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A B S T R A C T

Computational methods, including density functional theory, are proving to be powerful approaches to tame the
otherwise overwhelming selection of optimal species and processing conditions to fabricate hybrid organic-
inorganic perovskite (HOIP) thin films via solution processing. In that processing, the choice of solvents is known
to play a critical role in the quality of the resulting thin film, but their inclusion in a simulation dominates the
overall size of the system, and hence the computational effort. This creates an incentive to understand the
minimal representation of solvent medium necessary to adequately model the interactions between HOIP
building blocks. These building blocks are chiefly the lead salt and cationic species dissolved in the processing
solvent, whose interactions, monitored by calculations such as binding energies, govern nucleation and growth
into thin films. We show that a simple implicit solvent model is surprisingly effective in terms of representing the
intermolecular binding energies between lead salts and cation species in solution. Use of an implicit solvent
produces binding energies that are typically within 2–3 kcal/mol of more accurate“all atom” models of solvent
molecules. This is an important result since implicit solvents are roughly 100 times more efficient than explicit
solvent models in terms of computational resource effort. We find that it is generally sufficient to use a
Generalized Gradient Approximation for the DFT calculations, rather than more accurate, but more expensive,
PW6B95 models.

1. Introduction

The ability to represent solvation effects using a computational
approach as a means to understand the effects of solvent choice on
processing is important for a large number of chemical systems. This
includes biomolecular systems for which solvation effects and binding
affinities are considered to be extremely important, for example, com-
puter-assisted drug discovery [1]. Solvation effects in biological systems
are also important in protein folding, self-assembly, biomolecular re-
cognition and virtually all biological processes [2]. Solvent choice has
also played a role in affecting the kinetics, morphology, and resulting
structure manifested in crystal growth [3]. Given the computational
expense of explicitly modeling every atom for all solvent molecules
present in the simulation cell, there has long been an incentive to
simplify solvent modeling, invariably with what are called “implicit”
solvent models.

Assessing the accuracy of implicit solvent models is important, vis-a-
vis explicit but expensive “all-atom” models, especially in systems that
are required by system considerations to be large in scale or complexity.
Understanding the effectiveness of implicit models has been

investigated, as listed below, but no study has yet uncovered how well
an implicit solvent model captures the intermolecular binding energies
of two species in solution, modeled using a quantum mechanical re-
presentation. Previous studies have looked at the influence of different
parameters on various solvation models and the associated speed of the
calculations for small molecules, proteins and protein-ligand com-
plexes, as well as the predictive power of implicit solvent models for
solvation free energies of organic molecules in organic solvents. [4,5] A
second consideration is that sampling conformational space involving
solute-solvent systems is challenging if the solvent is treated explicitly.
This has also driven the use of implicit solvent models, which have been
shown to speed up conformational sampling significantly [6]. Similar
studies to understand the effectiveness of the implicit ‘COnductor-like
Screening MOdel’ (COSMO) [7] used in quantum-mechanical calcula-
tions for intermolecular binding energies between two distinct species,
neither of which are the solvent itself, has been overlooked. This is a
targeted study here.

One application where this omission is particularly important in-
volves the synthesis of hybrid organic-inorganic perovskites (HOIPs)
from solution, since these are promising materials for solar cells. The
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molecular self-assembly process that creates HOIP thin films begins
with the dissolution of lead salts by a processing solvent, in the pre-
sence of organic, or inorganic, cations. This dissolution (solvation)
process is poorly understood and under-investigated due to experi-
mental and computational difficulties in probing interactions in solu-
tion. The first step in the process involves lead complexation with the
processing solvent, as studied by Stevenson et al. [8] In that work, they
used accurate, but computationally expensive, ab initio calculations via
density functional theory (DFT) to describe lead complexation in HOIP
solutions of bath solvents. DFT remains our default approach given the
lack of semi-empirical alternatives, but is restricted to small-scale stu-
dies due to its expense. This puts a premium on minimizing the time
needed to perform these costly calculations and provided the motiva-
tion for this study.

