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Abstract. In this paper, we study structured quasi-Newton methods for optimization problems
with orthogonality constraints. Note that the Riemannian Hessian of the objective function requires
both the Euclidean Hessian and the Euclidean gradient. In particular, we are interested in appli-
cations that the Euclidean Hessian itself consists of a computational cheap part and a significantly
expensive part. Our basic idea is to keep these parts of lower computational costs but substitute
those parts of higher computational costs by the limited-memory quasi-Newton update. More specif-
ically, the part related to the Euclidean gradient and the cheaper parts in the Euclidean Hessian are
preserved. The initial quasi-Newton matrix is further constructed from a limited-memory Nystrom
approximation to the expensive part. Consequently, our subproblems approximate the original objec-
tive function in the Euclidean space and preserve the orthogonality constraints without performing
the so-called vector transports. When the subproblems are solved to sufficient accuracy, both global
and local g-superlinear convergence can be established under mild conditions. Preliminary numeri-
cal experiments on the linear eigenvalue problem and the electronic structure calculation show the
effectiveness of our method compared with the state-of-art algorithms.
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1. Introduction. In this paper, we consider the optimization problem with or-
thogonality constraints:

1.1 i X) st XX =],
(1.1) Lhin - f(X) s P

where f(X) : C"*? — R is a R-differentiable function [31]. Although our proposed
methods are applicable to a general function f(X), we are in particular interested in
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the cases that the Euclidean Hessian V2 f(X) takes a natural structure as
(1.2) V2F(X) = HO(X) + H(X),

where the computational cost of H®(X') is much more expensive than that of H°(X).
This situation occurs when f is a summation of functions whose full Hessian are
expensive to be evaluated or even not accessible. A practical example is the Hartree—
Fock-like total energy minimization problem in the electronic structure theory [44, 36],
where the computation cost associated with the Fock exchange matrix is significantly
larger than the cost of the remaining components.

There are extensive methods for solving (1.1) in the literature. By exploring the
geometry of the manifold (i.e., orthogonality constraints), the Riemannian gradient
descent, conjugate gradient (CG), Newton, and trust-region methods are proposed in
[13, 12, 47, 42, 1, 2, 50]. Since the second-order information sometimes is not avail-
able, the quasi-Newton-type method serves as an alternative method to guarantee the
good convergence property. Different from the Euclidean quasi-Newton method, the
vector transport operation [2] is used to compare tangent vectors in different tangent
spaces. After obtaining a descent direction, the so-called retraction provides a curvi-
linear search along the manifold. By adding some restrictions between differentiable
retraction and vector transport, a Riemannian Broyden—Fletcher—Goldfarb—Shanno
(BFGS) method is presented in [39, 40, 41]. Due to the requirement of differentiable
retraction, the computational cost associated with the vector transport operation may
be costly. To avoid this disadvantage, authors in [22, 25, 27, 24] develop a new class
of Riemannian BFGS methods and symmetric rank-one and Broyden family methods.
Moreover, a selection of Riemannian quasi-Newton methods has been implemented in
the software package Manopt [6] and ROPTLIB [23].

1.1. Our contribution. Since the set of orthogonal matrices can be viewed as
the Stiefel manifold, the existing quasi-Newton methods focus on the construction
of an approximation to the Riemannian Hessian. When using the Euclidean metric
(it will be introduced in subsection 1.4) as the Riemannian metric, we can write the
Riemannian Hessian Hess f(X) as

(1.3) Hess f(X)[¢] = Projx (V? f(X)[¢§] — &sym(X*V f(X))),

where £ is any tangent vector in the tangent space Ty := {£ € C"*P : X*¢+£*X = 0}
and Projy(Z) := Z — Xsym(X*Z) is the projection of Z onto the tangent space Tx
and sym(A) := (A + A*)/2. See [12, 3] for details on the structure (1.3). We briefly
summarize our contributions as follows.

e By taking advantage of this structure (1.3), we construct an approxima-
tion to the Euclidean Hessian V2f(X) instead of the full Riemannian Hes-
sian Hess f(X) directly, but keep the remaining parts {sym(X*V f(X)) and
Projx (). Then, we solve a subproblem with orthogonality constraints, whose
objective function uses an approximate second-order Taylor expansion of f
with an extra regularization term. Similar to [20], the trust-region-like strat-
egy for the update of the regularization parameter and the modified CG
method for solving the subproblem are utilized. The vector transport is not
needed since we are working in the ambient Euclidean space.
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e By further taking advantage of the structure (1.2) of f, we develop a struc-
tured quasi-Newton approach to construct an approximation to the expen-
sive part H¢ while preserving the cheap part H¢. This kind of structured
approximation usually yields a better property than the approximation con-
structed by the vanilla quasi-Newton method. For the construction of an
initial approximation of H®, we also investigate a limited-memory Nystrom
approximation, which gives a subspace approximation of a known good but
still complicated approximation of He.

e When the subproblems are solved to a certain accuracy, both global and local
g-superlinear convergence can be established under certain mild conditions.

e Applications to the linear eigenvalue problem and the electronic structure
calculation are presented. The proposed algorithms perform comparably well
with state-of-art methods in these two applications.

1.2. Applications to electronic structure calculation. Electronic structure
theories, and particularly Kohn—-Sham density functional theory (KSDFT) [19, 30],
play an important role in quantum physics, quantum chemistry, and materials science.
This problem can be interpreted as a minimization problem for the electronic total en-
ergy over an orthogonal set of electronic wave functions. The mathematical structure
of Kohn—Sham equations depends heavily on the choice of the exchange-correlation
functional. In particular, the Kohn—Sham Hamiltonian with a local or semilocal
exchange-correlation functional is a differential operator. On the other hand, hybrid
exchange-correlation functionals [4, 18] are known to provide a more accurate model
to electronic structure calculations. When hybrid exchange-correlation functionals
are used, the Kohn—Sham Hamiltonian becomes an integro-differential operator. The
Kohn-Sham equations become Hartree-Fock-like equations. The computational cost
of hybrid functional calculations is usually much more expensive than those using
local and semilocal functionals. Existing optimization based methods often do not
efficiently use the structure of the Hessian matrix in these calculations. In this paper,
by exploiting the structure of the Hessian, we apply our structured quasi-Newton
method to solve these problems. Numerical experiments show that our algorithm
performs at least comparably well with state-of-art methods in their convergent case.
In the case where state-of-art methods failed, our algorithm often returns high quality
solutions.

1.3. Organization. This paper is organized as follows. In section 2, we intro-
duce our structured quasi-Newton method and present our algorithm. In section 3,
the global and local convergence is analyzed under certain inexact conditions. In
sections 4 and 5, detailed applications to the linear eigenvalue problem and the elec-
tronic structure calculation are discussed. Finally, we demonstrate the efficiency of
our proposed algorithm in section 6.

1.4. Notation. For a matrix X € C™*P, we use X, X*, X, and 3X to denote
its complex conjugate, complex conjugate transpose, and real and imaginary parts,
respectively. Let span{Xy,..., X;} be the space spanned by the matrices X1,..., X].
Let [X1,...,X;] € R"*UP) be a matrix with columns X7, ..., X;. The vector denoted
vec(X) in C™ is formulated by stacking each column of X one by one, from the first
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to the last column; the operator mat(-) is the inverse of vec(+), i.e., mat(vec(X)) = X.
Given two matrices A, B € C"*P, the Frobenius inner product (-,-) is defined as
(A, B) = tr(A*B), and the corresponding Frobenius norm || - || is defined as || A|f =
tr(A*A). The Euclidean metric is defined as the real part of the Frobenius inner
product, i.e., R (A, B). For a matrix M € C"*™, the operator diag(M) is a vector in
C™ formulated by the main diagonal of M; and for ¢ € C", the operator Diag(c) is an
n-by-n diagonal matrix with the elements of ¢ on the main diagonal. The notation I,
denotes the p-by-p identity matrix. Let St(n,p) := {X € C"*P : X*X = I,} be the
(complex) Stiefel manifold. With the Euclidean metric (i.e., the Riemannian metric
used on St(n,p)), Vf(X) (resp., V2f(X)) and grad f(X) (resp., Hess f(X)) denote
the Euclidean and Riemannian gradient (resp., Hessian) of f at X. The notation N
refers to the set of all natural numbers.

2. A structured quasi-Newton approach.

2.1. Structured quasi-Newton subproblem. In this subsection, we develop
the structured quasi-Newton subproblem for solving (1.1). Based on the assumption
(1.2), methods using the exact Hessian V2 f(X) may not be the best choices. When
the computational cost of the gradient V f(X) is significantly cheaper than that of the
Hessian V2 f(X), the quasi-Newton methods [38, Chapter 6] can be used to construct
an approximation to V2 f(X) via the gradients Vf(X). Since the approximate Hes-
sian is of low computational cost, it is possible that they outperform other methods.
Considering the form (1.2), we can construct a structured quasi-Newton approxima-
tion BF for V2 f(X*). The details will be presented in section 2.2. Note that a similar
idea has been presented in [53] for the unconstrained nonlinear least square problems
[28], [43, Chapter 7]. Then our subproblem at the kth iteration is constructed as

(2.1) min  mg(X) st XX =1,
XeCnxp

where
(2.2) mp(X) =R(VF(XF), X - X") + %?R(B’“[X - XM, X - X%y + %’“d(X,Xk)

is an approximation to f(X) in the Euclidean space. For the second-order Taylor
expansion of f(X) at a point X*, we refer to [49, section 1.1] for details. Here, 73
is a regularization parameter and d(X, X*) is a proximal term. The choice of 7 is
crucial to control the distance between X and X*. Solving subproblem (2.1) with
a well chosen 7; can lead to a sufficient decrease of the objective function of the
original problem (1.1). Therefore, by developing a proper rule of updating 7, we can
construct a class of algorithms with convergence guarantees.
The proximal term can be chosen as the quadratic regularization

(2.3) 40X, X*) = X — XF|2
or the cubic regularization [37, 10, 11]

2
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which is shown to be useful in the construction of subproblems. In the following,
we will mainly focus on the quadratic regularization (2.3). Due to the Stiefel mani-
fold constraint, the quadratic regularization (2.3) is actually equal to the linear term
—2R <X, Xk>. By using the Riemannian Hessian formulation (1.3) on the Stiefel
manifold, we have

(2.5)  Hessmy(X*)[¢] = Projyr (B*[¢] — &sym((X*)*V f(XF)) + &, € € Txn.

