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ABSTRACT

Stress-induced martensitic phase transformations (PTs) at a stationary 60° dislocation in single-
crystalline Si are modeled by an advanced phase-field approach (PFA), which takes into account the
lattice instability conditions obtained by atomistic simulations for the general stress tensor. Finite elastic,
transformation, and plastic strains are considered. Finite element method (FEM) simulations elucidate
two different mechanisms of nucleation and nanostructure evolution for two different stress-hysteresis
cases. For a traditional finite-stress-hysteresis region, the PT starts with the barrierless nucleation of a
thermodynamically-equilibrium-incomplete embryo, which loses its stability and grows forming a
propagating martensitic band with distinct interfaces. However, in the unique zero-stress-hysteresis
region, where PT for defect-free crystal occurs homogeneously through intermediate phases without
nucleation, interfaces, and growth, the PT starts at a dislocation but spreads quasi-homogeneously,
without interfaces, similar to the defect-free case; the macroscopic stress-strain curve is horizontal
and without hysteresis during direct-reverse PTs. Despite large normal stresses produced by dislocation
in the range of +(6 — 12) GPa, a relatively small reduction in macroscopic PT stress by 1.6 GPa is quan-
titatively explained by mutually compensating contributions of stresses into lattice instability criterion.

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

It is well-accepted that nucleation during martensitic phase
transformations (PTs) initiates at stress concentrators caused by
dislocations; see analytical models in Refs. [1—4], review [5], and
PFA simulations [6—10]. Within PFA, stress concentration at dislo-
cations causes barrierless nucleation of martensite at temperatures
above the lattice instability temperature and stresses below the
lattice instability stresses for an ideal (defect-free) crystal. How-
ever, quantitative information on how different dislocation con-
figurations reduce transformation stresses for different PTs is still
lacking, especially for stress-induced PTs.

Monocrystalline silicon (Si) is one of the most important ma-
terials in the semiconductor industry, especially in the micro/nano-
electromechanical systems (MEMS/NEMS). To design and fabricate
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MEMS/NEMS devices, a thorough understanding of PTs in Si, as an
inelastic deformation mechanism, is essential. The lattice instability
(i.e. PT initiation) conditions for stress-induced martensitic cubic-
to-tetragonal Si-l1<Si-Il PTs in ideal (defect-free) crystal under
general tensorial stress states were recently obtained using theo-
retical predictions within PFA followed by molecular dynamics
(MD) and density functional theory (DFT) validation and specifi-
cation [11—14]. Without shear stresses, the conditions for direct and
reverse PTs were described in 3D space ¢; (normal-to-cubic-faces
stresses) by two intersecting planes, which coincide after inter-
section (see Fig. 1 for ¢; = a,). Thus, there are two different regions
of instability: first, a finite-stress-hysteresis region, and second, an
unusual zero-stress-hysteresis region.

Within the zero-stress-hysteresis region, the traditional nucle-
ation and two-phase growth is substituted by homogeneous and
hysteresis-free first-order PTs, as observed in MD [12] and PFA [15]
simulations. During the homogeneous transformation, the system
passes through an infinite number (continuum) of intermediate
crystal lattices (phases), which are in indifferent thermodynamic
equilibrium and can be arrested and studied by fixing the strain in
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Fig. 1. Crystal lattice instability stress lines in the stress plane for direct and reverse
phase transformations in Si. g3 is uniaxial compressive stress and o = g, are lateral
biaxial tensile stresses. Two characteristic regions are present: with finite stress hys-
teresis for 1 = 0, < 8.41 GPa and with zero stress hysteresis for 6 = 7, >8.41 GPa. A
schematic plot of the Gibbs energy versus order parameter for the fixed stress tensor is
shown for each instability line (corresponding to the disappearance of the energy
minimum) and phase equilibrium line (corresponding to the equal energy minima for
both phases). For the zero-stress-hysteresis region, the energy barrier between phases
transforms to a plateau corresponding to a continuum of intermediate homogeneous
phases, which are in indifferent thermodynamic equilibrium. In this region, Si-1< Si-II
PTs occur homogeneously (i.e. without nucleation and growth), without hysteresis,
dissipation, internal stresses and corresponding damage.

one direction. Homogeneous transformation and zero hysteresis
are the most favorable features for various PT-related applications
reducing energy dissipation and damage due to internal stresses
caused by transformation strain.

The PFA model for Si-I < Si-II PTs in ideal crystal under a general
stress tensor, which is calibrated by atomistic simulations [11,15]
allows us to quantitatively study the effect of defects on martensitic
PTs. Si-I— Si-II PTs are of special interest because they are accom-
panied by very large anisotropic transformation strain, which in
MD simulations [12,13] is accommodated elastically (i.e. without
dislocations and twinning), thus generating large internal stresses.

