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a b s t r a c t

We present a new method to accelerate real-time time-dependent density functional theory (rt-TDDFT)
calculations with hybrid exchange–correlation functionals. In the context of a large basis set such as
planewaves and real space grids, the main computational bottleneck for large scale calculations is the
application of the Fock exchange operator to the time-dependent orbitals. Our main goal is to reduce
the frequency of applying the Fock exchange operator, without loss of accuracy. We achieve this by
combining the recently developed parallel transport (PT) gauge formalism (Jia et al. J. Chem. Theory
Comput. 2018) and the adaptively compressed exchange operator (ACE) formalism (Lin, J. Chem. Theory
Comput. 2016). The PT gauge yields the slowest possible dynamics among all choices of gauge. When
coupled with implicit time integrators such as the Crank–Nicolson (CN) scheme, the resulting PT–CN
scheme can significantly increase the time step from sub-attoseconds to 10 − 100 attoseconds. At each
time step tn, PT–CN requires the self-consistent solution of the orbitals at time tn+1. We use ACE to
delay the update of the Fock exchange operator in this nonlinear system, while maintaining the same
self-consistent solution. We verify the performance of the resulting PT–CN–ACE method by computing
the absorption spectrum of a benzene molecule and the response of bulk silicon systems to an ultrafast
laser pulse, using the planewave basis set and the HSE exchange–correlation functional. We report
the strong and weak scaling of the PT–CN–ACE method for silicon systems ranging from 32 to 1024
atoms, on a parallel computer with up to 2048 computational cores. Compared to standard explicit
time integrators such as the 4th order Runge–Kutta method (RK4), we find that the PT–CN–ACE can
reduce the frequency of the Fock exchange operator application by nearly 70 times, and the thus
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reduce the overall wall clock time by 46 times for the system with 1024 atoms. Hence our work enables
hybrid functional rt-TDDFT calculations to be routinely performed with a large basis set for the first
time.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In generalized Kohn–Sham density functional theory [1,2], hy-
brid exchange–correlation functionals, such as B3LYP [3,4],
PBE0 [5] and HSE [6,7], are known to be more reliable in pro-
ducing high fidelity results for ground state electronic structure
calculations for a vast range of systems [8,9]. With the recent
developments of ultrafast laser techniques, a large number of
excited state phenomena, such as nonlinear optical response [10]
and the collision of an ion with a substrate [11], can be observed
in real time. One of the most widely used techniques for studying
such ultrafast properties is the real-time time-dependent density
functional theory (rt-TDDFT) [12–17]. Hybrid functional rt-TDDFT
calculations have been performed in the context of small basis
sets such as Gaussian orbitals and atomic orbitals [18–20]. In the
context of a large basis set such as planewaves and real space
grids, most rt-TDDFT calculations so far are performed with lo-
cal and semi-local exchange–correlation functionals, and hybrid
functional calculations have only been performed for systems
consisting of a handful of atoms [21]. This is because hybrid
functionals include a fraction of the Fock exchange operator, which
requires access to the diagonal aswell as the off-diagonal elements
of the density matrix. This leads to significant increase of the
computational cost compared to calculations with local and semi-
local functionals. The problem is compounded by the very small
time step (on the order of attosecond or sub-attosecond) often
needed in rt-TDDFT simulation. Hence to reach the femtosecond,
let alone the picosecond timescale, the number of application of
the Fock exchange operator can be prohibitively expensive for
large systems.

This paper aims at enabling practical hybrid functional rt-
TDDFT calculations to be performed with a large basis set. To this
end, the primary goal is to reduce the number of matrix–vector
multiplication operations involving the Fock exchange operator. At
first glance, this is a rather difficult task, since the Fock exchange
operator depends on the density matrix P(t), which needs to
be updated at each small time step. In order to overcome this
difficulty, we first enlarge the time step of rt-TDDFT calculations
via implicit time integrators. While implicit time integrators are
often considered to be not sufficiently cost-effective when com-
pared to explicit integrators for rt-TDDFT calculations [22–24],
these studies are performed by direct propagation of the Kohn–
Sham wavefunctions. One main reason is that the oscillation of
the wavefunctions is faster than that of density matrix, and hence
implicit integrators with a large time step are often stable but not
accurate enough. We have recently identified that by optimizing
the gauge, i.e. a unitary rotation matrix performing a linear combi-
nation of the wavefunctions, the oscillation of the wavefunctions
can be significantly reduced. In particular, the parallel transport
(PT) gauge [25,26] yields the slowest dynamics among all possible
choices of gauge. Hence when the parallel transport dynamics is
coupledwith implicit time integrators, such as the Crank–Nicolson
(CN) scheme, the resulting PT–CN scheme can significantly in-
crease the time step with systematically controlled accuracy.