Hence, the regularization term is to shift the spectrum of the corresponding Riemann-
ian Hessian of the approximation B* with 7.

The Riemannian quasi-Newton methods for (1.1) in the literature [23, 25, 26, 27]
focus on constructing an approximation to the Riemannian Hessian Hess f(X*) di-
rectly without using its special structure (1.3). Therefore, vector transport needs to
be utilized to transport the tangent vectors from different tangent spaces to one com-
mon tangent space. If p < n, the second term sym ((X’“)*Vf(Xk)) is a small-scaled
matrix and thus can be computed with low cost. In this case, after computing the
approximation B[] of V2 f(X)[¢], we obtain a structured Riemannian quasi-Newton
approximation Projy« (B¥[¢] — &sym((X*)*V f(X*)) of Hess f(X*)[¢] without using
any vector transport.

2.2. Construction of B¥. The classical quasi-Newton methods construct the
approximation B* such that it satisfies the secant condition

(2.6) BF[SM] = Vf(XF) = v (xFT,

where S¥ := X* — X*~1 Noticing that V2f(X) takes the natural structure (1.2),
it is reasonable to keep the cheaper part H¢(X) while only approximating H¢(X).
Specifically, we derive the approximation B* to the Hessian V2 f(X*) as

(2.7) BF = He(XF) + £F,

where £F is an approximation to H¢(X*). Substituting (2.7) into (2.6), we can see
that the approximation £F should satisfy the following revised secant condition:

(2.8) EFSH = YH,
where
(2.9) YR .= VF(XF) = VEXETY) — HO(XR)[SH).

For the large scale optimization problems, the limited-memory quasi-Newton
methods are preferred since they often make simple but good approximations of the
exact Hessian. Considering that the part H¢(X"%) itself may not be positive definite
even when X¥ is optimal, we utilize the limited-memory symmetric rank-one (LSR1)
scheme to approximate H®(X*) such that it satisfies the secant equation (2.8).

Let | = min{k,m}. We define the (np) x | matrices S*™ and Y*™ by

Shm — [vec(Sk_l), e ,vec(Sk_l)] . Ykm = [VGC(Yk_l), e 7Vec(Y'k_l)] .

Let £f : C"*P — C™*P be the initial approximation of H¢(X*) and define the (np) x I
matrix %™ = [vec(EF[S*TY), ..., vec(EF[S])]. Let F*™ be a matrix in C'*!

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/23/19 to 134.50.218.9. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2244 J. HU, B. JIANG, L. LIN, Z. WEN, AND Y.-X. YUAN

with (FP™); ; = (S=IHi=1 yk=+i=1) for 1 < 4,5 < [. Under the assumption that
<Sj,€j[5j] — Yj> #0,j=k—1,...,k—1, it follows from [9, Theorem 5.1] that the
matrix FF™ — (Skm)*$km g invertible and the LSR1 gives

(2.10)  EXU] = £X[U] + mat (N’“’m (Fhm — (ghmyrskm)~h(ykm)s vec(U)) ,

where U € C"*P is any direction and N¥™ = Y*m™ _ ¥k n the practical imple-
mentation, we skip the update if

(87, 87[87] = Y7)| < rl|S7ell€7[S7] — Y |l

with small number 7, say, 7 = 1078, A similar idea can be found in [38, section 6.2].

2.3. Limited-memory Nystrom approximation of 8(’)‘”. A good initial guess
to the exact Hessian is also important to accelerate the convergence of the limited-
memory quasi-Newton method. Here, we assume that a good initial approximation 5(’,“
of the expensive part of the Hessian H°(X"*) is known but its computational cost is still
very high. We next explain how to use the limited-memory Nystrom approximation
to construct another approximation with lower computational cost based on 5(})‘3.

Specially, let 2 be a matrix whose columns form an orthogonal basis of a well-
chosen subspace & and denote W = EF[Q)]. To reduce the computational cost and
keep the good property of £, we construct the following approximation:

(2.11) Eklu) = wwvr)twrr,

where U € C"*P is any direction. This is called the limited-memory Nystrém approx-
imation; see [46] and references therein for more details. By choosing the dimension
of the subspace & properly, the rank of W (W*Q)"W* can be small enough such that
the computational cost of EX[U] is significantly reduced. Furthermore, we still want
fé“ to satisfy the secant condition (2.8) as £¥ does. More specifically, we need to seek
the subspace & such that the secant condition

EblsM = v+
holds. To this aim, the subspace & can be chosen as
span{ X"~ X%}

which contains the element S*. By assuming that E§[UV] = EF[U]V for any matrices
U,V with proper dimension (this condition is satisfied when £} is a matrix), we have
that £ will satisfy the secant condition whenever £ does. From the methods for
linear eigenvalue computation in [29] and [35], the subspace & can also be determined
as

(2.12) span{ X"t X* gF[X*} or span{XF" ... XF1 x*F}

with small memory length h. Once the subspace is defined, we can obtain the limited-
memory Nystrom approximation by computing the £§[] once and the pseudoinverse
of a small scale matrix.
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2.4. A structured quasi-Newton method with subspace refinement.
Based on the theory of quasi-Newton method for unconstrained optimization, we
know that algorithms which set the solution of (2.1) as the next iteration point may
not converge if there are no proper requirements on approximation B* or the regu-
larization parameter 7. Hence, we update the regularization parameter here using a
trust-region-like strategy. Referring to [20], we can compute a trial point Z* by utiliz-
ing either the Riemannian gradient type method (see section 2.1 in [20]) or a modified
CG method (Algorithm 1 in [20]) to solve the subproblem inexactly. Specifically, the
Riemannian Newton equation of (2.1) at X* is

(2.13) gradmy, (X*) + Hessmy, (X*)[€] =0, € € Ty,

where grad my, (X*) = grad f(X*) and Hessmy(XF¥) is given in (2.5). Based on (2.13),
we compute a descent direction £* and do an Armijo search along a curve introduced
by &* on the manifold. Hence, the trial point Z* always stays on the manifold and
leads to a sufficient decrease on my,. After obtaining the trial point Z% of (2.1), we
calculate the ratio between the predicted reduction and the actual reduction

124 - 7(x*)

(2.14) =S

If r;, > n1 > 0, then the iteration is successful and we set X*+1 = ZF: otherwise, the
iteration is unsuccessful and we set X5t = X* that is,

k .
(2.15) xrr )20 e zm,
X*  otherwise.

The regularization parameter 74 is updated as

(07707-/6] if Tk Z 72,
(2.16) Th+1 € § Yo, v1i7k] i < < 2,

[Y17ks y2Ti]  otherwise,

where 0 <73 <1ny <1land 0 <y <1<, <. These parameters determine how
aggressively we adjust the regularization parameter when an iteration is successful or
unsuccessful. In practice, the performance of the regularized trust-region algorithm
is not very sensitive to the values of the parameters.

From [8], the Newton-type method may still be very slow when the Hessian is close
to being singular. Numerically, it may happen that the regularization parameter turns
out to be huge and the Riemannian Newton direction is nearly parallel to the negative
gradient direction. Hence, it leads to an update X**+1 belonging to the subspace
&% := span{X¥*, grad f(X*)}, which is similar to the Riemannian gradient approach.
To overcome this issue, we propose an optional step of solving (1.1) restricted to a
subspace. Specifically, at X*, we construct a subspace G with an orthogonal basis
QF € C™*9(p < ¢ < n), where ¢ is the dimension of &*. Then any point X in the
subspace &F can be represented by

X =Q"M
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for some M € C?*P. Similar to the constructions of linear eigenvalue problems
in [29] and [35], the subspace &% can be decided by using the history informa-
tion {X* X*k=1 .} {grad f(X*),grad f(X*~1),...} and other useful information.
Given the subspace &%, the subspace method aims to find a solution of (1.1) with an
extra constraint X € G¥, namely,

(2.17) min  f(Q*M) st. M*M =1I,.
MeCaxp

The problem (2.17) can be solved inexactly by existing methods for optimization
with orthogonality constraints. Once a good approximate solution M* of (2.17) is
obtained, then we update X*t! = Q¥ M* which is an approximate minimizer in the
subspace G* instead of &*. This completes one step of the subspace iteration. In
fact, we compute the ratios between the norms of the Riemannian gradient of the last
few iterations. If all of these ratios are almost 1, we infer that the current iterate
stagnates and the subspace method is called. Consequently, our algorithm framework
is outlined in Algorithm 1.

Algorithm 1: A structured quasi-Newton method with subspace refine-
ment.

Input initial guess X° € C"*? with (X")*X? = I, and the memory length m.
Choose 79 > 0,0 < <me <1, 1 <7y <7y2. Set £ =0.

while stopping conditions not met do

Choose &} (by the limited-memory Nystrom approximation if necessary).
Construct the approximation B* via (2.7) and (2.10).

Construct and solve the subproblem (2.1) (by using the modified CG
method (Algorithm 1 in [20]) or the Riemannian gradient type method
(see section 2.1 in [20])) to obtain a new trial point Z*.

Compute the ratio ry via (2.14).

Update X *! from the trial point Z* based on (2.15).

Update 7, according to (2.16).

k< k+1.

if stagnate conditions met then
| Solve the subspace problem (2.17) to update X*+1.