The presence of the unusual zero-stress-hysteresis region also
raises two crucial questions:

- With the heterogeneity of the internal stresses produced by
dislocations, will a quasi-homogeneous evolution of martensitic
nanostructure still be possible?

- How do dislocations affect the macroscopic stress hysteresis, i.e.
may they lead to a non-zero macroscopic hysteresis despite
being within the local zero-stress-hysteresis region?

Moreover, numerous previous studies have shown that under
hydrostatic loading there is a significant difference between the
instability pressure obtained by atomistic simulations, specially 64-
80 GPa for Si-1— Si-Il PT [14,16,17] and those obtained by experiment,
e.g. 10-12 GPa [19]. However, the experimental works [18—20] for
non-hydrostatic uniaxial/multiaxial loadings using nanoindentation
or diamond-anvil cell on real (defective) crystals reveal that the PT
stress is in the same range as in atomistic simulations for ideal
(defect-free) crystals [14], specially ~ 11 GPa. Thus, studies must be
performed to determine why the effect of dislocations on uniaxial/
multiaxial non-hydrostatic instability stresses is relatively small.

M agf :=0.36(c1 +03) — 03 > 1229GPa if — o3>
' 0 :=0.19(d1 + 0) — 03 > 9.45 GPa  otherwise

M—A: 0.19(0; + 03) — 03 < 9.45 GPa.

In this work, we utilize our PFA model [11,15] to study Si-I1— Si-II
PT at a single stationary 60° mixed perfect dislocation within
monocrystalline Si using FEM. We investigate the effect of dislo-
cation on the nucleation of Si Il and nanostructure evolution for
finite- and zero-stress-hysteresis regions. Furthermore, we quan-
titatively explain why dislocation has a small effect on the insta-
bility stresses for non-hydrostatic loadings. Obtained results
represent a closure of the multiscale problem of predicting the PT
initiation conditions for real (defective) materials starting with
atomistic simulations, development of PFA for an ideal crystal, and
solving PFA problems for a crystal with defect.

Generally, due to high applied and internal stresses, various other
processes may occur, such as motion of the initial dislocation and
generation and motion of new dislocations and cracks. To study all
these processes, corresponding complex theory of interaction be-
tween PT, plasticity, and fracture should be developed, see e.g., a
simplified theory in Refs. [9,10] and references there for coupled PT
and plasticity. This will require significant time for development and
much longer computational time. Still, since many of parameters of
this theory will be unknown, results will have significant indeter-
minacy. That is why our approach using single static dislocation
(such as in classical problem formulation [1—3,5—7]) and neglecting
nucleation of new dislocations and cracks is much more realistic,
economic, and focused, and it allows us to answer questions that we
formulated. MD simulations of the Si-I— Si-Il PT under the same
stresses but without initial dislocation [12,13] did not show nucle-
ation of new dislocations or cracks. Immobility of an initial disloca-
tion can be justified by assumptions of the high Peierls barrier and
much lower mobility of the dislocation than mobility of the phase
interface, which, however, currently do not have any confirmations
or contradictions with experiment or MD simulations.

We designate vectors and tensors with boldface symbols and
designate contractions of tensors A = {A;;} and B = {By} over one
and two indices as A-B = {A; By} and A : B = A;; Bj; respectively.
The transpose of A is AT, and I is the unit tensor; symbol V means
“for all”; := means equal by definition; and V and Vg are the gradient
operators with respect to the deformed and undeformed states.

2. Model and lattice instability conditions

The formulations in this work are based on the general PFA
developed in Ref. [11], which was specified for cubic-to-tetragonal
Si I~ Si Il PTs in Ref. [15]. Here, we slightly advance the kinematics
by taking into account the plastic deformation due to a single static
dislocation. The complete system of equations is presented in the
Appendix. Here we will discuss the specific lattice instability con-
ditions for defect-free Si I and Si I

The lattice instability or PT initiation conditions for cubic-to-
tetragonal Si [+ Si Il PTs were obtained via MD simulations for
various combinations of all six components of the Cauchy stress
tensor in Refs. [12,13]. We consider loading by three components of
the Cauchy (true) stresses ¢; normal to the cubic faces in the
deformed state. In 3D stress o; space, all points for direct and
reverse instability stresses have been located close to two planes
that coincide after intersection:

6.23 GPa

(1)
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Here, the effective instability stress for the finite-stress-
hysteresis region o’ and for the zero-stress-hysteresis region agf
are introduced. For equal stresses in two lateral directions (o7 =
7, ), the instability conditions are shown in 2D stress plane in Fig. 1.

It can be observed that increasing the lateral tensile stresses
reduces not only instability stresses for the direct and reverse PT,
but also their difference (i.e. the stress hysteresis), all the way down
to the intersection point. From there on, the two instability lines
coincide and the stress hysteresis vanishes. We will discuss trans-
formation behavior separately for lateral stresses in the finite-
stress-hysteresis region as well as the zero-stress-hysteresis region.