Implicit integrators such as PT–CN introduce a set of nonlinear
equations that needs to be solved self-consistently at each time
step going from tn to tn+1. This system can be viewed as a fixed
point problem to determine the orbitals at tn+1. In the context
of ground state hybrid functional density functional theory cal-
culations, we have recently developed the adaptively compressed

exchange operator (ACE) formulation [27,28] to accelerate a fixed
point problem introduced by a nonlinear eigenvalue problem. The
ACE formulation can reduce the frequency of applying the Fock
exchange operator without loss of accuracy, and can be used for
insulators and metals. It has been incorporated into community
software packages such as the Quantum ESPRESSO [29]. The idea
of the adaptive compression has been rigorously analyzed in the
context of linear eigenvalue problems [30], and can be extended to
accelerate calculations in other contexts such as the density func-
tional perturbation theory [31]. In this paper,we further extend the
idea of ACE to accelerate hybrid functional rt-TDDFT calculations,
by splitting the solution of the nonlinear system into two iteration
loops. During each iteration of the outer loop, we only apply
the Fock exchange operator once per orbital, and construct the
adaptively compressed Fock exchange operator. In the inner loop,
only the adaptively compressed Fock exchange operator will be
used, and the application of the compressed operator only involves
matrix–matrix multiplication operations, and is much cheaper
than applying the Fock exchange operator. This two loop strategy
further reduces the frequency of updating the Fock operator and
hence the computational time.

The rest of the manuscript is organized as follows. We intro-
duce the real-time time-dependent density functional theory with
hybrid functional and parallel transport gauge in Sections 2 and
3, respectively. We present the adaptively compressed exchange
operator formulation in Section 4. Numerical results are presented
in Section 5, followed by a conclusion and discussion in Section 6.

2. Real-time time dependent functional theory with hybrid
functional

rt-TDDFT solves the following set of time-dependent equations

ı∂tψi(t) = H(t, P(t))ψi, i = 1, . . . ,Ne, (1)

where Ne is the number of electrons (spin degeneracy omitted),
and Ψ (t) = [ψ1(t), . . . , ψNe (t)] are the electron orbitals. The
Hamiltonian takes the form

H(t, P(t)) = −
1
2
∆r + Vext(t) + VHxc[P(t)] + VX[P(t)]. (2)

Here Vext(t) characterizes the electron–ion interaction, and the
explicit dependence of the Hamiltonian on t is often due to the
existence of an external field. The Hamiltonian also depends non-
linearly on the density matrix P(t) = Ψ (t)Ψ ∗(t). VHxc is a local
operator, and characterizes the Hartree contribution and the local
and the semi-local part of the exchange–correlation contribution.
It depends only on the electrondensityρ(t) =

∑Ne
i=1 |ψi(t)|2, which

are given by the diagonal matrix elements of the density matrix
P(t) in the real space representation. The Fock exchange operator
VX is an integral operator with kernel

VX[P](r, r′) = −αP(r, r′)K (r, r′). (3)

Here K (r, r′) is the kernel for the electron–electron interaction, and
0 < α < 1 is a mixing fraction. For example, in the Hartree–
Fock theory, K (r, r′) = 1/

⏐⏐r − r′
⏐⏐ is the Coulomb operator and

α = 1. In screened exchange theories [6], K can be a screened
Coulomb operator with kernel K (r, r′) = erfc(µ

⏐⏐r − r′
⏐⏐)/⏐⏐r − r′

⏐⏐,
and typically α ∼ 0.25.
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When a large basis set is used, it is prohibitively expensive to
explicitly construct VX[P], and it is only viable to apply it to a vector
ϕ(r) as

(VX [P]ϕ) (r) = −α

Ne∑
i=1

ψi(r, t)
∫

K (r, r′)ψ∗

i (r
′, t)ϕ(r′) dr′. (4)

This amounts to solvingN2
e Poisson-like problemswith FFT, and the

computational cost isO(Ng log(Ng )N2
e ), where theNg is the number

of points in the FFT grid. This cost is asymptotically comparable to
other matrix operations such as the QR factorization for orthogo-
nalizing the Kohn–Sham orbitals which scales as O(NgN2

e ), but the
log(Ng ) prefactor is significantly larger.

In order to propagate Eq. (1) from an initial set of orthonormal
orbitals Ψ (0), we may use for instance, the standard explicit 4th
order Runge–Kutta scheme (S-RK4):

k1 = −ı∆tHnΨn,

Ψ (1)
n = Ψn +

1
2
k1, H (1)

n = H(tn+ 1
2
,Ψ (1)

n Ψ (1)∗
n )

k2 = −ı∆tH (1)
n Ψ

(1)
n ,

Ψ (2)
n = Ψn +

1
2
k2, H (2)

n = H(tn+ 1
2
,Ψ (2)

n Ψ (2)∗
n )

k3 = −ı∆tH (2)
n Ψ

(2)
n ,

Ψ (3)
n = Ψn + k3, H (3)

n = H(tn+1,Ψ
(3)
n Ψ (3)∗

n )

k4 = −ı∆tH (3)
n Ψ

(3)
n ,

Ψn+1 = Ψn +
1
6
(k1 + 2k2 + 2k3 + k4).

