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Highly resonant photonic structures, such as cavities and metasurfaces, can dramatically enhance the
efficiency of nonlinear processes by utilizing strong optical field enhancement at the resonance. The latter,
however, comes at the expense of the bandwidth. Here, we overcome such a tradeoff by utilizing time-varying
resonant structures. Using harmonics generation as an example, we show that the amplitude and phase format of
the excitation, as well as the time evolution of the resonator, can be optimized to yield the strongest nonlinear
response. We find the conditions for an efficient synthesis of electromagnetic signals that surpass the cavity
bandwidth, and discuss a potential experimental realization of this concept.
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I. INTRODUCTION

Resonant photonic structures are among the most common
and fundamental building blocks in optics, finding numer-
ous applications in sensing [1], optical computing [2], and
metrology [3]. Particularly desirable are resonators with high
quality (Q) factors because they provide large optical field
enhancement, thereby enhancing the efficiency of nonlinear
processes such as harmonics generation (HG) [4–8]. However,
high-Q resonances limit the operational spectral range of such
structures. For example, nonlinear generation of ultrashort
high-harmonic pulses is prevented by the long filling time
of the resonator (τres ∼ Q/ω, where ω is the resonance fre-
quency) [9,10], during which a near-monochromatic harmonic
signal is generated inside the resonator.

This limitation cannot be remedied by employing broad-
band excitation pulses because only a small fraction of the
laser spectrum effectively interacts with the resonator. Fortu-
nately, this time-bandwidth limit holds only for as long as the
cavity parameters—eigenfrequency and lifetime—are con-
stant in time [11]. Here, we show that time-variant resonators
(TVRs) whose resonant frequencies ω ≡ ω(t ) are varied in
time can overcome these limitations, thereby resolving one of
the most fundamental tradeoffs in nonlinear optics: the one
between efficiency and spectral bandwidth.

TVRs have recently attracted considerable attention be-
cause of their potential for efficient frequency conversion
[12–15], nonreciprocal devices [16–18], topological photon-
ics [19], and time-variant metamaterials [16,20,21]. Using
a simple theoretical framework based on the coupled mode
theory (CMT) [22,23], a variety of exotic phenomena have
been successfully predicted, such as perfect frequency con-
version into a sideband with light reversal [24], continuous
adiabatic frequency conversion [12], and many others. To
our knowledge, the possibility of substantially modifying
nonlinear light-matter interactions using TVRs has not yet
been considered. In this contribution, we demonstrate that the

nonlinear interaction between high-Q TVRs and broadband
laser pulses can be dramatically enhanced by employing
frequency-chirped pulses. Specifically, we show that, for a
given fluence and bandwidth, the interaction of judiciously
engineered chirped laser pulses with nonlinear TVRs can
produce much stronger and spectrally broader harmonics than
their transform-limited counterparts interacting with either
static or time-varying nonlinear resonators.

The rest of the paper is organized as follows. First, we
introduce a CMT model of a single-mode TVR and derive
an analytic expression for the mode’s amplitude and phase
in response to an arbitrary input pulse. Next, under the as-
sumption of a linearly changing resonance frequency of the
resonant mode, we derive the optimal driving pulse’s parame-
ters (its chirp and duration) designed to optimize harmonically
generated (HG) signal inside the resonator. The fractional
bandwidth of the HG signal is shown to be proportional to that
of the laser pulse, �ωL/ωL � Q−1, where Q is the quality
factor of the mode. Finally, we discuss the implications of
our findings to resonant generation of high optical harmonics
and outline potential experimental realizations of broadband
nonlinear interactions with high-Q TVRs.

II. CMT MODEL OF A SINGLE-MODE TVR

In the rest of the paper, we assume that a TVR supports a
single mode with a time-dependent natural frequency ω(t ), as
illustrated in Fig. 1(a). The TVR has decay time τres ≡ γ −1,
and a time-dependent complex amplitude a(t ) excited by a
free-space excitation field s(t ) according to the following
CMT equation [22,23]:

ȧ(t ) + [iω(t ) + γ ]a(t ) = √
γ s(t ), (1)

where the nonradiative (e.g., Ohmic) losses in the resonator
are neglected. For simplicity, ω(t ) is assumed to be pre-
scribed and independent of s(t ) or a(t ), i.e., the nonlinear
modifications of the modal frequency due to Kerr effect [25]
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FIG. 1. (a) Schematic of a single-mode time-varying resonator
(TVR) with a modal frequency ω(t ) = ω0 + αω2