In this work, we modeled the following solvents, most of which are
commonly used in experimental processing: Dimethyl sulfoxide
(DMSO), dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP),
γ -butyrolactone (GBL), as well as less common ones, like tetra-
hydrothiophene 1-oxide (THTO) to study their interaction with the
APbX3 monomer. THTO was predicted computationally to act as an
effective potential solvent for the dissolution of lead salts, later con-
firmed by experiments where it was used as an additive to perovskite
solutions. THTO slowed nucleation and growth processes, while gaining
control over the orientation of the resulting thin films [8,9]. We also
included acetone (ACE) in our study. Although acetone has not been
used in experimental studies as a processing solvent, it has been used as
a solvent in the post-processing of HOIPs and studied theoretically
[8,10,11].

In an attempt to curtail costs, we represent these solvent molecules
in the systems under study using implicit solvent models that represent
the molecules as a homogeneous medium, rather than providing an
explicit description of all the atoms that constitute the solvent mole-
cules. Use of implicit solvent models significantly speeds up the simu-
lation process, [12] which then expands our ability to study a more
extensive set of solvents and solvent blends in conjunction with the vast
number of possible combinations of lead salt, −PbX3 (X= I, Br or Cl) and
A-site cations, methylammonium (MA+), cesium (Cs+) or for-
mamadinium (FA+). The question arises: How well does the use of an
implicit solvent in simulations represent perovskite complexation stu-
dies of the lead salt and A-site cation? This paper aims to answer that
question.

We focus on the intermolecular binding energy of the organic and
inorganic A-site cation to the lead salt −PbX3 in the both explicit and
implicit solvation models using DFT simulations. Our tasks are as fol-
lows: (1) First, we need to determine the species that constitute the
smallest and most energetically favorable nuclei to study. (2) We will
need to compare our results for the intermolecular binding energy using
explicit solvent models to those using the COSMO implicit solvent
model. Our goal is to determine just how accurately we need to model
the solvents to obtain accurate binding energetics of the A-site cation to
the lead salt. Our results will show that an implicit representation is
accurate enough to represent the role of the solvent, which saves a
factor of 100 or more CPU [7,13]. Finally, we test the effect of using
two separate levels of theory, a pure generalized gradient approxima-
tion (GGA) B97 [14,15], and a more computationally expensive hybrid
PW6B95 functional [16]. This test will allow us to report on the impact
of functional choice on the intermolecular binding energies of these
systems. Given the expense of DFT calculations, the results of this test
are also important regarding computational cost-savings which might
otherwise limit the scope of future studies.

2. Identifying energetically favorable nuclei in solution

Since our goal is to study perovskite nucleation in solution, we
began by investigating the nature of structural building blocks; task (1)
outlined above. Since the chemical composition of the most stable

monomer species is unknown, we built clusters of the following po-
tential structures: APbX3, +APbX2 and +APbX2 , for all combinations of
halide choices (allowing X to be Cl, Br, or I) and three A-site cations,
MA+, FA+, or Cs+. All these clusters were created in Avogadro [17]
and their preferred geometry was optimized using the quantum me-
chanical DFT package Orca [18].

Initially, these structures were modeled in a vacuum (i.e., no solvent
is included at this point). For each combination of lead salt and cation,
we generated a set of samples that differed in the initial positions of the
cation relative to the lead salt. This provided an ensemble of structural
options for the DFT calculations to explore. We optimized the geometry
of the samples for all these structures (APbX3, +APbX2 and APbX2+) and
hence determined the resulting lowest energy conformation across all
samples for each halide and cation combination. For equity, these
comparisons considered the same number of atoms and atom types in
each system.

The result of this analysis showed that the neutral species APbX3

was the most energetically stable for all combinations lead salt and
cation choice, compared to APbX and APbX2. As a result, the rest of this
paper will only consider the APbX3complex as representative of the
smallest and most energetically stable building block of the perovskite
solution, which we define as a monomer. Although we focus on the
neutral APbX3, other building blocks, such as the charged species

+APbX2 , APbX
2+, or others, almost certainly exist in solution. Indeed,

APbX3 precursor solutions exhibit diverse lead coordination environ-
ments as a function of precursor solution chemistry. Sharenko et al.
showed that, as excess MAI is added to the solution, iodine ions displace
coordinated dimethylformamide (DMF) molecules to form higher-order
iodoplumbate complexes [19]. Their work does not, however, elucidate
the energetics of species formed as a function of the molar ratio of
processing species. We are currently investigating the formation of io-
doplumbates and their interaction with the cationic species; but a study
of these larger, charged systems is outside the scope of this paper.

