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SUMMARY

With a Hamilton—Jacobi equation in Cartesian coordinates as a starting point, it is common to
use a system of ordinary differential equations describing the continuation of first-order deriva-
tives of phase-space perturbations along a reference ray. Such derivatives can be exploited for
calculating geometrical spreading on the reference ray and for establishing a framework for
second-order extrapolation of traveltime to points outside the reference ray. The continua-
tion of first-order derivatives of phase-space perturbations has historically been referred to as
dynamic ray tracing. The reason for this is its importance in the process of calculating ampli-
tudes along the reference ray. We extend the standard dynamic ray-tracing scheme to include
higher-order derivatives of the phase-space perturbations. The main motivation is to extrap-
olate and interpolate amplitude and phase properties of high-frequency Green’s functions to
nearby (paraxial) source and receiver locations. Principal amplitude coefficients, geometri-
cal spreading factors, geometrical spreading matrices, ray propagator matrices, traveltimes,
slowness vectors and curvature matrices are examples of quantities for which we enhance the
computation potential. This, in turn, has immediate applications in modelling, mapping and
imaging. Numerical tests for 3-D isotropic and anisotropic heterogeneous models yield clearly
improved extrapolation results for the traveltime and geometrical spreading. One important
conclusion is that the extrapolation function for the geometrical spreading must be at least
third order to be appropriate at large distances away from the reference ray.

Key words: Body waves; Computational seismology, Seismic anisotropy; Numerical ap-
proximations and analysis; Numerical modelling; Wave propagation.

1 INTRODUCTION

We consider a higher-order Hamilton—Jacobi perturbation theory for anisotropic heterogeneous media. This theory arises from the differen-
tiation of the Hamilton system for ray tracing in phase space (Hamilton 1837). Specifically, we discuss the higher-order perturbations of a
Hamiltonian flow with respect to its initial conditions in the phase space.

The resulting perturbation coefficients can be used for higher-order extrapolation or interpolation of important quantities related to
the amplitude and phase of the high-frequency Green’s function: traveltime, geometrical spreading, amplitude coefficients and polarization
directions. The methodology has immediate applications in contexts where high-frequency Green’s functions are used extensively, for example,
in modelling, mapping and imaging.

The leading-order perturbation yields the linearized or first-order Hamilton—Jacobi perturbation system, the integration of which is
commonly used, for example, to construct the geometrical spreading. In solid earth geophysics this process is known as dynamic ray
tracing. We focus on the integration of higher-order Hamilton—Jacobi perturbation equations—using point-source and local plane-wave initial
conditions—in Cartesian phase-space coordinates.

Ray perturbation has been studied for decades commonly from a paraxial point of view (Cerveny 1972; Farra & Madariaga 1987,
Ceweny et al. 1988; Bortfeld 1989; Gajewski & Psencik 1990; Hubral ef al. 1992; Klimes 1994; éerveny 2001; Chapman 2004; Iversen
2004a; Moser & éerveny 2007; éerveny & Moser 2007; Iversen & PSencik 2008; éerveny & Psencik 2010). We note that the leading-order
perturbation of the traveltime with respect to the source and receiver location requires only the ray propagator associated with the linearized
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or first-order Hamilton—Jacobi system (Cerveny et al. 1984, 2012). Perturbation can not only be viewed as a local extrapolation but also be
exploited for an interpolation with derivatives.

Throughout this paper any perturbation of the Hamiltonian flow will be assumed due to a perturbation of the initial conditions, or ray
parameters, belonging to a given reference ray. This is in contrast to the ray perturbation arising because parameters of the (elastic) model
are perturbed. In our case, the model is considered fixed.

Our main motivation is extrapolating not only traveltime but the full ray propagator away from the reference ray, that is, the geometry
information for any neighbouring (paraxial) ray obtained by a perturbation in the phase space. For these paraxial rays the source point may
be different from the source point of the reference ray. As a special case it is then possible to compute also geometrical spreading for general
perturbations of the source and receiver location. In addition, the integration of the higher-order Hamilton—Jacobi perturbation equations
opens for more accurate extrapolation of principal amplitude coefficients.

In fact, for higher-order derivatives of traveltime and amplitude only, under the assumption of a caustic-free two-parametric (orthonomic)
system of rays, one does not need to consider the higher-order Hamilton—Jacobi perturbation equations (éerveny 2001; Klimes 2002a; Goldin
& Duchkov 2003; Klimes 2006a). Indeed, the higher-order derivatives of the traveltime can be obtained recursively by a number of closed-form
integrations (quadratures) along a reference ray in an isotropic medium (e.g. éerveny, 2001) and in an anisotropic medium (e.g. Klimes
2002a). The procedure in Klimes (2002a) included also the effects of perturbing the model. For isotropic media, Goldin & Duchkov (2003)
took into account second-order spatial derivatives of amplitude, in an effort to make the recursive integration scheme applicable in the vicinity
of caustics. A further development to the anisotropic media was proposed by Klimes (2006a), comprising higher-order spatial derivatives of
amplitude and higher-order model-perturbation derivatives.

The novel methodology introduced in this paper has additional qualities compared to the approaches proposed above:

(i) The methodology yields the possibility of extrapolating the entire paraxial system, accommodated by the ray propagator, to any paraxial
ray. In this way, we can establish on a paraxial ray exactly the same information as is provided by conventional ‘complete’ dynamic ray tracing
along the reference ray (éerveny et al. 1988).

(ii) If one is primarily interested in computing the geometrical spreading, as is typically the case in seismic imaging, it adds an unnecessary
complication to do this via a differentiation of the transport equation for amplitude. In our case, all computations are based on a Hamilton—
Jacobi equation for stationary time (the Eikonal equation). This yields great advantages in many respects, for example, with respect to
caustics—as the conventional dynamic ray-tracing equations and their higher-order extensions are all safely integrated.

(iii) Our methodology is fairly easy to implement, as we simply add extra sets of ordinary differential equations or closed-form integrals to
those of the conventional approach. We remark, though, that for computation of paraxial traveltimes and amplitudes from a single source point
in a caustic-free medium, the approach described in Klimes (2002a, 2006a) is potentially faster, as the number of equations (quadratures) is
smaller.

(iv) We provide in this paper numerical examples quantifying the errors involved in the higher-order extrapolation of the traveltime and
geometrical spreading based on a single reference ray in an isotropic or anisotropic medium. It is clearly demonstrated that one achieves
appropriate accuracy for geometrical spreading only if the extrapolation function is at least third order in the spatial coordinates.

The developed methodology has the following main applications:

(i) Fast computation of high-frequency elastic-wave Green’s functions corresponding to general paraxial rays, through (Hermite or spline)
interpolation and extrapolation of amplitude and phase with derivatives. Our procedure holds in generally anisotropic media, leading to
systems of equations describing the propagation of elastic waves, of principal type.

(i) Fast generalized Radon transform inversion, where the amplitude and traveltime of the rays from the image point to the sources and
receivers can be extrapolated from two reference rays (Beylkin & Burridge 1990; de Hoop et al. 1994; de Hoop & Bleistein 1997; Bleistein
et al. 2001; Stolk & de Hoop 2002; Brandsberg-Dahl ef al. 2003a,b; Sollid & Ursin 2003; Ursin 2004; Foss & Ursin 2004; Foss et al. 2004,
2005).

(iii) Extrapolation from the reference rays of map depth migration (Iversen & Gjeystdal 1996; Douma & de Hoop 2006), with the
assumption that the scattering is from interfaces. Asymptotically, one only needs a narrow fan of rays illuminating a reflector.

(iv) True-amplitude time migration, that is, migration in image-ray coordinates and restricted-angle transform through extrapolation;
here, the reference rays are image rays. This is considered a further development of earlier work on true-amplitude depth migration and
time-to-depth mapping (Hubral 1977, 1983; Schleicher et al. 2007; Iversen et al. 2012; Tygel et al. 2012).

We make the observation that true-amplitude time migration formulated in this way explicitly shows that the relevant quantities can be
obtained from the generalized Dix procedure for the reconstruction of a Riemannian metric in ray-centred coordinates or Fermi coordinates
(Cameron et al. 2007; Iversen & Tygel 2008; de Hoop et al. 2014, 2015).

(v) Ray-based extended depth imaging through extrapolation (Stolk & de Hoop 2006; de Hoop ez al. 2009). Here, the reference rays are
the ones for map migration.