0t and the decay rate
γ . Input: frequency-chirped Gaussian pulsed source s(t ); see Eq. (3).
Output: fundamental and nth harmonics: snω ∝ an(t ). (b) Time-
integrated normalized energy W1/U0 inside the TVR as a function
of the linear frequency chirp β. Pulse duration: τ = 100/ω0; nor-
malized rate of change of the modal frequency: α = 10−3; phase of
the excitation pulse: ψ (t ) = ω0t (1 + βω0t/2).

or photocarrier generation [12,13] are assumed small. The
exact solution of Eq. (1), under the initial condition of a(t =
−∞) = 0, is analytically calculated by transforming into a
rotating frame of the resonator’s mode and expressing the
pulse shape in the form of s(t ) = A(t )e−iψ (t ). Here A(t ) and
ψ (t ) are the pulse amplitude and phase, respectively, and
the normalized pulse energy is U0 = ∫ ∞

−∞ A2dt . The mode’s
amplitude is then given by

a(t ) = √
γ e−iφ(t )

∫ t

−∞
A(t ′)e−γ (t−t ′ )ei[φ(t

′ )−ψ (t ′ )]dt ′, (2)

where φ(t ) = ∫ t
−∞ ω(t ′)dt ′ is the phase advance of the mode.

III. OPTIMAL TEMPORAL FORMAT
OF THE DRIVING PULSE

The mode energy is maximized when the oscillating phase
term under the integral is minimized by prescribing

ψ (t ) =
∫ t

−∞
ω(t ′)dt ′ + ϕ, or ψ̇ (t ) = φ̇(t ). (3)

While the arbitrary geometrical phase ϕ has interesting im-
plications in topological photonics [26,27], it will be omitted
in order to stay within the scope of this paper. Equation (3),
which we refer to as the optimally matched chirp (OMC)
condition, provides the recipe for choosing the normalized
frequency chirp β of the excitation pulse, defined as β ≡
ω−2
0 d2ψ/dt2. For the prescribed modal frequency ω(t ) sat-

isfying the initial condition ω(t = 0) = ω0, the OMC con-
dition becomes β = ω−2

0 dω/dt . For example, the optimal
normalized chirp β is constant for a linearly changing modal
frequency: if

ω(t ) = ω0(1 + αω0t ), (4)

then φ(t ) = ω0t + αω2
0t

2/2, and Eq. (3) yields β = α.
To illustrate the importance of the optimal chirp, the overall

time-integrated energy inside the TVR, W1 = ∫ ∞
−∞ |a(t )|2dt ,

is plotted in Fig. 1(b) as a function of the input pulse
chirp β for several values of the damping rate γ . Here, lin-
early chirped pulses with ψ (t ) = ω0t (1 + βω0t/2) and Gaus-
sian shapes A(t ) = AG ≡ (2/πτ 2)1/4e−t2/τ 2

are used; see the
Appendix. The spectral bandwidth of the TVRs is varied from

FIG. 2. Harmonics generation in a nonlinear TVR. (a) Time-
integrated normalized energies W̃1 = γW1/U0 of the fundamental
(solid curve), W̃2 = γW2/U 2

0 of the second-harmonic (dashed curve),
and W̃3 = γW3/U 3

0 of the third-harmonic (dot-dashed curve) versus
normalized pulse duration γ τ under the optimally matched chirp
(OMC) excitation by a top-hat pulse. (b) Optimal pulse durations for
harmonics orders 2 � n � 21 produced by top-hat (dots), Gaussian
(circles), and sech-shaped (squares) driving pulses. Note that the
optimal pulse duration is approximately equal to the instantaneous
fill time τres ≡ γ −1 of the TVR.

γ = 10−3ω0 to γ = 10−2ω0 (i.e., from Q ≡ ω0/2γ = 500 to
Q = 50), and the spectral bandwidth swept by the resonant
modal frequency over the time duration of the pulse is fixed at
�ω ≈ αω2

0τ = 0.1ω0 for all cases by choosing τ = 100/ω0

and α = 10−3. In other words, in all the cases shown in
Fig. 1(b) the bandwidth sweep �ω is broader than the TVR’s
instantaneous bandwidth γ .