3. Crystal and dislocation structures

Silicon as a covalent bonded material crystallizes in a diamond
cubic structure with tetrahedrally coordinated atoms [21]. The
lattice parameter a is 0.543 nm at room temperature. The crystal
structure consists of two interpenetrating fcc lattices with one
atom at (0,0,0) and another one at (1/4,1/4,1/4). The structure has
two types of {111} most closely packed atomic planes, i.e. a widely
spaced set termed the shuffle-set with a spacing of @ a between the
adjacent planes and a narrowly spaced one termed glide set with a
spacing ofl—‘/2§a [22].

Dislocations in diamond cubic structure crystals are energeti-
cally stable when they lie parallel to the (110) directions on the
{111} slip planes due to high Peierls potential. Therefore, a stable
dislocation loop has a hexagonal shape with two opposite screw
segments and four 60° segments. Besides, a glissile dislocation has
the smallest Burgers vector b= a/2(110) on the {111} planes. The
movement of such a dislocation occurs on planes located between
widely or closely spaced atomic planes, namely shuffle-set or glide-
set, respectively. Geometrically, a dislocation on a glide-set plane is
dissociated into two Shockley partial dislocations bounding a strip
of intrinsic stacking fault. However, a dislocation in the shuffle-set
plane is perfect because there is no stable stacking fault on the
shuffle planes. From numerous published reports on observations
of dislocation structures, it is now commonly believed that such
dislocations are dissociated at high temperatures while they are
perfect at low temperatures. Besides, some theoretical studies with
ab initio calculation have shown that a perfect shuffle-set disloca-
tion is favorable under high stress [23,24] because the activation
energy for the nucleation of a shuffle-set dislocation is much lower
than that of a glide-set one under stresses above 4 GPa [24].
Therefore, because our simulations are performed for high stress
and low temperatures, we consider a 60° perfect shuffle-set
dislocation.

4. Problem formulation and computational approach

We now consider some examples showing the effect of a single
60° dislocation on martensitic nanostructure evolution and insta-
bility stresses for different loading conditions. The coupled system
of mechanics and the Ginzburg-Landau equation Eqs. 2—18 have
been solved simultaneously using the FEM. We have developed a
large strain FEM-based code in the deal.ll program library frame-
work [25]. The governing PFA and mechanics equations are solved
iteratively in a decoupled manner using the Newton's method. We
have used the quadratic quadrilateral elements for spatial dis-
cretization of both the mechanics and phase field equations and a
Crank-Nicolson finite difference scheme for time discretization of
the Ginzburg-Landau equation. The three-dimensional and fully
geometrically-nonlinear response of an anisotropic crystal has been
modeled. Although the computations are carried out in the refer-
ence configuration, the results are presented in the current
configuration. The following material parameters are used [26,27]:

components  of  transformation  deformation  gradient
Ul=U?=1.1753 and U} = 0553; kinetic coefficient
L = 2600 (Pa.s)"'; gradient coefficient § = 2.59 x 1010 N; elastic
constants of Si I CM'=C3 =33 =1675GPa, C§* =3’
= (8% =80.1GPa, C}? = C}> = €3> =65.0GPa, and elastic con-
stants of Si Il C}! = €32 = 174.76 GPa, C3®> = 136.68 GPa, C}* =
(3> = 60.24 GPa, (%% = 42.22 GPa, C}? = 102GPa, C}3 = (%3 =
68 GPa.

A 3D sample of size 40 x20 x 20nm? is considered. A schematic
of the sample including a single 60° dislocation is depicted in Fig. 2.
The dislocation line (the purple line) lying within the (111) slip
plane starts from a point at the center of the front face and ends at a
point on the bottom face, making a 60° angle with the slip direction
[110] (the red arrow). The dislocation is modeled through applying
the plastic simple shear strain y = % within a triangular dislocation
band (green area) in the Burgers vector b = %[Tl 0] direction. The
dislocation band is the space between two triangular planes par-
allel to the slip plane (111) with the distance of the dislocation
height H. The lattice parameter a for Si is 0.543 nm and the dislo-
cation height H is considered equal to the doubled (111) interplanar
distance, i.e. H = 2 x 0.235 = 0.47 nm; therefore, the plastic shear
y =28 —0817.