(5)

Here all the Hn = H(tn, Pn) is the Hamiltonian at step tn, and
tn+ 1

2
= tn +

1
2∆t , tn+1 = tn + ∆t . For each time step, the

Hamiltonian operator needs to be applied 4 times to each of the Ne
orbitals. After eachupdate of the orbitals, theHamiltonian operator
needs to be updated accordingly. The maximal time step allowed
by the RK4 integrator (and in general, all explicit time integrators)
is bounded by c ∥H∥

−1
2 , where c is a scheme dependent constant

and ∥H∥2 is the spectral radius of the Hamiltonian operator. In
practice, this maximal time step is often less than 1 attosecond
(as). Hence simulating rt-TDDFT for 1 fs would require more than
4000Ne matrix–vector multiplications involving the Hamiltonian
operator (and hence the Fock exchange operator). When the nuclei
degrees of freedom are also time-dependent such as in the case of
the Ehrenfest dynamics, the electron–nuclei potentials, such as the
local and nonlocal components of the pseudopotential, need also
be updated more than 4000 times per 1 fs simulation.

3. Parallel transport gauge

In order to accelerate rt-TDDFT calculations with hybrid func-
tionals, it is necessary to relax the constraint on the maximal time
step that can be utilized in the simulation. This can be achieved by
the recently developed parallel transport gauge formalism [25,26],
which we briefly summarize below.

First, note that Eq. (1) can be equivalently written using a set
of transformed orbitals Φ(t) = Ψ (t)U(t), where the gauge matrix
U(t) is a unitary matrix of size Ne. An important property of the
density matrix is that it is gauge-invariant: P(t) = Ψ (t)Ψ ∗(t) =

Φ(t)Φ∗(t). Physical observables such as energies and dipoles are
defined using the densitymatrix instead of the orbitals. The density
matrix and the derived physical observables can often oscillate at
a slower rate than the orbitals, and hence can be discretized with
a larger time step. Our goal is to optimize the gauge matrix, so that
the transformed orbitals Φ(t) vary as slowly as possible, without

altering the densitymatrix. This results in the following variational
problem

min
U(t)

Φ̇2
F , s.t.Φ(t) = Ψ (t)U(t),U∗(t)U(t) = INe . (6)

Here
Φ̇2

F := Tr[Φ̇∗Φ̇] measures the Frobenius norm of the time
derivative of the transformed orbitals. The minimizer of (6), in
terms ofΦ , satisfies

PΦ̇ = 0. (7)

Eq. (7) implicitly defines a gauge choice for each U(t), and this
gauge is called the parallel transport gauge. The governing equation
of each transformed orbital ϕi can be concisely written down as

ı∂tϕi = Hϕi −
Ne∑
j=1

ϕj
⟨
ϕj|H|ϕi

⟩
, i = 1, . . . ,Ne, (8)

or more concisely in the matrix form

ı∂tΦ = HΦ −Φ(Φ∗HΦ), P(t) = Φ(t)Φ∗(t). (9)

The right hand side of Eq. (9) is analogous to the residual vectors of
an eigenvalue problem in the time-independent setup. HenceΦ(t)
follows the dynamics driven by residual vectors and is expected
to vary slower than Ψ (t). We refer to the dynamics (9) as the
parallel transport (PT) dynamics, and correspondingly Eq. (1) in the
standard Schrödinger representation as the Schrödinger dynamics.

The PT dynamics only introduces one additional term, and
hence can be readily discretizedwith any propagator. The standard
explicit 4th order Runge–Kutta scheme for the parallel transport
dynamics (PT-RK4) now becomes

k1 = −ı∆t{HnΦn −Φn(Φ∗

nHnΦn)},

Φ(1)
n = Φn +

1
2
k1, H (1)

n = H(tn+ 1
2
,Φ(1)

n Φ
(1)∗
n )

k2 = −ı∆t{H (1)
n Φ

(1)
n −Φ (1)

n (Φ(1)∗
n H (1)

n Φ
(1)
n )},

Φ(2)
n = Φn +

1
2
k2, H (2)

n = H(tn+ 1
2
,Φ(2)

n Φ
(2)∗
n )

k3 = −ı∆t{H (2)
n Φ

(2)
n −Φ (2)

n (Φ(2)∗
n H (2)

n Φ
(2)
n )},

Φ(3)
n = Φn + k3, H (3)

n = H(tn+1,Φ
(3)
n Φ

(3)∗
n )

k4 = −ı∆t{H (3)
n Φ

(3)
n −Φ (3)

n (Φ(3)∗
n H (3)

n Φ
(3)
n )},

Φn+1 = Φn +
1
6
(k1 + 2k2 + 2k3 + k4).