We observe from Fig. 1(b) that the value of the normalized
W1/U0 is maximized for all values of γ by satisfying the
OMC condition, thereby potentially enhancing any nonlinear
interaction between the pulse and the resonator in the presence
of a nonlinear material embedded into the resonator cavity.
Note that the OMC condition also implies that the resonant
modal frequency is swept precisely over the bandwidth of
the chirped pulse, i.e., �ωL ≡ βω2

0τ = �ω. Therefore, un-
der the OMC condition, the pulse is not transform- limited:
�ωLτ � 1. We also observe from Fig. 1(b) that, under the
OMC condition, the energy enhancement inside the TVR
increases with its Q factor. This observation justifies the intu-
itive approach of using resonators with a narrow linewidth γ ,
whose resonant frequency ω(t ) is dynamically swept over a
much broader spectral range �ω � γ in order to produce
intense broadband harmonic signals. The resulting condition,
βω0τ � γ /ω0, is satisfied for the three TVRs modeled in
Fig. 1(b).

To investigate the effect of the pulse duration on the total
energy pumped into the TVR by the OMC pulse, we calcu-
lated the normalized internal TVR energy W̃1 = γW1/U0 for
a top-hat laser pulse A(t ) = ATH, where ATH = (2τ )−1/2 for
|t | < τ . The analytic solution W̃1 = 1 + (e−2γ τ − 1)/2γ τ in
Fig. 2(a) (solid line) versus the normalized pulse duration γ τ .
The monotonic increase of W̃1 with τ/τres (where τres = γ −1

is the instantaneous fill time of the TVR) is expected: pulses
that are shorter than τres only partially excite the TVR during
the time course of their interaction. Note that, for a given
chirp rate β = α and a given instantaneous Q factor, both
the time-integrated energy and bandwidth of the optical field
inside the TVR field monotonically increase with the pulse
duration.
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Therefore, and crucially, the driving pulse does not need to
be narrowband to produce strong field enhancement inside a
high-Q resonator, as it would be the case for a static resonator.
The W1 ∝ Q scaling clearly indicates that the combination
of a TVR and an optimally chirped excitation signal enables
one to resonantly couple a broadband pulse to an evolving
resonator with an arbitrarily high instantaneous Q factor. In
other words, it is possible to benefit from the resonant energy
buildup in a high-Q resonator without sacrificing broadband
operation. These conclusions are not altered for the more real-
istic Gaussian and sech-shaped [Asech(t ) ≡ (2τ )−1sech(t/τ )]
OMC pulses, as we discuss below.

IV. GENERATION OF OPTICAL
HARMONICS INSIDE A TVR

The concept of efficient cavity excitation by OMC pulses
developed in Sec. III is especially relevant for nonlinear optics
applications, such as HG, because the efficiency of the nth
order process that involves utilizing nonlinear material inside
a resonator scales roughly as |a|2n−2, i.e., is greatly improved
by resonant excitation. Qualitatively, under the undepleted
pump approximation and an isotropic nonlinear response, the
nonlinear polarization p(n) of the material inside the resonator
is p(n) = χ (n)an(t ), where χ (n) is the nonlinear susceptibility
of the resonator material. The emitted nth harmonic energy is
then proportional to the following quantity:

Un ∝
∫

|p(n)(t ′)|2dt ′ = |χ (n)|2Wn(γ τ ), (5)

where the duration-dependentWn(γ τ ) = ∫ |a(t ′)|2ndt ′ is con-
venient to express as a normalized quantity: W̃n(γ τ ) =
γWn(γ τ )/Un

0 .
The corresponding values of W̃2 (dashed line) and W̃3 (dot-

dashed line) corresponding to the second and third harmonics
radiation are plotted in Fig. 2(a) for different input pulse
durations. Remarkably, we observe that, unlike W̃1, these
quantities are maximized for specific values of the optimal
top-hat pulse duration: τ

opt
2 = 1.44γ −1 and τ

opt
3 = 1.07γ −1.