In addition to Eq. (18) as the boundary condition for the order
parameter, the following boundary conditions are used for the
mechanical problem. A point at the corner, where the origin of the
coordinate system is located, is fixed for all displacement compo-
nents. The bottom face, the left face and the back face are fixed for
normal-to-the-face displacement and free of shear stresses. Thus,
these faces are symmetry planes and our simulation domain is one-
eighth of the actual sample, being symmetric in all three directions.
The right face and front face are either free or under fixed homo-
geneous tensile normal Cauchy stresses g; = ad,. The top face is
either under prescribed normal compressive stress o3 for stress-
controlled loading or under compressive displacement for strain-
controlled loading; for both cases, shear stresses at these faces
are zero. As the initial conditions for order parameter, we consider
perturbations of n = 0.01 everywhere, since without perturbations
the driving force for the evolution of the order parameter is zero.

5. Nanostructure evolution around a dislocation for different
hysteresis cases

In this section, we study how the presence of a dislocation af-
fects martensitic PTs in single crystal silicon: PT stresses, nano-
structure evolution, and a novel zero-stress-hysteresis
phenomenon. It was thoroughly studied in Ref. [15] how the entire

[o10]

[100]

Fig. 2. Schematics of the sample with a 60° dislocation.
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Si-1 - Si-II PT process and nanostructure evolution in defect-free
single crystal are affected by the stress state. In the finite-stress-
hysteresis region (e.g. for 61 = g, = 0), the PT evolution process
includes the nucleation of martensite leading to the formation of
martensitic bands with distinct interfaces which propagate until PT
completion in the entire sample. As the tensile lateral stresses in-
crease (e.g. 01 = g, = 5 GPa), reducing the stress hysteresis, the
interface width increases and the interfaces are not as plain and
distinct as for higher hysteresis. Finally, in the zero-stress-
hysteresis region, despite the heterogeneous initial perturbation
for the order parameter, the system undergoes a homogeneous and
hysteresis-free first-order PT without nucleation, formation of
martensitic bands and their following growth.

Here, we consider PT for a sample with a static 60° dislocation in
the finite-stress-hysteresis region and zero-stress-hysteresis region
separately.

First, let us consider a loading for the finite-stress-hysteresis
region. A uniaxial compressive stress o3 = —12 GPa is applied in
the vertical direction [001] with no applied stress in the lateral
directions [100] and [010], namely ¢; = o, = 0. This compressive
stress is slightly less than the direct instability stress 12.29 GPa for
uniaxial loading. Although we have not reached the instability
stress for a defect-free case, the stress concentration around the
dislocation line is sufficient to satisfy the instability condition and
turn the dislocation line to a nucleation site. Fig. 3 shows that an
embryo is formed around the dislocation line. While the embryo of
the intermediate phase with n ~ 0.5 around the dislocation grows,
the order parameter within the embryo increases so that the em-
bryo finally turns to an inclined martensitic band within the sam-
ple. The martensitic band then propagates, reaches other external
faces and transforms the sample into martensite.

A completely different mechanism governs the onset of the PT
for the loading within the zero-stress-hysteresis region, in partic-
ular, for 61 = 0, = 10 GPa and o3 = — 5.5 GPa. We again apply the
compressive stress g3 slightly below the instability stress for the
corresponding lateral stresses, being 5.65 GPa. It can be seen in
Fig. 4 that PT starts in the close vicinity of the dislocation line,
where the internal dislocation stress field adds up to the external
applied stresses and exceeds the instability stress. Then PT spreads
toward the regions where the dislocation stress field is favorable for
such a transformation strain. Next, the intermediate phase keeps
propagating into the entire sample without forming a distinct
interface and transforms the sample into a relatively homogeneous
intermediate phase with n = 0.5 at t = 1.6 ps. From then on, the
entire system almost homogeneously transforms to the product
phase, passing through all intermediate homogeneous phases.
Therefore, it can be concluded that, when the stress state lies
within the zero-stress-hysteresis region, despite the heterogeneity
of the internal stresses produced by dislocations, a quasi-
homogeneous PT still occurs.

t(ps) 0.0

To check whether the zero-stress-hysteresis obtained for a
defect-free sample is obtainable for a sample with a dislocation, a
compressive strain-controlled loading in the third direction with
lateral stresses o1 = g, = 10 GPa is applied on the sample with a
dislocation. The global stress g3 averaged over the top face is
plotted against the Lagrangian strain in Fig. 5 for a cyclic direct and
reverse PT. The dots in the figure show the direct and reverse
instability stress being 5.65 GPa for such a loading condition. It can
be seen that, even with dislocation, the stress hysteresis is zero and
the heterogeneous internal stresses around the dislocation do not
produce hysteresis.

6. Effect of dislocation on the instability stress

Several simulations were conducted applying uniaxial
compressive stresses below the instability stress o3 = —12.29 GPa
for a defect-free sample. For the stresses below 10.7 GPa, a stable
martensitic embryo of a intermediate phase is formed near the
dislocation, which could not grow. Stress g3 = —10.7 GPa is the
lowest uniaxial stress, for which the embryo loses its stability and
grows to the completion of PT in the entire sample with the same
nanostructure evolution as shown in Fig. 3 for 63 = — 12 GPa. Thus,
a single dislocation reduces the transformation stress by 1.59 GPa
compared to that for a defect-free Si.