(10)

Compared to the Schrödinger dynamics, the main benefit of
the PT dynamics is that the orbitals vary at a slower rate, and
hence can be accurately extrapolated over a larger time interval.
However, the slower dynamics does not automatically translate
to a larger time step. When explicit integrators such as the RK4
scheme are used, due to the small region of absolute stability, one
may still need to use a small time step even for the PT dynamics.
This is particularly the case if the spectral radius ∥H∥2 is large. On
the other hand, implicit time integrators often have much larger
region of absolute stability. Hence combining the PT dynamicswith
implicit integrators can significant enlarge the time step while
still maintaining sufficient numerical accuracy. For instance, the
Crank–Nicolson scheme for the Schrödinger dynamics (S-CN) is(
I + ı

∆t
2

Hn+1

)
Ψn+1 =

(
I − ı

∆t
2

Hn

)
Ψn, (11)
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while the Crank–Nicolson scheme for the parallel transport dy-
namics (PT–CN) is

Φn+1 + ı
∆t
2

{
Hn+1Φn+1 −Φn+1

(
Φ∗

n+1Hn+1Φn+1
)}

=Φn − ı
∆t
2

{
HnΦn −Φn

(
Φ∗

nHnΦn
)}
.

(12)

The Crank–Nicolson scheme uses the trapezoidal rule for time
integration, which is an A-stable scheme and allows the usage of
large time steps. When implicit time integrators are used, Φn+1
needs to be solved self-consistently,which can be efficiently solved
by mixing schemes such as the Anderson method [32]. Numerical
results indicate that the size of the time step for the PT–CN scheme
can be 10 ∼ 100 as, and is significantly larger than that of standard
explicit time integrators.

We also remark that the computational complexity of standard
rt-TDDFT calculations may achieve O(N2

e ) scaling [16,33,34], as-
suming (1) local and semi-local exchange–correlation functionals
and certain explicit time integrators are used, and (2) no orbital
re-orthogonalization step is needed throughout the simulation.
The PT dynamics requires the evaluation of the term Φ(Φ∗HΦ) in
Eq. (9), which scales cubically with respect to the system size. We
have demonstrated that the cross over point between the quadratic
and cubic scaling algorithms should occur for systems with thou-
sands of atoms [26]. In the current context of hybrid functional rt-
TDDFT calculations, both methods scale cubically with respect to
the systemsize due to the dominating cost associatedwith the Fock
exchange operator. Numerical results indicate that the advantage
of the PT formulation becomes even more evident in this case.

4. Adaptively compressed exchange operator formulation

For hybrid functional rt-TDDFT calculations, the use of the par-
allel transport gauge and implicit time integrators still requires
a relatively large number of matrix–vector multiplication opera-
tions involving the Fock exchange operator. For instance, when a
relatively large time step is used, the number of self-consistent
iterations in each PT time step may become 20 ∼ 40. This gives
room for further reduction of the cost associated with the Fock
exchange operator, using the recently developed adaptively com-
pressed exchange (ACE) operator formulation [27].

In ground state hybrid functional DFT calculations, every time
when the Fock exchange operator is applied to a set of orbitals, we
store the resulting vectors as

Wi(r) = (VX[P]ϕi)(r) i = 1, . . . ,Ne. (13)

Here we assume that the Fock exchange operator is defined with
respect to the density matrix P , which is often also specified by the
orbitals {ϕi}

Ne
i=1. The vectors {Wi}

Ne
i=1 are then used to construct a

surrogate operator, or the adaptively compressed exchange opera-
tor denoted by ṼX. We require that ṼX should satisfy the following
consistency conditions

(ṼXϕi)(r) = Wi(r) and ṼX(r, r′) = Ṽ ∗

X (r
′, r) (14)

The conditions (14) do not yet uniquely determine ṼX. However,
the choice becomes unique if we require ṼX to be strictly of rank
Ne [30], and it can be computed as follows. We first construct the
overlap matrix

Mij =

∫
ϕ∗

i (r)Wj(r) dr, i, j = 1, . . . ,Ne, (15)

which isHermitian andnegative definite.Weperform theCholesky
factorization for −M , i.e. M = −LL∗, where L is a lower triangu-
lar matrix. Then the adaptively compressed exchange operator is

given by the following rank Ne decomposition

ṼX(r, r′) = −

Ne∑
k=1

ξk(r)ξ ∗

k (r
′), (16)

where {ξk}
Ne
k=1 are called projection vectors, and are defined as

ξk(r) =

Ne∑
i=1

Wi(r)(L−∗)ik. (17)

The cost for applying ṼX to a number of vectors only involves
matrix–matrix multiplications up to size Ng × Ne, which can be
efficiently carried out in the sequential or parallel settings. The pre-
constant of this step is also significantly smaller than that for apply-
ing the Fock exchange operator. When self-consistency is reached,
ṼX agrees with the true Fock exchange operator when applied to
the occupied orbitals, thanks to the consistency condition (14).
We have also proved that for linear eigenvalue problems, the ACE
formulation can converge globally from almost everywhere, with
local convergence rate favorable compared to standard iterative
methods [30].