Now that we have identified the APbX3 monomer as the lowest
energy complex in solution, there are nine possible combinations for
homogeneous halide compositions, given that there are three choices of
halide and three choices of A-site cation. Studying each of these nine
combinations in the six pure solvents amounts to 54 combinations, all
of which will be studied in this paper. We chose four different solvation
models for this study that are discussed in Section 3. Together, this
amounts to 216 combinations to consider.

3. Organization of this paper

The rest of this paper will be organized as follows: (1) Section 4 will
cover methods of the DFT calculations used in this study. (2) Cost is also
governed by the complexity of the solvent’s representation for the ex-
plicitly modeled solvent systems. Here, we used molecular dynamics
(MD) to generate random samples of the solvent around the solute.
These simulations were used to determine the number of solvent mo-
lecules that are actually bound to the lead salt (Section 5). (3) Although
our goal is to minimize the solvent representation, we are also interested
to determine what resources would be needed to calculate the enthalpy
of solvation directly. This would involve consideration of the entire
shell of solvents surrounding the salt. However, what constitutes a full
solvent shell is unknown. Section 6 determines what would be needed
and, as a result, rules out enthalpy of solvation as a viable route to
screen for solvent quality in the absence of unlimited resources. (4)
With these important underpinnings in place, Section 7 shows how the
intermolecular binding energies between lead salt and solvent are cal-
culated. Section 8 provides the results of these studies. Our re-
commendations for the minimal required representation of the solvent
are given in Section 9.
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4. Ab initio simulation details

Density functional theory geometry optimizations were conducted
in Orca [18] employing either (i) the pure GGA B97 functional [20] or
(ii) the more accurate (and expensive) hybrid functional PW6B95 [16]
and the polarized basis set TZVPP [21] with dispersion corrections, as
recommended by Grimme [22,15]. The goal here was to determine how
accurately DFT calculations have to be performed in order to be ade-
quate for complexation studies. We optimized each monomer in an
implicit solvent, using either B97 or PW6B95 functionals. The only input
for the implicit solvation model is the relative dielectric of the solvent,
which generates an electric field experienced by the APbX3 species.

To reduce computational effort, the usually highly contracted and
chemically inert core basis functions were eliminated by employing
Effective Core Potentials (ECPs) [23,21]. ECP calculations comprise a
“valence-only” basis and thus are subject to the “frozen core” approx-
imation. An Effective Core Potential was applied to Pb, Cs, I, and Br.
The Geometrical Counterpoise Correction (GCP) [24] was added to
remove artificial over-binding effects from basis set superposition errors
(BSSE). This correction uses atomic corrections and thus also yields the
ability to correct for intramolecular BSSE. All systems were given a
Tight SCF and slow convergence criteria with a grid size of 7. Upon
convergence, each system was re-optimized using the same inputs de-
scribed above, but this time including the density-based solvation
model, SMD [25,26].

The SMD solvation model is based on the quantum mechanical
charge density of a solute molecule interacting with a continuum de-
scription of the solvent with surface tension at the solute-solvent
boundary. In SMD, the full solute electron density is used without de-
fining partial atomic charges. The solvent is not represented explicitly
in these calculations, but rather, the system is passed a dielectric value
to represent the solvent molecules. We determined the number of co-
ordinated solvent molecules to each monomer according to the number
of solvents that formed bonds with the monomer. From each “bin” that
this created, we identified the complex with the lowest energy and
marked it for further study to uncover the nature of the complexation
and geometry, as well as its electronic structure.

5. Molecular dynamics studies to determine explicit solvent
binding motifs

All the explicit solvation models in this study were obtained using a
combination of MD and DFT simulations. The MD simulations, done
using the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) software [27], are used to determine the solvation of the
monomer at room temperature. The resulting configuration is then used
as a good starting point for a more accurate ab initio DFT calculation to
produce an equilibrated structure for the solvated monomer complex.
First, for the MD studies, we created initial geometries for the co-
ordination complexes by equilibrating the monomer species in solvent
using the semi-empirical OPLS force field [28]. We used the similarly
sized Ba ion in place of Pb for the MD simulations since there is no OPLS
model for Pb systems. This generated an approximate packing of sol-
vent molecules around the solute. The MD simulation studied a single
monomer of ABaX3 exposed to abundant solvent; here, a box containing
100 solvent molecules.