3. Convergence analysis. In this section, we present the convergence property
of Algorithm 1. To guarantee the global convergence to a stationary point and fast
local convergence rate, the inexact conditions for the subproblem (2.1) with quadratic
regularization can be chosen as

by« @ kyp2
(3.1) my(2%) < — g larad f (X},
(32) lgradmy(Z*) |l < 6%[|grad f(X")|[F.

where a, b are positive constants and 6% := min{1, ||grad f(X*)||¢} with ¢ > 0. Here,
the inexact condition (3.1) is to guarantee the decrease for each iteration and hence
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the global convergence. The inequality (3.1) can be satisfied by one-step Riemann-
ian gradient descent, in which the coefficient _fﬂc is from the bounds of the first-
and second-order derivatives of my, and the retraction operator [5, Lemma 2.10]. We
will present the specific choices of a and b for the modified CG method in Lemma 3.
The inequality (3.2) is to control how inexactly we solve the subproblem (2.1). With
this choice of %, we can guarantee fast local convergence. When the stagnate condi-
tions in Algorithm 1 are met, we need to perform the subspace refinement procedure,
namely, to solve the extra problem (2.17). Note that X* and grad f(X*) are always
contained in the subspace used in (2.17), and a sufficient decrease for the original
problem (i.e., a descent step) can be guaranteed, which is enough to ensure the global
convergence to a stationary point. For the local convergence part, since we assume
that the Riemannian Hessian is positive definite, the stagnate conditions will not be
satisfied if the approximation B¥ is properly constructed. Throughout the analysis of

convergence, we assume that the stagnate conditions are never met.

3.1. Global convergence to a stationary point. Since the regularization
term is used, the global convergence (i.e., convergence starting from any initial point)
to a stationary point of our method can be obtained by assuming the boundedness
on the constructed Hessian approximation. We first make the following assumptions.

Assumption 1. Let {X*} be generated by Algorithm 1 without subspace refine-
ment. We assume the following:
(A1) The gradient Vf is Lipschitz continuous on the convex hull of St(n,p) [14],
i.e., there exists Ly > 0 such that

IVAX)=VfY)|lr <Lf]|X =Y VX,Y € conv(St(n,p)).
(A2) There exists kg > 0 such that ||B¥|| < kg for all k € N, where || - || is the
operator norm introduced by the Euclidean inner product.
Remark 2. By assumption (Al), Vf(X) is uniformly bounded by some constant
kg > 1 on the compact set conv(St(n,p)), i.e.,
IVF(X)|F < kg, X € conv(St(n,p)).
Assumption (A2) is often used in the traditional symmetric rank-one method [7],
which appears to be reasonable in practice.

We first prove that the inexact condition (3.1) is satisfied by the modified CG
method.

LEMMA 3. Suppose that assumptions (A1)—(A2) hold. The modified CG method,
always returns a trial point Z* satisfying the inexact condition (3.1).

Proof. From Assumption 1 and Remark 2, the Riemannian Hessian Hess m(X¥)
can be bounded by

(3-3) |[Hess (X )| < B + [ X IV F(X)e + 7k < ki + g + 7,

where || X*|| = 1 because of its unitary property. We note that the bound of the spec-
trum of Hessm (X*) is obtained without requiring the boundedness of ||Hess f(X*)||r
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(assumed in [20]) since we are working on the compact Stiefel manifold. Similar to
[20, Lemma 5], a descent direction ¢¥ can be obtained via solving the Riemannian
Newton equation (2.13) from the modified CG method, i.e.,

§R<gradf(Xk)7€k> . € 1 .
lerad FXR)eerr = ™™ {511 2up(im +rg+1)

(3.4)

where (3.3) is used, € > 0 is a constant used in the modified CG method, and 2np is
from the dimension of the complex Stiefel manifold St(n, p) (its dimension is 2np—p?).
Following [5, Lemma 2.7] and [20, Lemma 6], we shall show how the inexact condition
(3.1) is satisfied. Since St(n,p) is compact, there exist two positive constants aq, as
such that (see [5, equations (B.3) and (B.4)]), for all X € St(n,p) and for all £ € T,

[Rx (&) — X|r < a1ll€]lF,
IRx(€) — X — &[lr < az€]I3,

where R is a retraction [2, Definition 4.1.1]. Following the proofs in [5, Lemma 2.7],
we know that my(Rxx(t£F)) is upper bounded by a quadratic function

(3.5)

(R (1€9) < 9 s £, €5+ (210 4 ) 21,

Then, for any constant p € (0, 1),
my(Rxr (t65)) — ptR (grad f(X*), €")

Kg + T
<—(1—p)not|gradf<xk>||F|§k||F+( H ’“a%waz) £2||¢¥| 2

2
KH + Tk radmy (X*
= (Pt g ) ¢ (0= e BN | e,

2 1€%11F
where (3.4) is used in the first inequality. We have
(3.6) mp (R (t€)) < ptR (grad f(X*),€%) vt € [0,x"],
where .

k. 201 = p)rollgrad f(XT)[|r

((kr + 7)o + 2kg02) [|€F][F
Define ayp := ||grad f(X")||2/ (Hessmy,(X*)[grad f(X*)], grad f(X*)). From the con-
struction of the modified CG method [20, Algorithm 1], we have &, = —grad f(XF) if

1/ap < e. When 1/ag > ¢, it follows from (3.3) and the monotonicity in [20, Lemma
A(iii)] that

1
3.7 Fle> ——— lgrad f(X®)||¢.
(3.7) €5 lF > HH+H9+TkIIgra FX)e

Hence, the inequality (3.7) always holds whether 1/ag < € or not. From the Armjio
curvilinear search [20, equation (3.9)] (we use 1 and constant o € (0,1) as the initial
step size and the decreasing factor of the step size, respectively), when 1 < x*, the
decrease induced by the trial point Z* = Ry« (£F) satisfying
PKo

my(Rxx(Z%)) < pR <gradf(Xk)v§k> < _m

lgrad £(X*)]Z,
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where (3.4) and (3.7) are used in the second inequality. Otherwise, the accepted step
t* must be larger than ox* and the decrease on my, yields

20p(1 — p)Kiy
k < _ 0 k\|12
Tnk(]:iX’c (Z )) = ((HH ¥+ T]g)Oé% ¥ 2Kg042) ||gradf(X )”F?

in which (3.4) and (3.6) are used. By setting

20p(1 — p)K2 2
a:min{plﬁo, W}7b:max{/§H+/§g, kg + "‘€92042}7
af a7

we conclude that the inexact condition (3.1) always holds by the modified CG
method. O

Based on the similar proof in [20, 49], we have the following theorem for global
convergence to a stationary point.

THEOREM 4. Suppose that assumptions (A1)—(A2) and the inexact condition (3.1)
hold. Then, either

(3.8) grad f(X') =0 for somet>0 or klirn lgrad f(X*)||F = 0.
— 00

Proof. We prove it by contradiction. Assume that ||grad f(X*)||r > ¢ > 0 for all
k. Following the proof in [20, Lemmas 7-9] the inexact condition (3.1) is sufficient
to guarantee the ratio r, > 77 in (2.14) when 73 is larger than a finite number
L.. Therefore, there are infinitely many iterations with r; > 79 which leads to
limy 00 f(X*) = —o0. This contradicts the lower boundedness of { f(X*)}. It follows
from [20, Theorem 11, Remark 12] that the convergence result (3.8) holds due to the
compactness of the Stiefel manifold. O

3.2. Local convergence rate. We now focus on the local convergence rate with
the inexact conditions (3.1) and (3.2). We make some necessary assumptions below.

Assumption 5. Let {X*} be the sequence generated by Algorithm 1 without sub-
space refinement. We assume the following:
(B1) The sequence {X*} converges to X, with grad f(X,) = 0.
(B2) The Euclidean Hessian V2 £ is continuous on conv(St(n, p)).
(B3) The Riemannian Hessian Hess f(X) is positive definite at X..
(B4) The Hessian approximation B* satisfies

[(B* — V2f(XF)[Z* — X*]|e
125 — X*|e

(3.9) — 0, k — oo.

From [20], the trial point Z* obtained by the modified CG method will locally
satisfy the inexact condition (3.2) if || B*— V2 f(X*)|| — 0,k — oo, as in the symmetric
rank-one method [7]. Under the assumption (B4), the inexact condition (3.2) may not
hold for a single Riemannian Newton step (2.13) solved by the modified CG method
when Hess my(X*) is not positive definite. One may solve the subproblem (2.1)
more accurately by applying multiple Riemannian Newton steps or the Riemannian
gradient type methods until (3.2) is satisfied. In our numerical experiments, we found
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that the inexact condition (3.2) is often satisfied with a single Riemannian Newton
step and local linear convergence rate is observed for the LSR1 scheme.

Following the proof in [20, Lemma 17], we show that all iterations are eventually
very successful (i.e., rg > 12, for all sufficiently large k) when assumptions (B1)—(B4)
and the inexact conditions (3.1) and (3.2) hold.

LEMMA 6. Let assumptions (B1)—(B4) and the inexact condition (3.1) be satisfied.
Then, all iterations are eventually very successful (i.e., ry, defined in (2.14) satisfying

TR > 12).

Proof. From the second-order Taylor expansion, we have
1
F(2%) = F(X5) = mi(Z%) < SR((V2F(XF) = BY)[ 2" = X*), 2% - X*)

for some suitable & € [0,1] and X¥ := X* 4 §;,(ZF — X*). Since the Stiefel manifold
is compact, there exist some ¢* such that Z* = Expy(¢F), where Expy. is the
exponential map from Tx«St(n,p) to St(n,p). Following the proof in [5, Appendix
BJ, we have

125 — X% — €"lr < mall€"IIR,

(3.10)
12" — X*|lr < ko€

with positive constants k1 and kg. It follows from (2.5) that

Hessmk(Xk)Kk} = Hessf(Xk)[&g} + 7€k + Projx« (Bk — VQf(Xk)[gk]) .