In order to utilize the ACE formulation in the context of rt-
TDDFT calculations, we note that the PT–CN scheme requires the
solution of a fixed point problem (12) for Φn+1. Hence we may
artificially separate the fixed point problem into two iteration
loops. In the outer iteration, we apply the Fock exchange operator
to the parallel transport orbitals Φn+1 only once, which gives rise
to ṼX defined by the procedure above. Then in the inner iteration,
we perform a few inner iterations and only update the density-
dependent component of the Hamiltonian operator, while replac-
ing the Fock exchange operator by the same ṼX operator. This inner
iteration step can also be seen as a relatively inexpensive pre-
conditioner for accelerating the convergence of the self-consistent
iteration. Then we perform the outer iteration until the density
matrix (monitored by e.g. the Fock exchange energy) converges.
We summarize the resulting PT–CN–ACE algorithm in Alg. 1, which
propagates the orbitals from the time step tn to tn+1.

Algorithm 1 One step of propagation of the PT–CN–ACE method.
1: Evaluate the right hand side of Eq. (12), and choose an initial

guess forΦn+1 (the simplest choice beingΦn+1 = Φn).
2: while Fock exchange energy is not converged do
3: Applying the Fock exchange operator toΦn+1, and construct

ṼX in its low rank form.
4: while electron density ρ is not converged do
5: Iteratively update Φn+1 and Hn+1 using Eq. (12), with VX

replaced by ṼX.
6: end while
7: end while

5. Numerical results

The S-RK4, PT–CN and PT–CN–ACE methods are implemented
in the PWDFT package (based on the planewave discretization and
the pseudopotential method), which is an independent module
of the massively parallel software package DGDFT (Discontinuous
Galerkin Density Functional Theory) [35,36]. PWDFT performs par-
allelization primarily along the orbital direction, and can scale up
to several thousands of CPU cores for systems up to thousands of
atoms. We use the SG15 Optimized Norm-Conserving Vanderbilt
(ONCV) pseudopotentials [37,38] and HSE06 functionals [7] in all
the following tests. We remark that the SG15 pseudopotentials
are obtained from all electron calculations using the PBE func-
tional, which introduces certain amount of inconsistency in the
hybrid functional calculation. The calculations are performed on
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the Edison supercomputer at National Energy Research Scientific
Computing Center (NERSC). Each Edisonnode is equippedwith two
Intel Ivy Bridge sockets with 24 cores in total and 64 gigabyte (GB)
of memory. Our code uses MPI only and the number of cores used
is always equal to the number of MPI processes.

In large scale hybrid functional TDDFT calculations, the applica-
tion of the Fock exchange operator dominates the total
computational costs. Hence we use the number of matrix–vector
multiplications per orbital involving the Fock exchange operator as
a metric for the efficiency of a method, and this metric is relatively
independent of implementation. In the case of PT–CN–ACE, this
number is equal to the number of times forwhich the ACE operator
needs to be constructed. We also present the total wall clock time
as well as the breakdown of the computational time to properly
take into account contributions from other components, especially
those exclusive due to the usage of the PT–CN–ACE scheme.

We first demonstrate the accuracy of PT–CN–ACE by computing
the absorption spectrum of the benzene molecule. The size of the
cubic supercell is 10.58 Å along each direction, and the kinetic
energy cutoff is set to 544 eV. The dimension of the Hamilto-
nian matrix is 74088. A δ kick is applied in the x direction to
calculate the partial absorption spectrum. The length of the rt-
TDDFT calculation is 24 fs. The size of the time step of PT–CN–
ACE is set to be 12 as, and S-RK4 becomes unstable when the
step size is bigger than 0.97 as. The absorption spectrum obtained
by the S-RK4 and PT–CN–ACE methods is shown in Fig. 1(b). We
also provide benchmark results obtained from the linear response
time-dependent density functional theory (LR-TDDFT) calculation
using the turboTDDFT module [39] from the Quantum ESPRESSO
software package (QE) [29], which performs 3000 Lanczos steps
along the x direction to evaluate the component of the polarization
tensor. Both QE and PWDFT use the same pseudopotential and
kinetic energy cutoff, and no empty state is used in calculating the
spectrum in PWDFT. A Lorentzian smearing of 0.27 eV is applied to
all calculations.We find that the shapes of the absorption spectrum
calculated from three methods agree very well. The S-RK4 method
requires 4 Fock exchange operator calculations per time step,while
the PT–CN–ACEmethod only requires on average 3.2 ACE operator
constructions in each time step. Thus for this example, a total
number of 98968 and 6400 Fock exchange operator applications
per orbital are calculated for the S-RK4 and PT–CN–ACE method,
respectively. This means that the PT–CN–ACE method is about 15
times faster than the S-RK4 method in terms of the application
of the Fock exchange operator. In the simulation, both PT–CN–
ACE and S-RK4 use 15 CPU cores, and the total wall clock time
is 7.5 h and 40.8 h, respectively. The reduction of the speedup
factor compared to the theoretical estimate based on thenumber of
Fock exchange operator applications ismainly due to the relatively
small system size. Hence components such as the evaluation of the
Hartree potential, and the inner loop for solving the fixed point
problem in the PT–CN–ACE scheme still consume a relatively large
portion of the computational time.