(vi) Map migration and depth imaging based on isochron rays (Iversen 2004b; Duchkov & de Hoop 2010).

(vii) Source—receiver continuation and characterization of the range of the single scattering operator. Here, extrapolation provides the local
flow along characteristic strips (de Hoop & Uhlmann 2006).
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(viii)) Common-reflection-surface (CRS) processing techniques (e.g. Rabbel ef al. 1991; Jager et al. 2001). These techniques utilize that
coherent local reflection events in the recorded data constitute a (hyper)surface, typically given in source—receiver coordinates or midpoint-
offset coordinates (Ursin 1982). The CRS time surface is conventionally considered to be a second-order approximation. When higher-order
coefficients are available from ray theory one could consider an extension also of the CRS techniques to higher orders.

The paper is organized as follows. First, we describe the basic concepts of the Hamilton—Jacobi theory, followed by a review of
conventional dynamic ray tracing in Cartesian coordinates. Then, we introduce higher-order Hamilton—Jacobi phase-space perturbation
equations and the constraint relations pertaining to them. We also specify initial conditions for the point-source and plane-wave situations.
Assuming that the necessary phase-space perturbation data have been computed, we formulate approaches for the higher-order paraxial
extrapolation of the traveltime and geometrical spreading. The Hamiltonian is mostly treated as a ‘black box’ with certain fundamental
properties. As we see it, this widens the number of applications where the theory can be used. One section is however devoted to specific
Hamiltonians. After the theory sections we show numerical examples for three related 3-D heterogeneous models. We also discuss briefly the
connections to differential geometry. For an overview of the main mathematical symbols used in the paper, see Table 1.

2 HAMILTON-JACOBI EQUATION IN CARTESIAN PHASE SPACE

Consider a Cartesian coordinate system with the position vector x = (x;) and slowness (momentum) vector p = (p;). We form the phase space
w = (w,) = (x;, p;), where all six components vary freely. In the phase space (w,) we further consider a reference ray 2 given as a function of
the time 7, so that

w, = W, (7). (1)
Eq. (1) can be associated with a Hamilton—Jacobi equation for stationary time,
Hw) = H, 2)

where the function # (w) is referred to as the Hamiltonian, and 7 is a nonzero constant. The Hamilton—Jacobi eq. (2) is a nonlinear first-order
partial differential equation for the time 7 along 2—in the context of wave propagation it is also often called the Eikonal equation.

One can interpret eq. (2) to represent a hypersurface (manifold) in phase space with five degrees of freedom. This hypersurface is
typically not available as a specific, exact, function; rather, it will be known through derivatives evaluated up to a certain order with respect
to phase-space coordinates at points on 2.

We assume that H is a homogeneous function of degree two in the slowness components, p;. Then, Euler’s theorem for homogeneous
functions yields

OH
piTp- =2H. (3)

The specific formulation chosen for the Hamiltonian will determine what will be the independent variable along rays. For this variable to be
the time 7, the Hamiltonian must satisfy

oH
pPi e =L 4)
Pi
In view of eq. (3) the constant in eq. (2) is therefore H=1 /2.
The total temporal derivatives of position and momentum vectors can be computed using Hamilton’s equations,
dr - ap, ’ dr - Bxl» ’

®)

Integration of the ordinary differential equations (ODEs) in eq. (5) yields the solution functions x;(t) and p;(t) on €2, as well as the time
derivative of these functions,

d)%,‘ di),
T7), i(T) =
@ =
We note that v = (v;) signifies the ray-velocity (group-velocity) vector, while the time derivative of the slowness vector, n = (), is referred
to as just the eta vector. The fundamental requirement in eq. (4) and the first subequations of eqs (5) and (6) show that the slowness vector

(7). (6)

vi(7) =

and ray-velocity vector must satisfy

pivi = 1 (7)
along the ray €.

Hamilton’s equations may alternatively be formulated compactly as
dw, oH

=Jis7, (8)

dr owy
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Table 1. Main mathematical symbols used in the paper. For multicomponent quantities the dimensions are specified.

Quantity Dimension Description
(x1, X2, x3) 3 Cartesian coordinate system
X = (x;) 3 Position vector of the Cartesian coordinate system
p=@) 3 Slowness vector (momentum vector) of the Cartesian coordinate system
w = (W) 6 Phase-space vector of the Cartesian coordinate system
= (xi. pj)
Q Reference ray
H(w) Hamiltonian
H Constant value of the Hamiltonian
N Degree of the Hamiltonian
T Traveltime along the ray Q
70 Traveltime at the initial point of the ray Q2
c Phase velocity
v= () 3 Ray-velocity (group-velocity) vector
n=m) 3 Derivative of slowness vector p with respect to traveltime ©
N, Number of parameters specifying a perturbation
of the initial phase-space location. Possible values are from 1 to 6.
(Va) N, Parameters specifying a perturbation
of the initial phase-space location
X ={X} 6 x N, First-order derivatives of phase-space perturbations
S={Ss} 6x6 ODE coefficients related to first-order derivatives of phase-space perturbations
U= {Uy} 3x3 Subset (submatrix) of the ODE coefficients {S, }
V= {V;} 3x3 Subset (submatrix) of the ODE coefficients {S,s},
the wave-propagation metric tensor
W = {w;} 3x3 Subset (submatrix) of the ODE coefficients {S}
Sw = (w,) 6 Perturbation of the phase-space vector
Swo = (6w )o 6 Perturbation of the phase-space vector
at the initial point on Q
I(z, 1) 6x6 Ray propagator matrix
= {nrs(f’ TO)}
I Paraxial plane
E=1{&Em) 3x2 Basis vectors in the plane I1
=[e; e1]
H = {H;} 3x3 Transformation matrix related to the plane IT
=[€v]
F ={Fim} 3x2 Submatrix of the 3 x 3 matrix H=7.
{aj} 3x3 Projection operator with respect to the wave-propagation metric tensor
M = {M;} 3x3 Second-order derivatives of traveltime
with respect to Cartesian coordinates, on
{ M} 3x3x%x3 Third-order derivatives of traveltime
with respect to Cartesian coordinates, on
{Mjji} 3x3x3x3 Fourth-order derivatives of traveltime
with respect to Cartesian coordinates, on
Q={0iu},P={Pia} 3x N, First-order derivatives of phase-space perturbations,
in O—P notation
Q={0u},P={Pu} 3x2 First-order derivatives of phase-space perturbations,
in O—P notation, for the case N, =2
6 =[QV] 3x3 Extension of 3 x 2 matrix Q to size 3 x 3,
the geometrical spreading matrix
P= [P ] 3x3 Extension of 3 x 2 matrix P to size 3 x 3
GT = {Q;r/} = (3’] 3x3 Inverse geometrical spreading matrix
Qf = {Qj i} 2x3 Submatrix of the inverse geometrical spreading matrix
{ Xap } ‘ 6 x N, x N, Second-order derivatives of phase-space perturbations
{Oiab}> {Piab} 3 x N, xN, Second-order derivatives of phase-space perturbations,
in O—P notation
{Syst } 6xX6x6 Main ODE coefficients related to
second-order derivatives of phase-space perturbations
{Ryst} 6xX6x6 Additional ODE coefficients related to
second-order derivatives of phase-space perturbations
{Ujji} 3x3x%x3 Subset of the ODE coefficients {S, }
{Viix} 3x3x3 Subset of the ODE coefficients {S,s }
{Xrabe } 6 x Ny x N, x N, Third-order derivatives of phase-space perturbations

{Qiabc } 5 {Pt‘abc}

3xN, xN, xN,

Third-order derivatives of phase-space perturbations,
in O—P notation
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Table 1. Continued

Quantity Dimension Description
{Systu } 6xXx6x6x6 Main ODE coefficients related to
third-order derivatives of phase-space perturbations
{Rystu} 6xXx6x6x6 Additional ODE coefficients related to
third-order derivatives of phase-space perturbations
s = (s;) 3 Source point
r=(r;) 3 Receiver point
T(r, s) Traveltime as a function of source-receiver coordinates
L(r,s) Relative geometrical spreading as a function of
source—receiver coordinates
{ayu} 3x3x3x%x3 Density-normalized elastic moduli
I ={I} 3x3 Christoffel matrix
G Eigenvalue of the Christoffel matrix
P,O,R General invariants of the Christoffel matrix,

for arbitrarily anisotropic media
Particular invariants of the Christoffel matrix,
for transversely isotropic media

PSV pPSV  SH
P™YORTY G

Gr, G5 Particular invariants of the Christoffel matrix,
for elliptically anisotropic media
0 * Zero multicomponent quantity. The dimensions follow from the context.
I 3x3 Identity matrix
J 6x6 Matrix for rearranging derivatives in Hamilton’s equations

where J,; are components of the 6 x 6 matrix
{0, {8i;}
I= ()= (—{51,-} {O;_}). ©)
The right-hand side of eq. (8) is the Hamiltonian vector field corresponding to the Hamiltonian 7 .
Differentiation of eq. (3) with respect to p; yields the important relation
PH o IH
apidp; Pr= 3717:'7

which holds for general locations in phase space. For other useful expressions involving derivatives of the Hamiltonian, see Appendix A.