The complexes have many degrees of freedom, thus no optimization
of a single posited structure will reliably approach the global optimum
geometry. Accordingly, we created ten different sample geometries of
the [ABaX3+ solvent] complex using packmol [29]. For each sample,
we used a different pseudo-random seed to ensure that the starting
configurations of the solvent molecules around the solute (the ABaX3

monomer) had different initial coordinates. These ten simulations were
equilibrated for 0.1 ns at 300 K, until the energy fluctuations were less
than 0.1 kcal/mol.

To determine how many solvents coordinated with the monomer,

we used two criteria, the bond length between the lead ion and the most
polar atom in the solvent molecule (invariably oxygen), and the Mayer
Bond Order [8] which measures the electron density between those
same atoms. The cut-offs for these two “bonding” criteria were a bond
length of 3.0 Å, and an MBO of 0.1. The MD-generated complexes
containing Ba were replaced with Pb then further optimized using DFT
to obtain electronic and structural information. Using these metrics, the
number of solvent molecules coordinated to the lead atom on the
monomer never exceeded three solvent molecules for all the solvents we
studied. This allowed us to limit our study of explicit models to the
consideration of no more than three solvent molecules around the lead
salt, which we refer to in later sections as the NS = 1, 2 or 3 solvation
model.

While the purpose of this work is to determine how well solvents
need to be represented to achieve accurate intermolecular binding en-
ergies between −PbX3 and the A-site cation, A+, we further probed the
expense of obtaining a full solvation shell of explicitly modeled solvents
around the solute, including solvents that are not bound to the
monomer complex. Once a full shell is achieved, we can then calculate
the enthalpy of solvation for this system (using Eq. 1, Section 7) as we
have done for the intermolecular binding energy. The subtle difference
in the two calculations lies only in the number of solvents in the in-
cluded calculations. Such calculations are highly desired among both
computationalists and experimentalists for a variety of reasons. We
elucidate the investment of computational time need to acquire such a
value in the following section.

6. Determination of the expense of enthalpy of solvation
calculations

Given unlimited computing resources, the enthalpy of solvation
(rather than ersatz metrics such as the Mayer Bond Order [8] or the
Gutmann donor number [30]) would be the calculation of choice for a
chosen combination of lead ion, halide and A-site cation in the presence
of a full solvation shell of solvent molecules. But how many molecules
does that “full shell” imply for a lead ion? And how does the enthalpy of
solvation deviate from this limiting case as you consider fewer and
fewer solvent molecules to be part of that shell?.

To answer these questions and determine the computational ex-
pense of capturing a representative solvation shell of a monomer, we
calculated the intermolecular binding energy between N solvents and a
single ABX3, in this case, CsPbCl3 in γ -butyrolactone. Energies were
calculated using DFT with the B97-D3 functional [14,15], split valence
basis set, def2-TZVP effective core potentials [21], and the COSMO
solvation model [25]. We observe the expected result that the solvation
energy in the bulk asymptotically begins to flatten as the number of
solvent molecules increases, up to the limit of a full shell of solvent
molecules. We fitted this curve to a function, = −

−f x A Be( ) Cx , where
A, B, and C are fitting constants, and x is the number of solvents.

To capture how many solvent molecules are potentially required to
“converge” to a full shell value, we determined the point at which the
slope of the curve in Fig. 1 drops below that of thermal fluctuations (1
kT at 300 K; 0.6 kcal/mol). This point, a converged enthalpy of solva-
tion, occurs at a shell size containing around 23 solvent molecules (an
extrapolation of the data shown in Fig. 1). The blue curve in Fig. 1 il-
lustrates the computational time needed to complete one data point on
this graph. A simulation that considers 16 solvent molecules took ap-
proximately 388 CPU hours of computing time (approximately 97 h per
core) when run in parallel on a fast CPU for one choice of halide, cation
and solvent. Furthermore, these calculations were done for a simplified
level of theory in which only a split valence basis set was used, and the
convergence criteria was set loosely. Clearly, these calculations are too
slow to allow us to screen a large set of candidates using the enthalpy of
solvation as a metric. It provides a clear motivation to look for other
less expensive models and metrics. Our choice for such a metric was to
determine the binding energy between the lead salt and an A-site cation
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in solvent.

