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A B S T R A C T

Martensitic transformation induced by the matrix-precipitate interface (or other internal surfaces) for single
and two martensitic variants is studied using a thermodynamically consistent multiphase phase field
approach. Three order parameters are considered; two of them describe the austenite (A) $ martensite (M)
and variant Mi $variant Mj transformations in a matrix, and the third one describes the finite width matrix -
non-transforming precipitate interface. The energy of the matrix-precipitate interface reduces during A!M

phase transformation from the value for energy of A-precipitate interface, gA, to value for energy of M-pre-
cipitate interface, gM, due to its dependence on the order parameter related to the austenite$martensite
transformation. Such an interface increases the temperature for barrierless martensite nucleation well above
the critical temperature for A!M transformation. The nucleation temperatures strongly depend on the ratio
D of the widths of the matrix-precipitates interface and A�M interface. New “phase diagram” for transforma-
tion temperatures between austenite, martensite, and premartensite versus D has been presented for
neglected mechanics for two cases when magnitude of Dg ¼ gM�gA is larger than the energy of the A�M

interface (0.2 N/m). For Dg ¼�0:5 N/m, below a critical width ratio D
�
; a layer of premartensite appears

jump-like within the matrix-precipitate interface and progresses with reducing temperature, until it loses its
stability and jump-like transforms to complete martensite in the entire matrix. However, for D�D�

; the
entire matrix transforms to martensite without any premartensite. For Dg ¼�0:3 N/m, no premartensite
appears and the A matrix completely transforms into M at lower temperatures than the case with
Dg ¼�0:5 N/m. The combined effect of the energy of the matrix-precipitate interface, D; precipitation-
induced misfit strains, and applied displacements on the boundary of the sample on nucleation of martensite
and complex microstructure evolution in the systems with a single and two martensitic variant(s) is studied.
Obtained results are important for controlling cyclic martensitic transformations in shape memory and elas-
tocaloric alloys and designing alloys with desired characteristics of martensitic transformations.

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Foreign phase particles including the precipitates are frequently
observed in crystalline solids, which can significantly affect the
microstructure evolution during martensitic transformations (MTs)
[1�5], plastic flow [6], solid$melt transformations [7], and diffusion
[7,8]. Thus, they determine various mechanical and transformational
properties of the solids. With the advent of high resolution micro-
scopes and powerful computers enabling researchers to perform
atomistic simulations, it is now well-known that the interfaces in
crystalline solids posses finite energy (excess energy according to
Gibbs) and have finite width [7]. The solid-solid interfaces usually
consist of few atoms to several tens of atoms across their width
implying that the interface width might vary from several A

�
to sev-

eral nanometers. The interfacial energy usually varies depending on
its internal structure (e.g., interfacial dislocation density, misorienta-
tions of the adjacent phases) and ambient conditions (e.g. tempera-
ture); see e.g. Chapter 3 of [7]. The interactions between precipitates
and matrix occur through the interfaces between them which pos-
sess energy and finite width, and also through the misfit strains at
the interface, since the lattice parameters of matrix and precipitate
usually differ; see e.g. Chapter 3 of [7]. Such interfaces between the
precipitates and matrix play an important role in A$M and Mi $ Mj

transformations which are the central phenomena in exhibiting the
superelasticity and shape memory effects in various shape memory
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alloys (SMAs) [1,9�12]. Here A; M; and Mi denote austenite, martens-
ite, and ith variant of martensite, respectively. Such an interface-
induced phenomenon is actually driven by a decrease in the corre-
sponding interface energy during phase transformation (PT). Premar-
tensite (an intermediate state between A and M; see Section 2.1 for
the exact definition) has been experimentally observed near the free
surface in Cu-Zn-Al based alloys [10] and within NiAl alloys contain-
ing precipitates (see [1] and the references therein). The precipitates
in SMAs are seen to significantly alter the MT temperatures, transfor-
mation paths, and hysteresis [1]. In Ni-Ti based alloys they also
improve the fatigue strength under cyclic loadings, and thus increase
the durability of the solid [13�15]. The misfit strains between the
matrix and precipitates induce elastic stress fields which influence
the nucleations of the martensitic phases and their kinetics [14,16].
Cuniberti et al. [2] showed that in a Cu-Al-Be SMA, an increase in the
volume fraction of the g2-phase precipitates increases the martens-
itic transformation stress for A!M transformation. Similar observa-
tions were made by Baxevanis et al. [16,17] who considered a
micromechanics based model to study the effect of precipitates on
stress- and temperature-induced MTs in NiTi alloy using the finite
element method (FEM) [18,19]. Otsuka and coworkers [20] showed
that in NiTi alloys and in ferroelectric materials, the nano-size precip-
itates can yield a glassy type of behaviour of the solid. Multivariant
MTs within the precipitates in NiTi alloys were studied by Li and
Chen [4] experimentally, and Shi and Wang [21] using phase field
method where they observed that the combined effect of applied
load and the misfit strains due to precipitates can suppress evolution
of some of the variants. The process of precipitation during aging and
its effect on MTs and superelasticity behaviour was studied in SMAs
experimentally [1,12,22] and using the phase field methods [23,24].

In spite of all these studies, the exact role of the finite-width
matrix-precipitate interface on M nucleation and microstructure evo-
lution is not yet well-understood. It is to be mentioned that the influ-
ence of sharp and diffuse external surfaces on premelting and
melt$solid transitions [25�28] and also on the nucleation of M and
microstructure evolution [29,30] are studied with the phase field
approach; see [31] for a review. The generic conclusions about the
effect of the external surfaces are the followings. For a flat external
surface, if the surface energy reduces during PT (for a given case,
Dg0 ¼ g0

M�g0
A < 0), the surface promotes A!M PT, and the transfor-

mation initiates below the critical temperature for lattice instability,
where g0

M and g0
A are the energy of external surfaces of M and A

phases, respectively. If reduction in surface energy exceeds the
energy of phase interface (e.g., solid-melt or austenite-martensite
interfaces), i.e., Dg0 þ g0M < 0 with g0M for the energy of the austen-
ite-martensite interface, then pretransformation starts from the sur-
face even in the region of stability of the initial phase, e.g., below the
equilibrium melting temperature for melting and above the martens-
ite-austenite equilibrium temperature for martensitic PT.

The strong effect of the ratio of the width of an external surface to
the width of a phase interface was first revealed in [30] for martens-
itic PT and then in [28] for melting, and in both the cases the pro-
cesses are very complex (see also [32] and review [31]). The
curvature of the interface promotes PT from the particle external sur-
face [27,28] (because phase interface propagation reduces interface
area and, consequently, energy) and suppresses PT from void [26].
Internal stresses generally suppress PT [29,30] but for some ratio of
the width of the external surface to the width of the phase interface
internal stresses promotes PT [30].