In the second example, we study the response of a silicon
system to an ultra-fast laser pulse. The supercell consists of 32
atoms, and is constructed from 2 × 2 × 1 unit cells sampled at the
Γ point. Each simple cubic unit cell has 8 silicon atoms, and the
lattice constant is 5.43 Å. The kinetic energy cutoff is set to 272 eV.
For the system with 32 atoms, the dimension of the Hamiltonian
matrix is 37044. The laser is applied along the x direction, and
generates an electric field of the form

E(t) = x̂Emax exp
[
−

(t − t0)2

2a2

]
sin[ω(t − t0)]. (18)

Here a = 2.55 fs, h̄ω = 3.26 eV, t0 = 15 fs, which corresponds
to a laser that peaks at 15 fs with its wavelength being 380 nm.
The electric field amplitude Emax is 1.0 eV/ Å in the simulation. The

Fig. 1. Partial absorption spectrumof benzene along the x direction evaluated using
the HSE06 functional.

profile of this external field is given in Fig. 2(a). The ground state
band gap computed at t = 0 is around 1.3 eV using the HSE06
functional with a supercell containing 32 atoms. We acknowledge
that the form of the electric field as in Eq. (18) is inconsistent
with the periodic boundary condition imposed on the system.
Hence quantities such as the dipole moment should in principle
be properly defined through the Berry phase formulation [40,41]
or through the usage of a vector potential [17]. Our treatment here
amounts to treating the silicon system sampled at the Γ point as a
largemolecule. Although the value of the dipolemoments neglects
the contribution from the Berry phase, the treatment is consistent
among different choices of numerical schemes, and the results are
sufficient to demonstrate the efficiency and numerical accuracy of
the PT–CN–ACE algorithm. Proper treatment of electric fields in
the presence of periodic boundary conditions do not change the
algorithmic structure, and will be in our future work.

The total simulation length is 29 fs. In the PT–CN–ACE method,
for the inner loop, the stopping criterion for the relative error of the
electron density is set to 10−6. The stopping criterion for the outer
loop is defined via the relative error of the Fock exchange energy,
and is set to 10−8. The stopping criterion for the PT–CN method is
defined via the relative error of the electron density and is set to
10−6.

In order to demonstrate the electron excitation process, we plot
the density of states at the end of the simulation (Fig. 2(b), the
green dotted line indicates the Fermi energy), defined as

ρ(ε) :=

Ne∑
j=1

∞∑
i=1

|⟨ψi(0)|ϕj(T )⟩|2̃δ(ε − εi(0)).

Here ϕj(T ) is the jth orbital obtained at the end of the TDDFT
simulation at time T , and εi(0), ψi(0) are the eigenvalues and
wavefunctions corresponding to the ground state Hamiltonian at
the initial time. δ̃ is a Dirac-δ function with a Gaussian broadening
of 0.05 eV.

Fig. 2(c), (d) show the total energy and the dipole moment
along the x direction calculated with the PT–CN, PT–CN–ACE and
S-RK4 methods. The time steps of both PT–CN and PT–CN–ACE
are set to 50 as, while the time step of S-RK4 is set to 0.5 as due
to stability reason. Both the energy and the dipole moment agree
very well among the results obtained from these three methods,
indicating that the use of the compressed exchange operator in PT–
CN–ACE does not lead to any loss of accuracy. The total energy and
dipole moment obtained from S-RK4 and PT–CN–ACE are nearly
indistinguishable before 15 fs, and become slightly different after
20 fs. Such error can be systematically reduced by using smaller
time steps. Table 1 shows that the error can be reduced to as small
as 0.016 meV/atom when the time step is reduced to 2.4 as for
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Fig. 2. Electron dynamics of a 32 atom silicon system under a laser pulse.

PT–CN–ACE method. Nearly the same accuracy is also observed in
the PT–CN method when reducing the time step. We also listed
the speedup factors in terms of both the number of Fock exchange
operator applications per orbital per time step (FOC) and the total
wall clock time (Wtime) in Table 1. TheWtime speedup is denoted
in ‘‘Speedup’’ in Table 1. In comparison, the Fock exchange operator
application speedup, which is denoted as ‘‘Speedup*’’ in Table 1,
is calculated by counting the number of Fock exchange operator
application for a given time period∆t. Note that the speedup factor
obtained from the number of Fock exchange operator applications
is relatively bigger than the wall clock time speedup, especially for
PT–CN–ACE. This is mainly because the inner loop calculation in
PT–CN–ACE still takes a big proportion of the computational time
for this relatively small system. It is also why PT–CN can be faster
than PT–CN–ACE in terms of the wall clock time despite the fact
that PT–CN requiresmore Fock exchange operator applications per
orbital. However, as the system size increases, the cost due to the
Fock exchange operator becomes dominant, and we shall observe
that PT–CN–ACE becomes more advantageous below.