To understand the quantitative and qualitative effect of the
dislocation on the instability stress, the distribution of the internal
stresses produced by dislocation should be analyzed. Therefore, the
field of all three normal components of the dislocation stress are
shown in Fig. 6 within the (011) plane, which cuts the sample into
two equal parts. From here on, we designate the internal stresses
produced by dislocation with ¢. In addition, the figures include
plots showing the distribution of the corresponding stress along
the designated lines, which represent the symmetry axes for each
stress distribution.

Two main points should be noted in these figures. First, while &
and g3 have the same symmetry line [122], the ¢, symmetry line,
[522], is different. This is important because the shape of the stress
fields and the direction in which they have the maximum value
determine the direction along which the embryo and the following
martensitic band are formed. Second, the regions of maximum
tensile ¢ and a5, are at the opposite side of the region of maximum
compressive g3. It means that, although there are considerable
internal stresses around the dislocation line, reaching approxi-
mately 10, 12, and 6 GPa for &4, o5 and a3, respectively, they are “out
of phase” and reduce each other's promoting effect.

To quantitatively understand the reason why the dislocation
does not reduce the instability stress significantly and only by
1.6 GPa, the fields of the effective instability internal stress from
dislocation &, = 0.36(d1 + 03) — a3 for the finite-stress-hysteresis
region and 6o = 0.19(d¢ + d3) — 03 for the zero-stress-hysteresis
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Fig. 3. Evolution of martensitic nanostructure during Si-I - Si-II PT for uniaxial compressive stress g3 = —12 GPa at ¢; = g, = 0, i.e. in finite-stress-hysteresis region.
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Fig. 4. Evolution of martensitic nanostructure during Si-1 < Si-Il PT for uniaxial compressive stress o3 = —5.5 GPa and tensile lateral stresses ¢; = ¢, = 10 GPa, i.e. in the zero-

stress-hysteresis region.

|o5|(GPa)
N

O 1 1 1
0 0.1 0.2 0.3 0.4

Lagrangian Strain,|E;|

Fig. 5. Stress-strain curve for a strain-controlled loading of a sample with dislocation
in the third direction [001] and lateral tensile stresses ¢; = g, = 10 GPa, which
demonstrates zero hysteresis. Dots shows the direct and reverse instability stresses.

region (that contribute to the instability condition (2)) are plotted
in Fig. 7. These figures illustrate the promoting and suppressing
regions for PT initiation, which in turn clarifies where and in which
direction nucleation and propagation of the martensite will occur.
The same distributions are shown along the designated line [111],
one of the promoting PT stress branches. It can be seen in Fig. 7 that
&J; forms a triple rosette of PT-promoting regions (red) along with
twofold PT-suppressing regions (blue) in between. For &Sf, one
more PT-suppressing branch above the dislocation core is observed,
covering an even broader zone than the two lower suppressing

zones. Note that blue PT-suppressing regions for direct PT are PT-
promoting regions for the reverse PT in Si Il. Also, the promoting
effective instability stresses &{, and 62f have maximum values of
3 GPa and 1.7 GPa, respectively, close to the dislocation core, which
decrease with distance from the dislocation core.

The differences between finite- and zero-stress-hysteresis cases
can be explained if we notice that ¢; and &, contribute to the
effective instability stress G, with a lower weight, specifically 0.19
compared to ET£ , specifically 0.36.

To gain furtlger insight into the nucleation process, we plot the
total effective stress (produced by external stress plus dislocation
stress) o'£ — 12.29 and stationary solutions for embryos along the
line [T]If} in Figs. 8 and 9 for a different uniaxial external
compressive stress g3. For a3, slightly below —9.5 GPa, the insta-
bility condition afe >12.29 GPa is not satisfied for all material
points. Once |o3| reaches 9.5 GPa, the instability condition is met in
a tiny region around the dislocation core and a very small embryo
appears. With increasing |o3| up to 10.69 GPa, the region in which
the instability condition is satisfied increases along with the size of
equilibrium embryo and maximum 7 within. Note that the size of
the embryo significantly exceeds the size of the region where the
instability condition is met, because it is determined by thermo-
dynamic equilibrium rather than instability conditions. When ||
increases to 10.7 GPa, the Si Il embryo loses its stability and grows
to complete PT in the major part of the sample. Note that an embryo
that loses its stability is not a critical nucleus in the classical theory
of nucleation. A classical critical nucleus corresponds to the
maximum of the Gibbs free energy vs. size, i.e., nuclei of all sizes are
unstable. In our case, embryos of all sizes below some size are in a
stable thermodynamic equilibrium and correspond to the mini-
mum of energy, which disappears at some size. This nucleus can be
called the largest equilibrium nucleus. Note that the maximum order
parameter in the largest equilibrium nucleus is below 0.3, i.e. very