Moreover, since the Hessian Hess f(X,) is positive definite and (B4) is satisfied, it
holds for sufficiently large k that

[Hessm(X*)[EMlF = (Aumin(Hess £(X*)) +7i) €| + o(lI€"IF),

where Apin(Hess f(X*)) is the minimal spectrum of Hess f(X*). From assumptions
(B2)—(B3), [2, Proposition 5.5.4], and the Taylor expansion of my o Exp y«, we have

lgrad (my o Exp i) (€F) — grad f(X") ¢

= [Hessm(X*)["][le + o( ") > 22"

(3.11)
”fk”Fv

where kg := Apin(Hess f(X,)). By [2, Lemma 7.4.9], there exists a positive constant
¢ such that ||grad (my o Expyr )|l < ¢llgrad mi(Z%)|r < &l|grad f(X%)||r, where we
use the inexact condition (3.2). Consequently, we have from (3.11) that

(14¢)

2
3.12 ke <
(3.12) ¥ < ==

It follows from (3.10) and (3.12) that

lgrad f(X*) e

12" = XHE_ mi(m + D)IEFIR _ 4x3(1+ )% (7 + D)
g1y wrled [XOR  allerad FXNE = alea + 707
oAb +0? (14 o)
- ak3 ary
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The continuity of V2 f, (3.1), (3.9), (3.10), (3.12), and (3.13) imply that

| < TtD (II(VQf(X’“) —BY[ZF — XH][lel| 2% — X"
T 2a lgrad f(X*)[|?
2 Xk _ 2 Xk Zk _Xk 2
LIV h - vl ) o
lgrad f(X*)[?
Therefore the iterations are eventually very successful. 0

As a result, the g-superlinear convergence can also be guaranteed.

THEOREM 7. Suppose that assumptions (B1)—(B4) and conditions (3.1) and (3.2)
hold. Then the sequence {X*} converges q-superlinearly to X..

Proof. Since the iterations are eventually very successful, we have X*+! = ZF
and 74 converges to zero. Let AF = ZF — X*_ Recalling the definition my, in (2.2), we
have grad m;(X*™') = Projys1 (Vf(X*) + B¥[A*] + 7,A*) . Thus, we have from
(3.2) that

(3.14) |Projyrrs (VA(XH) + BYAF] + 7 AF) || o < 0%||grad £(XF) ¢

Ie

Hence, we have

lgrad f(X*)||e = [[Projxie: (VA(X*)]|
= |[Projxest (VF(X*) + V2F(XF)[AF] + o(| A% ()
(3.15) = HPI"OijJrl Vf(Xk) + Bk[Ak]—l—TkAk + O(HAkHF)
(V200 - Bt at)
< 0F[lgrad f(X*) [l + o([[ A" (),

Ie

Ie

where the last inequality is due to (3.14) and the fact that 7, converges to zero. It
follows from a similar argument to (3.12) that there exists some constant ¢; such that

IA*|lF < exllgrad £(X*)|IF
for sufficiently large k. Therefore, from (3.15) and the definition of 6%, we have

lgrad f(X* 1)l
lgrad f(X*)]l¢

Combining (3.16), assumption (B3), and [2, Lemma 7.4.8], it yields

(3.16)

dist(X*+1, X,)

dst(XF, x,)

where dist(X,Y) is the geodesic distance between X and Y which belong to St(n, p).
This completes the proof. 0

4. Linear eigenvalue problem. In this section, we apply the aforementioned
strategy to the following linear eigenvalue problem:

1
4.1 i X):= tr(XTCX) st. X' X=1I
(4.1) (hin - f(X) =X CX) st P
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where C' := A+ B. Here, A, B € R"*™ are symmetric matrices and we assume that the
multiplication of BX is much more expensive than that of AX. Since a usual quadratic
approximation to the purely quadratic function f(X) in (4.1) introduces a linear term,
the resulting subproblem is not a linear eigenvalue problem and has no closed-form
solution. We next investigate a specific construction of the subproblem. Motivated
by the quasi-Newton methods and eliminating the linear term in subproblem (2.1),
we investigate the multisecant conditions in [16]

(4.2) BFX*® = Bx* BFSk = BSk
with S¥ = X* — X*k=1 By a brief induction, we have an equivalent form of (4.2)
(4.3) BF[xk-1 x*] = B[x*1 Xk

Then, using the limited-memory Nystrom approximation, we obtain the approximated
matrix B* as

(4.4) Bf = wH(Wk) oM/,
where
(4.5) O* = orth([ X"~ X*]), and W* = BO*.

Here, orth(Z) is to find the orthogonal basis of the space spanned by Z. Therefore,
an approximation C* to C' can be set as

(4.6) CF = A+ B~

Since the objective function is invariant under rotation, i.e., f(XQ) = f(X) for or-
thogonal matrix ) € RP*P, it is desirable to construct a subproblem whose objective
function inherits the same property. Noticing that problem (4.1) is actually an op-
timization problem on the Grassmann manifold [2, Chapter 3], we use the distance
between the projectors associated with X* and X,

dp(X,X%) = [ XXT = XP(XM) TR,
which has been considered in [12, 45, 52]. Since X* and X are orthonormal matrices,
we have
dy(X, X¥) = (XX T = XF(XHT) (XX T — XF(X5)T))

(4.7) =2p — 2tr(X T XH(XM)TX),

which implies that d,(X, X *) is a quadratic function on X. Consequently, the sub-
problem can be constructed as

4.8 i X) st. X'X=1
(4.8) (in mie(X) s 2

where

1
mi(X) 1= str(XTCRX) + %dp(x, X",
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From the equivalent expression of d,(X, X*) in (4.7), the problem (4.8) is a linear
eigenvalue problem
(A4 BF — 7, X*(X*)T)X = XA,
X'X =1,

where A is a diagonal matrix whose diagonal elements are the p smallest eigenvalues
of A+ BF — 7 X*(X*®)T. From the computation of the Riemannian Hessian on the
Grassmann manifold [2, Chapter 5], the term Z:d,(X, X*) shifts the spectrum of
the Riemannian Hessian of %tr(XTCkX) by 7. Problem (4.8) with an approximate
Hessian still works on the Grassmann manifold. Due to the low computational cost
of A+ B¥ — 7. X*(X*)T compared to A + B, the subproblem (4.8) can be solved
efficiently using existing eigensolvers. As in Algorithm 1, we first solve subproblem
(4.8) to obtain a trial point and compute the ratio (2.14) between the actual reduction
and predicted reduction based on this trial point. Then the iterate and regularization
parameter are updated according to (2.14) and (2.16). Note that it is not necessary
to solve the subproblems highly accurately in practice.

4.1. Convergence. Although the convergence analysis in section 3 is based on
the regularization terms (2.3) and (2.4), similar results can be established with the
specified regularization term Z:d, (X, X*) using the sufficient descent condition (3.1).
It follows from the construction of C* in (4.6) that

IC1l2 < 1All2 + 1Bll2,  IC*]l2 < [[All2 + [|B]]2

for any given matrices A and B. Hence, assumptions (Al) and (A2) hold with
Ly = kg = ||A]|2 + ||B|l2. The Riemannian gradient of f in (4.1) is grad f(X) =
(I, — XXT)(CX). Similar to Theorem 4, we have the following theorem on the
global convergence.

THEOREM 8. Suppose that the inexact condition (3.1) holds. Then, for the Rie-

mannian gradients of f in (4.1), either

(I, — X' (X*) ") (CX") = 0 for some ¢t > 0 or Jim | (I, — X*(XH)T) (cx®)||r = 0.
—00

Proof. Tt can be guaranteed that the distance d,(X, X*) is very small for a large
enough regularization parameter 7 by a similar argument to [20, Lemma 9]. Specifi-
cally, the reduction of the subproblem requires that

<Zk’Cka> + %sz(zk)'l' _ Xk(Xk)TH'Z: _ <Xk7Cka> <0.
From the cyclic property of the trace operator, it holds that
<Ck,Zk(Zk)T _ Xk(Xk)T> n %”Zk(zk)"r ~ XX T2 <o0.
Then
(19) 124247~ XH(X) e < 222

From the descent condition (3.1) for the subproblem, there exists some positive con-
stant v such that

(4.10) 7mwﬂﬂmuﬂzf%quam@
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Based on the properties of C* and C, we have
F(ZF) = F(XF) = (mp(ZF) — mi (X))
_ <Zk’OZk> _ <Zk70ka> _ %”Zk(zk)"r _ Xk(Xk)TH'%
(4.11) < (C=ChZMEMT) = (€ - ", (2527 - XHxT)Y)
(Ly +ru)llZ8(Z8)T - XF(XP) T

166%(Ly + kpr)

2 )
T

IN

<

where the second equality is due to CX* = C*¥X* the unitary Z* and X*, as well as
<C o Ck, Zk(zk)TXk(Xk)T> _ <C o Ck,Xk(Xk)TZk(Zk)T> =0.
Combining (4.10) and (4.11), we have that
f(ZF) — F(XF) = (mi(ZF) — mi(XF))
mk(Xk) — mk(Zk)
for sufficiently large 75 as in [20, Lemma 8|. Since the subproblem is solved with
some sufficient reduction, the reduction of the original objective f holds for large 7
(i.e., 7 is close to 1). Then the convergence of the norm of the Riemannian gradient
grad f(X*) = (I, — X*(X*)T) (CX*) follows in a similar fashion as [20, Theorem
11]. d
The ACE method in [34] needs an estimation S explicitly such that B — I, is
negative definite. By considering an equivalent matrix (A + 8I,,) + (B — 81I,), the
convergence of ACE to a global minimizer is given. On the other hand, our algorithmic

1—r, = <1-—1n

framework uses an adaptive strategy to choose 7 to guarantee the convergence to a
stationary point. By using similar proof techniques in [34], one may also establish the
convergence to a global minimizer.

5. Electronic structure calculation.

5.1. Formulation. Electronic structure calculations with hybrid functionals in-
volve the Fock exchange operator. With some abuse of terminology, we refer to Kohn—
Sham equations with local or semilocal exchange-correlation functionals as KSDFT,
and Kohn-Sham equations with hybrid functionals as Hartree-Fock (HF). We now
introduce the KSDFT and HF total minimization models and present their gradient
and Hessian of the objective functions in these two models.

