi j and q ji are the elements
of unitary matrices, satisfying

∑N
j=1 |pi j |2 = ∑N

i=1 |pi j |2 =∑N
j=1 |q ji|2 = ∑N

i=1 |q ji|2 = 1. As Tr[AB] is assumed to be
real and nonnegative, it is maximized when σi pi jτ jq ji are all
nonnegative; this means the singular vectors can be chosen
without loss of generality such that pi j and q ji are real and

nonnegative, implying pi j and q ji are the elements of real-
valued orthogonal matrices.

We use induction to prove that maximizing the trace
requires that {|ui〉} be the duals of {〈y j |}, and that {〈vi|}
by the duals of {|w j〉}. The case N = 1 is trivial, as
all quantities are scalars. For N = 2, we use orthogo-
nality to note that p1,2 = p2,1, q1,2 = q2,1, p1,1 = p2,2 =√
1 − p21,2, and q1,1 = q2,2 =

√
1 − q21,2. As a result, we

may write Tr[AB] =
√
(1 − p21,2)(1 − q21,2)(σ1τ1 + σ2τ2) +

p1,2q1,2(σ1τ2 + σ2τ1). As the first term in parentheses is larger
than the second term in parentheses by the nonnegative value
(σ1 − σ2)(τ1 − τ2) given the ordering of singular values, hav-
ing the left singular vectors of one operator not be duals of the
right singular vectors of the other and vice versa could only

increase the trace if
√
(1 − p21,2)(1 − q21,2) + p1,2q1,2 > 1, but

this leads to the impossible condition 0 > (p1,2 − q1,2)2, so
we can only have p1,2 = q1,2 for the trace to be maximized,
implying the duality result must hold.

The inductive step assumes an arbitrary N − 1 and moves
from there to proving the statement for N . Without loss of
generality, we consider first the contribution of the largest
singular value τ1 of B, namely τ1|w1〉〈y1|, interacting with
A = ∑

i σi|ui〉〈vi| in the trace. This yields the contribution∑
i(pi,1 − q1,i )2 = 2(1 − ∑

i pi,1q1,i ) � 0 using the fact that∑
i p

2
i,1 = ∑

i q
2
1,i = 1, so this in turn gives the condition∑

i pi,1q1,i � 1. The trace can be seen to be maximal when the
above condition is saturated, so

∑
i pi,1q1,i = 1, which implies

pi,1 = q1,i for every i. As this also holds when the roles of
A and B are interchanged, and as this can be progressively
carried out for each successively smaller singular value given
orthonormality of the singular vectors, then the duality condi-
tion must hold, completing the proof.

APPENDIX C: DERIVATION OF RADIATIVE
HEAT TRANSFER FORMULAS

In this Appendix we derive the formula for the radiative
heat transfer spectrum between two bodies, without assump-
tions about retardation, homogeneity, locality, or isotropy.
The formula depends on individual T operators and the vac-
uum Green’s function, and follows a previous derivation [47]
which considered energy transfer by fluctuating volume cur-
rents. Through further derivation, we also equate this formula
to another formula involving the susceptibilities and the full
Maxwell Green’s function, and use that to recast the heat
transfer spectrum in a Landauer form, whence we prove that
the singular values of the Landauer transmission operator for
RHT do not exceed 1/4. Finally, we prove that the formula for
thermal emission of a single body in isolation can be derived
from the formula for RHT between two bodies in vacuum,
by taking the second body to fully enclose the first and to
be perfectly absorbing, thus taking on the role of a perfectly
absorbing medium (vacuum).

1. T-operator formula

Our derivation of the heat transfer spectrum from the
fluctuation-dissipation theorem for dipole sources in each
body follows Ref. [47], which we reproduce here for clarity.
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Consider two bodies A and B in vacuum with general sus-
ceptibilities Vp for p ∈ {A,B} which may be inhomogeneous,
nonlocal, or anisotropic. Maxwell’s equations may be written
in integral form as

|E〉 = Gvac|P〉, (C1)

|P〉 = |P(0)〉 + V |E〉 (C2)

for the fields |E〉 and total polarizations |P〉 in terms of the
polarization sources |P(0)〉, after defining

|E〉 =
[|EA〉
|EB〉

]
, |P〉 =

[|PA〉
|PB〉

]
(C3)