The reason for such a difference between W̃1 and W̃n (n � 2)
is that the nonlinear harmonic conversion is highly sensitive
to the peak power, which diminishes as the pulse gets longer.
For the second harmonic generation, we can find τ

opt
2 from the

following analytic dependence of W̃2:

W̃2(γ τ ) = 12γ τ − 11 + 2 e−6γ τ − 9 e−4γ τ + 18 e−2γ τ

24γ 2τ 2
. (6)

While the analytic expressions for W̃n(γ τ ) are complex
even for the top-hat pulses, we have numerically demonstrated
the existence and calculated the values of the optimal pulse
durations τ

opt
n for 2 � n � 21 that maximize the nth harmonic

generation. The values of τ
opt
n /τres are plotted in Fig. 2(b)

as a function of n for the top-hat (dots), Gaussian (circles),
and sech-shaped (squares) excitation pulses. We observe from
Fig. 2(b) that, regardless of the specific pulse shape, all the op-
timal pulse durations are close to τ

opt
n ≈ γ −1. The differences

between τ
opt
m and τ

opt
l for the mth and lth order nonlinear pro-

cesses may be used for adjusting their relative contributions.
Notably, the optimal pulse duration does not depend on either

the specific functional dependence of ω(t ), nor on the spectral
content of the input pulse, as long as the two are matched
via the OMC condition given by Eq. (3). Therefore, for a
given τ

opt
n , efficient interaction of the excitation pulse with

the resonator can be accomplished for any bandwidth of the
excitation embedded in ψ (t ), as long as the OMC condition is
satisfied.

This remarkable ability of TVRs to provide strong field
enhancement over a broad bandwidth is illustrated below by
comparing the HG spectra for TVRs [with ω(t ) given by
Eq. (4)] versus static resonators [with ω(t ) = ω0], and for
the optimally chirped pulses versus transform-limited (com-
pressed) pulses with identical power spectra P1(ω) defined
by Eq. (7) below. Note that, in practice, the OMC and
transform-limited pulses can be converted into each other by
propagating through a dispersive material, or reflecting off a
pair of gratings [28,29].

The normalized nth harmonic power spectra, defined as

Pn(ω) ∝
∣∣∣∣
∫

an(t ′)eiωt
′
dt ′

∣∣∣∣2, (7)

are plotted in Figs. 3(a)–3(c) for the n = 3, 5, 7 harmonics,
respectively. For the resonator and pulse parameters given
in the caption, the bandwidth of the incident pulses is much
wider than the instantaneous bandwidth of the resonators:
�ωL/ω0 ≈ 0.07 � Q−1, where Q = 200 for both static and
time-varying resonators. For example, the normalized third
harmonic (H3) spectra shown in Fig. 3(a) correspond to the
following four cases: (i) a TVR driven by an OMC pulse
(red curve) with duration τchirp = 200ω−1

0 , (ii) the same TVR
excited by a transform-limited pulse with the same spectrum
and fluence, but shorter duration τcomp = 33ω−1

0 (black curve),
(iii) a static resonator excited by the OMC pulse (green curve),
and (iv) the same static resonator excited by the transform-
limited pulse (blue curve). We note that, for the optimal
case (i), the following relation holds for the nth harmonic
spectra

∫
POMC
n (ω, τchirp):

∫
POMC
n dω = (Un

0 /γ )W̃n(γ τ
chirp
n ),

where, as an example, W̃3 is plotted in Fig. 2(a).
The limitations of using static resonators in cases (iii) and

(iv) are apparent from Fig. 3(a): they produce the weakest
H3 spectra. Even though the peak intensity of the transform-
limited pulses is the highest, the resulting H3 spectrum in case
(iv) is only slightly stronger than that for the chirped case (iii).
The transform-limited pulse is also inefficient in producing
the third harmonic when interacting with a TVR [case (ii)],
even though a somewhat broader spectrum is obtained in
comparison with the cases (iii) and (iv). Note that the observed
spectral blueshifting in case (ii) is a manifestation of the
phenomenon of photon acceleration (PA) previously observed
in plasmas and dielectric resonators [15,30,31]. The strongest
and broadest H3 spectrum is produced when the nonlinear
TVR interacts with the OMC pulse. The resulting spectrum is
significantly blueshifted due to PA, and broadened: it covers
the largest spectral bandwidth of the four cases.