(10)

On the ray Q2 eq. (10) is recast to

V() pi(r) = vi(r), (11)
where
2
File) = 5o () (12)
i0p;

In physics, the quantity {V};} is often referred to as the wave-propagation metric tensor (Klimes 2002b). In Riemannian geometry (e.g. Bao
et al., 2012), the hypersurface (2) is approximated using partial derivatives of slowness components pj up to order two taken on the ray Q. As
a consequence, the second-order derivatives > H /dp; dp; are considered invariant with respect to py.

3 CONVENTIONAL DYNAMIC RAY TRACING

As an introduction to higher-order Hamilton—Jacobi perturbation equations, we summarize the basics of conventional dynamic ray tracing.

3.1 Perturbations in phase space

Consider again a reference ray Q2 with phase-space locations (i, (7)) consistent with eq. (2). A perturbed phase-space location is then generally
expressed as

w, = ,(v) + dwy, (13)

where all six perturbation components §w, may vary freely. It is common to write the perturbed phase-space location as a vectorial function,
with components w, = w,(y, 7). Here, the vector y = (y,) has dimension N, and serves to parametrize a perturbation of the phase-space
location corresponding to the initial point on €2, for which 7 = 7. The symbol p signifies no perturbation of this initial phase-space location.
We require (i) that the variables y, are mutually independent, (ii) that none of them depend on the time, 7, and (iii) that none of them depend
on the model of the medium. It follows that the dimension, N, of the vector y must have the maximum value N, = 6, that is, the dimension
of the Cartesian phase space.
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3.2 System of Hamilton—-Jacobi perturbation equations

A system for dynamic ray tracing in Cartesian coordinates (x;) can be derived by inserting eq. (13) on the left-hand side of eq. (8) followed by
partial differentiation with respect to the variable y,. Since T and y, are independent variables, the differentiations d/dt and 9/0y, commute
(Cerveny 2001; section 4.2.1). We obtain the system of ODEs

dX,, dX
(1) =Su(D) Xi(r);  ——(1) =S(1) X(7), (14
dr dr
where X,,,(7) can be equivalently defined by the partial derivatives
aw,) ow,
Xra(r) = 3 ¥, 7)) = ¥, 7), (15)
Ya Va

and S,,(7) is formed by the second partial derivatives of the Hamiltonian,

2

ad
S(T) = s FYerTN " (w(y, )] (16)
Wy W,

The quantity X, in eq. (15) is a first-order derivative of a perturbation in phase space related to a point with time 7 on the reference ray 2.
For clarity of notation, we prefer mostly to write such derivatives as in the last expression of eq. (15), that is, without the perturbation (§)
symbol. It is emphasized that the derivative dw,/dy, belongs to a fixed value of the time 7.

Conventional dynamic ray tracing in Cartesian coordinates yields as output the 6 x N,y matrix X(t) = {X,,(t)}, with components of the
form given in eq. (15). The matrix function X(7) is continued along the ray Q2 by solving the system of ODEs in eq. (14) with suitable initial
conditions. It is common to split the matrix {X,, } into 3 x N, sub-matrices {Q,, } and {P,,,}, such that

X P .
O = 520, Pal®) = 20 (17)
Eq. (14) can therefore be written equivalently as
d (Q@)) _ (W) V() Q(7) (18)
drt \ P(z) ]~ \ =U@x) -W() ]\ P(x) |’
with
2 2 2
Up(®) = 55 WG O V(@) = oo o] W(0) = S =W, o (19)
iOA; i J i i

Here, Vj; represents the wave-propagation metric tensor components introduced in eq. (12). Dynamic ray tracing, prescribed by the Hamilton—
Jacobi perturbation eqs (18), may be performed simultaneously or subsequently with respect to ray tracing, prescribed by Hamilton’s eqs (5).
In the latter case, the functions %(7) and p(t) will be known beforehand; the same is true for the functions v(z) and (7) in eq. (6).

3.3 Ray propagator matrix

There are two common ways to find a solution of the system of ODEs in eq. (14) or (18) by means of integration. One is to integrate with
right-hand sides of the differential equations exactly as specified in eq. (14) or (18), the other is to make use of a pre-calculated (known)
first-order mapping between perturbed phase-space locations at the start and end point of the ray 2. The coefficients of this mapping form
the 6 x 6 ray propagator matrix in Cartesian coordinates. Below we introduce this matrix in a formal way.

A situation of particular interest arises if we choose the vector y specifically as the 6-D phase-space perturbation at the initial point on
Q, for which T = 7, that means,

Vr = ((Swr)o =w, — ﬁ)r(fo). (20)
Obviously, for this definition of y we have p = 0, the six-component zero vector. Using eq. (13), we establish the function
5w, (W, ) = w, (W, T) — ,(7), @1

where it is implicit that the freely varying (perturbation) vector §w, belongs to the time 7. The ray propagator matrix of size 6 x 6 in
Cartesian coordinates can then be introduced as

d(sw,)
8wy )o

(7, 1) = (dwo =0, 7). (22)

The ray propagator matrix encapsulates the six fundamental solutions to the system (14) of ODEs. The Hamilton—Jacobi perturbation equations
for the ray propagator matrix are given by

drIl,, dIl
d (7, 1) = S4(7) My (7, T0); — (7, %) = S(v) (7, 1), (23)
T dr
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with the initial condition
nru(r()v TU) = 8)‘14- (24)

When the ray propagator matrix is known for the segment (7, 7) of the ray 2, any other dynamic ray-tracing solution on that segment
can be computed using the linear combination of fundamental solutions,

Xra(1) = (7, 1) X1a(m0); X(7) = II(7, 70)X(10)- (25)

In this way, the ray propagator matrix II(z, 7o) represents the solution operator for the initial value problem (14).

The initial perturbation y = §w, encompasses six degrees of freedom. A general perturbation §w, can be considered to consist of (i) a
paraxial contribution (four degrees of freedom), (ii) a ray-tangent contribution (one degree of freedom) and (iii) a non-eikonal contribution
(one degree of freedom). The particular fundamental solutions resulting from these three types of initial conditions are often referred to as
the paraxial, ray-tangent and non-eikonal solutions of dynamic ray tracing (éerveny 2001).

3.4 Dynamic ray tracing specified by two paraxial ray parameters

Consider a situation with two parameters specifying the initial phase-space perturbation (,, = 2). For this particular situation we replace
lowercase indices a and b in eq. (17) with corresponding uppercase indices 4 and B. We further assume that the parameters y 4, 4 = 1, 2,
have a purely paraxial nature, so that any initial phase-space perturbation is constrained not to have a ray-tangent or non-eikonal contribution.
The parameters y 4 specify the initial conditions for paraxial rays, that means, rays in the vicinity of the reference ray 2. We refer to y 4 as
paraxial ray parameters or just ray parameters. For any reference ray or paraxial ray, the ray parameters are constant.