Next we systematically investigate the efficiency of the PT–CN
and PT–CN–ACE schemes by increasing the size of the supercell
from 2 × 2 × 1 to 8 × 4 × 4 unit cells, and the set of systems
consists of 32 to 1024 silicon atoms. All other physical parameters
remain the same as in the tests above. We report the total wall
clock time of the PT–CN, PT–CN–ACE and S-RK4methods, aswell as
the breakdown into different components time of for a time period
of∆t = 50 as.We report the performance in terms of both theweak
scaling and the strong scaling. The time step of PT–CN and PT–CN–
ACE is set to be 50 as and the time step for S-RK4 is 0.5 as. The
average number of Fock exchange operator applications per orbital
for PT–CN and PT–CN–ACE is 21 and 5.75, respectively. For the PT–
CN–ACE method, the average number of inner iterations is 24.

The total wall clock time of PT–CN–ACE can be divided into
four parts: ‘‘ACE operator’’, which stands for the time used for
applying the Fock exchange operator and constructing the ACE

operator implicitly; ‘‘HPSI’’, which represents the time for the Hψ
calculation, with the application of the exchange operator replaced
by the application of the ACE operator via a matrix–vector mul-
tiplication operation; ‘‘PT-CN-ACE: Exclusive’’, which includes the
time exclusively associatedwith the usage of the parallel transport
gauge, such as the orbital mixing and orbital orthogonalization;
and ‘‘Others’’, which includes all other parts that are shared among
the three methods, such as the evaluation of the Hartree potential
and the total energy. Similarly, the total wall clock time of PT–
CN is decomposed into three parts: ‘‘HPSI’’, ‘‘PT-CN: Exclusive’’
and ‘‘Others’’. The total wall clock time of S-RK4 is divided into
‘‘HPSI’’ and ‘‘Others’’. Note that ‘‘HPSI’’ and the evaluation of the
total energy in PT–CN and S-RK4 require the application of the true
Fock exchange operator.

PWDFT ismainly parallelized along the orbital direction, i.e. the
maximum number of cores is equal to the number of occupied
orbitals. The application of the Fock exchange operator to the
occupied orbitals is implemented using the fast Fourier transfor-
mation(FFT). In the ‘‘HPSI’’ component of the PT–CN–ACE method,
the matrix–matrix multiplication between the low rank operator
ṼX and all the occupied orbitals is performed to evaluate the Fock
exchange term. We remark that certain components of PWDFT,
such as the solution of the Hartree potential, are currently car-
ried out on a single core. This is consistent with the choice of
parallelization along the orbital direction, where each Hψ (except
the application of the Fock exchange operator) is carried out on
a single core. However, as will be shown below, PT–CN–ACE and
S-RK4 typically require many more Hartree potential evaluation
compared to PT–CN. Hence PT–CN has some advantage in terms
of the wall clock time from this perspective.

Fig. 3(a) shows the total wall clock time with respect to the
system size Natom for all three methods. In these tests the number
of CPU cores used is always proportional to the number of atoms,
i.e. 2 × Natom (this is called ‘‘weak scaling’’). The speedup of PT–
CN–ACE over S-RK4 is 7 times at 32 atoms, and increases to 46
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Table 1
Accuracy and efficiency of PT–CN and PT–CN–ACE for the electron dynamics with the 380 nm laser compared to S-RK4.
The accuracy ismeasured using the average energy increase per atom (AEI) after 29.0 fs and the average energy difference
(AED) per atom for PT–CN and PT–CN–ACE compared with S-RK4 method after 29.0 fs. The efficiency is measured using
the average number of Fock exchange operator applications per orbital in each time step (FOC) during the time interval
from 0.0 fs to 29.0 fs, and the Fock exchange operator application speedup is denoted as ‘‘Speedup*’’. The total wall clock
time (Wtime) and the corresponding speedup factor are also listed.
Method ∆t (as) AEI (meV) AED (meV) FOC Speedup* Wtime (h) Speedup

S-RK4 0.5 621.4156 / 4.0 1.0 18.09 1.0
PT–CN 0.5 621.4117 0.004 – – – –
PT–CN 2.4 621.4062 0.009 4.8 4 6.0 3.0
PT–CN 5.1 621.4688 0.053 5.3 7.7 3.65 5
PT–CN 12.1 623.4656 2.05 5.9 16.4 1.45 12.4
PT–CN 25.0 628.8594 7.44 10.8 18.5 1.08 16.7
PT–CN 50.0 657.6688 36.25 21 19 1.12 16.1
PT–CN–ACE 0.5 621.4077 0.008 – – – –
PT–CN–ACE 2.4 621.4313 0.016 2.32 8.3 4.99 3.7
PT–CN–ACE 5.1 621.4937 0.08 2.77 14.7 3.11 5.8
PT–CN–ACE 12.1 623.5781 2.2 3.02 32.0 1.6 11.3
PT–CN–ACE 25.0 628.9531 7.5 3.78 52.9 1.45 12.5
PT–CN–ACE 50.0 657.725 36.3 5.8 69.0 1.38 13.1