The advantage of combining a TVR with an optimally
chirped pulse is even more apparent for HG with n > 3.
The calculations for the spectra of the fifth (H5) and seventh
(H7) harmonics are presented in Figs. 3(b) and 3(c) for the
above cases (i)–(iv). By comparing case (i) (red lines) to cases
(ii)–(iv), we observe that the enhancement in both the total
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FIG. 3. Comparison of harmonics generation using chirped (red and green lines) versus Fourier-transform-limited (black and blue lines)
excitation pulses interacting with static (green and blue lines) and time-varying (red and black lines) nonlinear resonators for (a) third, (b) fifth,
and (c) seventh harmonics. Instantaneous fill time of all resonators: τres = 103ω−1

0 ; compressed pulse duration: τcomp = 33ω−1
0 ; chirped pulse

duration: τchirp = 200ω−1
0 . Normalized sweep rate of the TVR’s resonant frequency: α = 1.5 × 10−4. The frequency of the mode shifts by

�ω/ω0 ≈ 0.03 within the chirped pulse. Dashed vertical lines: ωn = nω0, n = 3, 5, 7.

energy of the harmonics (areas under the curves) and in their
spectral bandwidth dramatically increases with increasing
harmonic number n. Our findings strongly suggest that a
judicious choice of the signal chirp and of the resonance
frequency variation can intensify the HG output of the TVR.
Note that both ingredients—the time-dependent nature of the
resonator and the engineered pulse chirp—must be present in
order to achieve ultrahigh efficiencies that are illustrated by
case (i) in Figs. 3(a)–3(c).

V. PHYSICAL REALIZATION OF A TVR: A
TIME-VARIANT NONLINEAR METASURFACE

As a specific realization of a TVR, we are envision-
ing a high-Q nonlinear metasurface comprised of a semi-
conductor material with time-dependent dielectric permittiv-
ity ε(t ). To support our findings and to provide a specific
blueprint for a nonlinear TVR, below we describe such a
time-varying metasurface (TVM). We have performed full-
wave electromagnetic simulations using a finite-difference
time-domain (FDTD) solver (Lumerical FDTD Solutions) on
a metasurface shown in Fig. 4(a). Metasurfaces have pre-
viously shown promise for making efficient nonlinear res-
onators at the nanoscale [4,5,7,8,15,16]. The metasurface un-
der study and its physical dimensions are shown in Fig. 4(a).
It was designed to exhibit resonant reflection (transmission)
peak (dip) at the permittivity-dependent resonant frequency
ω
(s)
R ≡ ω(ε−∞) corresponding to the static resonant wave-

length λ
(s)
R ≡ 2πc/ω(s)

R ≈ 2.555 μm. The baseline (nonreso-
nant) reflection and transmission coefficients were found to
be R0 ≈ 25% and T0 ≈ 75%, respectively. The real-valued
(i.e., lossless) time-dependent dielectric permittivity of the
metasurface material was modeled as follows:

ε(t ) = ε−∞ + �ε

2

[
erf

(
t + t0

σ

)
+ 1

]
, (8)

where ε−∞ = 11.02 corresponds to GaAs in the near infrared.
We assumed that �ε = −2.5 (i.e., the reduction of the refrac-
tive index by approximately 12%) is caused by free carrier
generation. The time scale of the refractive index variation,
and, therefore, of the resulting resonant frequency change,
is assumed to be σ = 500 fs. A specific physical realization
of such time dependence of ε(t ) could involve, for example,

electron-hole pairs generation in a semiconductor by a Gaus-
sian laser pulse with duration σ advanced by the time interval
t0 with respect to the excitation pulse. By assuming the
material to be transparent, we have neglected any reduction
of the quality factor of the metasurface due to the presence of
free carriers in the material.