After some proper discretization, the wave functions of p occupied states can
be approximated by a matrix X = [z1,...,2p] € C"*P with X*X = I,, where n
corresponds to the spatial degrees of freedom. The charge density associated with the
occupied states is defined as

p(X) = diag(X X™).

Unless otherwise specified, we use the abbreviation p for p(X) in the following. The
total energy functional is defined as
(5.1)

1 * 1 . 1 . 1 1
Ei(X) 1= tr(X"LX) + S tr(X Vien X) + 5 SN alawl* + ZpTLTp + 5eTexC(p),
l 7
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where L is a discretized Laplacian operator, Vio, is the constant ionic pseudopoten-
tials, w; represents a discretized pseudopotential reference projection function, (; is
a constant whose value is 1, e is a vector of all ones in R™, and €, is related to the
exchange correlation energy. Therefore, the KS total energy minimization problem
can be expressed as

(5.2) in_ Ew(X) st X*'X =1,

Let pxc(p) = ae’éé'p(p) and denote the Hamilton Hys(X) by

1 . . . *
(5:3)  His(X) = 5L+ Vion + D _ Gunw] + Diag((RLT)p) + Diag(pxe(p) e).
1
Note that Hys(X) only depends on X through the charge density p, and hence can
also be written as Hys(p).
Then the Euclidean gradient of Fis(X) is computed as

(54) VEkS(X) = Hks(X)X

Under the assumption that ex.(p(X)) is twice differentiable with respect to p(X),
Lemma 2.1 in [49] gives an explicit form of the Hessian of Eys(X) as

(5.5) V2E\(X)[U] = His(X)U + R(X)[U],

where U € C**? and R(X)[U] := Diag ((%LT + P (XoU+X 0 U)e) X with
“®” meaning the Hadamard product operation.

After discretization, the Fock exchange operator V(-) : C"*™ — C"*" is usually
a fourth-order tensor; see equations (3.3) and (3.4) in [32] for details. Furthermore,

it is easy to see from [32] that V(-) satisfies the following properties: (i) For any
Dy, Dy € C™*™ there holds (V(D1), D) = (V(D2), D1), which further implies that

(56)  (V(D1+ D3), D1 + Ds) = (V(D1),D1) + 2 (V(D1), D) + (V(Ds), D) .

(ii) If D is Hermitian, V(D) is also Hermitian. It should be emphasized that
computing V(U) is always very expensive since it needs to perform the multiplication
between an n xn xn xn fourth-order tensor and an n-by-n matrix. The corresponding
Fock exchange energy is defined as

1 1
(5.7) Ei(X) := Z(V(XX*)X,X):Z(V(XX*),XX*).
Then the HF total energy minimization problem can be formulated as
(5.8) Xr%in En(X) = Ex(X) + Ex(X) st. XX =1,
cCnxp

We now can explicitly compute the gradient and Hessian of F¢(X) by using the
properties of V(-).

LEMMA 9. Given U € C"*P, the gradient and the Hessian along U of F¢(X) are,
respectively,
(5.9) VE(X) = V(XX*)X,
(5.10) V2E(X)[U] = V(XX*)U + V(XU + UX")X.
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Proof. We first compute the value E¢(X +U). For simplicity, denote D := XU™*+
UX*. Using the property (5.6), by some easy calculations, we have

4E:(X 4+ U)= V(X + U)X +U)"),(X+U)(X+U)")
=4F¢(X)+2V(XX"),D+UU")+ (V(D+UU"),D+UU")
=4FE:(X)+2{(V(XX*),D) +2(V(XX*),UU*) + (V(D), D) + o(U),

where o(U) denotes the third and fourth-order terms about U. Noting that V(X X*)
and V(D) are both Hermitian, we have from the above assertions that

(5.11) Ef(X+U) = E(X)+R(V(X X)X, U>+%8%(V(XX*)U+V(D)X, U)+o(U).

Finally, it follows from expansion (1.2) in [49] that the second-order Taylor expression
in X can be expressed as

Be(X + U) = Ex(X) + RIVE(X),U) + %WVZEf(X)[U], U+ o(U),

which with (5.11) implies (5.9) and (5.10). The proof is completed. 0

1
Let Hpe(X) := Hys(X) + V(X X*) be the HF Hamilton. Recalling that Fns(X) =
Exs(X) + E¢(X), we have from (5.4) and (5.9) that

(5.12) VEw(X) = Hs(X)X + V(XX*)X = Hye(X)X
and have from (5.5) and (5.10) that
(5.13) V2B (X)[U] = Hue (X)U + R(X)[U] + V(XU* + UX™)X.

5.2. Self-consistent field iteration methods. We next briefly introduce the
widely used methods for solving the KSDFT and HF models. For the KSDFT model
(5.2), the most popular method is the self-consistent field iteration (SCF) method
[32]. At the kth iteration, we first fix Hys(X) to be His(X*) and solve the following
linear eigenvalue problem:

=~ 1
(5.14) X =argmin —(X, Hi (X*)X) st. X*X =1,

XeCnxp
Note that in KSDFT, Hy(X*) = Hys(p") depends on the charge density p*. The
output eigenvectors X lead to a new charge density p, which is then mixed with

k+1 and

charge densities from previous steps to generate the new charge density p
hence Hys(p**1). Hence this type of SCF method is also called the charge mixing
method.

For the HF model, the Hamiltonian not only depends on p but also X X*. Hence
we cannot directly apply the charge mixing method. Computing V (X k(X k)*) U
with some matrix U of proper dimension is still very expensive, and we investigate the
limited-memory Nystrém approximation V (X*(X*)*) to approximate V (X*(X*)*)
to reduce the computational cost, i.e.,

(5.15) V(XFH(XHR)) = 2(2) 27,
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where Z =V (X*(X*)*) Q and Q is any orthogonal matrix whose columns form an
orthogonal basis of the subspace such as

span{X"*}, span{X*~! X*} or span{X* 1, X* V (XF(X*)*) X*}.

We should note that a similar idea called the adaptive compression method was pro-
posed in [33], which compresses the operator V(X*(X*)*) on the subspace span{X*}.
Then a new subproblem is constructed as

(5.16) min  Ey(X) + E <1> (X* (X)) X,X> st. X*X =1,
XeCnxp 4

Here, the exact form of the easier parts Fig is preserved while its second-order ap-

proximation is used in the construction of subproblem (2.1). As in the subproblem

(2.1), we can utilize the Riemannian gradient method or the modified CG method

based on the linear equation

DOk Xk e - ssym<<x’f>*w<x’f>>) _ prad B (XY)

Projys (VQEks<X’“>[§1 v

to solve (5.16) inexactly. Since (5.16) is a KS-like problem, we can also use the SCF
method. Here, we present the detailed algorithm in Algorithm 2.

Algorithm 2: Iterative method for (5.8) using Nystrom approximation.
Input initial guess X° € C"*? with (X°)*X% = I,. Set k = 0.
while Stopping condtions not met do

Compute the limited-memory Nystrém approximation V (X k(X k)*)

Construct the subproblem (5.16) and solve it inexactly via the
Riemannian gradient method or the modified CG method or the SCF
method to obtain X*+1.

Set k «+ k+ 1.

We note that Algorithm 2 is similar to the two-level nested SCF method [15] with
the ACE formulation [33] when the subspace in (5.15) and inner solver for (5.16) are
chosen as span{X*} and SCF, respectively.

Another method to solve the HF model (5.8) is the commutator direct inversion
of the iterative subspace (C-DIIS) method. By storing the density matrix explicitly,
it can often lead to an accelerated convergence rate. However, when the size of
the density matrix becomes large, the storage cost of the density matrix becomes
prohibitively expensive. Hu, Lin, and Yang [21] proposed the projected C-DIIS (PC-
DIIS) method, which only requires storage of wave function type objects instead of
the whole density matrix. The ACE technique [33] was also used in PC-DIIS. In this
paper, we focus on the comparisons of our Algorithms 1 and 2.

5.3. Construction of the structured approximation B*. Note that the
Hessian of the KSDFT or HF total energy minimization takes the natural structure
(1.2), and we next give the specific choices of H¢(X*) and H®(X*), which are key to
formulating the structured approximation B*.

For the KS problem (5.2), we have its exact Hessian in (5.5). Since the computa-
tional cost of the parts %L + >, Gwyw; are much cheaper than the remaining parts
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in V2E,, we can choose

(5.17) HE(XF) = %L + ) oy, HO(XP) = VP E(XF) — HO(XP).
l

The exact Hessian of Eyne(X) in (5.8) can be separated naturally into two parts,
ie., V2Eis(X) + V2E¢(X). Usually the hybrid exchange operator V(X X*) can take
more than 95% of the overall time of the multiplication of Hyp¢(X)[U] in many real
applications [34]. Recalling (5.5), (5.10), and (5.13), we know that the computa-
tional cost of V2E¢(X) is much higher than that of V2E)(X). Hence, we obtain the
decomposition as

(5.18) HO(XP) = V2B (XF), HO(XF) = V2E(XP).

Moreover, we can split the Hessian of V2Ey(X*) as done in (5.17) and obtain an
alternative decomposition as

(5.19)  HE(XF) = Hi (XF), HO(XF) = V2E(XF) 4+ (V2B (XF) — HE(XF)).

Finally, we emphasize that the limited-memory Nystrom approximation (5.15)
can serve as a good initial approximation for the part V2E¢(X%).

5.4. Subspace construction for the KSDFT model. As presented in Algo-
rithm 1, the subspace method plays an important role when the modified CG method
does not perform well. The first-order optimality conditions for (5.2) and (5.8) are

H(X)X = XA, X*X =1,

where X € C"*P, A is a diagonal matrix, and H represents Hys for (5.2) and Hp¢
for (5.8). Then, problems (5.2) and (5.8) are actually a nonlinear eigenvalue problem
which aims to find the p smallest eigenvalues of H. We should point out that in
principle X consists of the eigenvectors of H(X) but not necessarily the eigenvectors
corresponding to the p smallest eigenvalues. Since the columns of an optimal solution
X are still the eigenvectors of H(X), we can construct some subspace which contains
these possible wanted eigenvectors. Specifically, at the current iterate, we first com-
pute the first yp smallest eigenvalues and their corresponding eigenvectors of H(X*),
denoted by I'*, and then construct the subspace as

5.20 spanq AT, AT, gra ,

with some small integer v. With this subspace construction, Algorithm 1 will more
likely escape a stagnated point.