(C4)

in block form for the material degrees of freedom constituting
each object. Using these in conjunction with (2), (3), and (4),
where as a reminder T−1

p = V−1
p − Gvac

pp , Maxwell’s equa-
tions can be formally solved to yield

|E〉 = GvacTV−1|P(0)〉,
|P〉 = TV−1|P(0)〉

(C5)

obtained by applying formulas for the block matrix inverse to
compute T . We also define the projection operators,

IA =
[
IA 0

0 0

]
, IB =

[
0 0

0 IB

]
, (C6)

such that (abusing notation) Ip is the projection onto the
material degrees of freedom of body p.

We consider the energy flow from fluctuating dipole
sources only in body A into material degrees of freedom in
body B, noting that reciprocity would yield the same heat
transfer if the roles of bodies A and B were interchanged. This

means |P(0)〉 = [|P
(0)
A 〉
0

] defines the fluctuating sources in body

A. The heat transfer spectrum is the ensemble-averaged work,
denoted by 〈· · · 〉, done by the field,

� = 1
2 Re(〈〈IBE, IBJ〉〉), (C7)

where |J〉 = −iω|P〉. Using the Hermiticity and idempotence
of Ip yields � = − ω

4i (〈〈IBP,E〉〉 − 〈〈E, IBP〉〉), and using the
results of (C5) gives

� = −ω

2

〈〈
P(0)
A , IAV

−1†T † Asym(IBG
vac)TV−1IAP

(0)
A

〉〉
(C8)

in terms of the fluctuating sources |P(0)
A 〉. As these fluctuations

are thermal in nature, their correlations are given by the
fluctuation-dissipation theorem〈∣∣P(0)

A

〉〈
P(0)
A

∣∣〉 = 4

πω
Asym(VA) (C9)

(suppressing the Planck function � as it has already been
factored to be separate from �), yielding

� = − 2

π
Tr[Asym(V−1†

A )IAT
† Asym(IBG

vac)TIA]

(C10)

as the dressed radiative heat transfer spectrum.

To prove equivalence of this expression for � to that
involving only Gvac and Tp, it is useful to explicitly invoke
reciprocity: V�

p = Vp, T�
p = Tp, and (Gvac

pq )
� = Gvac

qp for
p, q ∈ {A,B}, implying that V †

p = V �
p , T

†
p = T �

p , (G
vac
pq )

† =
Gvac�

qp , and Asym(A) = Im(A) for A ∈ {Vp,Tp,Gvac
pp }. This

allows for writing the operators

Asym(IBG
vac) =

[
0 −Gvac�

AB /(2i)

Gvac
BA/(2i) Im(Gvac

BB )

]
,

TIA =
[ (

T−1
A − Gvac

ABTBGvac
BA

)−1

TBGvac
BA

(
T−1
A − Gvac

ABTBGvac
BA

)−1

]
,

IAT
† =

[ (
T−1�
A − Gvac�

AB T �
BG

vac�
BA

)−1

(
T−1�
A − Gvac�

AB T �
BG

vac�
BA

)−1
Gvac�

AB T �
B

]
,

in block matrix form, where the projection onto A allows
for truncation to the appropriate block column or row for
notational convenience; note that IAT † should actually
be a row vector, but has been written as a column for
ease of reading. Multiplying these matrices together, it can
be noted that Gvac

BA (T
−1
A − Gvac

ABTBGvac
BA )

−1 = Gvac
BA (IA −

TAGvac
ABTBGvac

BA )
−1TA = (IB − Gvac

BATAGvac
ABTB)−1Gvac

BATA =
SA
BG

vac
BATA using the definition of the scattering operator

SA
B = (IB − Gvac

BATAGvac
ABTB)−1. Additionally, using the

definition T−1
p = V−1

p − Gvac
pp , it is easy to prove that

Im(TB) − T �
B Im(Gvac

BB )TB = T �
B Im(V−1�

B )TB, and likewise
Im(TA) − TA Im(Gvac

AA)T
�
A = TA Im(V−1�

A )T �
A. Thus, the

result is (5) in the main text, as expected.