In order to relate the resonant frequency ω(t ) from Eq. (1)
to dielectric permittivity ε(t ) given by Eq. (8), we calculated
the passive transmittance spectra of the metasurface as a
function of ε in the range from ε−∞ to ε−∞ + �ε. The result-
ing ω(ε) dependence showed to be linear in δε ≡ ε−∞ − ε:
ω(ε) = ω0 + kδε, where ω0 = 737 THz and k = 10.2 THz.
The excitation field is chosen as E (t ) = A(t )eiψ (t ), where
A(t ) = E0 exp (−t2/2σ 2); E0 is real valued. The phase term
ψ (t ) is calculated according to the OMC condition given by
Eq. (3) for t0 = 0:

ψ (t ) = �εk

2

⎡
⎣σe− t2

σ2√
π

+ t erf

(
t

σ

)
+ t

⎤
⎦ + ω0t . (9)

The full width at half maximum (FWHM) intensity bandwidth
of the excitation pulse �ωL = 34 THz, which was chosen to
approximately match the change of the resonant frequency of
the metasurface due to free-carrier generation, is assumed to
be much larger than the instantaneous width �ωR = 2.2 THz
of the metasurface resonance, see Fig. 4(b). Figure 4(c) shows
the total (time-integrated) transmitted and reflected fluence
as a function of the time delay t0. We adopt the convention
of t0 > 0 corresponding to the free carrier generating pump
arriving before the peak of the midinfrared probe. We ob-
serve that for large values of |t0| � σ the transmission and
reflection curves plotted as a function of t0 are essentially
flat, corresponding to the nonresonant (baseline) transmission
(reflection) coefficients T0 (R0). This is because most of the in-
cident pulse experiences an essentially time-invariant resonant
metasurface. Therefore, only a small portion of the broadband
pulse experiences resonant transmission and reflection. The
situation dramatically changes for small time delays |t0| < σ :
both the transmittance and reflectance curves exhibit subpi-
cosecond features as a function of t0. Prominent transmission
dip and reflection peaks are observed in Fig. 4(c) around the
t0 = 0 value of the time delay. The reflection enhancement
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FIG. 4. Implementation of a TVR using a semiconductor metasurface illuminated by a laser pulse (pump). (a) Schematic: a high-Q GaAs-
based time-variant metasurface (TVM). The time dependence of the dielectric permittivity ε(t ) is caused by the free carriers produced by
the pump. Second harmonic is generated by the chirped OMC excitation pulse delayed in time by t0 from the pump. The excitation pulse
has a duration of 500 fs and a carrier wavelength of 2.514 μm. (b) Transmittance spectra for static metasurfaces with ε(t ) ≡ ε(−∞) (blue),
ε(−t0) (orange), and ε(∞) (green). The gray area corresponds to the spectrum of the input mid-IR pulse. (c) Time-integrated transmittance
and reflectance of the metasurface as a function of t0. (d) Second harmonic generation as a function of t0, calculated numerically by an
FDTD simulation (solid line) and from the CMT (dashed line). Dotted line: SHG for a static metasurface with the resonance centered at
λ
(s)
R = 2.514 μm (i.e., at the carrier wavelength of the pulse). Laser parameters: durations of the pump and excitation pulses σ = 500 fs; the

bandwidth of the excitation pulse �ωL = 34 THz. Metasurface parameters: GaAs bars’ sizes Lx × Ly × Lz = 1.3 μm × 0.6 μm × 0.2 μm;
periodicities Px = 1.56 μm and Py = 1.2 μm.

observed around t0 = 0 is caused by the PA of light trapped
inside the TVM [15]: when the frequency of the incoming
photons matches that of the continuously accelerated photons,
the intensity of light inside the TVM increases, and so does
the reflectivity. This effect can be interpreted as constructive
interference between different portions of the pulse represent-
ing different portions of the spectrum. The above-mentioned
frequency matching occurs when the frequency chirp of the
incident pulse matches that of the TVM’s resonant frequency
ω(t ) ≡ ω(ε(t )).

The resulting energy concentration inside the TVM is
accompanied by significant enhancement of all nonlinear
processes, including the second harmonic generation (SHG)
from a metasurface comprised of a material with a finite χ2
coefficient (GaAs, in the considered case). To model the SHG
inside the structure using the FDTD code from Lumerical, an
additional term proportional to the electric field was added
to the polarizability of the simulated material; this created an
effective source of harmonic radiation inside the metasurface.