6. Numerical experiments. In this section, we present some experiment re-
sults to illustrate the efficiency of the limited-memory Nystrom approximation and
our Algorithm 1. All codes were run on a workstation with Intel Xenon E5-2680 v4
processors at 2.40GHz and 256GB memory running CentOS 7.3.1611 and MATLAB
R2017b.
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6.1. Linear eigenvalue problem. We first construct A and B by using the
following MATLAB commands:

A =randn(n,n); A= (A+A")/2;

B =0.01rand(n,n); B=(B+B'")/2; B=B—-T; B=—B,

where randn and rand are the built-in functions in MATLAB, T = Auin(B)I,, and
Amin(B) is the smallest eigenvalue of B. Then B is negative definite and A is symmet-
ric. In our implementation, we compute the multiplication BX using 1—19 Zil BX
such that BX consumes about 95% of the whole computational time. In the second
example, we set A to be a sparse matrix as

A = gallery(‘wathen’, 5s, 5s)

with parameter s and B is the same as the first example except that BX is computed
directly. Since A is sufficiently sparse, its computational cost AX is much smaller
than that of BX. We use the following stopping criterion:

[(A+ B)w; — piwi|2 } <1071,
max (1, |p4])

(6.1) err := max {

i=1,...,p
where x; is the ith column of the current iterate X* and p; is the corresponding
approximated eigenvalue.

The numerical results of the first and second examples are summarized in Tables 1
and 2, respectively. In these tables, EIGS is the built-in function “eigs” in MATLAB.
LOBPCG is the locally optimal block preconditioned conjugate gradient method [29].
ASQN is the algorithm described in section 4. The difference between ACE and
ASQN is that we take O as orth(span{X*}) but not orth(span{X*~! X*}). Since
a good initial guess X* is known at the (k + 1)th iteration, LOBPCG is utilized
to solve the corresponding linear eigenvalue subproblem (4.8). Noting that BX*~!
and BXF* are available from the computation of the residual, we then adopt the
orthogonalization technique in [35] to compute O and W* in (4.5) without extra
multiplication BO*. The labels “#Av” and “#Bv” denote the total number of matrix-
vector multiplications (MV), counting each operation AV, BV € R™*P as p MVs. The
labels “#A” and “#B” are the total number of calls of A and B. The columns “err,”
“time,” and “B-time” are the maximal relative error of all p eigenvectors defined in
(6.1), the wall-clock time (in seconds) of each algorithm, and the wall-clock time of
BV (in seconds), respectively. The maximal number of iterations for ASQN and ACE
is set to 200.

As shown in Table 1, with fixed p = 10 and different n = 5000, 6000, 8000, and
10000, we can see that ASQN performs better than EIGS, LOBPCG, and ACE in
terms of both accuracy and time. ACE spends a relatively long time to reach a
solution with a similar accuracy. For the case with a fixed n = 5000 but different
values of p, ASQN can still provide an accurate solution using less time than the
three other methods. We note that the matrix B is always multiplied by an n-by-p
matrix in ASQN and ACE. However, the multiplication between the matrix B and
n-dimensional vector often occurs in EIGS. Therefore, under similar counts of #Bv,
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TABLE 1
Numerical results on random matrices.

[#AV/#A/#BV/#B err  Time B—time[ H#AV/#A/#Bv/#B err Time B-time
p=10
n 5000 6000
EIGS 459/450/459/450 8.0e-11 19.9 18.1 730/721/730/721 6.9e-11 48.9 45.9
LOBPCG|1717/387/1717/387 9.9e-11 46.7 23.1 |2105/382/2105/382 9.8e-11 97.3 42.6
ASQN 2323/530/150/15 9.2e-11 6.0 1.3 2798/610/160/16 9.5e-11 8.5 2.0
ACE 4056/1145/460/46 9.7e-11 13.0 3.8 4721/1103/460/46 9.4e-11 17.0 5.8
n 8000 10000
EIGS | 538/529/538/520 8.7e-11 70.6 66.6 | 981/972/981/972 8.8c-11 153.8 144.8
LOBPCG | 1996/314/1996/314 9.9¢-11 134.0 57.2 | 2440/387/2440/387 9.7c-11 287.4 1225
ASQN | 2706/567/150/15 8.9e-11 11.2 2.8 | 2920/581/150/15 9.7e-11 17.8 5.4
ACE | 4537/1162/450/45 9.8e-11 26.1 9.8 | 4554/951/400/40 9.6e-11 35.3 14.1
n = 5000
p 10 20
EIGS 459/450/459/450 8.0e-11 19.9 18.1 638/619/638/619 3.2e-11 44.4 42.5
LOBPCG|1717/387/1717/387 9.9e-11 46.7 23.1 |2914/308/2914/308 9.8e-11 70.4 22.2
ASQN 2323/530/150/15 9.2e-11 6.0 1.3 3809/429/260/13 9.2e-11 5.9 1.2
ACE 4056/1145/460/46 9.7e-11 13.0 3.8 5902/775/680/34 9.5e-11 10.9 3.2
p 30 50
EIGS 660/631/660/631 3.0e-11 47.4 45.2 879/830/879/830 1.6e-12 47.7 44.6
LOBPCG|4412/707/4412/707 9.7e-11 111.2 56.1 | 5766/542/5766/542 9.5e-11 97.0 40.0
ASQN 5315/636/420/14 9.8e-11 7.9 1.3 7879/711/650/13 9.8e-11 12.6 1.8
ACE 9701/1173/1530/51 9.4e-11 15.8 4.6 [21832/2270/4500/90 9.7e-11 41.4 13.2

EIGS usually takes more calls of B, i.e., more #B. Similar conclusions can also be
seen from Table 2. From the numbers #Av, #Bv, #A, and #B, we can see that the
limited-memory Nystrém method reduces the computational cost on the expensive
part.

6.2. Kohn—Sham total energy minimization. We now test the electron
structure calculation models in subsections 6.2 and 6.3 using the new version of the
KSSOLV package [51]. One of the main differences is that the new version uses
the more recently developed optimized norm-conserving Vanderbilt pseudopotentials
[17], which are compatible to those used in other community software packages such
as Quantum ESPRESSO. The problem information is listed in Table 3. For fair com-
parisons, we stop all algorithms when the Frobenius norm of the Riemannian gradient
is less than 107% or the maximal number of iterations is reached. In the following ta-
bles, the column “solver” denotes which specified solver is used. The columns “fval,”
“nrm@G,” and “time” are the final objective function value, the final Frobenius norm
of the Riemannian gradient, and the wall-clock time in seconds of each algorithm,
respectively.

In this test, we compare the structured quasi-Newton method with the SCF in
KSSOLV [51], the Riemannian L-BFGS method (RQN) in Manopt [6], the Riemannian
gradient method with BB step size (GBB) [20], and the adaptive regularized Newton
method (ARNT) [20]. The default parameters therein are used. Our Algorithm 1
with the approximation with (5.17) is denoted by ASQN. The parameters setting of
ASQN is the same as that of ARNT [20].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/23/19 to 134.50.218.9. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

QUASI-NEWTON METHODS ON STIEFEL MANIFOLD

TABLE 2

Numerical results on sparse matrices.

A2261

H#AV/#A/#Bv/#B  err Time B-time| #Av/#A/#Bv/#B err Time B-time

s 9 10
EIGS |[1752/1743/1752/1743 6.0e-08 13.2 11.1 [1390/1381/1390/1381 9.1e-11 25.8 24.2
LOBPCG [4042/1003/4042/1003 3.5e-05 28.8 9.4 3304/689/3304/689 9.7e-11 40.5 10.0
ASQN 7865/3661/280/28 8.6e-11 14.9 04 5540/1424/210/21 8.5e-11 8.6 0.4
ACE |16459/6903/2010/201 8.5¢-08 32.3 3.1 9657/2816/880/88 9.0e-11 185 1.9

s 11 12
EIGS (1779/1770/1779/1770 5.3e-08 37.8 35.3 [1759/1750/1759/1750 8.4e-11 40.1 37.8
LOBPCG|[5091/1003/5091/1003 1.8e-08 71.3 24.4 [4493/1003/4493/1003 1.4e-09 80.2 30.8
ASQN 8619/2662/240/24 8.7¢-11 15.7 0.7 7622/2772/260/26 9.9e-11 17.8 1.0
ACE 13223/4222/970/97 9.9e-11 26.4 2.8 |17113/6217/2010/201 1.4e-08 42.2 8.7

s =12

P 10 20
EIGS |[1759/1750/1759/1750 8.4e-11 40.1 37.8 [1730/1711/1730/1711 8.2e-11 54.8 52.2
LOBPCG [4493/1003/4493/1003 1.4e-09 80.2 30.8 [7488/1003/7488/1003 3.4e-04 110.2 40.9
ASQN 7622/2772/260/26 9.9e-11 17.8 1.0 15337/5290/680/34 9.8e-11 40.2 1.5
ACE [17113/6217/2010/201 1.4e-08 42.2 8.7 [26087/7149/4020/201 3.2e-05 56.1 8.4

P 30 40
EIGS [1561/1532/1561/1532 6.9e-11 50.9 48.5 [1553/1514/1553/1514 4.4e-11 51.3 49.3
LOBPCG| 8855/753/8855/753 9.7e-11 91.4 26.3 [10522/616/10522/616 9.7e-11 89.7 22.2
ASQN | 13646/1666/600/20 9.2e-11 24.3 1.1 | 15392/1032/680/17 9.6e-11 23.0 1.0
ACE |27099/3904/3780/126 9.7e-11 48.0 7.0 |24310/2074/2640/66 9.6e-11 36.6 3.9

TABLE 3

Problem information.