Fig. 3. Wall clock time for simulating silicon systems from 32 atoms up to 1024 atoms for ∆t = 50 as. The number of CPU cores used is set to 2 × Natom in all tests. The
systems are driven by the laser field shown at Fig. 2(a).

times at 1024 atoms. On the other hand, the speedup of PT–CNover
S-RK4 is between 22 and 23 times, which is consistent with the
Fock exchange operator applications speedup as shown in Table 1.
For small systems, PT–CN is the most efficient method. When the
system size increases beyond 256 atoms, PT–CN–ACE becomes the
most efficient one in terms of the wall clock time. This cross-over
can be explained by the breakdown of the total time shown in
Fig. 3(b) (c). Since PT–CN–ACE method introduces a nested loop
to reduce the number of Fock exchange operator applications, it
also increases the number of inner iterations. More specifically, in
the tests above, the number of Fock exchange operator applications
per orbital is 6, but the number of inner iterations is 120 in PT–
CN–ACE. In comparison, PT–CN only requires 21 inner iterations.
Thus PT–CN is faster than PT–CN–ACE at small system size as
shown in Fig. 3(a). However, as system size becomes larger, the

Fock exchange operator applications will dominate the cost, and
PT–CN–ACE becomes faster than PT–CN as shown in Fig. 3(a).

More specifically, Fig. 3(b) shows that ‘‘HPSI’’ takes 49 to 78
percent of total wall clock time from 32 to 1024 atom system for
the S-RK4method. For the PT–CNmethod, ‘‘HPSI’’ costs 51 percent
of the time for the system with 32 atoms, and this becomes 91
percent when the system size increases to 1024 atoms. For the PT–
CN–ACE method, the cost involving the Fock exchange operator is
reduced to only 4 percent of the total time for the system with 32
atoms, and becomes 53 percent for the system with 1024 atoms.

Finally we report in Fig. 4 the average wall clock time for
carrying out a simulation of 50 as for the 1024 atom silicon system,
with respect to the increase of the number of computational cores
(this is called ‘‘strong scaling’’). Compared to performance using
32 cores, the parallel efficiency of a single TDDFT step with 2048
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Fig. 4. Total wall clock time for 1024 atom silicon system from 32 up to 2048 CPU
cores used in∆t = 50 as. The system is driven by laser field shown at Fig. 2(a).

cores reaches 54 percent, 58 percent and 64 percent for the S-
RK4, PT–CN–ACE and PT–CN methods, respectively. The reduction
of the parallel efficiency is mainly caused by our sequential im-
plementation of certain components, such as the evaluation of the
Hartree potential. The speedup of PT–CN–ACE method over S-RK4
is between 46 times and 50 times over the entire range. Therefore
in order to finish the electron dynamics simulation above of 29 fs,
it will take about 1 year using S-RK4, and this is reduced to around
one week using PT–CN–ACE. Such a simulation is by all means still
expensive, but starts to become feasible to be routinely performed.

6. Conclusion

In order to accelerate large scale hybrid functional rt-TDDFT
calculations, we have presented amethod to combine two recently
developed ideas: parallel transport (PT) gauge and adaptively com-
pressed exchange (ACE) operator. The overall goal is to reduce
the frequency for the application of the Fock exchange operator
to orbitals, with systematically controlled accuracy. We demon-
strate that the resulting PT–CN–ACE scheme can indeed reduce the
number of Fock exchange operator applications per unit time by
one to two orders of magnitude compared to the standard explicit
4th order Runge–Kutta time integrator, and thus enables hybrid
functional rt-TDDFT calculations for systems up to 1000 atoms.

Compared to the PT–CN scheme, the extra reduction of the
number of applications of the Fock exchange operator requires
more iterations in the inner loop. This is consistent with the obser-
vation for ground state hybrid functional calculations [42]. Hence
in our implementation, PT–CN is in fact faster than PT–CN–ACE
in terms of wall clock time for small systems. The precise cross-
over point depends heavily on the cost for solving the Poisson-
like equation to apply the Fock exchange operator. For instance,
we expect that the PT–CN–ACE becomes advantageous at a much
earlier stage in real space rt-TDDFT software packages, where the
solution of a Poisson-like equation can be much more expensive
than that in a planewave based code. On the other hand, if the
application of the Fock exchange operator can be accelerated using
techniques such as localization [43,44], density fitting [45–47], or
through the GPU architecture, we expect that the original PT–CN
scheme will be more favorable. Further developments to reduce
the number of inner iterations without penalizing the number of
Fock exchange operator applications, such as via the usage of better
preconditioners, is also an interesting direction for future works.
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