01 02
10 15 ¢
10 4
GP ’
a s 2
>2 . = .
E 3o - ol | ~—r] S
E s & €
=1 - -5 -
E 10 -4
E 0 -10 -15 -6
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Fig. 6. Fields of internal stresses 1, ¢, and &3 around the dislocation line within the (011) plane, which cuts the sample into two equal parts. In addition, the distribution of the
corresponding stress along the designated lines, which represent symmetry axes for each stress distribution, is shown.
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Fig. 8. Plot of "if —12.29 along the line [111], starting from the dislocation core for
different values of uniaxial external compressive stress a3.

far from the Si Il. Application of the sharp interface approach, which
operates with the complete nucleus of the product phase, should
lead to significant inaccuracy.

Note that no embryo is formed along the lower red branch in
Fig. 7 for the finite-hysteresis-region, which is surrounded by two
PT-suppressing stress branches, even at |o3| = 12GPa in Fig. 3. This
may be because of closeness to the bottom boundary and internal
stresses due to embryos that appeared earlier in the upper PT-
promoting branches. Thus, exceeding of the instability conditions
in some regions does not guarantee that PT will occur in this region
because of the effect of processes at other locations.

To summarize, for uniaxial loading, the instability stresses for
direct and reverse Si-I < Si-II PTs in defect-free crystal are 12.29 and
9.45 GPa, respectively. Since it is not trivial to estimate the phase
equilibrium stress, which depends on the interface orientation
rather than only on o3, we estimate it as the semisum of the
instability stresses, i.e. 10.87 GPa. Single dislocation produces a
maximum effective instability stress 6'/; of 3 GPa for Si-I— Si-II PT,
and assuming approximate additivity of stresses, the Si I embryo
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Fig. 9. Stationary solution for the order parameter characterizing an equilibrium
embryo along the line [111], starting from the dislocation core for different values of
uniaxial external compressive stress o3.

should appear slightly above 9.29 GPa. However, it appears at
9.5 GPa, and the small difference is because of the small geometric
nonlinearity before PT starts. Stress g3 must be increased to
10.7 GPa for the equilibrium embryo to reach the size of the largest
equilibrium nucleus, which loses its stability and transform the
entire sample in Si II. Thus, 10.7 GPa can be called the lattice
instability stress in the presence of single dislocation, and it is less
than our estimate for the phase equilibrium stress.

7. Conclusion

In this paper, stress-induced martensitic Si-I<Si-Il PTs at a
stationary 60° shuffle-set dislocation in monocrystal is modeled by
an advanced PFA developed in Ref. [11]. The key point in this
approach is that, in contrast to previous approaches, it includes the
lattice instability (i.e. PT initiation) conditions under a general
stress tensor, which are calibrated by MD simulations for the same
PTs under various combinations of normal-to-cubic-faces stresses
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g1, 02, and o3 [12,13,15]. This, in particular, introduces a new zero-
stress-hysteresis regime, which was found in Ref. [ 12] only for ideal
crystal and was never studied for crystal with defects. Also, the
model and simulations are based on a fully geometrically-nonlinear
formulation for the general case of finite elastic, plastic and trans-
formational strains, as well as anisotropic and different elastic
properties of parent and product phases. In particular, the trans-
formation strains for Si-1- Si-II PTs are very large.

FEM simulations elucidate two different mechanisms of nucle-
ation and nanostructure evolution for two different stress-
hysteresis cases. For the traditional finite-stress-hysteresis region,
the PT starts with the barrierless nucleation of a
thermodynamically-equilibrium-incomplete embryo, which loses
its stability and grows forming a propagating martensitic band with
distinct interfaces. Dislocation generates three normal stresses in
the range of +(6 — 12) GPa; therefore, a large reduction in trans-
formation stress due to dislocation is expected, which is not the
case in experiments. However, our simulations showed a relatively
small reduction in macroscopic PT stress by 1.6 GPa (i.e. from o5 = —
12.3 to —10.7 GPa, in good correspondence with experiments),
which is quantitatively explained by mutually compensating con-
tributions of stresses to the lattice instability criterion. the first
fulfillment of the instability criterion occurs at 3 = — 9.5 GPa. In
the range of g3 from —9.5 to —10.7 GPa a thermodynamically-
equilibrium-incomplete embryo grows so that its size, as well as
the maximum 7 within it, increases. Slightly below |o3| = 10.7 GPa,
the largest equilibrium nucleus is formed, loses its stability, and
grows at g3 = —10.7 GPa. The maximum order parameter in the
largest equilibrium nucleus is below 0.3, i.e. very far from the Si Il.
Application of the sharp interface approach which operates with
the complete nucleus of the product phase, should lead to signifi-
cant inaccuracy.