7. Calculation of cation binding energies

From the simulations described above, we were able to identify the
most accurate geometry and lowest energy sample for each monomer-
solvent combination, and the number of solvents that bind to it. This
allowed us to calculate the intermolecular binding energy between two
species: the lead salt, −PbX3 , and the A-site cation. Further, it also allows
us to see how the intermolecular binding energy changes as we vary the
number of solvent molecules bound the monomer. While our simula-
tions in Section 5 suggest that no more than three solvents from bonds
to the complex, from a computational effort point of view, the fewer the
number of solvents we consider, the better, as will be considered in
Section 8.1.

The binding energy, Eb, is defined as:

= − −E E E Eb AAPbX PbX3 3 (1)

where EAPbX3 is the energy of a single monomer containing the lead salt
and A-site cation, with a chosen number of coordinated solvents (1, 2,
or 3). EPbX3 is the energy of an isolated lead salt with coordinated sol-
vents, and EA is the energy of the isolated A-site cation (see Figs. 2 and
3). The binding energy between the lead salt and A-site cation is closely
related to the Coulombic force, FC, and hence the relative dielectric of
the medium in which the two species reside:

=

∊ ∊

F
q q

r π4C
r

1 2
2

0 (2)

To compare these solvated systems to that of a monomer in a solid state,
we calculated the intermolecular binding energy of the MAPbI3
monomer in a vacuum (no solvent) to be −101 kcal/mol. This value
falls within the range of binding energy values for the MAPbI3 system
found computationally by Varadwaj et al. Their work showed the
binding energy dependence in MAPbI3 as a function of the geometry of
the structure, in both the monomer unit and a unit cell structure [31].
This work has important implications in the area of device-related
properties, but there has been no relationship that has shown to what
extent the processing solvent affects the final geometry of the monomer,
or the position that the cation assumes once incorporated into a thin
film.

8. Results and discussion

8.1. Comparison of Solvation Models

As mentioned in Section 5, we considered three explicit solvation
models in this study, identified by the number of solvent molecules, NS,
that form bonds to the lead atom in the APbX3 system (NS = 1, 2 or 3
solvents). We were able to limit NS to 3, since no more than three
solvent molecules bound to APbX3.

Using the largest and most computationally expensive system, NS =
3, we looked at the range of potential energies from DFT, produced
from ten different samples for MAPbI3 and −PbI3 in three different sol-
vents: THTO (∊=42.84) DMF (∊=36.7) and NMP (∊=32.2). We found
that the difference in the resulting potential energies, corresponding to
slightly different geometries for these randomly generated samples, all
fell within 2 kcal/mol, and the standard deviation of the sample po-
pulation showed that all samples are very close to the average. Values
for the range and standard deviations are reported in Table 1.

We gauged the accuracy of the intermolecular binding energy be-
tween lead salt to the A-site cation of the other solvation models (NS =
implicit, 1, 2) to the most accurate model we considered, NS = 3. For
MAPbX3 systems, the three explicit solvation models together with the
COSMO implicit model, differ, at most, by around 2 kcal/mol, close to
the intrinsic uncertainty in the DFT calculations [32] (ESI Tables 1 and
2). The largest relative difference in the intermolecular binding energy
between PbX3 and the MA cation is shown to occur when modeling the
solvent NMP using the implicit solvation model and the PW6B95
functional. For the CsPbX3 systems, differences in intermolecular
binding energy of PbX3to the cesium cation, exhibit a larger range
where the largest difference was 3.5 kcal/mol (ESI Tables 5 and 6).
However, there were some notable differences when modeling FAPbX3

systems. These systems were much less consistent in capturing the
binding energy from model to model (ESI Tables 5 and 6). This is re-
flected in the largest relative difference in energies that compare the

=N 3S to the =N 1S system which occurs in FAPbX3, where the energy
difference is 4–6 kcal/mol.

Figs. 2 and 3 show the overall trend in the intermolecular binding
energy between lead salt and A-site cation as a function of relative
dielectric of the solvent for all choices of halides and A-site cations, four

Fig. 1. Enthalpy of solvation as a function of the number of neighboring solvent molecules explores how many solvent molecules are necessary to calculate a
converged solvation energy shell around CsPbCl3 in a γ -butyrolactone solvent via DFT. The black line represents a best fit of the enthalpy of solvation data to a fitting
function, f x( ). The blue line represents a best fit of the time taken for each calculation to converge.
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solvation models and two different levels of theory. As mentioned
above, the binding energy between the two species, the lead salt and
the A-cation, is related to the dielectric constant, as shown in Eq. 2,
making it a natural metric for solvent comparison. The trend that we
observe in intermolecular binding energy between the lead salt and
cation using the more expensive explicit solvation models of =N 3s , 2
or 1 solvents shows a linear relationship with the dielectric of the sol-
vent for all monomer combinations.