2. Derivation of Green’s function heat transfer formula

Our derivation of the bounds in the main text relies on the
relationship between the heat transfer spectrum � written in
terms of the vacuum Green’s function and the T operators of
individual objects, to the heat transfer formula [1]

� = 2

π
Tr[Asym(VA)G

†
BA Asym(VB)GBA], (C11)

where G = (Gvac−1 − VA − VB)−1 is the full Maxwell
Green’s function in the presence of both bodies, with the block
GBA representing the fields in body B due to dipole sources in
body A. We start with the T-operator form by writing

�(ω) = 2

π
Tr

[
Asym(VA)V

−1†
A T †

A

(
SA
BG

vac
BA

)†
T †
B

×V−1†
B Asym(VB)V

−1
B TBS

A
BG

vac
BATAV

−1
A

]
, (C12)

where we have used the facts that Asym(V−1†
B ) =

V−1†
B Asym(VB)V−1

B and Asym(V−1†
A ) =

V−1
A Asym(VA)V

−1†
A along with invariance of the trace

under cyclic permutations of operator products. From
this, it can be seen that the two expressions for �(ω)
are guaranteed to be the same if the operator GBA is
the same as V−1

B TBSA
BG

vac
BATAV

−1
A . We use the fact that

V−1
σ = T−1

σ + Gvac
σσ to say that

V−1
B TBS

A
BG

vac
BATAV

−1
A

= (
IB + Gvac

BBTB
)
SA
BG

vac
BA

(
IA + TAG

vac
AA

)
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must hold. To prove that this is equal to GBA, we use the
definition

G = Gvac + GvacTGvac (C13)

in conjunction with definitions of Gvac and T as 2 × 2 block
matrices in (4) to write

GBA = Gvac
BA + [

Gvac
BA Gvac

BB

]
T

[
Gvac

AA

Gvac
BA

]
(C14)

for this system. Performing this matrix multiplication, recog-
nizing that Gvac

BATAGvac
AB(T

−1
B − Gvac

BATAGvac
AB)

−1 = SA
B − IB,

using the fact definition of SA
B , and collecting and can-

celing terms leads to the proof of the equality GBA =
V−1
B TBSA

BG
vac
BATAV

−1
A .

3. Landauer bounds on heat transfer singular values

We now prove that radiative heat transfer between arbi-
trarily shaped bodies can also be expressed as the trace of
a transmission matrix whose singular values can be bounded
above, similar to previously derived bounds in planar media.
This relation intuitively connects the finite value of the RHT
bounds and approximate low rank of GBA, and can be proved
as follows. For this, we use the cyclic property of the trace to
define

� = 2

π
Tr(Q†Q), (C15)

whereQ = Im(VB)1/2GBA Im(VA)1/2 is the heat transmission
operator.

The definition G−1 = Gvac−1 − (VA + VB) along with the
fact that the vacuum Maxwell operator Gvac−1 is real valued
in position space leads to

Asym(G) = G† Asym(VA + VB)G, (C16)

which relates dissipation in polarization currents and elec-
tromagnetic fields in equilibrium. Additionally, the fact
that Asym(Vp) is a Hermitian positive-definite operator for
each body p ∈ {A,B} means it has a unique square root
Asym(Vp)1/2. Rearranging the above equation, multiplying
both sides by 2 Asym(VA)1/2, and adding IA to both sides
gives

4Asym(VA)
1/2G† Asym(VB)GAsym(VA)

1/2

+ 4Asym(VA)
1/2G† Asym(VA)GAsym(VA)

1/2

+ 2i(Asym(VA)
1/2GAsym(VA)

1/2

− Asym(VA)
1/2G† Asym(VA)

1/2) + IA = IA

recognizing the equality Q†Q = Asym(VA)1/2G†

Asym(VB)GAsym(VA)1/2. Following this substitution,
this may be factored as

4Q†Q + [IA + 2iAsym(VA)
1/2GAA Asym(VA)

1/2]†

× [IA + 2iAsym(VA)
1/2GAA Asym(VA)

1/2] = IA,

(C17)

where G has been replaced by its blocks GAA and GAB

due to multiplications on each each side by Asym(Vp)1/2 for
p ∈ {A,B} (and likewise for G†). This expression is the sum

of two Hermitian positive-semidefinite operators equal to the
identity; though this has been done for body A, reciprocity
of heat transfer yields a similar expression in terms of the
operators for body B. Consequently, the singular values of
the operator Q†Q entering the trace expression for �(ω)
must all be less than or equal to 1/4. We emphasize that
this derivation is valid for compact or extended structures of
arbitrary geometry, without any need to expand heat transfer
in terms of incoming and outgoing plane waves specific to
translationally symmetric systems [15].