Together, the two quantities y 4 and the traveltime t form a 3-D curvilinear ray coordinate system, (y1, y2, T). The mapping from ray
coordinates to Cartesian coordinates reads

x; = x; (Y1, V2, T), pi = pi(V1; Va2, T)- (26)

We introduce 3 x 3 matrices 6 and P for performing first-order transformation of position and momentum vectors from ray coordinates to
Cartesian coordinates. The components of these matrices are

8)(?,‘ _ Bx,-

i4= > i3 = ; 27

= O3 P (27)
i ap;

Py=-LL py=ZE (28)
Y4 ot

Matrix Q is the 3 x 3 geometrical spreading matrix for dynamic ray tracing in Cartesian coordinates.
For the inverse mapping operation, from Cartesian coordinates to ray coordinates, we introduce the ray parameter function y 4(x) and
the traveltime function t(x),

Va4 = ya(X), T = 1(x), (29)
with first-order derivatives
Y4 T at i
= oy = P = . 30
axi Q Ai axi p Q31 ( )

The quantities Qj”. in eq. (30) form the inverse of matrix 6, such that
Q'=qQ. (31

More details on the first-order transformation between ray coordinates and Cartesian coordinates are given in Appendix B.
For the second derivatives of the traveltime function 7(x) we use the notation

82
M= (M) = {3x-8tx-}. (32)
i0Xj

It is straightforward to show (see Appendix B) that matrix M can be computed using

M=PQ . (33)

4 HIGHER-ORDER HAMILTONIAN-JACOBI PERTURBATION EQUATIONS

In conventional dynamic ray tracing in Cartesian coordinates one continues along the ray 2 the first-order derivatives of a phase-space
perturbation, given in eq. (15). That approach is extended here to include continuation of derivatives up to third order.

0202 11dY $Z uo Jasn Aysieniun 9oy Aq 2€1G52S/7¥02/€/91ZN0e1sqe-ajpiueilB/wod dno olwspeoe//:sdyy wolj papeojumoq



Higher-order Hamilton—Jacobi theory 2051

4.1 Continuation of second-order derivatives of phase-space perturbations

We formulate second-order derivatives of phase-space perturbations compactly as

Pw, .
me(l’) = ()’7 T)- (34)
aya ayb
In O—P notation we write them as
%x; 3Fpi .
Qian(1) = 7.0, Palr)= 7. 0. (35)
Bya 8)/1, 3)/a ayb
We map the third-order derivatives of the Hamiltonian to a 3-D coefficient tensor,
3 H .
Sru(T) = J, Wy, Ol (36)

" dw, 0w, dw,

Using the latter, we establish ODEs for continuation of second-order derivatives of perturbations in phase space,

era h

(0 = SO Xian(1) + Rea(1), (37)
where
Rrab(t) = Srtu(r)X[a(t)Xub(f)- (38)

The combination of ODEs given by eqs (14) and (37) can be integrated to yield the solution (34).
A different approach is to use an expression for the solution in terms of the initial condition, the ray propagator matrix and a closed-form
integral along the ray €2,

T

Xab(0) = e, om0+ [ 15,7 Run() (39)
70

This approach requires that the ray propagator matrix, I1,,(z, 7o), is a known (pre-computed) function.

It is convenient to reformulate eq. (39) such that the ray propagator matrix in the integrand corresponds to propagation from v = 7 to
7 = 7. Using the chain property and the symplectic property of the ray propagator matrix we obtain

Xrab(t) = nrt(fs T(]) (Xtab(t()) - / Jtvnsv(rlv T())qu Rqab(r,) df/> . (40)

70

4.2 Continuation of third-order derivatives of phase-space perturbations

We want to determine third-order derivatives of phase-space perturbations,

Pw,
Xrave = 3 A a4 Av s 41
()= g ) (41)
or in O—P notation,
83)(,‘ 33}7,'
iabc Sl ——— y ) ’ Pla C = T - y ’ . 42
Quane(1) = 57, 7) (D) = G ) “2)
The ODE:s for continuation of third-order derivatives of perturbations in phase space can be written,
erabc
T(r) = Srt(r)Xtahc(t) + Rrabc(r)v (43)
where
0 H
Srtuv =Jy Y, s 44
W0 = e WP, T) (44)
Rrabc(f) = Srtu(‘[) [Xla(T)Xubc(r) + le(T)Xuac(T) + Xuc(r)me(T)] + Sriuv(t)Xla(t)Xub(T)XUc(T)- (45)

The ODEs given by eqs (14), (37) and (43) can be integrated to yield the solution (41).
Alternatively we write the solution in terms of its initial condition, the ray propagator matrix and a closed-form integral along the ray
97

Xrape(®) = T (7, 1) Xrapel0) + / L%, ) Ruape (). (46)

70
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In this situation IT,.(t, 7¢) and X, (t) must be known along 2. The chain and symplectic properties of the ray propagator matrix yield
T
)(rabc(f) = Hr;(f, TU) (mec(fo) - / Jtu Hs‘v(r/v TO)qu Rqabc(f/) dT/) . (47)
70

Eq. (47) represents a third-order analogue of eq. (40).

5 CONSTRAINT RELATIONS

Derivatives of phase-space perturbations are in general not independent, as they will be constrained by the Hamilton—Jacobi eq. (2). To
describe dependencies between first-order derivatives in conventional dynamic ray tracing Cerveny (2001) uses the notion constraint relation.
When introducing derivatives of higher order it is necessary to consider also higher-order constraint relations.

5.1 Constraint relation for first-order derivatives of phase-space perturbations

The Hamiltonian is required to be constant along a trajectory in the phase space. As a consequence,

oH dw, . oH dx; OH Ip;
Y _ 0, orequivalently, s + Pi_ 0. (48)
dw, Ay, ax; 0y Opi V4

Thus, along €2 the following constraint applies,
V; Pia =1 Qia- (49)

Eq. (49) represents the constraint relation for first-order derivatives of phase-space perturbations in Cartesian coordinates (éerven}'/ 2001).

5.2 Constraint relations for second-order derivatives of phase-space perturbations

Differentiation of eq. (48) with respect to y, yields
PH dw, dw, OH 3w,

=0. 50
dw, dwy 3y, Ay * dw, Y.0vs (50)
We use
0
H = _Jrswsy
Jw,
?H
= _thStsy
ow, 0wy
so that eq. (50) becomes
- thSteraX:b - Jr:werab =0. (51)

Applying the standard Hamilton—Jacobi perturbation eqs (14) then yields the second-order constraint relation,

— XrapJrsts = Xrqdrs Xip. (52)
In O—P notation the latter equation is restated

Vi Pray = 1i Qiav + QiaPib — Py Qib~ (53)

For a situation with two paraxial ray parameters y 4, 4 = 1, 2, we may introduce in eq. (53) the 3 x 3 matrix M of second derivatives of
traveltime, defined in eq. (33), so that

Vi Piap = 0 Qiap + Mu 0i1Qjs. (54)

5.3 Constraint relations for third-order derivatives of phase-space perturbations

We differentiate eq. (52) with respect to y .. Since the quantities y . are independent of the traveltime t, the order of differentiation in y . and
7 can be interchanged. We then obtain the third-order constraint relation,

- Xrachrs w.v = rabJr.vac + Xrachsva + Xra-]r.vabc~ (55)
Introducing O—P notation in eq. (55) yields the constraint relation

1)iPiabc =1 Qiabc + Qiubpic - Pz’abQic + Qiac‘bib - Piachb + Qia‘bibc - Pia Qibc- (56)
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In the situation with two paraxial ray parameters, the lowercase indices a, b and c are replaced by their corresponding uppercase versions.
The constraint relation (56) can then be rephrased in terms of second- and third-order derivatives of traveltime,

Vi Pype =0 Qianc + M} (QiA Qjpc+ 0i3Qjac + QiCQjAB) + Mijk 0i40;80kc- (57)

6 INITIAL CONDITIONS

To be able to start the integration operations described above we need initial conditions.

At the initial point of the ray €2, for which the time is T = t, we denote the position vector as x = X(ty) and the slowness vector as
P = p(7o). It is necessary to specify the derivatives of the phase-space perturbations, X,.(7¢), Xuus(T0), Xape(To)s - . . , up to the highest order
under consideration in the system of Hamilton—Jacobi perturbation equations.

We limit our discussion of initial conditions to those prescribed by two paraxial ray parameters y 4, A = 1, 2. In this respect, two cases
are of particular interest: (i) the point-source situation where the initial wave front is degenerated and coincides with the source point, and (ii)
the plane-wave situation where the initial wave front is a plane IT normal to the direction of the slowness vector p(zo).