Name (n1,n2,n3) n P
alanine (91,68,61) | 35829 | 18
c12h26 (136,68,28) | 16099 | 37
ctube661 | (162,162,21) | 35475 | 48
glutamine | (64,55,74) | 16517 | 29
graphenel6| (91,91,23) |12015 |37
graphene30| (181,181,23) | 48019 | 67
pentacene | (80,55,160) | 44791 | 51
gaas (49,49,49) | 7153 | 36
si40 (129,129,129)[140089| 80
si64 (93,93,93) | 51627 |128

al (91,01,01) | 47833 | 12
ptnio (89,48,42) 11471 | 43

c (46,46,46) | 6031 | 2

For each algorithm, we first use GBB to generate a good starting point with
stopping criterion [|grad f(X*)||r < 107! and a maximum of 2000 iterations. The
maximal numbers of iterations for SCF, GBB, ARNT, ASQN, and RQN are set as
1000, 10000, 500, 500, 500, and 1000, respectively. The numerical results are reported
in Tables 4 and 5. The column “its” represents the total number of iterations in SCF,
GBB, and RQN, while the two numbers in ARNT, ASQN are the total number of
outer iterations and the average numbers of inner iterations.

From Tables 4 and 5, we can see that SCF failed in “graphenel6,” “graphene30,”
“al,” “ptnio,” and “c.” We next explain why SCF fails by taking “c” and “graphenel6”
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TABLE 4
Numerical results on KS total energy minimization.

Solver fval [ nrmG [ its Time fval [nrmG[ its Time
alanine c12h26

SCF [-6.27084e+1| 6.3e-7 11 64.0 ||-8.23006e+1|6.5e-7 10 61.1

GBB |-6.27084e+1| 8.2e-7 92 71.3 ||-8.23006e+1|9.5e-7 89 65.8

ARNT|-6.27084e+1| 3.8¢-7 | 3(13.3) | 63.0 ||-8.23006e+1|7.5e-7| 3(15.3) 60.9
ASQN |-6.27084e+1| 9.3e-7 |13(11.8)| 81.9 ||-8.23006e+1{9.3e-7| 10(13.3) 67.8

RQN [-6.27084e+1| 1.5e-6 34 114.9 ||-8.23006e+1|1.7e-6 45 120.0
ctube661 glutamine

SCF |-1.35378e+-2| 5.7e-7 11 200.4 {]-9.90525e+-1|4.9e-7 10 49.5

GBB |-1.35378e+2| 6.3e-7 | 102 199.7 [|-9.90525e+1|4.9e-7 63 44.0

ARNT|-1.35378e+2| 3.2e-7 | 3(18.3) | 168.3 ||-9.90525e+13.6e-7| 3(12.0) 42.6
ASQN|-1.35378e+2| 7.6e-7 |11(12.8)| 201.7 ||-9.90525e+1|5.3e-7| 12(9.8) 50.7
RQN |-1.35378e+2| 3.4e-6 40 308.8 ||-9.90525e¢+1|1.8e-6 26 72.8
graphenel6 graphene30
SCF |-9.57196e+1| 8.7e-4 | 1000 |3438.4(|-1.76663e+2|3.5e-4| 1000 |31897.6
GBB [-9.57220e+1| 9.4e-7 | 434 | 185.1 ||-1.76663e+2(9.0e-7 904 3383.9
ARNT|-9.57220e+1| 1.8e-7 | 4(37.2) | 164.1 ||-1.76663e+2|4.2e-7| 5(74.2) | 2386.1
ASQN|-9.57220e+1| 8.8e-7 |23(24.1)| 221.2 ||-1.76663e+2|7.2e-7| 74(31.1) | 4388.1
RQN [-9.57220e+1| 1.6e-6 | 213 | 287.8 ||-1.76663e+2|3.3e-5 373 4296.7

pentacene gaas
SCF |-1.30846e+2| 8.5e-7 12 279.8 [[-2.86349e+-2|5.8e-7 15 41.1
GBB |-1.30846e+2| 9.6e-7 101 236.1 |[-2.86349e+-2|7.5e-7 296 7.7

ARNT|[-1.30846e+2| 2.1e-7 | 3(14.0) | 213.6 ||-2.86349¢+2|7.4e-7| 3(46.3) 59.9
ASQN |-1.30846e+2| 9.0e-7 |23(14.5)| 423.0 ||-2.86349¢+2|6.0e-7| 35(24.8) | 127.2
RQN [-1.30846e+2| 2.1e-6 34 437.9 [|-2.86349e+2|1.5e-6 111 116.0
si40 si64
SCF |-1.57698e+2| 7.5e-7 19 3587.4||-2.53730e+-2|3.4e-7 10 1100.0
GBB |-1.57698e+2| 8.7e-7 289 |3657.2(]-2.53730e+2|7.3e-7 249 1534.2
ARNT|[-1.57698e+2| 3.7e-7 | 3(33.0) |3343.9(|-2.53730e+2|7.9¢e-7| 3(47.3) | 1106.8
ASQN |-1.57698e+2| 9.8e-7 |33(23.3) |4968.7(|-2.53730e+2|9.4e-7| 23(25.0) | 1563.9
RQN [-1.57698e+2| 4.1e-6 62 4946.7(]-2.53730e+2|9.7e-7 122 2789.4
al ptnio
SCF |-3.52151e+2|7.4e4+0| 1000 [4221.1(|-9.25762e+2|1.9e-1 1000 4461.9
GBB |-3.53707e+2| 9.7e-7 | 1129 | 219.3 ||-9.26927e+2|2.4e-6| 10000 5627.2
ARNT|-3.53710e+2| 5.9e-7 |59(60.7)| 947.7 |[-9.26927e+2|9.4e-7(104(129.6) | 7558.3
ASQN|-3.53710e+2| 7.1e-7 |94(47.3)|1395.4(|-9.26927e+2|9.2e-7| 153(69.6) [12728.1
RQN [-3.53710e+2| 1.8e-3 267 323.4 {[-9.26925e+2(2.3e-4 380 924.4

as examples. For the case “c,” we obtain the same solution by using GBB, ARNT,
and ASQN. The number of wanted wave functions are 2, i.e., p = 2. With some
abuse of notation, we denote the final solution by X = [z1, 23]. Since X satisfies the
first-order optimality condition, the columns of X are also eigenvectors of H(X), and
the corresponding eigenvalues of H(X) are —1.8790, —0.6058. On the other hand, the
smallest four eigenvalues of H(X) are —1.8790, —0.6577, —0.6058, —0.6058 and the
corresponding eigenvectors are denoted by Y = [y1, y2, y3, y4]. The energies and norms
of Riemannian gradients of the different eigenvector pairs [x1, za], [y1,¥y2], [y1,y3], and
[y1,y4] are (—5.3127,9.96 x 10~7), (—5.2903,3.07 x 1071), (=5.2937,1.82 x 10~ 1), and
(—4.6759,1.82 x 10~1), respectively. Comparing the angles between X and Y shows
that x1 is nearly parallel to y; but zo lies in the subspace spanned by [ys, y4] other
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TABLE 5
Numerical results on KS total energy minimization.

Solver fval [ nrmG [ its Time

C
SCF [-5.29296e+0[7.3¢-3] 1000 |[168.3
GBB |-5.31268¢+0(1.0e-6| 3851 [112.7
ARNT|-5.31268¢+0|5.7¢-7| 96(49.1) [211.3
ASQN|-5.31268¢+0]6.7e-7]104(38.5) [ 183.1
RQN |-5.31244e+0|1.4e-3| 73 | 10.8

than yo. Hence, when the SCF method is used around X, the next point will jump
to the subspace spanned by [y1, y2]. This indicates the failure of the aufbau principle,
and thus the failure of the SCF procedure. This is consistent with the observation
in the chemistry literature [48], where sometimes the converged solution may have a
“hole” (i.e., unoccupied states) below the highest occupied energy level.

In the case “graphenel6,” we still obtain the same solution from GBB, ARNT, and
ASQN. The number of wave functions p is 37. Let X be the computed solution and
the corresponding eigenvalues of H(X) be d. The smallest 37 eigenvalues and their
corresponding eigenvectors of H(X) are g and Y. We find that the first 36 elements of
d and g are almost the same up to a machine accuracy, but the 37th element of d and
g is 0.5821 and 0.5783, respectively. The energies and norms of Riemannian gradients
of X and Y are (—94.2613,8.65 x 10~7) and (—94.2030,6.95 x 10~!), respectively.
Hence, SCF does not converge around the point X.

In Tables 4 and 5, ARNT usually converges in a few iterations due to the usage
of the second-order information. It is often the fastest one in terms of time since the
computational cost of two parts of the Hessian V2FE), has no significant difference.
GBB also performs comparably well as ARNT. ASQN works reasonably well on most
problems. It takes more iterations than ARNT since the limit-memory approximation
often is not as good as the Hessian. Because the costs of solving the subproblems of
ASQN and ARNT are more or less the same, ASQN is not competitive to ARNT.
However, by taking advantage of the problem structures, ASQN is still better than
RQN in terms of computational time and accuracy. To compare the computational
cost of the cheap part H° and the remaining parts H° in V2 FE\, we repeat the calcula-
tions of H°(X)[U] and H¢(X)[U] with fixed X and U 50 times; the ratios between the
total time of H®(X)[U] and H°(X)[U] on “alanine,” “c12h26,” “ctube661,” and “glu-
tamine” are 22.2, 18.5, 10.6, and 22.0, respectively. Finally, we show the convergence
behaviors of these five methods on the system “glutamine” in Figure 1. Specifically,
the error of the objective function values is defined as

AFy(X") = Bys(X") — Euin,

where Fpi, is the minimum of the total energy attained by all methods.