For simplicity, we neglected the tensor structure of GaAs
nonlinear susceptibility and assumed isotropic response. The
far-field radiation produced by this source was then integrated
over time as a function of time delay t0. The result of this
calculation, plotted in Fig. 4(d) as a solid line, shows more
than an order-of-magnitude enhancement in the emitted SHG
at t0 = 0 with respect to the nonresonant value (dotted hor-
izontal line) obtained for a static metasurface resonating at
λ
(s)
R .
The dashed line in Fig. 4(d) shows the results of the CMT

modeling (see Sec. II), where the parameters from Eqs. (8)
and (9) were used. The radiative decay rate entering Eq. (1)
was chosen to capture the actual Q factor of the metasurface.
The solid and dashed curves were normalized so that their
maximum values at t0 = 0 were the same. The overall agree-
ment of the FDTD and CMT results serves as a verification
step for our theory and suggests experimental feasibility of
using the chirp-matching schemes to increase the efficiency
of nonlinear light-matter interactions in TVMs and TVRs.

063847-5



SHCHERBAKOV, SHAFIRIN, AND SHVETS PHYSICAL REVIEW A 100, 063847 (2019)

FIG. 5. Overlapping harmonics from TVRs. Spectra of the 15th
(solid lines) and 16th (dashed lines) optical harmonics generated by
a static resonator and a compressed pulse (black) and a TVR and
an OMC pulse (red), revealing the spectral overlap. The spectra are
normalized by unity for clarity.

VI. APPLICATIONS OF BROADBAND
HARMONICS GENERATION

High harmonic generation (HHG) from structured sur-
faces [7,8,32–34] leads to a variety of exciting applications,
including all-optical probing of the electronic band struc-
ture [35] and the generation of high angular momentum
UV beams [36,37] for high-resolution lithography [38] and
imaging [39]. Moreover, the utilization of midinfrared (sub-
bandgap) laser pulses can enable efficient HHG from solids
through processes similar to those in gases in the strong
field ionization (SFI) regime [40–43]. A remarkable feature
of the SFI (i.e., small Keldysh parameter) regime is that the
HHG spectra saturate for large harmonic numbers N [44]:
PN (ωN ) ≈ PN+1(ωN+1), where ωn = nω0. If such harmonics
are produced inside a high-Q static resonator by a narrow-
band laser pulse with frequency ω0, then the adjacent ωN th
and ωN+1st harmonics do nonoverlap as long as their frac-
tional spectral widths �ωN/ωN ≈ Q−1 
 1/N . The lack of
the harmonics overlap is shown in Fig. 5 for N = 15, 16
(black lines) and Q = 103. Therefore, taking advantage of
the high-Q (and field-enhancing; see Fig. 1) resonator for
the purpose of ultraefficient generation of attosecond UV
laser pulses is very challenging because the latter requires
continuous spectral overlap between multiple harmonics.

As shown in Fig. 5 (red lines), this challenge is overcome
by an OMC pulse with �ωL/ω0 ≈ 0.12 (τcomp = 20ω−1

0 )
interacting with a TVR. For this simulation we have used
the laser and TVR parameters similar to the ones used in
Fig. 3: τchirp = 103ω−1

0 and α = β = 10−4. The two adja-
cent harmonics have a considerable overlap because of the
spectral broadening of both. We propose that the requisite
sweep of the TVR’s resonant frequency ω(t ) within the
laser pulse duration can be achieved via photoinjection of
free carriers by ultrashort laser pulses [45,46]. A promising
platform for such a TVR is a semiconductor metasurface
interacting with a temporally overlapping short-wavelength
(λpump) carrier-generating laser pump and a long-wavelength

(λprobe � λpump) harmonics-generating laser probe [15]. By
choosing λprobe in the mid-IR and λpump in the visible or
near-IR spectral ranges, respectively, one can ensure that
(i) single-photon free-carrier generation by the pump dom-
inates over that by the probe despite the probe’s higher in-
tensity and (ii) the HHG occurs in the SFI regime at modest
intensities because the λ−1 scaling of the Keldysh parameter
favors the mid-IR probe [41].