To aid the setup of initial conditions, we introduce two linearly independent vectors e; and e, in the plane IT. Except for the requirements
of linear independence and confinement to the plane I, the orientation of e, and e; is arbitrary. The components of e; and e, form the 3 x 2
matrix £ = {&;)/}. We establish a 3 x 3 matrix H = {H;;} so that

H= [8 v] . (58)
The inverse Hf = H~! may then be expressed as

FT
H!'= ) (59)

If e, and e, are chosen orthonormal, one will be able to compute F from the relation
Fiw = [8 = pivj] Eu = iy Eus (60)

where all quantities belong to T = 7. The quantity «;; represents a projection operator with respect to the wave-propagation metric tensor
(Hanyga 1982; Klimes 2006b). If e; and e, are not orthonormal, we compute F from eq. (59), so that

Fou = Hyy,. (61)

6.1 Point source

For a point source, the two ray parameters y 4 will be parametrizing the slowness vectors of rays starting out from that point. Obviously, the
location x; of a point on the (degenerated) source wave front will be insensitive to any value of the parameters y . As a consequence, all
derivatives of position are zero at the source point,

8xi 82)(31' 83)(31'
id = = 0’ i = = 0, i = — = 0, etc. 62
Qi ¥4 Qias 9740ys Qranc 9y49ydyc (62)
We define here the two ray parameters y 4 at the source point by
Ya = Eia [pi — Pi(r0)]. (63)

It is remarked that other definitions are possible, for example, one may let the parameters y 4 be Euler angles. The parameters y 4 in eq. (63)
represent a projection of the slowness vector perturbation onto the coordinates corresponding to the vectors e; and e,. One important note in
this context is that the three components of vector p are constrained, as they have to satisfy the Hamilton—Jacobi equation.

From eq. (63) it follows that

Eim ﬁ(}’, 70) = Sma- (64)
0V

Moreover, the combination of constraint relation (49) and the first initial condition in eq. (62) gives

vi(70) Pia(t0) = 0. (65)

Then, solving the system of eqs (64) and (65) for P;4(7,) yields at the initial point
Py = Fia, (66)

where F; 4 is given by eq. (60) or (61).
To obtain P;45(7y), differentiate eq. (64) further,
3% p;
St —P (1) = 0. (67)
y40ys
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Also, we combine constraint relation (56) with initial conditions (62),
vi(70) Pias(t) = —Pra(70) Oi5(0)- (68)

Here, the time derivative on the right-hand side is given by the standard Hamilton—Jacobi perturbation eqs (18). We solve eqs (67) and (68)
for P45(t0), which yields

PiAB = —pi ]:mA ]:nB an~ (69)

where all quantities belong to the initial point.
With values corresponding to a point source the constraint relation (56) becomes

ijjABC = - jAQjBC - PjABQjC - PjACQjB' (70)
Applying eq. (69), we obtain
QjBC = ijPkBC + ijanBRzC = _ijpkme-FnC an + ijn]:menC = _vj]:menC an + ijn]:mB]:nCv (71)

where V},, is the tensor of third-order partial derivatives of the Hamiltonian with respect to slowness components, evaluated on the reference
ray. Using eqs (66), (69) and (71) in (70) then yields

Vi Piapc = —VimnFjaFmsFnc- (72)
Since eq. (67) in addition implies that &, P 45c = 0, it follows that the initial condition for Pz is
Piypc = —pi anmfjAmefnC- (73)

If the Hamiltonian is a polynomial function of second degree in the slowness components, we have V},,, = 0, and hence P3¢ = 0.

6.2 Plane-wave source

For a plane-wave source the two ray parameters y 4 may represent any pair of coordinates in the initial wave-front plane, I1. We choose here
specifically these coordinates in the directions of the vectors e; and e, introduced earlier, such that dx/dy; = e; and 9x/dy, = e, on ;
hence,
ox; .

d (y, T()) = 5[,4. (74)
V4

Since our choice of plane-wave ray parameters y 4 is connected with the matrix £, the matrix F in eq. (59) will also relate to these ray

parameters. The connection is simply

7
Bx,- ’

where y 4 = y 4(X), see eq. (29), and where the derivative is taken at the source point on Q. In view of eq. (75) we find it natural to define the

Fia = (75)

plane-wave ray parameters by the linear expression
va = Fia [xi — Xi(10)]. (76)
The following relations must then be satisfied along the plane IT,
0x;
Fia 7—(¥.70) = s, Em pi(y,70) = 0, (77)
dys
Eq. (74) readily yields the initial conditions
QiA = 5[/17 Q[AB = O, QI'ABC = 0. (78)
Also, repeated differentiation of the last subequation in eq. (77) with respect to y 4 gives
EimPia =0, Eim Piap = 0, Eim Piapc = 0. (79)

To obtain P;4 we use eq. (79) and also invoke the constraint relation (49),

Vi Py =1 Qia (30)
In combination, eqs (79) and (80) yield the initial condition
Pa=pin; & (81)

Proceeding to compute P45, we take constraint relation (53) with Q, 4 = &4 and Q.45 = 0, as prescribed by initial conditions (78),

U Pnap = QmAPmB — Pua QmB~ (82)
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Using the standard Hamilton—Jacobi perturbation equations then gives

U P = (=Ui; +30in,)E4E8. (83)
The combination of the middle sub-eq. (79) with (83) therefore yields

Poas = Pm [—Ui/ +3n; 77,/] Ealip. (84)
For the initial plane wave front the constraint relation (56) can be formulated as (Appendix C)

U PmABC = QmAPmBC - PmA QmBC - PmAB QmC - PmAC QmB
= (15mm;me — 30 Upe — 3n,; Uik — 3 Uy — Upja)Eia €5 ke (85)

Here, the tensor Uy represents the third-order derivatives of the Hamiltonian with respect to position components, evaluated on the reference
ray. By combining the last sub-equation in (79) with (85) we obtain the initial condition

Puasc = pu(15ninne =30, Ujx — 30U — 30k Us; — Uij)Ei € 8Ekc - (86)

7 PARAXIAL EXTRAPOLATION

We describe extrapolation of geometrical spreading and traveltime away from the reference ray, 2. The ray 2 is specified by paraxial ray
parameters Y4 = y 40,4 = 1, 2, and it includes a source point, x = sy, and a reference receiver point, x = ry. The traveltime at ry is
T =1 = 7(r).

7.1 Extrapolation of geometrical spreading

In the neighbourhood of the reference receiver point x = r, we consider the 3 x 3 geometrical spreading matrix (A) to be a function of the
receiver position, x = r, while the source position is kept fixed. A Taylor-series expansion of Q in Ar = r — r, reads

aQia 1 8ZQia 1 83Qia
Qia(r,89) = Qja(ro, 8o) + (ro, o) Ary + = (ro, 80) ArpArp + ——————(xo, So) Arp ArjAry, + ... (87)
Brk 28rk8r, 68}"/(87‘187'”,
with the first three sets of derivatives given by
00iq %r; 2 +
= = Qi Ol 88
ory Y, 0yp Ory Qiab i (88)
3’ Qia 3°r; ayp dye 3% 9%y t At t
= —_— - iabce ia ’ 89
ardry 0y, 0Yp0y. ory dr; + Ay, dyp drior; Qiave Qi Qa + Qiar Qo (89)
PO ¥ s dye Oy _ O Wy, Py Ay 3. Fri Py
oror;0r,, - 0V, 0Yp0Y.0yy Ory 0r; 0ry, 0V, 0Yp0Y. \ Ory 0rory, ar; Orory, 0Y,0yp Orydr;ory,

Oiatea Oy Ol Ol + Orane (Oh Ol + Ol Olin) + Qiaw Ol (90)

We see that a first-order expansion of matrix {Q;,} relies on second-order derivatives Q,., a second order expansion of {Q;,} relies on
third-order derivatives Q;u.., and so forth. The derivatives of the transformation from Cartesian coordinates to ray coordinates, that is, the
quantities sz, sz,, sz,m ..., can be obtained by repeated differentiation of eq. (B4).

It is assumed that the dynamic ray tracing is subject to point-source initial conditions at the point sy. The relative geometrical spreading
for a paraxial ray from s, to r can then be computed using

| 12
ﬁ(r’ SO) = [% det{Qia(rs SO)}] s (91)

where ¢(r) is the phase velocity of the paraxial ray evaluated at the position r.

7.2 Extrapolation of traveltime

Consider the traveltime function 7{(r, sg) = 7(r) corresponding to a fixed source point at x = s,. We write a Taylor expansion of 7"in Ar,
1 1 1
T(l', So) = 'E({e + Pk Ark + EMM A}"/CAV/ + ng[m A}"kAV/A}"m + ﬁMklmn ArkAr,ArmArn + ..., (92)

where all the coefficients are evaluated at r.
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Figure 1. Model ISO and some of the rays used in numerical tests. Top: the vertical P-wave velocity is indicated by colour in vertical slices. Data for numerical
comparisons are computed along rays (black) from a source point at depth 4 km. Coefficients for extrapolation of ray quantities are computed along a single
reference ray (grey). Bottom: lateral differences in the vertical P-wave velocity, relative to the velocity on the reference ray, at depth 2 km.