In the unique zero-stress-hysteresis region, when PT for defect-
free crystal occurs homogeneously through intermediate phases
without nucleation, interfaces, and growth, the PT starts at a
dislocation but spreads quasi-homogeneously, without interfaces,
similar to the defect-free case. The macroscopic stress-strain curve
for strain-controlled loading is horizontal and without hysteresis
during direct-reverse PT. Thus, single dislocation does not spoil the
ideal PT properties of a material in the zero-stress-hysteresis
region.

Si-I—Si-II PT occurs at stresses on the order of 10 GPa and Si II
cannot be retained at normal pressure to perform TEM study. That
is why there is no experimental study of nucleation of Si II at dis-
locations. This makes theoretical and computational studies even
more valuable.

All problems solved here with PFA could be solved as well with
MD. These two very different methods do not compete but rather
supplement each other. PFA allows one easier and independently to
vary different material properties and can be scaled up for much
larger sample and longer process time than MD. MD provides
atomistic mechanisms and can be easier applicable to simultaneous
occurring of several processes (such as PT, plastic flow and frac-
ture), provided that adequate interatomic potential is found.

Obtained results represent a closure of the multiscale problem
of predicting the PT initiation conditions for real (defective) ma-
terials starting with atomistic simulations, development of PFA for
an ideal crystal, and solving PFA problem for crystal with defect.
They will be generalized for the case of multiple dislocations of
different configuration. Also, there are current PFA efforts
[4,9,10,28] to explain the strong reduction of the PT pressure by
application of plastic shear [4,29—32], by factor of 10 [29] to as
much as 100 [32]. This reduction is rationalized by considering the
nucleation at the dislocation pileups produced by plastic shear but
for a model material and 2D simulations. These problems should be

solved in the 3D formulation for specific materials with well-
defined lattice instability conditions.
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Appendix
A System of equations

The formulations in this work are based on the general
advanced PFA developed in Ref. [11], which was specified for cubic-
to-tetragonal Si [+ Si II PTs in Ref. [15]. Here, we slightly advance
the kinematics by taking into account the plastic deformation due
to a single static dislocation.

A.1 Kinematics of combined phase transformation and dislocation

Multiplicative decomposition of the deformation gradient
F= (,;"Tru = Vor into elastic Fe, transformation U, and plastic F;, parts
reads to

F=Fc-U;-Fp. 2

The Jacobian determinants describing the ratio of volumes and
mass densities in the corresponding configurations are

_dv_py o dvV_p )

]—m—?—detF, ]e—d—vt—%—detpe,
th pp

]tp:—:—:detUtdetFp:detUt:]t; JPZdEpr=1; sza]h
dvp pe

(3)

where Vo(pg), Vi(pr), Vo(pp), and V(p) are the volumes (mass den-
sities) in the reference Qg, intermediate Q; (after elastic unloading),
intermediate Q, (after elastic unloading and reverse PT), and actual
Q configurations, respectively.

The Lagrangian total, elastic, transformation, and plastic strains
are respectively given by

E-= % (FT-F—I>; E. :%(FZ-FE —1); E :%(Ut-Ut —;

E, — % (Fp-Fp —1):E = F}-Up-Eo-Uy-Fy + Fy-Ec-Fp + Ep

(4)

Phase transformation is described by the order parameter 7
with # = 0 for Py and n = 1 for P;. The transformation deformation
gradient is expressed as

U(n) =T +etcp(a:, w,,n);
0 :=a.n* + (10t — 3a, + w.)n> + (3a, — 2w, — 150)n* (5)
+(6L — @ + w,)r,

where e = U¢(1) — I is the transformation strain after complete
transformation from the parent phase Py to the product phase Py ; ¢
(and consequently, a.,w,, t) are matrices (not second-rank tensors),
which have the same non-zero components and symmetry as ¢; in
the coordinate system of crystal lattice of Py; all non-zero compo-
nents of matrix ¢ are equal to one. The Hadamard product is defined
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as et o = {sijq)if} with no summation over i and j. For cubic-to-
tetragonal PT, the diagonal terms of transformation strain and all
matrices are nonzero only, and two of three terms are the same for
all matrices.

Considering a single slip system on a slip plane with the unit
normal k and with the Burgers vector b, the plastic deformation
gradient F,, representing a simple shear is

FP:I+%b®k:I+ym®k, (6)

where y = ‘Fb‘ is the plastic shear strain of the single dislocation in a
dislocation band of the height H; m is the unit vector in the di-
rection of b. Parameters k, b and H are determined in the reference
configuration. It should be noted that the plastic deformation
gradient leads to deformation only inside the dislocation band and
there is no plastic deformation outside of the dislocation band (i.e.,
F, =1).