However, the effect of the ratio D of width of the matrix-precipi-
tates interface (denoted by dξ) and width of the A � M interface
(denoted by d0M), i.e. D ¼ dξ=d0M ; and variable matrix-precipitate
interface energy on martensite nucleation and transformations is not
yet studied. The goal of this paper is to investigate the role of such
interface parameters on nucleation of M; premartensitic transforma-
tions, and microstructure evolution within the systems with single
variant and two variants using a phase field approach. A multiphase
phase field approach of Ginzburg�Landau type, which assumes finite
width for the interfaces, offers an ideal framework for such a study.
The matrix-precipitate interface energy is assumed to vary between
gM (precipitate-M matrix interface energy) to gA (precipitate-A
matrix interface energy) during transformations. A system consisting
of a square shaped non-transforming precipitate embedded in a
transformable matrix is considered for detailed study in this paper;
see Fig. 1(a) for a schematic. In particular, the effects of energy of the
precipitate-matrix interface, Si0; width ratio D ¼ dξ=d0M ; misfit
strains, and external stresses are studied.

For our study, we consider a thermodynamically consistent mul-
tiphase phase field approach which is an extension of an approach
recently developed by the authors in [33]. Three order parameters
h0, h1, and ξ are assumed, where h0 and h1 describe the A $ M and
Mi $ Mj transformations, respectively, and the order parameter ξ
has been introduced to describe the finite-width interface between
transformable matrix and the non-transformable precipitate. We
assume that the precipitate lattice parameters differ from those of A
and Mi and thus induces misfit strains during precipitation. The
matrix-precipitate interface is considered to be stationary while the
matrix undergoes martensitic transformations. Note that an order
parameter similar to ξ was used to describe the material and sur-
rounding vacuum (or gaseous medium) for studying external sur-
face-induced melting in nanoparticles [26�28] and nanovoids [26],
and surface-induced MTs in [30]. However, in the present study ξ
describes two solid materials. While the small strain theory was
considered in [30] for studying surface-induced MTs, the large strain
approach is used in the present study and the structural stresses
within all the interfaces are taken into account. Similar to [30] for
the external surface, we assume that the matrix-precipitate inter-
face energy varies during PT between gA and gM. The material
parameters for NiAl are considered for numerical simulations. Nota-
bly, the Ni3Al precipitates are often formed in NiAl alloy during vari-
ous thermomechanical processes and such precipitates promote
MTs [34]. The model presented in this paper is however general and
applicable for any MT for a system with A and any two variants Mi

and Mj. The first two martensitic variants M1 and M2 (i.e. the indices
are i ¼ 1 and j ¼ 2) of NiAl alloy will be considered for simulations
without loss of generality. We accept g0M ¼ 0:2 N/m and for both
values of Dg ¼�0:3 N/m and �0:5 N/m under study, Dg þ g0M <0
and pretransformation is thus expected; see Section 3 for a discus-
sion about the material parameters. We will demonstrate that the
results strongly depend on D.

First, the results for a thermal problem and neglected mechanics,
with a single variant are presented assuming the system tempera-
tures to be spatially uniform. A sophisticated transformation temper-
ature u versus the ratio D ¼ dξ=d0M “phase diagram” describing the
curves of transformations between A; premartensite PM; and M are
presented for different energies of Si0. For Dg ¼�0:5 N/m, below a
critical value of the width ratio D<D

�
; the austenite matrix trans-

forms to M through appearance of PM. However, for D>D
�
; the

matrix directly transforms to M without any PM. However, when the
magnitude of the difference in interface energy is relatively smaller,
e.g. Dg ¼�0:3 N/m, no PM is observed and the austenite matrix
directly transforms to M and the nucleation and transformation tem-
peratures (which are identical in this case) are significantly lower
than that for Dg ¼�0:5 N/m. Notably, in both the cases, all the trans-
formation curves are well above the critical temperature for A!M

transformation ucA!M ¼ 0 K of the solid (NiAl). Then considering
mechanics, the effects of Dg , misfit strains, width ratio D; and exter-
nal loadings on barrierless nucleation and microstructure evolutions
for a system with A and single variant M1 and another system with A

and two variants M1 and M2 are studied. We present the microstruc-
tures at the nucleation temperatures and also report the evolution of
microstructures by reducing the temperatures of the system in steps.
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As discussed in Section 3, the interfacial widths d0M, d12, and dξ
and the interfacial energy g0M, g12, and Dg are the input data to our
phase field model. This is the only method which allows to study the
effect of a finite-width interface on MTs while allowing to vary the
width and energy of the interface independently without affecting
the other system parameters and vice versa. The provision for study-
ing the effect of D is however not there in the sharp interface based
approaches (e.g. level set approach [35]) where the interfacial width
is taken as zero and the interfacial energy is considered to be just
concentrated on the interface which is a lower dimensional manifold.
Notably, in phase field approach by decreasing D one can study the
effect of matrix-precipitate interface on nucleation of M and MTs in
the limit of sharp interface. This is also not possible using atomistic
simulations, since the surface/interface energy and width are interre-
lated. The objective of the present study, i.e. study the effect of one of
the parameters (D or Dg) keeping the other constant can be justified
since it is well known that by engineering the surfaces/interfaces of
crystals, their energy can be significantly modified; see e.g. [36].

The paper is organized as follows. In Section 2 the system of cou-
pled elasticity and phase field equations is enlisted; the material
parameters are listed in Section 3; the numerical results are pre-
sented in Section 4; finally, the paper is concluded in Section 5.

Notation:We denote the inner product and multiplication between
two second-order tensors as A : B ¼ AijBji and ðA ¢BÞij ¼ AikBkj; respec-
tively, where repeated indices denote Einstein’s summation, and Aij
and Bij are the components of the tensors in a right handed orthonor-
mal Cartesian basis {e1, e2, e3}. The Euclidean norm of A is denoted as
jAj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A : AT

p
; I is the second order identity tensor; A�1; AT, detA, and

trA denote inversion, transposition, determinant, and trace of A,
respectively. Dyadic product between two arbitrary vectors a and b is
denoted as a�b. We denote the reference, intermediate (stress-free),
and current configurations of a body by V0, Vt, and V, respectively.
The symbols r0 and r represent the gradient operators in the refer-
ence configuration V0 and deformed configuration V, respectively;
r 2

0 :¼ r 0 ¢ r 0 and r2 :¼r ¢ r are the Laplacian operators in V0 and
V, respectively. The symbol :¼ stands for equality by definition.