The 3 x 3 matrix of second derivatives of traveltime, M, can be computed using eq. (33). The latter is restated here as
Mj Qja = P, (93)
where all indices run from 1 to 3. Differentiating eq. (93) twice with respect to the ray coordinates yields,

Mijk Qja O = Piab — Mij Qjan, %94)

Mijir Qja Qs Qre = Piave — Miji (Qja Orve + Qb Otac + Qe Okav) — Mij O jave- (95)

When the right-hand sides of eqs (93)—(95) have been evaluated, we obtain explicit expressions for the second-, third- and fourth-order
derivatives of traveltime after multiplying by the relevant number of (inverse) matrices, {QZ it
To evaluate the right-hand side of (94) we need to know Mj;, which is pre-computed using (93). In addition, we need Oy, Piss, Q,- As

P, ,, 0; and #;. To evaluate the right-hand side of eq. (95) we will also need My, pre-computed using (94), as well as Q,upc, Pissc, Qi 4B
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Figure 2. Model ISO: ray-tracing simulated P-wave traveltime (top) and geometrical spreading (bottom) in the plane at depth 0 km for a source point at depth
4km.

Piyg, Q, 4, Py, ¥; and ;. The temporal derivatives Q[ 4 P, Q[ 45 and P45 can be readily obtained from the relevant system of differential
equations given in eq. (14) or (37). The derivatives Ql 4 i, Ui, 0, Ur and #; can be obtained after temporal differentiation of these equations.

In some situations it can be useful to do a Taylor expansion of squared traveltime rather than of the traveltime itself, as the expansion
of T?(r, s¢) to second order in Ar is exact for waves from a point source in an isotropic homogeneous medium. For underlying theory and
numerical examples, see Ursin (1982); Gjoystdal et al. (1984). Extrapolation of squared traveltime may be highly appropriate also for a
transversely isotropic medium with a vertical axis of symmetry. For details on this matter, see Alkhalifah & Tsvankin (1995) and Tsvankin
(2013).

8 HAMILTONIANS FOR P AND S WAVES IN ANISOTROPIC HETEROGENEOUS
MEDIA

Up to this point, the theory has been described with the Hamiltonian appearing as a black box. In this section, we elaborate on specific
Hamiltonians related to P and S waves in anisotropic heterogeneous media.
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Figure 3. Model ISO: Relative error in traveltime for different extrapolation approaches along the lines y = 5 km (top) and x = 7 km (bottom).

8.1 Arbitrary anisotropy

The Christoffel matrix I', as defined, for example, in éerveny (2001), eq. (2.2.19), is of size 3 x 3 and has the components

Ci(X, p) = aiju(X) pjpr1- (96)

Here, ay is the tensor of density-normalized elastic moduli. The Christoffel matrix has three real eigenvalues and three corresponding
mutually orthogonal eigenvectors. One selected eigenvalue and its associated eigenvector are denoted, respectively, by the symbols G and g.
The eigenvalue G corresponds to an elementary P or S wave with polarization vector g.

The eigenvalues of matrix I satisfy the characteristic equation

det(I' — GI) = 0; o7
here, I is the 3 x 3 identity matrix. Eq. (97) represents a third-order polynomial in G,

G- PG*+ QG —-R=0, (98)
where the quantities P, Q and R are invariants of T,

P =ul', QO =tr(cofl'), R =detl. (99)

We note that P, O and R are scalar functions in phase space, and they are homogeneous of degree two (P), four (Q) and six (R) in the slowness
components, p;. The function G is homogeneous of degree two in p;.
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Figure 4. Model ISO: relative error in geometrical spreading for different extrapolation approaches along the lines y = 5 km (top) and x = 7 km (bottom).

For a given wave mode and a given point x, we get an exact description of the relevant slowness-surface sheet if the eigenvalue function
G is subject to the constraint G(w) = 1. On the other hand, our Hamiltonian # satisfies the Hamilton—Jacobi equation = 1/2. Hence, to
ensure consistency with the slowness surface it is natural to express # in terms of G, such that

H(w) = %G(w). (100)

In the case of arbitrary anisotropy, derivatives of #H are obtained by differentiation of eqs (98) and (100), followed by setting G = 1.
We remark that for some applications of ray perturbation theory (see, e.g. Klimes 2002a; éerven}'/ & Klimes 2009) it may be useful to
redefine the Hamiltonian to
1
N
where A is a nonzero scalar. Such a redefinition will only affect the non-eikonal solution to dynamic ray tracing; the other fundamental
solutions are unaffected.

HW) = — [GWI?, (101)

8.2 Partial factoring of the characteristic equation by polarization

For particular anisotropic symmetries, for example, transversely isotropic media, one can utilize a partial factoring of the characteristic
eq. (98) by polarization. One of the elementary S waves is then SH polarized, meaning that the polarization vector is confined to the (locally)
horizontal plane. The polarization vectors of the two other elementary waves, P and SV, form a (locally) vertical plane. The partial factoring
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Figure 5. Model VEL: ray-tracing simulated P-wave traveltime (top) and geometrical spreading (bottom) in the plane at depth 0 km for a source point at depth
4km.

is stated

(G* = PPV G + RSV (G — G5y = 0. (102)

In this situation we get a specific equation for the Hamiltonian of the SH-polarized wave,

1
H = zGSH. (103)

The eigenvalue function G5 is homogeneous of degree two in the slowness components, and the slowness sheet for the SH wave is elliptical.
Eq. (102) further yields another, common, equation for the P- and SV-polarized waves,

G* — PPS"G + RPY =0. (104)

The functions P™" and RPS" are homogeneous of degree two and four in the slowness components.
For an SH wave, derivatives of 7 in phase space are obtained by differentiating eq. (103). For a P or SV wave, we differentiate eqs (100)
and (104), followed by setting G = 1.
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Figure 6. Model VEL: Relative error in traveltime for different extrapolation approaches along the lines y = 5 km (top) and x = 7 km (bottom).

8.3 Full factoring of the characteristic equation by polarization
Consider a further factoring of eq. (102) so that
(G -GG -G7)G -Gy =0. (105)

This yields the following possibilities for the Hamiltonian,
1 1 1
=-GPF, =_-GY, = -G, 106
=3 =3 =3 (106)

The eigenvalue functions G”(w), G (w) and G (w) are all homogeneous of second degree in the slowness components. The P- and SH-wave
slowness sheets are elliptical; the SV-wave slowness sheet is spherical.
To obtain derivatives of the Hamiltonian 7, we differentiate the relevant eigenvalue function in eq. (106).

9 NUMERICAL EXAMPLES

We have performed numerical tests of the above described higher-order approaches to dynamic ray tracing in Cartesian coordinates, using
three related 3-D heterogeneous models. All the simulation examples are for P waves and for a single source point.

We employ a point-source initialization of the dynamic ray tracing system. The two ray parameters that specify the initial conditions are
horizontal components of the slowness vector at the source point. In this case the computed first- and higher-order derivatives of phase-space
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Figure 7. Model VEL: relative error in geometrical spreading for different extrapolation approaches along the lines y = 5 km (top) and x = 7 km (bottom).

perturbations represent a pure paraxial solution, which means that the choice of the value of the quantity A in eq. (101) should, from a
theoretical point of view, not influence the results. However, one cannot rule out that A" may have an effect in the presence of numerical
errors, but this matter has not been subject to our study.

In this section the spatial coordinates of the models are referred to as (x, y, z).

9.1 Model ISO

The first model, Model ISO, is adopted from Iversen & Tygel (2008)—it is isotropic and includes a gentle anticline structure (Fig. 1). However,
in the implementation of higher-order dynamic ray tracing we use a quintic (fifth-order) B-spline representation (e.g. Farin ez al. 2002) to
ensure C* continuity of the volumetric medium parameter functions. As a consequence, the P-wave velocity field appears here in a somewhat
smoother form than in Iversen & Tygel (2008). The ratio of S-wave to P-wave velocity is constant = 0.5. Data for numerical comparisons
is obtained using conventional P-wave kinematic and dynamic ray tracing from a source point at depth z = 4 km to receivers in the plane at
zero depth. Fig. 1 shows a subselection of rays (black) for receivers along the line y = 5 km. The ray (grey) arriving at the receiver location
(7, 5, 0) km is taken as a reference ray for higher-order dynamic ray tracing computations.