Using GaAs as a TVR material, we note that a free-
carrier density ρ ≈ 3 × 1018 cm−3[47] produced by a pump
laser with λpump ∼ 0.8 μm can induce the required frequency
shifts of a TVR tuned to λprobe ∼ 4 μm. Because intensity
enhancements of order Ihot ∼ QI0 can be expected inside the
hot spots of a metasurface, we anticipate that even modest
incident intensities I0 ∼ 1010 W/cm2 can produce spectrally
overlapping harmonics with N ∼ 15 or higher [44]. Even
though the emitting volume of these resonators is severely
restricted by single-photon absorption of HHG photons [48],
the overall HHG yield will be multifold with respect to
the unstructured material. These estimates suggest that em-
ploying the concept described in this paper—of a high-Q
time-varying resonator interacting with broadband optimally
chirped laser pulses—could provide an important platform
for realizing numerous applications of attosecond UV pulses.
Although Eq. (5) describes perturbative nonlinearities that
are not always applicable to HHG, we think that the chirp-
matching approach can still be successfully applied to HHG
in resonators, since HHG strongly depends on the local fields
within a TVR. We think that further studies that involve full
quantum-mechanical description of HHG [41] are required
to verify these exciting findings. We envision that the chirp-
matching mechanism of producing strong spectral overlap
between high laser harmonics produced in the SFI regime
may also contribute to generating novel states of light, e.g.,
of beams with mixed high orbital angular momenta [36].

To conclude, we have analyzed a coupled-mode theory
of a time-varying resonator (TVR) under pulsed excitation.
From the obtained exact solution, we have found the optimal
excitation pulse format (chirp and duration) for any prescribed
time evolution of the resonator. Both linear and nonlinear
responses were used as optimization targets. We have shown
that the bandwidth of the light-resonator interaction can be
decoupled from the instantaneous spectral selectivity of the
TVR. Because the latter determines the field enhancement
inside the resonator, and, therefore, the efficiency of any
nonlinear optical process, TVRs can be used to overcome the
efficiency-bandwidth tradeoff that is inherent in time-invariant
resonators. Finally, we propose a specific TVR platform—
a high-Q time-variant semiconductor metasurface—that en-
ables efficient generation of broadband nonlinear signals. This
platform can be realistically implemented in modern high-Q
systems by means of photoinduced free carrier generation.
Our results pave the way to efficient broadband generation of
optical harmonics, which can be further employed to produce
attosecond pulses using moderate-power lasers. Given the
general nature of our theory, it can be applicable to other types
of driven resonators, including radio [49], mechanical, and
acoustic ones.
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APPENDIX: MODE DYNAMICS EXPRESSIONS FOR
VARIOUS PULSE SHAPES

Equation (2) of the main text provides the solution for
the mode amplitude excited by an arbitrary laser pulse
s(t ) = A(t )e−iψ (t ). Under the optimally matched chirp (OMC)

condition, Eq. (2) simplifies to

a(t ) = √
γ e−iφ(t )

∫ t

−∞
A(t ′)e−γ (t−t ′ )dt ′. (A1)

Below, we provide the mode amplitudes for the typical pulse
shapes.

For a top-hat pulse, ATH = (2τ )−1/2 for |t | < τ , the solu-
tion is

aTH(t ) =

⎧⎪⎪⎨
⎪⎪⎩
0, t < −τ,

1−e−γ (t+τ )√
2γ τ

, −τ � t < τ,

e−γ (t−τ )−e−γ (t+τ )√
2γ τ

, t � τ.

(A2)

For a Gaussian pulse, AG(t ) = (πτ 2/2)−1/4e−t2/τ 2
, the so-

lution for arbitrary α and β is

aG(t ) = τ
√

πγ

2
e−iω(1+αω0t )t−γ t+ γ 2τ2

4ξ

⎛
⎝ 1√

i(α − β/2)ω0τ 2 + 1
− i

√
(γ τ 2−2ξ t )2

2ξ Erf
√

(γ τ 2−2ξ t )2

4iτ 2ξ

γ τ 2 − 2ξ t

⎞
⎠, (A3)

where ξ = 1 + i(β − α)ω0τ
2/2. This solution is numerically integrated in Fig. 1(b) of the main text. Under the optimally

matched chirp, β = α and ξ = 1.
For a sech-shaped pulse, Asech(t ) = (2τ )−1sech(t/τ ), under the OMC condition:

asech(t ) =
√
2γ τe−iω0(1+αω0t )t

et/τ 2F1
[
1, 1

2 (1 + γ τ ), 1
2 (3 + γ τ ),−e2t/τ

]
1 + γ τ

, (A4)

where 2F1[a, b, c; z] is the Gaussian hypergeometric function.
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