2. System of coupled phase field and mechanics equations

In this section we describe the phase field model, which is a com-
bination of large-strain multiphase phase field model in [33] and
model in [26,28,30] for the stationary external surface, which is mod-
ified here to the model of stationary precipitate-matrix interface. The
model presented in this section is general and applies to all MTs for
the systems with austenite any two variants Mi and Mj. A brief
description of the order parameters is given and the list of coupled
elasticity and phase field equations are enlisted.

2.1. Order parameters

Three order parameters h0, hi, and ξ are considered, where h0 and hi

are based on the transformation strains and describe the A $ M andMi

$ Mj transformations, respectively. Notably, the authors recently devel-
oped a general multiphase phase field approach in [33] where the same
description of the order parameters h0 and hi have been used. We
assume h0 ¼ 0 in A and h0 ¼ 1 inM; hi ¼ 1 inMi and hi ¼ 0 inMj. Note
when h0 ¼ 0 at a material point, it is in A phase, while hi may take any
value between 0 and 1 at that point; see [33] for details. To describe a
resultant microstructure with A and two variants, we define an equiva-
lent order parameter heq ¼ 2h0ðhi�0:5Þ. Clearly, when heq ¼ 1; the
material point is Mi; when heq ¼�1; the material point is Mj; when heq

¼ 0; the material point is either A or lying onMi�Mj interface. We con-
sider that premartensite PM has nucleated in a particle if h0 just attains
0.05 from a lower value, and complete martensitic transformation has
occurred if h0 just reaches and exceeds 0.95 from a lower value. Thus, a
premartensite PM corresponds to 0.05< h0< 0.95.
The remaining order parameter ξ is used to describe the interface
between non-transforming precipitate where ξ ¼ 0; and the trans-
formable matrix where ξ ¼ 1. Note that 0< ξ < 1 within the precipi-
tate-matrix interface. We would like to mention that a similar order
parameter was used while studying external surface-induced solid-
$melt transformation in [26�28] and martensitic transformations in
[30], where ξ described an interface between the material and sur-
rounding environment. However, in the present paper ξ describes
interface between two solids.

2.2. Kinematics

We denote the position vector of a particle in the deformed body
V by r(r0, t), where r ¼ r0 þ uðr0; tÞ; r0, u, and t denote the position
vector in V0, the displacement vector of the particle, and time
instance, respectively. The total deformation gradient F is decom-
posed into

F :¼ r 0r ¼ V e ¢R ¢U t ; ð2:1Þ
where the subscripts e and t stand for elastic and transformational
parts, respectively, Ut is the symmetric right transformation stretch
tensor, Ve is the symmetric left elastic stretch tensor, and R is the lat-
tice rotation tensor. Also, we define J ¼ det F :¼ dV=dV0; Jt ¼ det U t :

¼ dVt=dV0; and Je ¼ det V e :¼ dV=dVt ; where dV0, dVt, and dV are
infinitesimal volume elements in V0, Vt, and V, respectively. Hence
by Eq. (2.1), J ¼ Jt Je. We will use the Eulerian total and elastic strain
tensors as

b ¼ 0:5ðV2�IÞ; and be ¼ 0:5ðV2
e�IÞ; ð2:2Þ

respectively, where V ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
F ¢FT

p
is the left total stretch tensor.

2.3. Transformation stretch tensor

We consider the transformation stretch tensor Ut within the
transformable matrix as a linear combination of the Bain strains mul-
tiplied with the interpolation functions of the order parameters [33]

U t ¼ I þ ’ðae;h0Þ½etj þ fiðeti�etjÞ�; ð2:3Þ
where Uti and eti ¼ U ti�I are the Bain stretch tensor and Bain strain
tensor, respectively, for Mi. The interpolation functions ’(a, h0) and
fi(hi) are taken as [33]

’ða;h0Þ ¼ ah2
0 þ ð4�2aÞh3

0 þ ða�3Þh4
0;

and fi ¼ h2
i ð3�2hiÞ ¼ ’ð3;hiÞ;

ð2:4Þ

respectively, and a is a constant parameter. Interpolation function fi is
a particular case of ’ that includes equivalence of variants Mi and Mj.
The interpolation functions satisfy the following necessary conditions
derived from the thermodynamic equilibrium of each phase [33]:

’ða;0Þ ¼ 0; ’ða;1Þ ¼ 1; and
@’ða;0Þ
@h0

¼ @’ða;1Þ
@h0

¼ 0;

fið0Þ ¼ 0; fið1Þ ¼ 1; and
@fið0Þ
@hi

¼ @fið1Þ
@hi

¼ 0:
ð2:5Þ

2.4. Free energy

We consider the Helmholtz free energy per unit mass of the body
in the following form (also see [33,37]):

cðF;h0;hi; ξ ; u; r h0; r hi; r ξÞ ¼ Jt
r0

ceðbe;h0;hi; uÞ þ J �c
uðh0;hi; uÞ

þ ~c
uðh0;hi; uÞ þ Jcr ðr h0; rhiÞþ

Jcξ ðξ ; r ξ ;h0;hiÞ;
ð2:6Þ
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where ce is the elastic strain energy per unit volume of Vt and we
assume isotropic St. Venant�Kirchhoff elastic response of the solid,
�c
u
is the barrier energy related to A $ M and Mi $ Mj transforma-

tions, ~c
u
is the thermal energy, cr is the gradient energy, and the

free energy cξ is the total of the barrier and gradient energy of the
stationary interface between the precipitate and matrix (also see
[30,33,37]):

ce ¼ λ
2
ðtr beÞ2 þm be : be;

�c
u ¼ ½A0M þ ðau�3ÞDcuðuÞ�h2

0ð1�h0Þ2 þ Ah2
i ð1�hiÞ2’ðab;h0Þ;

~c
u ¼cu

0ðuÞ þ h2
0ð3�2h0ÞDcuðuÞ;

cr ¼ 1
2r0

½b0M jrh0j2 þ bijjrhij2~’ðab; a0;h0Þ�;

cξ ¼ Aξξ
2ð1�ξÞ2 þ 1

2r0
bξ jr ξ j2; Aξ ¼ 18gðh0;hiÞ

d2ξ
; bξ ¼ dξgðh0;hiÞ:

ð2:7Þ
All the parameters appearing in Eq. (2.7) are defined here. λ andm are
the Lam�e constants; A0M is the barrier height between A and M; A is
the barrier height between Mi and Mj; and Aξ is the barrier height
between the precipitate and matrix; Dcu ¼ cu