Fig. 2 shows the computed traveltime data (top) and geometrical spreading data (bottom). Geometrical spreading was computed using
eq. (91). As ray parameters y 4 in that equation we used the two horizontal components of the slowness vector at the source point.

Our results are shown as error curves for the extrapolated traveltime (Fig. 3) and the extrapolated geometrical spreading (Fig. 4). The
computed error curves belong to a line of constant y (= 5km) and a line of constant x (= 7km). We refer to the lateral distance between
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a receiver and the reference ray as the paraxial distance. In the cross-sections y = 5 and x = 7 (km) the maximum paraxial distance is
3km.

For traveltime extrapolation, we observe that second-order extrapolation of squared traveltime (dashed blue) yields a very good result.
The maximum relative errors at 3 km paraxial distance are around 0.15 per cent. For heterogeneous media such a good result is not obvious
(Gjoystdal et al. 1984). In the current test, however, the heterogeneities are moderate. We note that the results for fourth-order extrapolation
of traveltime (magenta) and squared traveltime (dashed magenta) are also very good. The range of relative errors for the latter approach is
0-0.3 per cent.

Concerning extrapolation of geometrical spreading, a striking observation is that the extrapolation function needs to be at least third
order in the spatial coordinates, in order to be appropriate at large paraxial distances. The relative errors obtained for the third-order approach
(magenta) are below 1 per cent for paraxial distances 0—1.5 km and below 5 per cent for paraxial distances 1.5-3 km.
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Figure 9. Model VTI: Relative error in traveltime for different extrapolation approaches along the lines y = 5 km (top) and x = 7 km (bottom).

9.2 Model VEL

The second model, Model VEL, differs from Model ISO only in one respect—we have introduced elliptic anisotropy related to a vertical
axis of symmetry. The anisotropy was defined to be constant, with Thomsen’s (1986) parameters specified as ¢ = § = 0.2. Since we
consider P-wave simulation only, the value of Thomsen’s parameter y (not to be confused with ray parameters) does not affect our
computations.

To get an impression of the effect of introducing strong elliptic anisotropy we can compare Figs 2 and 5. We note a decrease in traveltime
at large lateral distances from the reference ray, and also a general increase in the values of geometrical spreading.

Figs 6 and 7 show the same type of error curves as was given for Model ISO (Figs 3 and 4). Extrapolation of squared traveltime to
second order (dashed blue) yields also for Model VEL an excellent result. The reason is twofold—the heterogeneities are moderate and
the anellipticity effect is zero. For a corresponding homogeneous model the fourth-order term of the extrapolation function for squared
traveltime would have vanished completely (Alkhalifah & Tsvankin 1995). The results for fourth-order extrapolation of traveltime (magenta)
and squared traveltime (dashed magenta) are also very good. We note that the results for second-order extrapolation of traveltime (blue) and
third-order extrapolation of traveltime are significantly better than in the isotropic case. Third-order extrapolation of geometrical spreading
(magenta) has the same level of relative accuracy as for the isotropic model, that is, less than 1 percent / 5 per cent for paraxial distance
ranges, respectively, 0—1.5 km/1.5-3 km.
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Figure 10. Model VTI: relative error in geometrical spreading for different extrapolation approaches along the lines y = 5 km (top) and x = 7 km (bottom).

9.3 Model VTI

In the third model, Model VTI, the anisotropy is transversely isotropic (hexagonal) relative to a vertical axis of symmetry. We have introduced
anellipticity in the slowness surface by the parameter setting ¢ = 0.3, § = 0.1. The parameters are constant throughout the model, so the
anellipticity is invariant.

By comparing Fig. 5 for Model VEL with Fig. 8, we see that the change in traveltime is quite minor, while geometrical spreading has
substantial changes at large paraxial distances.

Figs 9 and 10 show curves of relatives errors in traveltime and geometrical spreading. They are to be compared to the corresponding
Figs 3 and 4 (for Model ISO) and Figs 6 and 7 (for Model VEL). We observe that it is now harder to get a good extrapolation result in the full
range of paraxial distances (3 km). When using fourth-order extrapolation of squared traveltime, the errors are below 0.025 per cent within a
paraxial distance of 2 km. For third-order extrapolation of geometrical spreading, errors are below 1 per cent within 1 km paraxial distance.

10 DISCUSSION AND CONCLUSIONS

We give a brief discussion on the connections to differential geometry, followed by our concluding remarks.

The theory derived in this paper has important connections to differential geometry—in particular to the Riemannian and Finslerian
geometry systems (see, e.g. Shen 2001; Bao ef al. 2012). Any Riemannian, Finslerian, or similar geometrical structure can be completely
described by distances. In the propagation of elastic waves distance is naturally measured in traveltime: the distance between two points is the
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shortest time it takes for a wave to go from one point to the other. By Fermat’s principle elastic waves travel along geodesics (rays). Locally,
the geodesics represent length-minimizing curves of the geometrical structure under consideration.

The elastic geometry of P waves in anisotropic media is Finsler geometry, as observed by Antonelli e al. (2003). If the anisotropy is
elliptical, then the Finsler geometry simplifies to Riemannian geometry. For anisotropy of lower symmetry than elliptic, non-Riemannian
geometric features are intrinsic properties of the medium. Leading-order variations from a reference ray can be adequately described by
elliptic anisotropy, and similarly, a Finsler geometry has a canonical Riemannian metric along a reference geodesic. Higher-order variations
require a Finsler treatment—elliptic approximations are insufficient.

To gain access to the powerful tools of differential geometry, it is reasonable to rephrase the study of elastic waves in a geometrical
framework. Writing equations in terms of coordinate invariant geometrical quantities simplifies the structure significantly. Many extra terms
in calculations in anisotropic heterogeneous media may be viewed as a symptom of computing in coordinates rather than invariantly. For
example, the geometric counterpart of the O—P quantities is a Jacobi field and its covariant derivative; for details on the geometrical aspects,
see Paternain (2012). In the equation of motion of the geometrical variant, similar to eq. (18), the diagonal blocks are automatically zero and
the top-right block is the identity. All geometrical information is packed into the curvature operator appearing as the lower left block. It is our
intention to elaborate on these connections between differential geometry and seismology in future work.

A key motivation behind this paper is to contribute to better computational capabilities, with respect to accuracy as well as efficiency,
for processes exploiting amplitude and/or phase properties of high-frequency Green’s functions.

The starting point of the theory development is a Hamilton—Jacobi equation in Cartesian coordinates. Based on this fundamental equation,
we first reviewed the standard approach to dynamic ray tracing, by which first-order derivatives of phase-space perturbations are continued
along a reference ray. Thereafter, we developed a theoretical framework for computation of higher-order derivatives of the phase-space
perturbations. Detailed results were exposed for the orders two and three in these derivatives.

We did numerical tests of higher-order dynamic ray tracing for three related 3-D heterogeneous models—one isotropic, one elliptically
anisotropic and one transversely isotropic. The higher-order approach yields clear improvements of the paraxial extrapolation of traveltime
and geometrical spreading, compared to results obtained using conventional dynamic ray tracing. One important observation is that the
extrapolation function for geometrical spreading must be at least third order to be appropriate at large extrapolation distances.

For the special case of a point source in a caustic-free medium, the approach proposed by Klimes (2002a, 2006a) is potentially faster than
the methodology presented here, as the number of equations to be integrated are lower. Therefore, as a future issue, it would be interesting to
see a comparative study of the two approaches that addresses computational efficiency, but in addition also accuracy and stability.