For each cation in this study, the difference in the calculated in-
termolecular binding energy to lead salt shows a consistent variation as
you reduce the number of explicit solvents in the model from =N 3s
to =N 2s to =N 2s to Ns = implicit (ESI Tables 1–6). The intermolecular
binding energy varies between 0.5 and 2 kcal/mol for all systems in this
study, within the uncertainty of the DFT calculations. This is true for
both the B97 and PW6B95 functionals, albeit the difference is slightly
smaller using the PW6B95 functional. Importantly, a linear trend is
preserved for all models and systems: as the dielectric decreases, the
intermolecular binding energy increases. The significance of this result
is that, if all that is needed is a trend that shows how the solvent affects
the intermolecular binding energy between two species, then the im-
plicit model is more than sufficiently accurate. To illustrate this trend,
Fig. 4 shows results only for the implicit model for the PW6B95 level of
theory for all solvents and monomer combinations in this study.

8.2. Effect of the level of DFT theory

Calculations for the intermolecular binding energy between PbX3

and the A-site cation as a function of solvent were completed for each
model for two levels of DFT theory, B97 and PW6B95. These energies
are reported in Tables 1–6 in the ESI. Figs. 2a, b, c and 3 show that B97
calculations follow the same trend as the more expensive PW6B95 level
of theory.

For the same system using two different functionals, we observed
consistent differences in the binding energies for each cation system.
For MAPbX3 systems, we observed a 2 kcal/mol difference in which the
B97 level calculations exhibit the higher (more negative value) of the
two. This was also observed for FAPbX3 systems, albeit the difference in
the intermolecular binding energy is less consistent from model to
model. The largest difference we observed was found in the =N 1s
system, where the change in binding energy from B97 to PW6B95 was
5 kcal/mol. For CsPbX3, the difference between theory levels is larger
than that for different organic cations, an average difference of around
5 kcal/mol, but this difference is consistent across all models.

The smallest difference we observed in the binding energy occurred
for the implicit models using B97 and PW6B95. For all systems, this
change in value is around 1 kcal/mol, again within DFT accuracy. This
is expected as the implicit model does not have to accommodate any
changes in the system or adjust its geometry upon convergence with

Fig. 2. Intermolecular binding energies between PbX3 and MA for: (A) PbI3MA, (B) PbBr3MA, and (C) PbCl3MA for all four solvation models, plotted against the
dielectric constant of each solvent given as 1/∊. For each solvent, the difference between each solvation model shows a difference of less than 2 kcal/mol. Across the
different solvents there is a clear trend for the cation binding energy to increase as a function of decreasing relative dielectric. This is true whether the model is
atomically explicit or features an implicit model. The same trend is shown for both the hybrid PW6B95 and pure GGA B97 functionals. (D) PbI3MA in DMSO for four
different solvation models, =N 3s , =N 2s , =N 1s , Ns = Implicit.
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explicit solvents, as would be expected in the optimization for Ns =1–3
systems.

Overall, the cheaper, pure-GGA, B97 functional is sufficiently ac-
curate to capture trends in cation binding energetics of perovskite
monomers in solution. But, in order to obtain accurate values of the
binding energetics, an explicit model and more expensive PW6B95 level
of theory should still be employed.

8.3. Impact of model choice on CPU time

To determine the time advantage of using an implicit solvation
model, we compared its simulation time to the explicit model for the
same monomer and solvent system on the same level of theory. Our
work flow, as described in Sections 4 and 5, first optimized the geo-
metry in B97, and then the resulting system was subject to further
optimization on the PW6B95 functional. Therefore, we assume the total

Fig. 3. Intermolecular binding energy between (A) PbI3 and FA, (B) PbBr3 and FA, (C) PbCl3 and FA, (D) PbI3 and Cs, (E) PbBr3 and Cs, (E) PbCl3 and Cs. A-E show
results for all four solvation models, as a function of the dielectric constant of each solvent plotted as 1/∊.