M�cu
0 ¼�Ds ðu�ueÞ is

the thermal energy difference between A (denoted by cu
0) and M

(denoted by cu
M), Ds is the change in entropy due to A to M transfor-

mation (assuming specific heats of A and M to be identical); u> 0 is
the absolute temperature, and ue is the thermodynamic equilibrium
temperature between A and M; b0M, bij, and bξ are the gradient
energy coefficients for A�M; Mi�Mj; and precipitate-matrix interfa-
ces, respectively; 0� ab, ab, au� 6 [37] and 0< a0� 1 [33] are mate-
rial constants. The interpolation function ~’ in Eq. (2.7)4 is taken as
[33]

~’ðab; a0;h0Þ ¼ ’ðab;h0Þ þ a0

¼ abh
2
0 þ ð4�2abÞh3

0 þ ðab�3Þh4
0 þ a0: ð2:8Þ

Note that in Eq. (2.6) the barrier energy and the gradient energy are
multiplied with J and the gradient of h0 and hi are expressed in V to
obtain the correct form the the structural stresses given by
Eqs. (2.18)3,4; see [33,37] for details. The precipitate-matrix interface
energy is taken as (see [26�28,30])

g ¼ gA þDg’ða;h0Þ; ð2:9Þ
where we have taken a ¼ 6; and the parameters Aξ and bξ appearing
in Eq. (2.7) are expressed in terms of matrix-precipitate interface
energy g and width dξ.

The material properties at any material point are determined
using the following interpolation

Mðh0;hi; u;FÞ ¼ ½ð1�’ÞM0 þ
�
Mj þ ðMi�MjÞfi

�
’�fξ þMpð1

�’ξ Þ; ð2:10Þ

where M0, Mi, Mj, and Mp are the properties of A; Mi; Mj; and precipi-
tate, respectively, and

fξ ¼ ξ2ð3�2ξÞ: ð2:11Þ

2.5. Dissipation rate and Ginzburg�Landau equations

Using a procedure similar to that in [33] (see Section 4 and Appen-
dix A therein) and assuming that the dissipative stresses are zero, the
following dissipation inequality is obtained

D ¼ X0M _h0 þ Xij _hi þ Xξ
_ξ�0; ð2:12Þ

which says that the total dissipation rate per unit volume D is sum-
mation of the rate of evolution of the order parameters multiplied by
corresponding generalized conjugate forces given by

X0M ¼ PT
e ¢F�Jtc

e
I

� �
: U�1

t ¢ @U t

@h0
�Jt

@ce

@h0

����
Fe

�r0Dc
uð6h0�6h2

0Þ�r0AJ
@’ðab;h0Þ

@h0
h2
i ð1�hiÞ2�

r0J½A0M þ ðau�3ÞDcuðuÞ�ð2h0�6h2
0 þ 4h3

0Þ�
Jbij

2
jrhij2

@~’ðab; a0;h0Þ
@h0

�Dg
dξ

@’ða;h0Þ
@h0

�

18ξ2ð1�ξÞ2 þ 0:5d2ξ jr ξ j2
h i

þ r 0 ¢ ðb0MJF
�1 ¢ rh0Þ;

Xij ¼ ðPT
e ¢F�Jtc

e
IÞ : U�1

t ¢ @U t

@hi
�Jt

@ce

@hi

����
Fe

�r0JAð2hi�6h2
i þ 4h3

i Þ’ðab;h0Þþ

r 0 ¢ ½J~’ðab; a0;h0ÞbijF
�1 ¢ rhi�; and

Xξ ¼�Aξ ð2ξ�6ξ2 þ 4ξ3Þ�Jt
@ce

@ξ

����
Fe

þ r 0 ¢ ðbξ JF�1 ¢ r ξÞ:

ð2:13Þ
Assuming that the dissipation rates due to the evolution of h0, hi, and
ξ are decoupled, we rewrite the inequality (2.12) into X0M _h0�0; Xij _hi

�0; and Xξ
_ξ�0 (which obviously satisfy the inequality (2.12)). We

assume the following simplest linear kinetic equations which repre-
sent the Ginzburg�Landau equations:

_h0 ¼ L0MX0M ; _hi ¼ LijXij; and _ξ ¼ LξXξ ; ð2:14Þ
where L0M> 0, Lij> 0, and Lξ > 0 are the kinetic coefficients for A�M;

Mi�Mj; and precipitate-matrix interfaces, respectively. For the order
parameters we assume the homogeneous Neumann boundary condi-
tions on all the external surfaces:

r h0 ¢ n ¼ 0; r hi ¢ n ¼ 0; and r ξ ¢ n ¼ 0 on S0; ð2:15Þ
which mean that the energy of external surface does not change dur-
ing phase transformations. In Eq. (2.15) n denotes the outward nor-
mal to the boundary in V. As mentioned in Section 1, we have
considered only stationary matrix-precipitate interface in all our cal-
culations related to martensitic transformations. The reason for still
considering evolution of ξ in Eq. (2.14)3 will be discussed in Section 4.

2.6. Mechanical equilibrium equation and stresses

The mechanical equilibrium equations are given by

r 0 ¢P ¼ 0 in V0; or r ¢s ¼ 0 in V; ð2:16Þ
where P is the total first Piola�Kirchhoff stress tensor and s is the
total Cauchy stress tensor, which are decomposed into the elastic
part and the structural parts (also see [30] for a small strain formula-
tion):

P ¼ Pe þ P
h
st þ P

ξ
st ; s ¼ se þ sh

st þ sξ
st ; ð2:17Þ

and the subscripts e and st stand for elastic and structural, respec-
tively. The expressions for the stresses are [33]

Pe ¼ JtV2
e ¢

�
λ trðbeÞI þ 2mbe

�
¢F�T ; se ¼ J�1e V2

e ¢
�
λ trðbeÞI þ 2mbe

�
;

P
h
st ¼ Jr0ð �c

u þcr ÞF�T�Jb0Mðrh0 � rh0Þ ¢F�T�J~’ðab; a0;h0Þbijðrhi � rhiÞ ¢F�T ;

sh
st ¼ r0ð �c

u þcr ÞI�b0M r h0 � rh0�~’ðab; a0;h0Þbij r hi � rhi;

P
ξ
st ¼ Jr0c

ξ
F�T�Jbξ ðr ξ � r ξÞ ¢F�T ; and sξ

st ¼ r0c
ξ
I�bξ r ξ � r ξ :

ð2:18Þ
As it is shown in [33,37], such a thermodynamically consistent expres-
sion for structural stresses completely describe the interfacial biaxial
tension with the resultant force equal to the interfacial energy.

The traction boundary conditions and the boundary displace-
ments for the mechanics problem will be specified while presenting
the numerical results in Section 4.