The presented methodology opens possibilities for further research and development in several directions. So far we have only considered
continuous models—for completeness it should also be possible to use models with interfaces. Furthermore, when concerning S waves in
anisotropic media one should take into account Hamiltonians that honour both elementary S waves simultaneously, such that problems
with S-wave singularities are circumvented. Having available higher-order derivatives of the phase-space perturbations it will be possible to
formulate also higher-order variants of Hamilton’s two-point characteristic. Last, but not least, we intend to develop the methodology also
for ray-centred coordinates, taking into account the connections to differential geometry outlined above.
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APPENDIX A: RELATIONS FOR DERIVATIVES OF THE HAMILTONIAN

The considered Hamiltonian # satisfies the relations

?H oH ?H oH
P = g =2 (AD)
op;op; op; ap;0x; 0x;
These relations hold on the reference ray, €2, as well as in its vicinity.
For the third-order derivatives of H we have the following general relations,
P H ?H
Di =2 , (A2)
0p;0x;0x; 0x;0x;
PH *H
Pi = : (A3)
op;0p;0x; op;ox;
93 9
H_0H (A4)

pipj 0p;0p;0x; aTk’

It is important to note that { may have nonzero derivatives of order three and higher in the slowness components. In particular, it
follows from eq. (A1) that the third- and fourth-order derivatives must satisfy

PH
Pi———— = (AS)
dpidp;dpy
and
94 33
H H (A6)

P apidp;dpidpr Op,opropr

APPENDIX B: TWO-PARAMETRIC SYSTEM OF RAYS

Consider a ray-parameter space ( 4) with dimension N, = 2, and the associated ray-coordinate system, (y1, 2, 7). In a local region around
a point on the reference ray we assume that a one-to-one mapping exists between the Cartesian coordinates (x1, x», x3) and the ray coordinates

(yla Y2, T)'

B1 First-order transformation between Cartesian coordinates and ray coordinates

To the first order, the quantities on 2 describing the transformation from ray coordinates to Cartesian coordinates are

3x,- ax,-

= Qi — =v; = ;3. Bl
974 0i4 97 =V 0i3 (BD)

For the inverse transformation we use the functions y 4 = y 4(x) and T = 7(x), with the first-order derivatives

Y4 at

T T

ax; 0 9x; pi = 03 (B2)
The quantities in eqs (B1) and (B2) form the 3 x 3 matrices
~ P Qf
Q=[ov]. Q1=Q'=[pT : (B3)
Based on the relations
0L0in="3uw Qw0 =8 (B4)
we can list some intrinsic properties of the transformation between ray coordinates and Cartesian coordinates on €2,

piQia =0,

UiQL,‘ = 0:
0y 0 = 84,

pivi = 1,

04,04 = ay, (B3)

where o; is given by

a;j = 8; — piv;. (B6)
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B2 Second-order derivatives of traveltime

Consider a specific traveltime function 7(x) which corresponds to two paraxial ray parameters y 4(x), 4 = 1, 2. The first- and second-order
derivatives of 7 on 2 are

0T

o P (B7)
82

d aT =My (B8)
Xi Xj

The quantities M;; are forming the 3 x 3 matrix M.
Using the chain rule for differentiation, we then obtain

9%t

Opi 0v4 n dp; 0t
Bxiaxj

dyq 0x; 0T dx;’

a

= {pi [ya(x), t(x)]} =
Xj

and consequently,

M;j = Piy QLj“‘Uins M=PQ'+np’. (B9)

The last relation describes how the 3 x 3 matrix of second derivatives of traveltime, M, can be obtained from the 3 x 2 matrices P and Q
computed using the (standard) Hamilton—Jacobi perturbation equations. The 2 x 3 matrix Q' is a submatrix of matrix Q! in eq. (B3).

APPENDIX C: CONSTRAINT RELATION FOR THIRD-ORDER DERIVATIVES OF
PHASE-SPACE PERTURBATIONS: PLANE WAVE FRONT

Based on eq. (56), the constraint relation for third-order derivatives of phase-space perturbations, assuming two ray parameters, can be written
Vi Pagc = 0 Qrasc + QiaPisc — PaQinc + QianPic — Piap Qic + Qiac Py — Prac Oip. (ChH

In this appendix we derive a special version of eq. (C1), pertaining specifically to a plane wave front. On the way we use relations for the
derivatives of the Hamiltonian given in Appendix A. It is convenient to use abbreviated forms for partial derivatives in these derivations,

namely,
0 )

= = (€2)
8xk 8pk

and

oH oH ?H 2H 2H

—=Hy o =H =Hu S =Hi =M (C3)

axk 3pk axkax, 8Xkap1 3pk8p1

and so forth.
We find expressions for the various quantities on the right-hand side of eq. (C1). In particular, we can use the ODEs in eq. (37) to obtain

Oisc = H}i?QmBC + H.ﬁnzmeC + Ows[0uc 8, + Puc 33]7'[,;,2 + Pup[Quc 3} + Pic 33]7'(,}?,,27
which yields
Qinc = H i Onsc + H i Pusc + H i O Ouc + H iy Pus Onc + H i Ow Pac + H 11t Pus Pac. (C4)
Likewise,
Pipe = =H jy Onsc = H jy/ Pusc + Oui [Qnc 8y + Pac H1(=H 5) + Pus[Quc 8 + Pac 91(=H ;).
so therefore,
Pigc = =H iy Onic = H i Punc = H iy On Onc = H jum P Onc = H iy O Pac = H jyun Pup Pac- (C3)
Using eqgs (C4) and (CS5) we obtain,
PyQisc = H i PiaOnsc + H i PiaPusc + H pni Pt Onp Onc + H oot Pry P One
+H i Pia O Pac + H i PoaPug Pac, (C6)
OisPisc = =M ;) QiaOnsc — H i QiaPusc — H iy Qid Qni Onc — H jm Qi Pug Onc
_Hi,nlul'tz QiaOmpPuc — H.}lfi QisPupPyc. (C7
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C1 A special case

Assume that the quantities P;4 and P;4 can be expressed in terms of the slowness components p; as

Py = piE4, Piap = piFas.

Applying eq. (C8) in eqs (C6) and (C7) yields

PiyQisc = M piDiOnscEa+ H i DiPnEaFpc + H i DiOns OncEd + H i DiPn Onc E4E
+H ,;pﬁ?l’ipn OusE4EC,

OiaPisc = —H ) 0iaOnsc — H ,}:nzpm QiaFpc —H ,inl; 01405 Onc — M s P Qia Onc Es
- H ll,:jpn QiA QmBEC - H ,lnz,fpmpn QiAEBEC~

In eq. (C9) we have also applied the property (A5) of the Hamiltonian, which eliminates the term including the derivative 7 :222.

Jimn

Using relations (A2)—(A4) in eqs (C9) and (C10) leads to
PiA QiBC = —277m QmBCEA + EAFBC + ZH ,,mlll QmB QnCEA - 277;1 QnCEAEB - 277m QmBEAEC7

QisPpc = —H,}L,l Qi1 Ompc +21:QiaFpc — Hzinlrz 0i40mpOnc — 27'1,};1 QiaOncEp
_27'[,}1;} QiaOmpEc+2nQinEpEc.

C2 Plane wave front

The next step is to apply in eqs (C11) and (C12) specifically the conditions for a plane wave front. This means to set
Es=mniia,

Fap = (U +3nn,)E 48,

Q[A = giAa
Oiap =0.
This yields,

Py Qch = (_Ujk + 377j77k)77i5i,45j35kc + 27{,},1,,]15n135nc Niia — 2Un5nc77i5iA77j5jB = 20mEmsniEiaiErc
= Ujr — ninjne) EiaEjEkc
and
QiAPch =20;E4 (—Uj + 30;00)E5Ec — ’H.}:,},:gmgmzagnc - ZH.}:,lgiAgnC n;Es
—2H 31 E1Emp M + 20 i€ 5 Exc
= Bninynr — 2n; Ujk — 20, Uik — 205 Uij — Uiji) EiuE8Exc-
Taking the difference yields,
QiaPigc — Py Qisc = Onin;ne — 30 Uje — 20 Uik — 205 Usj — Uiji) Ei4€pExc
In addition, we have
Piyp QiC = PiFAB(H,},f One + 'H,’,-f,?Pmc) = (H.'»lzfpi Ope + HﬁnzpimeC)FAB = (=21, Omc + Ec)F 5.
Inserting as above yields
PiapQic = (=3mn;mi + ne Uyj) Ea€pErc-
Finally, we apply the results (C18), (C19), and (C21) in eq. (C1), which yields the constraint relation for a plane wave front,
Vi Pragc = QiaPipc — PraQinc — Prap Qic — Piac Ois
= (15ninjne — 30, Upe = 3n;Une — 30 Uiy — Uyjn) Ei4€pEkc -

(C8)

(€9)

(C10)

(C11)

(C12)

(C13)

(C14)

(C15)

(C16)

(C17)

(C18)

(C19)

(C20)

(c21)

(C22)
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