B.A. Sorenson, et al. Computational Materials Science 170 (2019) 109138

6



run time as the sum of B97 and PW6B95 times. We report the average
run time of the B97 and PW6B95 for the MAPbI3 system for all solvation
models in this study using DFT. The cited costs do not include the cost
of the MD simulations used to create the initial configurations for the
DFT studies.

Fig. 5 plots the average total run time for all four models in this
study. We include two bounds, the upper as the total run time for each
model, and the lower bound as the shortest run time resulting from
either the B97 or PW6B95 simulation. The lower bound represents the
optimal scenario where structure from the B97 simulation is fully op-
timized and the PW6B95 is redundant. The upper bound, on the other
hand, is the conservative bound where we assume the worst case sce-
nario: the B97 geometry is incorrect and the total run time is the ad-
dition of the B97 and PW6B95 simulation times. The resulting differ-
ences in computational time and cost are substantial (ESI Table 7): The
average time needed for the more accurate but expensive model using
three explicit solvents was 32 CPU hours compared to the implicit
model which took an average of 7min for the systems under study, a
factor of nearly 300 times slower.

9. Conclusions

This work determined just how precisely the solvent needs to be
modeled in a molecular simulation of complexation in mixed organic-
inorganic solutions. The implicit solvent model came surprisingly close
(generally within a couple of kcal/mol) to reproducing the inter-
molecular binding energy of the most complex explicit model that we
studied (NS = 3). This reduced the cost of the simulations by about two
orders of magnitude. There is a considerable impact to this result: A
simple and computationally efficient implicit model is effective at

representing the major trends in intermolecular binding energies,
which are important in the establishment of complexes and sub-critical
nuclei in solution.

We have established several key measures of solvent representation
in this exotic mix of organic and inorganic species. First, we established
that around 23 solvent molecules are involved in providing a full sol-
vation shell around a APbX3 monomer. This quantifies the minimum
number of solvents needed to obtain an accurate value for the enthalpy
of solvation. The high expense of these calculations, however, is un-
necessary in cases where only the intermolecular binding energy be-
tween two species is of interest.

Second, if an explicit model is desired, you can reduce the compu-
tational expense by using smaller systems, since the number of solvent
molecules that actually bind to the lead atom in the monomer is never
more than three in the cases we studied. The APbX3 monomers showed
that the intermolecular binding energy changes in a predictable fashion
as you steadily reduce the number of solvent molecules in the lead salt
motif.

Third, and in contrast to the mild dependence on the number of
solvent molecules in the vicinity of the lead salt, we found significant
differences in cation binding energies between the PW6B95 and B97
levels of DFT theory. For accurate lead salt-cation binding energies, an
expensive PW6B95 DFT model with explicit solvent models is needed.

Table 1
Range and STD of DFT energies for generated samples.

Solvent Range (kcal/mol) STD

MAPbI3
THTO 1.295 0.0006
DMF 0.935 0.0004
NMP 1.854 0.0007

−PbX3
THTO 2.051 0.0009
DMF 1.441 0.0008
NMP 1.669 0.0008

Fig. 4. Cation binding energy of APbX3 as a function of 1/∊ showing a roughly linear relationship for a variety of halide and cation choices and both bath solvents and
anti-solvents (modeled with an implicit solvent). Results for systems containing cesium show a significantly more negative (stronger) cation binding energy. Color
key as in the insert.

Fig. 5. Comparison of simulation run times for different PbI3MA solvation
models. The upper bound is the sum of the B97 and PW6B95 functional run
times while the lower bound is the shortest run time found for the two levels of
theory.
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On the other hand, if trends the intermolecular binding energy are all
that is required, the B97 functional is generally sufficient.

Finally, and importantly for a rapid triage of solvent candidates, we
uncovered an almost linear relationship between the intermolecular
binding energy of a solvated lead salt to an A-site cation with the di-
electric constant of the solvent, suggesting that this is a useful metric of
binding strength for these systems. This combination of computational
efficiency and the simple, near-linear, nature of the relationship be-
tween binding energy and dielectric constant will make it straightfor-
ward to quickly screen the effectiveness of other, as yet unexplored,
potential solvents or additives to promote complexation between per-
ovskite monomers.
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