3. Material parameters

The free energy and the kinetic equations derived above involve
several material parameters which need to be calibrated based on
the experimental data or atomistic simulation results. Let us consider
a simplified situation with neglected mechanics, i.e.ce ¼ 0 and J ¼ 1;
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which allows us to obtain the analytical solutions of the Ginz-
burg�Landau equations. We can then calibrate the material parame-
ters such as the barrier heights, gradient energy coefficients, and
kinetic coefficients using the known values of interfacial energy,
width, and mobility.

Assuming that the interfaces are planar and the order parameters
spatially vary with r01 ¼ r0 ¢ e1 only and also that A0M, A; b0M, and bij

are constants, we simplify the Ginzburg�Landau equations in (2.14) for
A�M (using hi ¼ 1 and ξ ¼ 1) andMi�Mj (using h0 ¼ 1) interfaces as

_h0

L0M
¼�r0Dc

uð6h0�6h2
0Þ�r0A0Mð2h0�6h2

0 þ 4h3
0Þ þ b0M

@2h0

@r201
; and

_hi

Lij
¼�r0Að2hi�6h2

i þ 4h3
i Þ þ bij

@2hi

@r201
:

ð3:1Þ
The solutions of the equations in (3.1) are [33,38]

h0 ¼ ½1þ expð�z0MÞ��1; and hi ¼ ½1þ expð�zijÞ��1; ð3:2Þ
respectively, where

z0M ¼ 6
d0M

ðr01�r0c�c0MtÞ; and zij ¼
6
dij

ðr01�r0c�cijtÞ: ð3:3Þ

Here, the symbol d denotes the width of the respective interface; g
denotes the interfacial energy, and c is the speed of interface propa-
gation:

d0M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18b0M

r0A0M

s
; dij ¼

ffiffiffiffiffiffiffiffiffiffiffi
18bij

r0A

s
; g0M ¼ b0M

d0M
; g ij ¼

bij

dij
;

c0M ¼ L0Md0MDc
uðuÞ; cij ¼ 0;

ð3:4Þ

r0c is the coordinate of a point where h0 ¼ 0:5 and hi ¼ 0:5 in the
respective expressions, and obviously, the subscripts ‘0M’ and ‘ij’
stand for A�M and Mi �Mj interfaces, respectively. The interfacial
width is defined as the distance between points where corresponding
order parameters take values between 0.05 and 0.95 [38]. Similarly,
the analytical expression for stationary ξ (neglecting mechanics) is
(see [30])

ξ ¼ ½1þ expð�zξ Þ��1; where zξ ¼ 6
dξ

ðr0�r0cÞ;

dξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18bξ=r0Aξ

q
; bξ ¼ gξdξ ;

ð3:5Þ

gξ denotes the interfacial energy, and all other variables and parame-
ters have similar meanings.

For all our calculations, we assume the material constants for NiAl
alloy, in which A and Mi are cubic and tetragonal lattices, respec-
tively; see [39�41] for the experimental and atomistic simulation
based data. For our computations with two variants, we consider the
variants M1 and M2 without loss of generality. The Bain tensors for
M1 andM2 are [42]

U t1 ¼ diagða;x;aÞ and U t2 ¼ diagðx;a;aÞ; ð3:6Þ
respectively, where x and a are material constants, and diag(a, x, a),
for example, denotes a 3£ 3 diagonal matrix with a, x, and a as the
respective diagonal elements with respect to an orthonormal Carte-
sian coordinate system where the axes are parallel to three mutually
perpendicular sides of the cubic unit cell. See Fig. 2 for 2D representa-
tion of M1 and M2 unit cells in NiAl alloy. In all the simulations, we
will consider ab ¼ ab ¼ au ¼ 3; a0 ¼ 10�3; d0M ¼ 1 nm, g0M ¼ 0:2
N/m, d12 ¼ 0:58 nm, g12 ¼ 0:13 N/m, Ds ¼�5:58 MPa/K, and

ue ¼ 215 K. Using Eq. (3.4) and also the expressions for the critical
temperatures (in Kelvin) for A!M and M!A transformations given
by (see [43]) ucA!M ¼ ue þ A0M=ð3DsÞ and ucM!A ¼ ue�A0M=ð3DsÞ;
respectively, we have ucA!M ¼ 0 K, ucM!A ¼ 430 K, r0A0M ¼ 3600
MPa, r0A ¼ 4000 MPa, b0M ¼ 2� 10�10 N, and b12 ¼ 7:5� 10�11 N.
The other parameters are taken to be λ0 ¼ λ1 ¼ λ2 ¼ 74:6 GPa,
m0 ¼ m1 ¼ m2 ¼ 72 GPa (i.e. the elastic properties of A; M1; and M2

are identical), a ¼ 0:922; x ¼ 1:215; and L0M ¼ L12 ¼ 2600 (Pa-s)�1.
Since Ni3Al precipitates are usually observed in NiAl alloy [34], we
assume the elastic properties of Ni3Al for the precipitate as
λp ¼ 65 GPa, mp ¼ 70 GPa; see e.g. [44] which reports anisotropic
elastic constants for Ni3Al. Note that the elastic moduli of the precipi-
tate are close to that of the matrix (see e.g. [16]).

The energy of A-precipitate interface is taken to be gA ¼ 0:9 N/m
in all the simulations and we accept two values for Dg , i.e.
Dg ¼�0:3 N/m and Dg ¼�0:5 N/m, respectively. Although, in Refs.
[36,45] we found that the free surface energy of cubic NiAl alloy
(pure A) is usually close to 1.8 N/m, we could not find the exact values
for gA and gM. Hence it is not possible for us to give an exact range for
Dg . Notably, Porter et al. [7] reports that the internal surface energy
can vary between several mN/m to 1 N/m depending on the internal
structure of the interface (e.g., density of interfacial dislocations,
mutual orientation of adjacent phases) and ambient conditions (e.g.
temperature). Furthermore, we know that by engineering the materi-
als, the surface and interfacial energy can be modified as per require-
ments; see e.g. [36]. Hence Dg considered in this paper could
possibly be achieved in practice.

We have taken the values for D between 0.15 and 0.5 for all the
simulations. We give the following explanation in support of it. The
matrix-precipitate interface width dξ usually varies between several A

�

to, say, one nanometer (see, e.g. Fig. (2 a) of [46] for a typical exam-
ple in NiTi alloy). The values of dξ depend on the structure of the
interface (e.g., defect structure, misorientations between the crystals,
and segregation of different species). On the other hand, d0M in most
of the shape memory alloys is usually of several nanometers; see
Chapter 7 of [42] and the references therein for experimental results
and explanation based on the crystallographic theory of MTs. This
justifies the range for D considered here. While we take d0M ¼ 1 nm,
dξ ¼ 0:15 nm when D ¼ 0:15. Although, in this case the computa-
tional cost is significantly high (see Section 4 for further discussion),
it is still possible to get the results. Notably, the results for values of
D close to the lower range depicts the effect of matrix-precipitate
interface on MTs in the limit of sharp interface.