A.2 Helmholtz free energy
We accept the expression for the Helmholtz free energy per unit
reference volume as

Y(F,1,0,Von) =Je® + ¥ +y7, (7)

where € is the elastic energy per unit volume in the intermediate
configuration ¢, which is the reference configuration for the
elasticity rule; x//’ is the thermal energy, which includes the double-
well barrier between phases as well as the thermal driving force for
phase transformation; and ¢V is the gradient energy which pe-
nalizes interfaces.

A quadratic elastic energy for an orthotropic is considered [33].

Y= %Ee C:E = %C"fk’EZE’g’
‘l 3
=5 Z] (A" (E2")? 4 24" ERE + 4" ELVEL". (8)

The components of the fourth-rank elastic moduli tensor C are
expressed as

Ciikl — 23: [Anéinéin 5kn (51" T <6i" ynékl n 6ij6kn61n>
=l o - - )
. (6'"(5’"5’" n ynélkéln + 6m6115kn + élnazlékn)} 7

where 1", u, and »" are nine independent elastic constants, with
three for each of the three orthogonal directions. For materials with
a tetragonal crystal lattice, the constants for n = 2 and 3 are the
same; for cubic lattices, constants for all n are the same; see
Ref. [15] for explicit expressions of elastic constants. The constants
A", u™ and »" are interpolated during the PT as

A =15 + (A1 = 29) @e(n);
V" =g+ (V] — 1) 9e(n),

ut = g + (1 — ) we(n);

(10)

with Ag, u, & and A7, u¥, »7 being the elastic constants of Py and Py,
respectively. The corresponding interpolation function is [11]:

pe(m) = 1*(10 = 157 + 6n?). (11)

The thermal part of the free energy can be expressed as

v = A1 =)’ + Ay (307 - 20°), (12)
where A is the double-well barrier between Py and P; and Ax//’ is the
difference between the thermal free energy of Py and P;.

The gradient part of the free energy is presented in a standard

form:

v =Slvon? (13)

where § is the gradient energy coefficient.

A.3 The first Piola-Kirchhoff and Cauchy stress tensors
The first Piola-Kirchhof stress and the Cauchy stress have the
following expressions [11]:

9 ~ 1T
P = poiFe-; " U[ “F) ! = JiFe-C: Eo-U; ' -F 1

(14)

0 =] 'P-FT = pJ;Fe- % F! = JF,-C: E.-F

A4 Ginzburg-Landau equation

The evolution of the order parameter and corresponding
martensitic nanostructure can be described by the Ginzburg-
Landau equation, which represents a linear relationship between
the rate of change of the order parameter, 7, and the conjugate
generalized thermodynamic force, X:

o)

where L> 0. is the kinetic coefficient. Substituting the free energy
Eq. (7) into Eq. (15) results in the more explicit but still compact

1=1x=1( -5,

form of the Ginzburg-Landau equation in the reference
configuration
ou oye _
f)=LX = L(PT Fe.—nf— t% —Jweu;!
ou, oy’
—— A% . 16
on ~on +6vn (16)

A.5 Equilibrium equation in the reference configuration

Vo+P=0. (17)

A.6 Boundary conditions for the order parameter

Assuming that the surface energy does change during the PT,
one obtains boundary conditions for the evolution of the order
parameter as

ng - Vo =0, (18)

where ng is the normal to the surface in Q.

A.7 Calibration of crystal lattice instability criteria for Si I-Si Il PTs
with MD

As elaborated in Ref. [15], the crystal lattice instability condi-
tions for cubic-to-tetragonal PTs can be presented as
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1
Po—P1: (014 02)ena,1 + 0361343 Zj—e(A+3A\P0);
(19)
E1W,1 | 0363W,3 _ 1 9
P;1—Py : &8 4L 228> _(A-3A
1—Po (01+02)1+6n+ 1+ e _]( v,

where the components of the transformation strain tensor are
er1 = e = 0.1753 and ¢;3 = — 0.447. The PFA parameters can be
calibrated based on the results of MD simulations in Refs. [12,13],
and in particular, equaling the PFA lattice instability criteria in Eq.
(19) with that in Eq. (1). The calibrated parameters, including the
jump in thermal energy A\//‘9 = 6.35 GPq, interpolation constants a,
and w, for transformation strain, double-well barrier magnitude A,
and jump in thermal energy Alﬁﬁ are (see Ref. [15] for more details)

if —03>6.23GPa—

A=0.75GPa, a,; =3.31, a3 = 3.60, W,; = —2.48, w,3 = —2.39,
otherwise —

A=-9.48GPa, a,1 =1.10,a,3=2.26, w,; = —3.88, w,3 = —3.73.

(20)
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