4. Single-body thermal radiation from two-body
radiative heat transfer

In this section we prove that the formula for thermal emis-
sion of a single body in isolation in vacuum can be derived by
starting from the formula for heat transfer between two bodies
in vacuum under the following conditions. We take body A to
be the thermal emitter in question, while body B is taken to
fully surround body A as a shell of inner radius rB and outer
radius RB with susceptibility VB = χBIB, and take the si-
multaneous limits Im(χB) → 0 and ωrB/c → ∞ constrained
by ω(RB − rB)/c → ∞ and ω(RB − rB) Im(χB)/c → 1, in
which case body B takes on the role of a perfectly absorbing
medium.

To start, we note that T−1
B = V−1

B − Gvac
BB in conjunction

with reciprocity allows for writing (5) as

� = 2

π
Tr

{
TBS

A
B Asym

(
V−1†
B

)
SA†
B T †

B

× (
Gvac

AB

)†[
Asym(TA) − T †

A Asym
(
Gvac

AA

)
TA

]
Gvac

AB

}
.

In the aforementioned size and susceptibility limits for body
B, TB → 0 so SA

B → IB, and TBSA
B Asym(V−1†

B )SA†
B T †

B →
Asym(VB). Using reciprocity, this yields � =
2
π
Tr{Gvac

AB Im(VB)Gvac�
BA [Im(TA) − T �

A Im(Gvac
AA)TA]}. For

a system with a general susceptibility V and Maxwell
Green’s function G = (Gvac−1 − V )−1, the relations
G Im(V )G� = G� Im(V )G = Im(G) will always hold.
Considering B in isolation, the simultaneous constrained
limits of infinite size and infinitesimal susceptibility mean
that Gvac

AB Im(VB)Gvac�
BA → Im(Gvac

AA). Finally, this yields the
emission formula

� = 2

π
Tr{Im(Gvac)[Im(T ) − T � Im(Gvac)T ]} (C18)

in agreement with the formula derived by Krüger et al. [26],
where the subscripts A have been dropped as there is only
one material body under consideration given that body B has
effectively vanished.

APPENDIX D: PROOF OF DOMAIN MONOTONICITY
OF SINGULAR VALUES OF Gvac

BA

In this Appendix we prove that the singular values gi of
Gvac

BA are domain monotonic. The singular values of Gvac
BA are

the eigenvalues of Gvac
BA (G

vac
BA )

†. We consider the effects of a
perturbative addition of volume only to body A; a perturbative
effect on body B can be considered through reciprocity, and
the proof will remain the same. Under this condition, we write
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the block row vector of operators

Gvac
BA = [

Gvac
BA0

Gvac
B�A

]
, (D1)

where Gvac
BA0

is the operator propagating fields in vacuum
from the unperturbed volume A0 to body B, and Gvac

B�A is the
operator propagating fields in vacuum from the perturbative
volume �A to body B. Using reciprocity, we may then write

Gvac
BA

(
Gvac

BA

)† = Gvac
BA0

Gvac�
A0B + Gvac

BA0
Gvac�

�AB

+Gvac
B�AG

vac�
A0B + Gvac

B�AG
vac�
�AB (D2)

for which the first term Gvac
BA0

Gvac�
A0B is the Hermitian positive-

semidefinite unperturbed operator, the terms Gvac
BA0

Gvac�
�AB and

Gvac
B�AG

vac�
A0B vanish because the projections onto the volume

A0 and �A are orthogonal to each other, and Gvac
B�AG

vac�
�AB

is the Hermitian positive-semidefinite perturbation. From
Rayleigh-Schrödinger perturbation theory, if ρi is an unper-
turbed singular value of Gvac

BA0
with |bi〉 being the correspond-

ing normalized right singular vector, then the perturbation to
ρi is 〈bi,Gvac

B�AG
vac�
�ABbi〉, which is nonnegative by virtue of

the positive semidefiniteness of Gvac
B�AG

vac�
�AB. Therefore, any

increase in the volume of a body will increase the singular
values of Gvac

BA.