4. Numerical results and discussions

First, we neglect the mechanics and report in Section 4.1 the
results considering only thermal energy. The transformation temper-
atures versus width ratio D plots have been presented showing the
transformations between A; M; and PM for different values of Dg .
The microstructures are also shown. Then considering mechanics,
the results for the systems with single variant and two variants are
presented. Since the system under consideration (see Fig. 1(a)) has a
four-fold symmetry with respect to the geometry and the loading
condition, we just consider one quarter of the sample as shown in
Fig. 1(b) for which the finite element computations are performed.
For yielding the same result in this domain to what Fig. 1(a) would
yield, at the boundary r01 ¼ 0 we apply the displacement u1 ¼ 0 and
on the boundary r02 ¼ 0 we apply u2 ¼ 0; shear stresses are zero at
both boundaries (see the roller supports on the respective faces in
Fig. 1(b)). In all the simulations, the order parameter h0 is constrained
to 0 within the precipitate. However, no constraint has been imposed
on h1 and ξ .

In all the examples we have taken the sample size l ¼ 20 nm and
precipitate size a ¼ 2 nm (Fig. 1(a)), i.e. the computations have been
performed in a 10nm£ 10nm domain (Fig. 1(b)). A large strain finite
element code has been written in deal.ii which is an open source
finite element package [47]. The plane stress condition is assumed
when mechanics is considered. The FE procedure developed in [48] is
utilized. We have used the quadratic quadrilateral elements for all
our computations. The same mesh shown in Fig. 3(b) and (c) is used
in all the examples where we have ensured that at least four grid



Fig. 1. (a) Schematic of the sample in the reference configurationV0 with a precipitate (shaded region) and matrix. (b) A quarter of the sample shown in Fig. 1(a), where the finite
element computation is performed. The green region is the precipitate, and the grey region (exaggerated for visual) is a part of the computational domain where large values of the
driving force X0M are concentrated as discussed in Section 4.
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points are present across all the interfaces. We have done all the sim-
ulations for D ranging between 0.15 and 0.5. However, one can con-
sider D<0:15 with a more refined mesh.

To achieve a smooth matrix-precipitate interface as shown in
Fig. 1(b), we have considered two rectangular regions of width dξ
(exact values specified while presenting results) above the horizontal
and vertical surfaces of the precipitate, which intersect near the cor-
ner. We then let only ξ evolve according to Eq. (2.14)3 for four time
steps with step size Dt ¼ 10�15 s so that we get the smooth matrix-
precipitate interface near the corner (as shown in Fig. 1(b)). Once the
smooth matrix-precipitate interface is obtained, then we solve for h0

and h1 using Eq. (2.14)1,2 to study the effect of stationary matrix-pre-
cipitate interface on MTs.

It is to be noted that since we constrained h0 to 0 within the pre-
cipitate (dark green region in Fig. 1(b)), there is a concentration of
large values of the driving force X0M within a small region of size
�» 0.1 nm around the boundary lines between the precipitate and
matrix (shown exaggeratedly for visual as grey region in Fig. 1(b)).
This is simply because of sharp change in h0 from the dark green
region to adjacent part of the matrix, and hence should be viewed as
an numerical artefact. This driving force does not vanish and remains
almost constant during the subsequent simulation. To avoid any
Fig. 2. Unit cells of the cubic austenite and two tetragonal martensitic variants M1 and
M2 in 2D with respect to the basis {e1, e2}, where the axes are parallel to the sides of
the cubic A unit cell.
computational error due to such concentration of X0M within the
grey region, we take the matrix-precipitate interface beyond that
small region as shown by hatched area in Fig. 1(b). For all the exam-
ples below, we have taken � ¼ 0:16 nm.

4.1. Results with neglected mechanics

Here we present the results for a system with austenite and a sin-
gle variant M1 when mechanics is not considered, i.e. MT is induced
by the matrix-precipitate interface and temperature. The Ginz-
burg�Landau equation for h0 Eq. (2.14)1 with setting h1 ¼ 1 simpli-
fies to

_h0

L0M
¼�r0Dc

uð6h0�6h2
0Þ�r0A0Mð2h0�6h2

0 þ 4h3
0Þ

�Dg
dξ

@’ða;h0Þ
@h0

18ξ2ð1�ξÞ2 þ 0:5d2ξ jr ξ j2
h i

þ b0M r 2
0h0: ð4:1Þ

The stationary order parameters h0 for varying temperatures along a
line r02 ¼ 0:5 nm in the sample (see Fig. 1(b)) for Dg ¼�0:5 N/m and
dξ ¼ 0:15 nm are shown in Fig. 3(a). At u ¼ 181:7 K the A matrix does
not transform. After the temperature is reduced by 0.1 K, PM appears
discontinuously adjacent to the precipitate. This temperature is con-
sidered as A!PM transformation temperature. As the temperature
is further reduced, the stationary region occupied by the PM becomes
wider and wider until u ¼ 168 K, at which jump completely trans-
formed martensite occurs in the matrix. This temperature is desig-
nated as PM!M transformation temperature. The stationary
distribution of the PM is shown in Fig. 3(b) (a part of the sample is
shown therein) when u ¼ 175 K. The stationary ξ is also shown in
Fig. 3(c) for dξ ¼ 0:15 nm. In the Figs. 3(b) and (c) the mesh density is
shown. A denser mesh is considered near the precipitate and the
mesh is coarser away from it.

The temperature u versus D plots for the transformation curves
between A;M; and PM are shown in Fig. 4(a) and (b) for Dg ¼�0:5 N/
m and Dg ¼�0:3 N/m, respectively, which are obtained by varying
the width of Si0. In Fig. 4(a) we see that for 0:15�D�D� ¼ 0:2; the MT
(curve PM!M) occurs through appearance of the premartensite as
the temperature is decreased from austenite phase. We call D

�
as the

critical width ratio. When D>D
�
; A directly transforms into M with-

out any PM. From Fig. 4(a) we note that the A!PM transformation
curve (for D�D�

) is a monotonically decreasing function of D



Fig. 3. Stationary solution for neglected mechanics for Dg ¼�0:5 N/m and dξ ¼ 0:15 nm (i.e. D ¼ 0:15). (a) The order parameter h0 profile along the r02 ¼ 0:5 nm line in the sample
for varying temperatures. (b) and (c) Part of the sample with the stationary distributions for h0 and ξ , respectively, for u ¼ 175 K. Figs. (b) and (c) also show variation of finite ele-
ment mesh density.
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whereas PM!M is an increasing function of D. That is the transfor-
mation temperature to M (including PM) is an increasing function
of D for D�D�

and it is a decreasing function for D>D
�
. All the

transformation temperatures are significantly above the critical
temperature for A to M transformation ucA!M ¼ 0 K, which clearly
indicates that reduction in matrix-precipitate interface energy pro-
motes the transformation.