6.3. Hartree—Fock total energy minimization. In this subsection, we com-
pare the performance of three variants of Algorithm 2 where the subproblem is solved
by SCF (ACE), the modified CG method (ARN), and GBB (GBBN), respectively,
the Riemannian L-BFGS (RQN) method in Manopt [6], and two variants of Algo-
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Fic. 1. Comparisons of different algorithms on “glutamine” of KS total energy minimization.
The first two points are the input and output of the initial solver GBB, respectively.

rithm 1 with approximation (5.18) (ASQN) and approximation (5.19) (AKQN). Since
the computation of the exact Hessian V2Ejy; is time-consuming, we do not present the
results using the exact Hessian. The limited-memory Nystrom approximation (5.15)
serves as an initial Hessian approximation in both ASQN and AKQN. To compare the
effectiveness of quasi-Newton approximation, we set H°(X*) to be the limited-memory
Nystrom approximation (5.15) in (5.19) and use the same framework as in Algorithm
1. We should mention that the subspace refinement is not used in ASQN and AKQN.
Hence, only structured quasi-Newton iterations are performed in them. The default
parameters in RQN and GBB are used. For ACE, GBBN, ASQN, AKQN, and ARN,
the subproblem is solved until the Frobenius-norm of the Riemannian gradient is less
than 0.1 min{||grad f(X*)||r,1}. We also use the adaptive strategy for choosing the
maximal number of inner iterations of ARNT in [20] for GBBN, ASQN, AKQN, and
ARN. The settings of other parameters of ASQN, AKQN, and ARN are the same to
those in ARNT [20]. For all algorithms, we generate a good initial guess by using
GBB to solve the corresponding KS total energy minimization problem (i.e., remove
E; part from Ey¢ in the objective function) until a maximal number of iterations 2000
is reached or the Frobenius-norm of the Riemannian gradient is smaller than 1073.
The maximal number of iterations for ACE, GBBN, ASQN, ARN, and AKQN is set
to 200 while that of RQN is set to 1000.
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TABLE 6
Numerical results on HF total energy minimization.

Solver fval [nrmG[ its [ Time fval [nrmG[ its [ Time

alanine c12h26

ACE |-6.61821e+1|3.8¢-7| 11(3.0) | 261.7 ||-8.83756e+1|3.9¢-7| 8(2.9) 259.7

GBBN |-6.61821e+1{1.0e-6|11(17.4)| 268.8 ||-8.83756e+1|4.9¢-4|200(68.7)| 11839.8
ARN |-6.61821e+1(9.5e-7|10(13.7)| 206.6 ||-8.83756e+1[4.9e-4| 200(2.4) | 4230.3
ASQN |-6.61821e+1(9.1e-7| 7(14.1) | 169.6 ||-8.83756e+1|2.1e-7| 7(12.6) 234.1

AKQN|-6.61821e+1(4.8e-7| 31(7.5) | 530.2 ||-8.83756e+1[4.9e-7| 29(7.6) 871.2

RQN |-6.61821e+1|1.9¢e-6 76 1428.5 ||-8.83756e+1|1.3e-3 45 3446.3
ctube661 glutamine
ACE |-1.43611e+2|9.2e-7| 8(2.8) 795.0 |[|-1.04525e+2(3.9e-7| 10(3.0) 229.6
GBBN|-1.43611e+2(6.5¢-7|10(26.3)| 1399.2 ||-1.04525¢+2|8.4e-7| 11(13.3) | 256.9
ARN |-1.43611e+2(6.0e-7| 9(14.1) | 832.7 ||-1.04525e+2|8.8¢e-7| 10(9.5) 209.5
ASQN |-1.43611e+2{2.0e-7| 8(13.2) | 777.1 ||-1.04525e+2|1.5e-7| 8(10.1) 182.9
AKQN]|-1.43611e+2(6.1e-7|17(10.3)| 1502.0 ||-1.04525e+2(9.1e-7| 25(6.0) 515.7
RQN |-1.43611e+2|7.2e-6 59 6509.0 |(|-1.04525e+2|2.9e-6 57 1532.8
graphenel6 graphene30
ACE |-1.01716e+2|7.6e-7| 13(3.4) | 367.0 ||-1.87603e+2|8.6e-7| 58(4.2) | 14992.0
GBBN|-1.01716e+2|4.2e-7|14(42.1)| 659.0 ||-1.87603e+2|8.9¢e-7| 29(72.2) | 19701.8
ARN |-1.01716e+2|4.5e-7(14(23.0)| 403.6 ||-1.87603e+2[9.0e-7| 45(35.6) | 14860.6
ASQN|-1.01716e+2{4.9¢e-7|11(20.2)| 357.5 ||-1.87603e+2|7.6e-7| 15(26.5) | 6183.0
AKQN|-1.01716e+2|7.9¢e-7]49(15.1)| 1011.0 ||-1.87603e+2(8.0e-7| 39(12.3) | 9770.7
RQN [-1.01716e+2|1.0e-3 74 2978.9 |(|-1.87603e+2|1.5e-5 110 39091.0
pentacene gaas
ACE |-1.39290e+2|6.2e-7| 13(3.0) | 1569.5 ||-2.93496e+2|8.8¢e-7| 29(2.9) 343.8

GBBN [-1.39290e+2(8.2e-7|16(23.0)| 2620.2 ||-2.93496e+2|9.3e-7| 34(35.3) | 659.3
ARN |-1.39290e+2(7.2e-7(15(12.2)| 1708.1 ||-2.93496e+2(9.6e-7| 31(20.4) | 468.7
ASQN |-1.39290e+2{1.9¢e-7| 9(14.3) | 1168.1 ||-2.93496e+2|3.3e-7| 10(28.0) | 199.5
AKQN|-1.39290e+2|5.4e-7| 29(8.5) | 3458.4 ||-2.93496e+2|4.6e-7| 22(18.4) | 347.1

RQN [-1.39290e+2|2.4e-6 73 11363.8 ||-2.93496e+2|1.0e-6 126 2154.1
si40 si64
ACE |-1.65698e+2|9.2e-7| 29(4.5) | 30256.4 ||-2.67284e+2(|9.8¢-7| 9(2.9) 6974.3
GBBN |-1.65698e+2|8.6e-7|24(43.9)| 34692.4 ||-2.67284e+2|5.3e-7| 14(27.0) | 11467.9
ARN |-1.65698¢e+2(8.0e-7|22(22.1)| 21181.3 ||-2.67284e+2|7.7e-7| 12(18.6) | 9180.7

ASQN |-1.65698e+2(2.8e-7|12(37.8)| 15369.5 ||-2.67284e+2(3.0e-7| 8(21.9) | 6764.7

AKQN|-1.65698¢e+2(9.2e-7| 87(7.9) | 89358.8 ||-2.67284e+2|7.1e-7| 24(18.8) | 33379.0
RQN |-1.65698e+2|6.1e-6| 156 |181976.8(|-2.67284e+2|8.4e-7 112 115728.8

A detailed summary of computational results is reported in Table 6. We see
that ASQN performs best among all the algorithms in terms of both the number
of iterations and time, especially in the systems “alanine,” “graphene30,” “gaas,”
and “si40.” Usually, algorithms take fewer iterations if more parts in the Hessian
are preserved. Since the computational cost of the Fock exchange energy dominates
that of the KS part, algorithms using fewer outer iterations consume less time to
converge. Hence, ASQN is faster than AKQN. Comparing with ARN and RQN, we
see that ASQN benefits from our quasi-Newton technique. Using a scaled identity
matrix as the initial guess, RQN takes many more iterations than our algorithms
which use the adaptive compressed form of the hybrid exchange operator. ASQN is
two times faster than ACE in “graphene30” and “si40.” In fact, for a fixed X and
U on “alanine,” “c12h26,” “ctube661,” and “glutamine,” the ratios between the total

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/23/19 to 134.50.218.9. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2266 J. HU, B. JIANG, L. LIN, Z. WEN, AND Y.-X. YUAN

0 ‘
° 10 ACE °
= —+—RQN =
g ——GBBN g
. 5 .
5 10 —-o-ARN =
o by - ASQN ©
< fay | = AKQN =
IS 10 IS
5 10 o
> =}
© ©
> >
T 4-15 o)
o 10 <]
0 20 40 60 0 500 1000 1500
iter time
(a) AELe(X¥) versus iterations (b) AEys(X*) versus time
5 5
10 ACE 10 ACE
o] ——RQN el —+—RQN
g ——GBBN g ——GBBN
2 10° --ARN 2 10° -o-ARN
< —a-ASQN S —=-ASQN
CIEJ ——AKQN qE) ——AKQN
€ q0° T 405
S S
£ £
<) <)
= 4g°10 S 10710
0 20 40 60 0 500 1000 1500 2000
iter time
(¢) |lgrad Ene (X*)||F versus iteration (d) |lgrad Ene(X*)||F versus time

Fic. 2. Comparisons of different algorithms on “glutamine” of HF' total energy minimization.

time of He(X)[U] and H¢(X)[U] are 32.2, 70.4, 86.4, and 53.8, respectively. Finally,
we show the convergence behaviors of these six methods on the system “glutamine” in
Figure 2, where A Ey¢(X¥) is defined similarly as the KS case. In summary, algorithms
utilizing the quasi-Newton technique combined with the Nystrom approximation are
often able to give better performance.

7. Conclusion. We present a structured quasi-Newton method for optimization
with orthogonality constraints. Instead of approximating the full Riemannian Hessian
directly, we construct an approximation to the Euclidean Hessian and a regularized
subproblem using this approximation while the orthogonality constraints are kept.
By solving the subproblem inexactly, the global and local g-superlinear convergence
can be guaranteed under certain assumptions. Our structured quasi-Newton method
also takes advantage of the structure of the objective function if some parts are much
more expensive to be evaluated than other parts. Our numerical experiments on the
linear eigenvalue problems, KSDFT and HF total energy minimization, demonstrate
that our structured quasi-Newton algorithm is very competitive with the state-of-art
algorithms.

The performance of the quasi-Newton methods can be further improved in several
respects, for example, finding a better initial quasi-Newton matrix than the Nystrom
approximation and developing a better quasi-Newton approximation than the LSR1
technique. Our technique can also be extended to the general Riemannian optimiza-
tion with similar structures.
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