APPENDIX E: ALTERNATIVE BOUNDS INCORPORATING
FAR-FIELD RADIATIVE LOSSES THROUGH Im(Gvac

AA )

In this Appendix we derive an alternative bound to (11) that
involves Im(Gvac

AA), thus capturing constraints on scattering
losses purely from finite object sizes rather than through
multiple scattering. Starting from T−1

A = V−1
A − Gvac

AA, op-
erator manipulations lead to T−1

A Im(V−1�
A )T �

A = Im(TA) −
TA Im(Gvac

AA)T
�
A. Hence, from (6),

� = 2

πζB
Tr

{
Gvac�

AB Y �
BYBG

vac
BA[Im(TA) − TA Im(Gvac

AA)T
�
A]
}
,

which now hides reciprocity, as no similar transfor-
mation has been made to eliminate terms giving rise
to ζB. Using the singular value decompositions Gvac

BA =∑
i gi|bi〉〈ai| and YB = ∑

i yi|b�
i 〉〈bi| but leaving TA general,

we find that the constraint on yi is saturated when yi =
(ζ−1

B + ζ−1
A g2i 〈ai,TAT �

Aai〉)
−1
. Completing the square, one

may write

Im(TA) − TA Im
(
Gvac

AA

)
T �
A = Im

(
Gvac

AA

)−1/2

×
[
1

4
IA −

(
Im

(
Gvac

AA

)1/2
TA Im

(
Gvac

AA

)1/2 − i

2
IA

)

×
(
Im

(
Gvac

AA

)1/2
TA Im

(
Gvac

AA

)1/2 − i

2
IA

)�]
Im

(
Gvac

AA

)−1/2
.

This strongly suggests that the optimal TA should be
diagonalized in the same basis as Im(Gvac

AA), so if we
write

Im
(
Gvac

AA

) =
∑
i

ρi|qi〉〈qi|,
then one may also write TA = i

∑
i τi|qi〉〈qi|. This implies

that the constraint on the singular values of YB becomes

yi =
⎛
⎝ζ−1

B + ζ−1
A g2i

∑
j

τ 2
j |〈ai,q j〉|2

⎞
⎠

−1

so yi depends on τ j for every channel j, not just j = i.
Consequently, we arrive at the following bound:

� � 2

π

∑
i

ζBg2i

(∑
j τ j (1 − ρ jτ j )|〈ai,q j〉|2

)
[
1 + ζ−1

A ζBg2i

(∑
j τ

2
j |〈ai,q j〉|2

)]2 (E1)

for which finding the optimal values of τi for each channel
i requires self-consistently solving a large set of nonlinear
equations subject to the constraint τi � ζA for each i. While
this expression should yield tighter bounds on RHT owing
to the incorporation of constraints on scattering losses for
both objects in isolation (in addition to multiple scattering),
it appears to be analytically intractable and must therefore
be evaluated numerically, which we leave to future work;
that said, numerical solution of the optimal values of τi for
evaluating this bound requires solving a large set of nonlinear
polynomial equations, which is generally computationally
easier than brute-force optimization of the RHT spectrum due
to the nonpolynomial dependence of � on the T operators
in general. We point out that in the nonretarded quasistatic
limit, Im(Gvac

AA) → 0, so all of its singular values may be
taken to vanish as well; this means that its singular vectors
become arbitrary, allowing for choosing |qi〉 = |ai〉. Doing
so, the above expression simplifies to� = 2

π

∑
i

ζBg2i τi
(1+ζ−1

A ζBg2i τ
2
i )

2 ,

from which it can be seen that if the material bound τi � ζA is
saturated, each contribution is identical to the corresponding
contribution from (11); if the material bound is not saturated,
then the optimal τi = 1√

3ζ−1
A ζBgi

leads to a larger contribution

than what we find in (11), yielding an overall looser bound.
This corroborates the notion that our present bounds, which
do not include an explicit expression in terms of Im(Gvac

AA), do
not fully account for dissipation via far-field radiative losses.
Considering the singular values ρi will remedy this, but at the
cost of greater complexity.
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