In order to understand the effect of Dg we have also performed
the simulations for Dg ¼�0:3 N/m while all other parameters are the
same as for the case with Dg ¼�0:5 N/m. The transformation curve is
shown in Fig. 4(b). Obviously, over the entire range 0:15�D�0:5; A
transforms into M without any PM. Up to D ¼ 0:34; the transforma-
tion temperature increases monotonically, but after that it becomes
almost constant. In this case also all the A!M transformation tem-
peratures are much above the critical temperature ucA!M ¼ 0 K, but
they are significantly lower than the transformation temperatures for
Dg ¼�0:5 N/m. We considered also the case when Dg ¼ 0 and found
that all the A!M transformation temperatures are very close to the
ucA!M ¼ 0 K which is expected.
4.2. Results with for coupled phase field and mechanics

We now present the results when the mechanics is also taken into
consideration, first for a system with A and a single variantM1 and then
for a system with A and two variants M1 and M2. The sample with the
displacement boundary conditions is shown in Fig. 1(b). The prescribed
normal displacements at the boundary correspond to the values of aver-
aged strain values of e1 and e2; which will be specified for each exam-
ple. In all the following examples we have selected the misfit strain
tensor between inclusion andmatrix as diagð�0:01;�0:01Þ.
Fig. 4. Transformation temperatures versus width ratio D for a system with A and a singl
4.2.1. System with A andM1

We consider a system with A and M1. The transformation stretch
tensor and the non-trivial Ginzburg-Landau equation are obtained
using h1 ¼ 1 from Eqs. (2.3) and (2.13)1:

U t ¼ I þ ðU t1�IÞ’ðae;h0Þ; and ð4:2Þ

_h0

L0M
¼ PT

e ¢F�Jtc
e
I

� �
: U�1

t ¢ @U t

@h0
�Jt

@ce

@h0

����
Fe

�r0Dc
uð6h0�6h2

0Þ�r0A0MJð2h0�6h2
0 þ 4h3

0Þ�

Dg
dξ

@’ða;h0Þ
@h0

18ξ2ð1�ξÞ2 þ 0:5d2ξ jr ξ j2
h i

þ r 0 ¢ ðb0MJF
�1 ¢ r h0Þ;

ð4:3Þ
respectively (recall that au ¼ 3). The Bain tensor Ut1 given by Eq.
(3.6)1 is used in Eqs. (4.2) and (4.3). We have done the simulations in
a domain shown in Fig. 1(b), where h0 is constrained to 0 and the ini-
tial condition in the matrix is taken to be h0 ¼ 0:01. The simulation
results for three different sets of parameter values are presented.

Case-I.Dg ¼�0:5 N/m and e1 ¼ e2 ¼ 0.
At u ¼ 182 K the nucleation of the product phase takes place near

the horizontal face of the precipitate as shown in Fig. 5 (i), however,
the rest of the matrix is in austenite phase. Since the maximum value
of h0 (stationary solution) at that temperature is 0.41, the product
phase is obviously the PM. Above u ¼ 182 K, no PM was seen and the
matrix was in A phase. Note that the PM appears at the nucleation
temperature at the horizontal interface between the matrix and pre-
cipitate, but no nucleation occurs at the vertical interface. Noticing
the orientation of the unit cell of M1 from Fig. 2, we can say that the
combined effect of the interface energy and the misfit strains (com-
pressive within the precipitate) promotes the nucleation of M1 on
that horizontal interface and suppresses the nucleation on the verti-
cal matrix-precipitate interface at u ¼ 182 K. However, as the
eM variant with neglected mechanics for (a)Dg ¼�0:5 N/m and (b)Dg ¼�0:3 N/m.



Fig. 5. Stationary solutions for h0 in a system with single martensitic variantM1 at different temperatures in the deformed configurationVwhen mechanics is considered. The mis-
fit normal strains (normal) in e1 and e2 directions are�1%. Fig. (i) shows the solution at the nucleation temperature 182 K. The maximum value of h0 for each of the stationary solu-
tions is mentioned.
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temperature decreases, the PM appears on the vertical interface as
well; see Figs. 5(ii)�(iv). M1 reaches at the horizontal bottom surface
of the sample as well. As the temperature decreases, an inclined mar-
tensitic band forms and grows as shown in Figs. 5(v)�(ix). While in
Figs. 5 (ix) temperature reaches instability temperature of A for
stress-free case, geometric constraint e1 ¼ e2 ¼ 0 retains major part
of the sample in austenitic phase.

Case-II. Dg ¼�0:5 N/m and e1 ¼ e2 ¼ 0:02:
All other parameters are the same as for the case with e1 ¼ e2 ¼ 0;

i.e. Case-I. The nucleation temperature in this case is u ¼ 255 K which
is higher than the case with e1 ¼ e2 ¼ 0; implying that the tensile
external stresses promote nucleation. The microstructure evolution
is qualitatively similar to that shown in Fig. 5 (of course at different
temperatures) and hence not shown here.

Case-III. Dg ¼�0:3 N/m and e1 ¼ e2 ¼ 0.
We have also done the simulations with Dg ¼�0:3 N/m and e1 ¼

e2 ¼ 0; while all other parameters are identical with Case-I and Case-
II. The nucleation starts in this case at 77 K near the horizontal inter-
face (similar to Fig. 5(i)). Obviously, the nucleation temperature is
much lower than the case with Dg ¼�0:5 N/m, as expected. The
microstructure evolution is qualitatively similar to the case
Dg ¼�0:5 N/m shown in Fig. 5 and not shown here.

4.2.2. System with A and two variantsM1 andM2

The Bain tensors given by Eq. (3.6) are considered in the transfor-
mation stretch tensor in Eq. (2.3), where the orientation of all the
unit cells are shown in Fig. 2. We imposed e1 ¼ e2 ¼ 0 for all the
examples with two variants. Results for Dg ¼�0:5 N/m and
Dg ¼�0:3 N/m are shown.

Case-a. Dg ¼�0:5 N/m
In Fig. 6 the stationary microstructures are shown for three tem-

peratures in three columns. Three rows show the plots for h0, h1, and
heq, respectively. The nucleation of M occurs at u ¼ 182 K on both the
vertical and horizontal matrix-precipitate interfaces, i.e. the nucle-
ation temperature remains the same for the cases with single and
two variants (compare with the results in Section 4.2.1). Since the
misfit strains are compressive and the unit cells of the variants are
oriented as shown in Fig. 2, the variantM1 is expected to be promoted
on the horizontal matrix-precipitate interface and the variant M2 is
expected to be promoted on the vertical interface. The simulation
results shown in Fig. 6 are thus consistent. At the nucleation temper-
ature u ¼ 182 K, PM is seen with hmax

0 ¼ 0:35 (top-left corner figure).
If the temperature is decreased to u ¼ 150 K, still we see PM with
hmax
0 ¼ 0:54. If the temperature is further decreased, say to u ¼ 50 K,

the microstructure shown in the third column of Fig. 6 is obtained.
The degree of undercooling ðue�50Þ K ¼ 165 K results into a larger
volume of M. The martensitic plates of both the variants are oriented
at 45B with respect to the e1 direction, which can be explained using
the solutions of the twinning equation from the crystallographic the-
ory of martensite; see e.g. Chapter 5 of [42] and also see [33] for
phase field simulations. While microstructure is not symmetric with
respect to exchange of martensitic variants, the volume fraction of
the variants is approximately equal, as expected. If the external forc-
ing is applied (e.g. nonzero e1 and e2), the nucleation temperatures
can be further increased or decreased depending on the signs of the
forcing, similar to that discussed above for the single variant.

Case-b. Dg ¼�0:3 N/m
We have also done the simulation withDg ¼�0:3 N/m. The nucle-

ation occurs at 77 K which is same as the nucleation temperature for
the system with single variant. The stationary microstructure at that
temperature is shown in Fig. 7, which consists of martensitic plates
adjacent to the matrix-precipitate interfaces and martensitic plates
of alternative variants which are inclined at 45B with respect to hori-
zontal surface of the sample.



Fig. 7. Stationary microstructure for a systemwith two variants forDg ¼�0:3 N/m at the nucleation temperature u ¼ 77 K. The misfit normal strains in e1 and e2 directions are�0:01.

Fig. 6. Stationary microstructures in a system with A and two martensitic variantsM1 andM2 at different temperatures forDg ¼�0:5 N/m. The three rows show the solutions for h0,
h1, and heq, respectively. The three columns show the results at temperatures u ¼ 182 K (nucleation temperature), u ¼ 150 K, and u ¼ 50 K, respectively. The misfit normal strains
considered in e1 and e2 directions are�0:01. The maximum values of h0, h1, and heq for each of the solutions are reported.
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5. Conclusions

A detailed computational study of a matrix-precipitate interface
induced martensitic transformation within the matrix is presented
using a thermodynamically consistent multiphase phase field
approach. Two order parameters describing the A $ M and Mi $ Mj

transformations are involved, and another order parameter describing
the interface between the transformable matrix and non-transform-
able precipitate is included. Change in matrix-precipitate interfacial
energy during phase transformation is taken into account utilizing a
variable energy of the interface as a function of the order parameter
related to the austenite$martensite transformation. Since for both
cases under study, matrix-precipitate interfacial energy reduces during
martensitic transformation, and the magnitude of this reduction
jDgj ¼ 0:5 and 0.3 N/m is larger than the A�M interfacial energy
g0M ¼ 0:2 N/m, all the barrierless A!PM and A!M transformation
temperatures are well above the critical temperature for A!M
transformation (0 K). In addition, the strong effect of the ratio D of the
matrix-precipitate interface width and the austenite-martensite inter-
face width is found. The transformation initiation curves between aus-
tenite, martensite, and premartensite as a function of the ratio D are
plotted by varying the matrix-precipitate interface width for neglected
mechanics (Fig. 4). For Dg ¼�0:5 N/m, below a critical width ratio D�
D

�
; the austenite matrix transforms to martensite via a premartensite

appearing near the interface. However, for D>D
�
; no PM is seen,

rather a complete martensite nucleates at the interface and the entire
matrix transforms into M at the nucleation temperature only. For
Dg ¼�0:3 N/m, A directly transforms into M without any premarten-
site.

Finally, the effects of mechanics, namely, internal stresses due to
transformation strain in martensitic variants, misfit strains between
precipitate and matrix, and external stresses (applied displacements)
are investigated. Nucleation of martensite in the systems with single
and two variants occurs at the same temperature, provided that all
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other conditions are the same. This happens because different faces of
the precipitates promote different martensitic variants, which do not
interact at the nucleation stage. The microstructure evolution is also
studied for these two systems by reducing the temperatures in steps
from the nucleation temperature and reaching stationary solutions.

Obviously, the effect of parameter D on initiation of PTs is multi-
faceted, complex, and depends on other parameters such as Dg and
misfit strain, and is often counter-intuitive. For example, according to
Fig. 4(a), when Dg ¼�0:5 N/m, an increase in D suppresses loss of
stability of A because the total promoting energy gain Dg is distrib-
uted along a wider precipitate-matrix interface resulting in a smaller
maximum local energy gain. However, for D�D�

; A transforms grad-
ually to PM; while for D>D

�
; the PM does not appear and A trans-

forms directly to M. At the same time, an increase in D promotes
transformation of PM to M; which is difficult to rationalize based on a
simple energetic arguments.

The formation of premartensite and subsequent M transforma-
tions near the external surface [10] and in the presence of internal
surfaces such as matrix-precipitate interface and grain boundaries
(see e.g. [1] and the references therein) have been observed in experi-
ments. However, we cannot give any quantitative comparison here as
we do not have any suitable experimental data.

Notably, the effects of the parameters such as reduction of the
matrix-precipitate energy and ratio of the width of the matrix-pre-
cipitate to the austenite-martensite interface were never studied
within phase field approach. Loss of interface coherency and interac-
tion of generated dislocations with MT can also be included in the
present approach using models developed in [49,50]. Obtained
results are important for controlling cyclic martensitic transforma-
tions in shape memory and elastocaloric alloys and designing alloys
with desired characteristic of martensitic transformations [13�15].

Note that in all previous works [26�32], while studying the effect
of the parameter D on different kinds of PTs (which, of course, do not
include the nucleation at a precipitate), D was varied over a broad
range to get a conceptual idea about its influence, since the actual
range for D was not yet measured. We hope that the theoretical
works in [26�32] and in the present paper will promote interest in
the experimental studies.
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